Geometry (Part 1)

Lines and angles

A line is an infinite number of points between two end points.
Where two lines meet or cross, they form an angle.
An angle is an amount of rotation. It is measured in degrees.

Types of angles			
Name of angle	Example	Size of angle	
Acute angle		Between 0° and 90°	
Right angle		Equal to 90°	
Obtuse angle		Between 90° and 180°	
Straight line		Equal to 180°	
Reflex angle			Between 180° and 360°
Revolution/angles around a point			

Angle language:

Labelling angles: \widehat{B} or $A \widehat{B} C$
Also:
 We refer to the reflex angle as 'reflex $\widehat{\boldsymbol{B}}^{\prime}$

Terminology

	$A B$ and $C D$ intersect (cross or cut) at E
Bisect	AB bisect (cuts in half) CD
Complementary angles Angles that add up to 90° Supplementary angles	E.g. the complement of 48° is 42°
Angles that add up to 180°	E.g. the supplement of 130° is 50°
Adjacent angles Adjacent angels on a straight line adds up to 180° $m / n \quad \therefore m+n=180^{\circ}$	Angles that have a common vertex and a common arm $\rightarrow p$ and q are adjacent angles.
	Lines that meet or cross at 90°. $A B \perp C D$ Symbol for 'perpendicular'

Exercise 1:

(a) In the diagram below name:
(1) 5 acute angles
(2) 2 right angles
(3) 10 pairs of adjacent angles
(4) 3 obtuse angles

(b) In the diagram below, classify the angles labelled $a-j$. The first one is done for you as an example:

a: Acute
b: \qquad

C: \qquad d: \qquad
e: \qquad f: \qquad
h: \qquad
g : \qquad
i: \qquad j: \qquad
(c) Consider the angles marked x and y. State whether they are adjacent or not:

\qquad
\qquad

\qquad
\qquad

(d) Complete the table by filling in the missing information:

Measure of angle	Complement	Supplement
37°	$90^{\circ}-37^{\circ}=59^{\circ}$	$180^{\circ}-37^{\circ}=143^{\circ}$
20°		
77°		
101°		
90°		
96°		
x		
y		

REMEMBER: Adjacent angles on a straight line are supplementary.

If they are adjacent angles on a straight line, then they add up to 180°.

Example:

Determine, with reason, the value of x :

Statement	Reason
$x=180^{\circ}-120^{\circ}$	$\operatorname{Adj} \angle^{\prime}$'s on a str line

In geometry we always need to provide reasons for 'why' we state something.

Exercise 2:

Calculate the size of the variables (a, b, c and d). Give a reason for your answer.

Vertically opposite angles:

When two straight lines intersect the angles opposite each other are called vertically opposite angles.

Vertically opposite angles are equal to each other.

Example:
Determine, with reason, the value of x :

Statement	Reason
$x=110^{\circ}$	Vert opp \angle 's

Transversals

If a line cuts or touches another line, it is called a transversal.

e.g. $A B$ is a transversal because it cuts $C D$ and $E F, C D$ and $E F$ are also transversals of $A B$.

Transversals creates three important types of angles, namely:

1. Corresponding angles
2. Co-interior angles
3. Alternating angles
4. Corresponding angles are in the same position as each other. They make a F shape:

5. Co-interior angles are between the lines and on the same side of the transversal. They are "inside together". They make a C or U shape.

6. Alternate angles are between the lines and on alternate (opposite) sides of the transversal. They make a Z or N shape.

Exercise 3:

Use the diagram below to find:
(a) 10 pairs of corresponding angles
\qquad
(b) 8 pairs of vertically opposite angles
(c) 4 pairs of co-interior angles
(d) 8 pairs of alternate angles
(e) 6 pairs of adjacent supplementary angles
\qquad

Exercise 4:

Find the value of each variable, in alphabetical order (where there is more than one variable), providing reasons for your statements:

Use the following reasons to help you complete Ex 4 and 5

- Adj \angle 's on a str Line
- Adj comp \angle 's
- Vert opp L's $^{\prime}$
- \angle 's at a pt

		Statement	Reason
(a)			
(b)			
(c)			
(d)			
(e)			

Exercise 5:

Use the diagram to write down an equation, with a reason, in order to calculate the value of x :

		Statement	Reason
(a)	(b)		

Parallel lines

Parallel lines are lines that stay the same distance apart, no matter how long the lines are (they are lines that never meet).

If lines are parallel then:

- The corresponding angles are equal
- The alternate angles are equal
- The co-interior angles are supplementary

To prove lines are parallel:
Prove the corresponding angles are equal
Prove the alternate angles are equal
Prove the co-interior angles are supplementary

Arrows are used to indicate that lines are

Reasons:
corr \angle 's ; ...//... alt \angle 's ; ...//... co-int \angle 's ; ...//...
corr \angle 's =
alt $\angle ' s=$
co-int $\angle ' s=$

NB: You have to mention the parallel lines

Let's see in Exercise 6 how these parallel lines can help us determine the value of unknown angles...

