

# Grade 7

| Properties of quadrilaterals |                                                                                                                                                                                                             |  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Quadrilateral                | <ul> <li>Four closed sides</li> <li>Interior angles add up to 360°</li> </ul>                                                                                                                               |  |
| Trapezium                    | <ul> <li>Only one pair of opposite sides parallel</li> <li>No lines of symmetry</li> </ul>                                                                                                                  |  |
| Parallelogram                | <ul> <li>Both pairs of opposite sides parallel</li> <li>Both pairs of opposite sides equal in length</li> <li>Both pairs of opposite interior angles equal in size</li> <li>No lines of symmetry</li> </ul> |  |
| Rectangle                    | <ul> <li>Both pairs of opposite sides parallel</li> <li>Both pairs of opposite sides equal in length</li> <li>All interior angles equal to 90°</li> <li>Two lines of symmetry</li> </ul>                    |  |
| Sqaure                       | <ul> <li>Both pairs of opposite sides parallel</li> <li>All side equal to each other</li> <li>All interior angles equal to 90°</li> <li>Four lines of symmetry</li> </ul>                                   |  |
| Rhombus                      | <ul> <li>Both pairs of opposite sides parallel</li> <li>All sides equal in length</li> <li>Both pairs of opposite interior angles equal in size</li> <li>Two lines of symmetry</li> </ul>                   |  |
| Kite                         | <ul> <li>Two pairs of adjacent sides equal in length</li> <li>One pair of opposite angles equal to each other where the short side meets the longer side</li> <li>One line of symmetry</li> </ul>           |  |



| Look out for the following when working with a         |                                                                                                                                                                                            |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| trapezium, parallelogram, rectangle, square or rhombus | They all have <b>parallel sides</b> which means you<br>can use your <u>FUN angles</u> from Part 1.                                                                                         |  |
| kite or square                                         | These shapes have a bunch of <u>isosceles</u><br><u>triangles</u> in them. We learned in Part 2 that the<br><u>base angles</u> of an isosceles triangle are <u>equal</u><br>to each other. |  |

Let's see in the example below how we will use the properties of quadrilaterals to help us solve geometrical problems. Remember to use everything that you've learn in Part 1 and Part 2 about lines, angles and triangles!

Example 1:

Determine, with reasons, the values of the unknown angles in the following:

|                | Statement                                   | Reason                   |
|----------------|---------------------------------------------|--------------------------|
| ΑΒ             | $x + 69^{\circ} + 88^{\circ} = 180^{\circ}$ | Co-interior ∠'s ; AB//EC |
| x              | $x = 180^{\circ} - 157^{\circ}$             |                          |
| 69°            | $x = 23^{\circ}$                            |                          |
|                | $y = 23^{\circ}$                            | Alternate ∠'s ; AB//EC   |
|                | $z = 88^{\circ}$                            | Corresponding ∠'s ;      |
| <u>z</u> y 88° |                                             | AB//EC                   |
|                |                                             |                          |

Exercise 1: (None of the diagrams are drawn to scale)

Determine, with reasons, the values of the unknown angles in the following:









| MEMO                                                                   |                                                                                                                                                                       |                                                                                                                     |  |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
|                                                                        | Statement<br>$x + 66^{\circ} + 90^{\circ} + 90^{\circ} =$<br>$360^{\circ}$<br>$x + 246^{\circ} = 360^{\circ}$<br>$x = 360^{\circ} - 246^{\circ}$<br>$x = 114^{\circ}$ | Reason<br>Internal ∠'s of a quad                                                                                    |  |
| ABCD is a rectangle.<br>A<br>y<br>z<br>z<br>z<br>z<br>z<br>z<br>z<br>z | $x = 105^{\circ}$ $y = 55^{\circ}$ $z = 90^{\circ} - 55^{\circ}$ $z = 35^{\circ}$                                                                                     | Vertically opposite $\angle$ 's<br>Alternate $\angle$ 's ; AC // BD<br>Internal $\angle$ 's of a rectangle<br>= 90° |  |
| F<br>y<br>x<br>G<br>G                                                  | $H\hat{F}G = 67^{\circ} x + 52^{\circ} + 67^{\circ} = 180^{\circ} x + 119^{\circ} = 180^{\circ} x = 61^{\circ} y = 61^{\circ}$                                        | Alternate $\angle$ 's ; EH // FG<br>Internal $\angle$ 's of a $\Delta$<br>Vertically opp $\angle$ 's                |  |
| $\begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $      | $x + 20^{\circ} + x = 180^{\circ}$<br>$2x + 20^{\circ} = 180^{\circ}$<br>$2x = 160^{\circ}$<br>$x = 80^{\circ}$                                                       | Co-interior ∠'s ; IJ // LK                                                                                          |  |
| P $X$                              | $x + x = 114^{\circ}$ $2x = 114^{\circ}$ $x = \frac{114^{\circ}}{2}$ $x = 57^{\circ}$                                                                                 | Opp ∠'s of parm =                                                                                                   |  |

