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Abstract. In this paper we study the right-angled Coxeter groups that
acts geometrically on the Salvetti complex of a certain right-angled Artin
group, which we refer to as Croke-Kleiner spaces. We prove that any
right-angled Coxeter group that acts geometrically on the Croke-Kleiner
spaces acts with π/2 angles between reflecting axes, while the quasi-
isometric right-angled Artin group can act with angles that are any real
number in the range (0, π/2]. The contrast between the two examples
shows that in this case a right-angled Coxeter group is geometrically
more ”rigid” than its quasi-isometric counterpart.

1. Introduction

The motivation of this study is to better understand the relationship
between right-angled Coxeter groups and right-angled Artin groups. It is
known that every right-angled Artin group embeds as a finite index subgroup
of a right-angled Coxeter group [? ], so we ask what are the geometric el-
ements, if any, that distinguish a pair of quasi-isometric groups, one from
each category. We would like to generalize the result to all pairs of quasi-
isometric right-angled Artin groups and right-angled Coxeter groups.

In this paper we provide a pair of quasi-isometric groups: the right-angled
Artin group acts on the Croke-Kleiner space [? ] geometrically with flexible
angles, while the right-angled Coxeter group can only act with fixed angles.
Furthermore, we prove that any right-angled Coxeter group that acts geo-
metrically on this family of spaces has the same constraint. Therefore, the
”right-angled” in the terminology of right-angled Coxeter groups takes on a
literal meaning.

The main result is Theorem 1.1. We show that:

Theorem 1.1. Let W be a right-angled Coxeter group that acts geometri-
cally on the Croke-Kleiner spaces, then the intersection angle in T2 has to
be π/2.

The outline of the paper is as follows. In Section 2 come preliminaries
needed in this paper. In Section 3 we introduce the Croke-Kleiner spaces;
in Section 4 we prove the claim.
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2. Preliminaries

In this section we give basic definitions and facts concerning CAT(0)
geometry and boundaries, all of whose proofs can be found in [? ]. We
also give the definitions and facts we need concerning right-angled Artin
and Coxeter groups.

2.1. CAT(0) Spaces and their boundaries. A metric spaceX is CAT (0)
if geodesic triangles in X are at least as thin as a triangle in Euclidean space
with the same side lengths. It follows immediately from the definition that
CAT(0) spaces are uniquely geodesic and thus contractible via geodesic re-
traction to a base point in the space.

Recall that a metric space X is proper if closed metric balls are compact.
In this case, X can be compactified via the visual boundary of X. The points
of this boundary are equivalence classes of geodesic rays defined as follows:

A geodesic ray in X is a geodesic c : [0,∞) → X. Consider the set of
geodesic rays in X. Two geodesic rays c1 and c2 are said to be asymptotic if
f(t) := d(c1(t), c2(t)) is a bounded function. The set of equivalence classes
is denoted by ∂X. If ξ ∈ ∂X and c is a geodesic ray belonging to ξ, we write
c(∞) = ξ.

The following is a lemma in CAT(0) geometry:

Lemma 2.1. For any ξ ∈ ∂X and any x ∈ X, there is a unique geodesic
ray cxξ : [0,∞) → X with cxξ(0) = x and cxξ(∞) = ξ. The image of cxξ is
denoted by xξ.

Set X = X
⋃
∂X. The topology on X called cone topology has as a basis

the open sets of X together with the sets

U(x, ξ,R, ε) = {z ∈ X|z ∈ B(x,R), d(cxz(R), cxξ(R)) < ε}
where x ∈ X, ξ ∈ ∂X and R > 0, ε > 0. The topology on X induced by the
cone topology coincides with the metric topology on X.

This topology looks as if it depends on the base-point x in the above de-
scription of open sets, however the previous lemma shows that there is a nat-
ural change of base-point homeomorphism when the base-point is changed.

The set ∂X together with the cone topology is called the visual boundary
of X, denoted ∂∞X. It is also referred to as ideal boundary.

2.2. Quasi-Isometry and Quasi-Isometric Embeddings.

Definition 2.2. Let (X1, d1) and (X2, d2) be metric spaces. A (not necessar-
ily continuous) map f : X1 → X2 is called a (λ, ε)-quasi-isometric embedding
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Figure 1. A basis for open sets

if there exist constants λ ≥ 1 and ε ≥ 0 such that for all x, y ∈ X1

1

λ
d1(x, y)− ε ≤ d2(f(x), f(y)) ≤ λd1(x, y) + ε

If, in addition, there exists a constant C ≥ 0 such that every point of X2

lies in the C-neighborhood of the image of f , then f is called a (λ, ε)-quasi-
isometry. When such a map exists, X1 and X2 are said to be quasi-isometric.