Exercise 6:

(a) Determine the sizes of the angles marked with variables, in alphabetical order. Give reasons for your answers. (The first one is done for you as an example)

		Statement	Reason
(1)		$\begin{aligned} & x=108^{\circ} \\ & y=180-108^{\circ} \\ & y=72^{\circ} \end{aligned}$	Corr \angle 's ; AB//CD Adj \angle 's on a str line
(2)			
(3)			
(4)			
(5)			

(b) In each case, state whether $A B$ is parallel to $C D$. Provide reasons for your statements.
(1)

(2)

(3)

(4)

\qquad

Summary of statements and reasons	
Statement	Reason
Angles on a straight line adds up to 180°	Adj \angle^{\prime} s on a str line
Complementary angles adds up to 90°	Adj comp \angle^{\prime} s
Vertically opposite angles are equal	Vert opp \angle^{\prime} s
Angles around a point adds up to 360°	\angle^{\prime} s at a pt
Corresponding angles of parallel lines are equal	Corr \angle^{\prime} s $; \ldots / / \ldots$
Co-interior angles between parallel lines add up to 180°	Co-int $\angle^{\prime} ; \ldots / / .$.
Alternating angles of parallel lines are equal	Alt \angle^{\prime} s $; \ldots / / \ldots$

*Please note that none of the diagrams in this workbook are drawn according to scale.

MEMO

Exercise 1:

(a.1) $\hat{A}_{1} ; \hat{A}_{3} ; \hat{E}_{2} ; \widehat{D}_{1} ; \widehat{D}_{3} ; \widehat{B}_{2}$ (any five)
(a.2) $E \hat{C} B$ and $E \hat{C} D$
(a.3) \hat{A}_{1} and $\hat{A}_{2} ; \hat{A}_{2}$ and $\hat{A}_{3} ; \hat{A}_{3}$ and $\hat{A}_{4} ; \widehat{B}_{1}$ and $\widehat{B}_{2} ; E \hat{C} B$ and $E \hat{C} D ; \widehat{D}_{1}$ and $\widehat{D}_{2} ; \widehat{D}_{2}$ and $\widehat{D}_{3} ; \widehat{D}_{3}$ and \widehat{D}_{4} \hat{A}_{1} and $\hat{A}_{4} ; \widehat{D}_{1}$ and $\widehat{D}_{4} ; \widehat{E}_{1}$ and \widehat{E}_{2}
(a.4) $\hat{A}_{2} ; \hat{A}_{4} ; \hat{E}_{1} ; \widehat{D}_{2} ; \widehat{D}_{4} ; \hat{B}_{1}$ (any three)
(b) b: Obtuse
c: Reflex
d: Obtuse
e: Obtuse
f: Right
g: Acute
h: Acute
i: Reflex
j: Obtuse
(c.1) Adjacent
(c.2) Not adjacent (does not share a common point)
(c.3) Not adjacent (does not share a common arm)
(c.4) Adjacent
(c.5) Adjacent
(c.6) Not adjacent (does not share a common point)
(d)

Measure of angle	Complement	Supplement
20°	70°	160°
77°	13°	103°
101°	No complement	79°
90°	0°	90°
96°	No complement	84°
x	$90^{\circ}-x$	$180^{\circ}-x$
y	$90^{\circ}-y$	$180^{\circ}-y$

Exercise 2:

		Statement	Reason
(a)	\qquad	$\begin{aligned} & a=180^{\circ}-150^{\circ} \\ & \therefore a=130^{\circ} \end{aligned}$	Adj \angle^{\prime} ' on a str line
(b)		$\begin{aligned} & b=180^{\circ}-10^{\circ}-60^{\circ} \\ & \therefore b=110^{\circ} \end{aligned}$	Adj \angle^{\prime} 's on a str line
(c)		$\begin{aligned} & 2 c=180^{\circ}-120^{\circ} \\ & 2 c=60^{\circ} \\ & c=\frac{60^{\circ}}{2} \\ & \therefore c=30^{\circ} \end{aligned}$	Adj \angle 's on a str line
(d)	$d+20^{\circ} d$	$\begin{aligned} & d+20^{\circ}+d=180^{\circ} \\ & 2 d=180^{\circ}-20^{\circ} \\ & 2 d=160^{\circ} \\ & d=\frac{160^{\circ}}{2} \\ & \therefore d=80^{\circ} \end{aligned}$	Adj \angle 's on a str line

Exercise 3:

(a) \hat{A}_{1} and $\widehat{B}_{1} ; \hat{A}_{2}$ and $\widehat{B}_{2} ; \hat{A}_{3}$ and $\widehat{B}_{3} ; \hat{A}_{4}$ and $\widehat{B}_{4} ; \hat{A}_{1}$ and $\widehat{D}_{1} ; \hat{A}_{2}$ and $\widehat{D}_{2} ; \hat{A}_{3}$ and $\widehat{D}_{3} ; \hat{A}_{4}$ and \widehat{D}_{4} \widehat{B}_{1} and $\hat{C}_{1} ; \widehat{B}_{2}$ and $\hat{C}_{2} ; \widehat{B}_{3}$ and $\hat{C}_{3} ; \widehat{B}_{4}$ and $\hat{C}_{4} ; \hat{C}_{1}$ and $\widehat{D}_{1} ; \hat{C}_{2}$ and $\widehat{D}_{2} ; \hat{C}_{3}$ and $\widehat{D}_{3} ; \hat{C}_{4}$ and \widehat{D}_{4} (any ten pairs)
(b) \hat{A}_{1} and $\hat{A}_{3} ; \hat{A}_{2}$ and $\hat{A}_{4} ; \widehat{B}_{1}$ and $\widehat{B}_{3} ; \widehat{B}_{2}$ and $\widehat{B}_{4} ; \hat{C}_{1}$ and $\hat{C}_{3} ; \hat{C}_{2}$ and $\hat{C}_{4} ; \widehat{D}_{1}$ and $\widehat{D}_{3} ; \widehat{D}_{2}$ and \widehat{D}_{4}
(c) \hat{A}_{3} and $\widehat{D}_{2} ; \hat{A}_{4}$ and $\widehat{D}_{1} ; \hat{A}_{2}$ and $\widehat{B}_{1} ; \widehat{B}_{4}$ and $\hat{C}_{1} ; \widehat{B}_{3}$ and $\hat{C}_{2} ; \hat{C}_{1}$ and $\widehat{D}_{2} ; \hat{C}_{4}$ and \widehat{D}_{3} (any four)
(d) \hat{A}_{2} and $\widehat{B}_{4} ; \hat{A}_{4}$ and $\widehat{D}_{2} ; \hat{A}_{3}$ and $\widehat{D}_{1} ; \widehat{B}_{1}$ and $\hat{A}_{3} ; \widehat{B}_{4}$ and $\hat{C}_{2} ; \widehat{B}_{3}$ and $\hat{C}_{1} ; \hat{C}_{1}$ and $\widehat{D}_{3} ; \hat{C}_{4}$ and \widehat{D}_{2}
(e) Any two angles that are on a straight line and share the same point.

Exercise 4:

		Statement	Reason
(a)		$x=95^{\circ}$	Vert opp $\angle ' s$

(b)		$\begin{aligned} & x=180^{\circ}-145^{\circ} \\ & \therefore x=35^{\circ} \end{aligned}$	Adj ι^{\prime} ' on a str line
(c)	$\frac{40^{\circ}}{x}$	$\begin{aligned} & x=90^{\circ}-40^{\circ} \\ & \therefore x=50^{\circ} \\ & y=90^{\circ} \end{aligned}$	Adj comp \angle 's
(d)		$\begin{aligned} & x+50^{\circ}+60^{\circ}=180^{\circ} \\ & x=180^{\circ}-50^{\circ}-60^{\circ} \\ & \therefore x=70^{\circ} \\ & y=50^{\circ} \\ & z=60^{\circ} \end{aligned}$	Adj L^{\prime} 's on a str line Vert opp \angle 's Vert opp \angle 's
(e)		$\begin{aligned} & x=90^{\circ} \\ & y=90^{\circ} \end{aligned}$	Adj \angle 's on a str line Vert opp \angle 's

Exercise 5:

		Statement	Reason
(a)		$\begin{aligned} & 70^{\circ}=x+20^{\circ} \\ & \therefore x=50^{\circ} \end{aligned}$	Vert opp \angle 's
(b)		$\begin{aligned} & x+20^{\circ}=2 x-50^{\circ} \\ & 20^{\circ}+50^{\circ}=x \\ & 70^{\circ}=x \\ & \therefore x=70^{\circ} \end{aligned}$	Vert opp \angle 's
(c)		$\begin{aligned} & 2 x-10^{\circ}+140^{\circ}=180^{\circ} \\ & 2 x+130^{\circ}=180^{\circ} \\ & 2 x=50^{\circ} \\ & \\ & x=25^{\circ} \end{aligned}$	Adj ι^{\prime} ' on a str line

Exercise 6:

		Statement	Reason
(2)		$\begin{aligned} & x=88^{\circ} \\ & y=88^{\circ} \end{aligned}$	$\begin{aligned} & \text { Vert opp } \angle ' s \\ & \text { Corr } \angle ' \text { ' ; EF // GH } \end{aligned}$
(3)		$\begin{aligned} & x+51^{\circ}=180^{\circ} \\ & \therefore x=129^{\circ} \\ & y=100^{\circ} \\ & z=180^{\circ}-100^{\circ} \\ & \therefore z=80^{\circ} \end{aligned}$	Co-int \angle 's ; IJ // KL Corr \angle 's ; IJ // KL Adj \angle 's on a str line
(4)		$x=62^{\circ}$	Alt \angle 's ; MN // OP
(5)		$\begin{aligned} & x=71^{\circ} \\ & y+71^{\circ}=180^{\circ} \\ & \therefore y=109^{\circ} \end{aligned}$	Alt \angle 's ; UV // WX Co-int \angle 's ; QR // ST

(b.1) $A B / / D C$ because corresponding angles are equal.
(b.2) $A B$ will not be parallel to $D C$ because the co-interior angles are not supplementary.
(b.3) $A B / / D C$ because the alternating angles are equal.
(b.4) $A B / / D C$ because the co-interior angles will be supplementary.

