Geometry (Part 3)

Quadrilaterals

Quadrilateral family:

Put your thinking cap on!

Using your knowledge of the properties of quadrilaterals, try to answer the following questions, with reasons:

1. Are all parallelograms trapeziums and vice versa (the other way around)?
2. Is a square a rectangle and vice versa (the other way around)?
3. Is a rectangle a parallelogram and vice versa (the other way around)?

Look at the back of the memo for the answers!

Look out for the following when working with a...

...trapezium, parallelogram, rectangle, square or rhombus...
...kite or square...

They all have parallel sides which means you can use your FUN angles from Part 1.

These shapes have a bunch of isosceles triangles in them. We learned in Part 2 that the base angles of an isosceles triangle are equal to each other.

Let's see in the example below how we will use the properties of quadrilaterals to help us solve geometrical problems. Remember to use everything that you've learn in Part 1 and Part 2 about lines, angles and triangles!

Example 1:

Determine, with reasons, the values of the unknown angles in the following:

	Statement	Reason
	$\begin{aligned} & x+69^{\circ}+88^{\circ}=180^{\circ} \\ & x=180^{\circ}-157^{\circ} \\ & x=23^{\circ} \\ & y=23^{\circ} \\ & z=88^{\circ} \end{aligned}$	Co-interior \angle 's ; AB//EC Alternate \angle 's ; AB//EC Corresponding \angle 's; AB//EC

Exercise 1: (None of the diagrams are drawn to scale)
Determine, with reasons, the values of the unknown angles in the following:

	Statement	Reason	

(

Congruency and Similarity of Quadrilaterals

Two quadrilaterals are congruent when all corresponding sides and all corresponding angles of the two quadrilaterals are equal.

Rectangle $A \equiv$ Rectangle B

Two quadrilaterals are similar when the corresponding angles of two quadrilaterals are equal, but the corresponding sides of the two quadrilaterals are not equal. The sides lengths of similar quadrilaterals will correspond in ratio.

A

Rectangle $A|\mid$ Rectangle B

Exercise 2: Refer to the image below and answer the questions which follow: Images are not drawn to scale.

2 cm

B

C

2.1 Identify the shape that is similar to Shape A. Give a reason for your answer.
2.2 Identify the shape that is congruent to Shape A. Give a reason for your answer.

Exercise 3: Answer the following questions on congruence and similarity:
3.1 Quadrilateral ABCD \equiv Quadrilateral PQRS

Calculate the following:
$\overleftrightarrow{Q P}$
$\overleftrightarrow{B C}$
$\angle Q P S$

3.2 Parallelogram ABCD ||| Parallegrom EFGH

Calculate the length of FG

MEMO

	Statement	Reason
	$\begin{aligned} & x+66^{\circ}+90^{\circ}+90^{\circ}= \\ & 360^{\circ} \\ & x+246^{\circ}=360^{\circ} \\ & x=360^{\circ}-246^{\circ} \\ & x=114^{\circ} \end{aligned}$	Internal \angle 's of a quad
$A B C D$ is a rectangle.	$x=105^{\circ}$ $\begin{aligned} & y=55^{\circ} \\ & z=90^{\circ}-55^{\circ} \\ & z=35^{\circ} \end{aligned}$	Vertically opposite \angle 's Alternate \angle 's ; AC // BD Internal \angle 's of a rectangle $=90^{\circ}$
	$\begin{aligned} & H \hat{F} G=67^{\circ} \\ & x+52^{\circ}+67^{\circ}=180^{\circ} \\ & x+119^{\circ}=180^{\circ} \\ & x=61^{\circ} \\ & y=61^{\circ} \end{aligned}$	Alternate L's ; EH // FG Internal \angle 's of a Δ Vertically opp \angle 's

Co-interior L's ; IJ // LK

$\underset{40^{\circ}}{2}$	$\begin{aligned} & x=90^{\circ} \\ & y=45^{\circ} \\ & z=60^{\circ} \end{aligned}$	Diagonals of a kite bisect \perp Isosceles Δ Isosceles Δ

Reasons for angle calculations may vary as there may be other methods to calculate the angle sizes.
Exercise 2: Refer to the image below and answer the questions which follow: Images are not drawn to scale.
2.1 Identify the shape that is similar to Shape A. Give a reason for your answer.

Quadrilateral A || |Quadrilateral C, because all the corresponding angles are equal in shape A and C and the corresponding sides are not equal, but the corresponding sides are in the same ratio.
2.2 Identify the shape that is congruent to Shape A. Give a reason for your answer.

Quadrilateral $A \equiv$ Quadrilateral D, because all corresponding angles and sides in both shapes are equal.
Exercise 3: Answer the following questions on congruence and similarity:
3.1 Quadrilateral ABCD \equiv Quadrilateral PQRS

Calculate the following:
$\overleftrightarrow{Q P}=6 \mathrm{~cm}$
$Q P$
$\leftrightarrow=3 \mathrm{~cm}$
$\angle Q P S=360^{\circ}-\left(102^{\circ}+114^{\circ}+85^{\circ}\right)$
$\angle Q P S=360^{\circ}-301^{\circ}$
$\angle Q P S=59^{\circ}$

3.2 Parallelogram ABCD ||| Parallegrom EFGH

Calculate the length of FG .
Ratio of AB : $\mathrm{HG}=6: 4$ or $3: 2$
Therefore ratio of $\mathrm{BC}: \mathrm{FG}$ will also be $3: 2$
If $\mathrm{BC}=3 \mathrm{~cm}$ then FG will be 2 cm in length
Using your knowledge of the properties of quadrilaterals, try to answer the following questions, with reasons:

1. A parallelogram is a trapezium, but a trapezium is not a parallelogram. A parallelogram has at least one pair of parallel sides (the properties of a trapezium).
2. A square is a rectangle, but a rectangle is not a square. A square has two pairs of equal, parallel sides and four right angles (the properties of a rectangle).
3. A rectangle is a parallelogram, but a parallelogram is not a rectangle. A rectangle has two pairs of equal, parallel sides and equal diagonally opposite angles (the properties of a parallelogram.)