2.3. Right-angled Groups.

Definition 2.3. Let Γ be a finite, simplicial graph. The vertex set is denoted
by V and edge set E denotes a set of unordered pairs of vertices. The
requirement of being simplicial means the diagonal V × V is excluded from
the edge set. The right-angled Artin group on Γ is the group

A(Γ) ∼=〉V |[vi, vj ] = 1whenever(vi, vj) ∈ E〈

A(Γ) is generated by the vertices of Γ, and the only relations are given by
commutation of adjacent vertices.

Definition 2.4. A right-angled Coxeter Group on a finite, simplicial
Gamma = (V,E) has the presentation:

A(Γ) ∼=〉V |v2i = 1∀i, [vi, vj ] = 1whenever(vi, vj) ∈ E〈

Just as for right-angled Artin groups, the presentation for a right-angled
Coxeter group can be given by a finite simplicial graph with the understand-
ing that each vertex now represents a generator of order 2.

Here are more basic facts of right-angled Coxeter Groups [? ]:

• If si is not adjacent to sj , then the order of sisj is infinite.
• A right-angled Coxeter group is abelian if and only if it is finite

which is true if and only if the defining graph is complete.
• A right-angled Coxeter group W has a non-trivial center if and only

if it can be written as W ′×Z2 for a right-angled Coxeter group W ′.
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3. Croke-Kleiner Spaces and their boundaries

It is well-known that if A is a right-angled Artin group, then A acts
geometrically on a CAT(0) cube complex, namely the universal cover of
its Salvetti complex. We will construct the universal cover of the Salvetti
complex of a specific right-angled Artin group in this section. The group A
has as its defining graph:

a b c d

Figure 2

Here is the construction laid out by Croke and Kleiner [? ]. Start with a
flat torus T2 with the property that a pair b, c of unoriented, π1-generating
simple closed curves in T2 meets at a single point at an angle θ2 = π

2 . Let
b, c both have length 1. Let T1, T3 be flat tori containing simple closed es-
sential loops, a, b1 and c1, d, respectively, such that length(b1) = length(b),
length(c1) = length(c). Let a, d also have length 1. Likewise θ1 and θ3
denote the intersecting angles of the generating loops in T1 and T3, respec-
tively. Let Y be the union of T1, T2, T3 with b1 identified isometrically with
b and c1 with c. Let X be the universal cover of Y . Let Y1 = T1 ∪ T2,
and let Y2 = T3 ∪ T2. That X is CAT(0) cube complex follows from the
Equivariant Gluing Theorem 11.18 [? ]. In general, the construction of a
Salvetti complex associated with a right-angled Artin group

A = 〈s1, s2.., sn|sisj = sjsi for some pairs of i 6= j〉
begins with a wedge of circles attached to a point x0 and labeled by the
generators s1, s2..., sn. Attach a k-torus for each set of k mutually commut-
ing generators (i.e., generators spanning a complete subgraph), k ≥ 2. The
resulting space is called the Salvetti complex. By construction, the funda-
mental group of the Salvetti complex is the associated right-angled Artin
group.

T1 T2 T3

Figure 3. Tori Complex

We obtain an uncountably infinite family of CAT(0) spaces by changing
the geometry of X in such a way that it is no longer cubical yet it is still
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CAT(0) and the group A still acts on the new spaces geometrically. Specif-
ically, we can change the angle θ2 to be any real number 0 < θ2 ≤ π

2 . This
particular change of geometry was studied in the original paper [? ] where
they proved that changing the angle from π

2 to any other value changes the
homeomorphism type of ∂∞X. This was further investigated by J. Wilson
in [? ] where it was shown that any two different angles give different visual
boundaries.

We can also change the lengths of a, b, c, d, which affects the translation
lengths of the actions. The geometric data associated with a Croke-Kleiner
space consists of three intersecting angles and four translation distances.
The three intersection angles are that of the intersecting angle of the three
pairs of π1-generating, simple closed curves on the three tori, which we de-
note θ1, θ2, θ3. The four lengths are the translation distances of a, b, c, d.
All spaces constructed this way, with different geometric data, are quasi-
isometric and each will be referred to as a Croke-Kleiner space.

We now describe the structure of any Croke-Kleiner space X.

Definition 3.1. A barrier in X is a maximal connected component of the
universal cover of T2. A block in X is a maximal, connected component of
the universal cover of Yi, denoted Xi.

Each block, as well as each barrier, is a closed, connected and locally
convex subset of X. Let B denote the collection of all blocks and W the
collection of all barriers. We prove later that B and W are countably infi-
nite sets.

Let T4 be the regular, 4-valent, infinite tree that is graph isomorphic to
the Cayley graph of F2 with two generators. A block is isometric to the
metric product of T4 with appropriate edge lengths with the real line R.
The intersection of two blocks can be either an empty set or a barrier. Two
blocks are adjacent if their intersection is a barrier.

Figure 4. A block

There are two trees on which a Croke-Kleiner space can be projected.
Tb denotes the tree whose vertices are blocks and whose edges denote the
adjacency of pairs of blocks. Tt denotes the tree whose vertices are lifts
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of T1, T2 and T3, and two vertices are adjacent if and only if two respective
planes have nonempty intersection. Both trees are locally countably infinite,
infinite trees, with different labeling. The figure shows Tt. Here each vertex
is labeled by the torus they are a lift of. T2’s are adjacent to countably
infinite T1’s and T3’s; while a T1(or T3) only has T2’s as its neighboring
vertices.

T2

T1

T1

T1

T3

T3

T3

T2

T2

T2

T2

T2

T2

...

...

...

...

Figure 5. Tt

Tt and Tb corresponds to different Bass-Serre decomposition of the group

〈a, b, c, d|[a, b], [b, c], [c, d]〉.

They are the Bass-Serre trees.

4. Proof of the Main Theorem

In this section we prove the main result of this paper, Theorem 1.1.
In the rest of the paper , let W be any right-angled Coxeter group with

the standard presentation:

W = {s1, s2, ...sn|s2i for all i, [si, sj ] for some pairs i, j}
The main theorem of this paper is:

Theorem 4.1. Suppose a right-angled Coxeter group W acts geometrically
on a Croke-Kleiner space, then the intersection angle on the middle torus
must be π

2 .

Recall a special flat is a flat that is a lift of Ti. We start with a lemma
about the action of the generators and the stabilizers on each special flat.

Lemma 4.2. W preserves the set of special flats.
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Proof. Since the actions of the group elements are isometric, they induce
homeomorphisms on the visual boundary. Homeomorphisms of a visual
boundary preserve block boundaries[? ]. Hence the homeomorphisms also
preserve the intersections of block boundaries, which are circles. Circles are
boundaries of special flats. Each circle corresponds to two points in the
tree factor of a block, and since the trees are hyperbolic, two points in the
tree factor picks out exactly one plane that is in the equivalence class of the
special flat determined group-theoretically by the two blocks, which has to
be special flat itself. Therefore the actions preserve the special flats. �

Corollary 4.3. For Croke-Kleiner complexes, each generator of W acts on
the nerve tree without inversion.

Proof. By construction, each edge in the nerve is incident to a pair of ver-
tices, one of them denotes a plane that is a special flat, the other denotes a
plane that is a lift of either T1 or T3. Since the actions preserve special flat,
they cannot invert any edges. �

Since the action is without inversion, we use a Bass-Serre Theorem (Trees,
page 39 Theorem 10)

Theorem 4.4. If W is a group acting without inversion on tree X, then
there is a finite tree T whose vertex groups are stabilizers of the vertices
and whose edge groups are stabilizers of the edges and the group W is the
Bass-Serre group of that construction.

How do the generators of W act on the finite tree T in the previous the-
orem? By construction the finite tree T is the strict fundamental domain
of W. By the covering property of fundamental domains, the fixed point set
of si must intersect a translate of T. If the intersection is more than one
point, it violates the definition of a strict fundamental domain, then thus
intersection must be a point. But since the action is without inversion, then
the fixed point set must be a vertex, not a midpoint of an edge. Therefore
each generator of W (or its appropriate translate) stabilizes a vertex in T.

In general, if a group element stabilizes a vertex in T, we would like to
show that it is a conjugate of a word in the subset of generators that stabilize
that vertex in T. Here is the gist of the argument. Go to a subsequence that
does not fix the vertex and examine the image of T under the actions of
each generator in that subsequence. Then the image of that vertex forms a
”circle” which contradicts the fact it is embedded in a tree(the nerve tree),
which means that it must be reflected ”out and back” at some point, i.e.
some of the images of T overlap, which again contradicts the definition of a
strict fundamental domain. Therefore the only possibility is that the images
of that vertex under each generators in the subsequence is itself, which is
our claim.
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Lemma 4.5. Suppose a right-angled Coxeter group W acts geometrically on

the Croke-Kleiner space. If a group element w fixes a special flat T̃i set-wise,

suppose w = sksk−1...s2s1, then each si fixes T̃i set-wise.

Proof. Without loss of generality, suppose s1 does not fix the special flat Ti,
otherwise let w = sksk−1...s2. Let j be the smallest number such that the
sub-word sjsj−1...s2s1 fixes the Ti. Consider generators s1 and sj . In T0,
sj and s1 each label a vertex, vsj and vs1 . T0 also contains a lift of Ti, label
it v0. Since T0 is a tree, there are unique paths (v0, vsj ) and (v0, vs1). The
word sj−1sj−2...s2 takes the edges (v0, vsj ) to the edges (v0, vs1). This con-
tradicts the assumption that T2 is a strict fundamental domain. Therefore,

each si fixes T̃i set-wise.

�

Next we prove that stabilizer subgroups act geometrically.

Proposition 4.6. Given the universal cover of Ti, denoted T̃i consider the

stabilizer subgroup Stab(T̃i), then Stab(T̃i) is generated by a (conjugate) of
a subset of the generating set {s1, s2, ...sn}, respectively.

Proof. Each generator acts simplicially on the nerve tree of special flats.
Furthermore, let every edge has length 1, then each group element acts iso-
metrically on the tree. Each generator is of order two. Therefore the fixed
point set of each generator acting on the nerve tree is either an induced
subgraph or the midpoint of an edge. Lemma 4.3 rules out the latter case.
By Corollary 4.4, there exists a minimal finite tree that is the strict funda-
mental domain of W on the nerve, which we denote by T . This tree is the
fundamental domain of the group acting on this tree, therefore generators
of W does not take points of T to points of T . By Lemma 4.5, each group
element that stabilizes a vertex of T0 is generated by a subset of generators

that stabilizes the vertex. Thus Stab(T̃i) are special subgroups, i.e. they
are generated by a subset of generators.

�

We claim the group Stab(T̃i)acts on T̃iproperly discontinuously, cocom-
pactly and by isometries.

Proposition 4.7. Given that W acts geometrically on the CK space, Stab(T̃i)acts
properly discontinuously, cocompactly and by isometries on the special flat.

Proof. The group acts by isometries because it acts by isometries on the
whole space. the group acts cocompactly on the the space for the following
reason. If K is a fundamental domain for W y X, then

K ∩ T̃i
is the fundamental domain for the actions of Stab(T̃i). Therefore Stab(T̃i)
acts cocompactly on the special flat it stabilizes.
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The group acts properly discontinuously because by Bass-Serre theory, the
stabilizer subgroups contains all the relators that has to do with the elements—
part of the consequence of being a special subgroup. So the properly dis-
continuously carries down, also undistorted. �

Next we study a right-angled Coxeter group acting cocompactly and by
isometries on a 2-dimensional Euclidean special flat. For a presentation of
a right-angled Coxeter group

W = {s1, s2, ...sn|s2i for all i, [si, sj ] for some pairs i, j}
Consider the defining graph of the group. First one can rule out the

defining graphs on less than or equal to three vertices since they either have
0, 2, or infinitely many ends. Indeed, the number of ends of a group is
a quasi-isometry invariant and the plane has one end so a group with 0 or
more than one end cannot act geometrically on the plane by the Svarc-Milnor
Lemma.

Recall Gromov’s Theorem [? ]:

Theorem 4.8. If a finitely generated group is quasi-isometric to Zn then it
contains Zn as a subgroup of finite index.

Lemma 4.9 (Key Lemma). Suppose W is a right-angled Coxeter group
acting cocompactly and by isometries on the special flat E2. Then we claim
that W must be the direct product of two copies of the infinite dihedral group.

Proof. We know that the group W has at least four generators. Since W
contains Z2 as a subgroup of finite index, it is not hyperbolic. By [? ], if Γ is
the defining graph of W , then in Γ there exists induced subgraphs A,B such
that 〈A〉, 〈B〉 are infinite and A ∗join B is a subgraph of Γ. In particular,
there exists two infinite order elements γ′1 = s1t1, γ

′
2 = s2t2 such that the

subgraph on the vertices s1, s2, t1, t2 is a join of two pairs of non-adjacent
vertices. The subgraph is a chord-less 4-cycle, where s1 is adjacent to s2
and t2, and t1 is adjacent to s2 and t2.

The actions of s1, t1, s2, t2 are order-2 isometries of the special flat, which
are either reflecting across a straight line l, or rotating around a point p by
π. Two such elements commute in the following cases:

• l1 and l2 intersecting at right angle
• l ∩ p 6= φ

An infinite order action must be a composition of these order-2 isometries
as one of the following cases:

(1) l ∩ p = φ
(2) l1 ∩ l2 = φ
(3) p1 ∩ p2 = φ

In the Z2 subgroup, there are two elements of infinite order, both generators
in one of the three pairs of elements commutes with both generators of
another one, not necessarily different, of the three pairs.
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(1) and (1), impossible since a point cannot simultaneously coincide with
another point off the line and be on the line, For the same reason, (1) and
(3) is also impossible.

(1) and (2), impossible since there is only one straight line that passes
perpendicularly through another line and a point off that line;

(2) and (3), impossible, since one point cannot be on two parallel lines;
(3) and (3), impossible since one point cannot coincides with two points.
Therefore the only possibility is (2) and (2): two pairs of parallel lines

intersecting at right angle. The defining of this group consists of four vertices
and four edges connecting up to a four-gon.

To have this group as a subgroup of finite index, by the Finite Index
Lemma [? ] we must have in the defining graph a complete graph joined
to the chord-less 4-cycle. This is to say the generators not in the chord-less
4-cycle commutes with the four reflections. By the previous argument, there
cannot be order-2 symmetries of the special flat that commutes with all four
reflections. Therefore, if a right-angled Coxeter group acts geometrically
on a special flat, the actions of the group restricted to the special flat is
isomorphic to

G = D∞ ×D∞ =< a, b, c, d|a2, b2, c2, d2, [a, c], [a, d], [b, c], [b, d] >

�

A direct corollary is the following,

Corollary 4.10. If a right-angled Coxeter group acts geometrically on a
special flat, then it is isomorphic to D∞ ×D∞. The D∞ ×D∞ acts on the
special flat like two pairs reflections cross lines. Each pair consists of two
reflections whose fixed-point sets are parallel axes, and the two pairs of axes
intersect at right angle.

Next we study how the stabilizer subgroups piece together and determine
the gluing angle of the complex.

Theorem 4.11. If a right-angled Coxeter group acts geometrically on the
Croke-Kleiner space and preserves special flats, then the angle θ2 must be
π/2.

Proof. Consider a special flat of type T1 or T3, without loss of generality, let
it be T1. Each of these flats is adjacent to countably many lifts of T2. The
intersections of a flat of type Ti with a flat of type Tj is labeled li,j . Any
action on T1 preserves the set of all l2,1, therefore the axes of the generators
are parallel and perpendicular to the l2,1. Moreover, two of the generators
reflect l2,1 across a point.

Now consider the special flats of type T2. In these flats, there are two
sets of intersections with neighboring special flats, labeled accordingly l2,1
and l2,3. All the l2,1s are parallel to one another; all the l2,3s are parallel to
one another. Consider the angle θ between l2,1 and l2,3. Suppose θ 6= π/2,
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then the only possibility for a set of four reflection, configured in the way
specified in Key Lemma, can take intersections to intersections is to have
them reflect across the diagonals of the unit parallelograms in the special
flat, as shown in Figure 6. In Figure 6, the solid lines are l2,1 and l2,3, the
dashed lines are the axes of reflections.

Figure 6. Gluing Theorem

In this case, it takes a two-letter word to reflect l2,1 onto itself across a
point. We argued in the first paragraph that there are generators that reflect
l2,1 to itself across a point. Since l2,1 is also in the flat that is a lift of T2, the
same generator then act as reflection on the corresponding T2 and its axis
intersects l2,1. However there are already reflection axes intersecting l2,1 as
established in the previous paragraph and neither of them reflect l2,1 onto
itself. Therefore we need to have a third reflection axis that is not parallel
to the two existing axes. This configuration contradicts the Key Lemma.
Therefore, it is not possible to have the intersection angle of l2,1 and l2,3 be
θ 6= π/2.

�


