

New Jersey Center for Teaching and Learning Progressive Mathematics Initiative ${ }^{\oplus}$

This material is made freely available at www.njctlorg and is intended for the non-commercial use of students and teachers.

These materials may not be used for any commercial purposes without the written permission of the owners. NJCTL maintains its website for the convenience of teachers who wish to make their work available to other teachers, participate in virtual professional learning community, and/or provide access to course materials to parents, students and others.

We, at the New Jersey Education Association (NJEA) are proud founders and supporters of NJCTL, an independent non-profit organization. NJEA embraces NJCTL's mission of empowering teachers to lead school improvement for the benefit of all students.

Click to go to website: www.njetl.org
Geometry
Points, Lines,
Planes \& Angles
Part 2 2

Table of Contents for Videos Demonstrating Constructions

click on the topic to to that video to that video

Congruent Angles
Angle Bisectors
Angles $\left.\begin{array}{l}\text { Return to Table } \\ \text { of Contents }\end{array}\right]$

Slide 5 / 185

Angles

Definition 8: A plane angle is the inclination to one another of two lines in a plane which meet one another and do not lie in a straight line.

Whenever lines, rays or segments in a plane intersect, they do so at an angle.

Angles

The measure of angle is the amount that one line, one ray or segment would need to rotate in order to overlap the other.

In this case, Ray BA would have to rotate through an angle of x in order to overlap Ray BC.

Angles

In this course, angles will be measured with degrees, which have the symbol ${ }^{0}$.

For a ray to rotate all the way around from BC, as shown, back to BC would represent a 360° angle.

Measuring angles in degrees

The use of 360 degrees to represent a full rotation back to the original position is arbitrary.

Any number could have been used, but 360 degrees for a full rotation has become a standard.

Measuring angles in degrees

The use of 360 for a full rotation is thought that it come from ancient Babylonia, which used a number system based on 60.

Their number system may also be linked to the fact that there are 365 days in a year, which is pretty close to 360.

360 is a much easier number to work with than 365 since it is divided evenly by many numbers.
These include $2,3,4,5,6,8,9,10$ and 12.

Slide 11 / 185

Right Angles

Definition 10: When a straight line standing on a straight line makes the adjacent angles equal to one another, each of the equal angles is right, and the straight line standing on the other is called a perpendicular to that on which it stands.

The only way that two lines can intersect as shown and form adjacent equal angles, such as shown here where Angle $A B C=$ Angle $A B D$, is if there are right angles, 90°.

Right Angles

Fourth Postulate: That all right angles are equal to one another.
Not only are adjacent right angles equal to each other as shown
below, all right angles are equal, even if they are not adjacent, for instance, all three of the below right angles are equal to one another.

Right Angles

This definition is unchanged today and should be familiar to you.

When perpendicular lines meet, they form equal adjacent angles and their measure is 90°.

Slide 14 / 185

Right Angles

There is a special indicator of a right angle.

Obtuse Angles

Definition 11: An obtuse angle is an angle greater than a right angle.

Acute Angles

Definition 12: An acute angle is an angle less than a right angle.

Slide 17 / 185

Straight Angle

A definition that we need that was not used in The Elements is that of a "straight angle." That is the angle of a straight line.

2 questions to discuss with a partner:
Is this an acute or obtuse angle?
What is the degree measurement of the angle?

Slide 17 (Answer) / 185

Reflex Angle
Another modern definition that was not used in The Elements is
that of a "reflex angle." That is an angle that is greater than 180°.
This is also a type.
of obtuse angle.

Angles

In the next few slides we'll use our responders to review the names of angles by showing angles from 0° to 360° in 45° increments.

Angles can be of any size, not just increments of 45°, but this is just to give an idea for what a full rotation looks like.

1 This is an example of a (an) \qquad angle. Choose all that apply.acuteobtuserightreflexstraight

Slide 19 / 185
\qquad

 | (1) |
| :--- | \longrightarrow

\qquad (1)
\qquad

2 This is an example of a (an) \qquad angle. Choose all that apply.acute
\square obtuserightreflexstraight

2 This is an example of a (an)

anale

 Choose all that apply.acuteobtuserightreflexstraightSlide 21 (Answer) / 185

3 This is an example of a (an) \qquad angle.
straight

3 This is an example of a (an) \qquad angle. Choose all that apply.acuteobtuserightreflexstraight

4 This is an example of a (an) \qquad angle. Choose all that apply.acuteobtuserightreflex
straight
4 This is an example of a (an) ___ angle.
Choose all that apply.
\square acute
\square obtuse
\square right
\square reflex
\square straight

5 This is an example of a (an) \qquad angle.

6 This is an example of a (an) \qquad angle. Choose all that apply.acuteobtuserightreflexstraight

\qquad \square

6 This is an example of a (an) \qquad angle. Choose all that apply.
\square obtuserightreflexstraight

7 This is an example of a (an) \qquad angle. Choose all that apply.acuteobtuserightreflexstraight
A

7 This is an example of a (an) \qquad angle. Choose all that apply.

8 This is an example of a (an) \qquad angle. Choose all that apply.
\square acute
\square obtuserightreflexstraight

C
Slide 27 / 185

8 This is an example of a (an) \qquad angle. Choose all that apply.acuteobtuserightreflexstraight
Slide 27 (Answer) / 185

This is an example of a (an) ___ angle.
9 This is an example of a (an) ___ angle.
Choose all that apply.
\square acute
\square obtuse
\square right
\square reflex
\square straight
\square right
\square reflexstraight
9 This is an example of a (an)___ angle.
Choose all that apply.
\square acute
\square obtuse
\square right
\square reflex
\square straight

Naming Angles

An angle has three parts, it has two sides and one vertex, where the sides meet.

Slide 28 (Answer) / 185
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Interior of Angles

Any angle with a measure of less than 180° has an interior
and exterior, as shown below. and exterior, as shown below.

Naming Angles

An angle can be named in three different ways:

By its vertex (B in the below example)

By a point on one leg, its vertex and a point on the other leg (either ABC or CBA in the below example)

Or by a letter or number placed inside the angle (x in the below)

Naming Angles

The angle shown can be called $\angle \mathrm{ABC}, \angle \mathrm{CBA}$, or $\angle \mathrm{B}$.

When there is no chance of confusion, the angle may also be identified by its vertex B.

The sides of $\angle A B C$ are rays $B C$ and $B A$

The measure of $\angle A B C$ is 32 degrees, which can be rewritten as $m \angle A B C=32^{\circ}$.

Naming Angles

Using the vertex to name an angle doesn't work in some

Slide 33 (Answer) / 185

Naming Angles

Naming Angles

What other ways could you name $\angle \mathrm{ABC}, \angle \mathrm{ABD}$ and $\angle \mathrm{DBC}$ in the case below? (using the side - vertex - side method)

How could you name those 3 angles using the letters placed inside the angles?

How could you name those 3 angles using the letters placed inside the angles?

Intersecting Lines Form Angles

These numbers used have no special significance, but just show the 4 angles. When rays or segments intersect but do not have a common vertex, they also create 4 angles.

10 Two lines__meet at more than	
one point.	
OA Always	
OB Sometimes	
OC Never	

${ }^{11}$ An angle that measures 90 degrees is \qquad a right angle.

OA Always
OB Sometimes
OC Never

${ }^{11}$ An angle that measure a right angle.

OA Always
OB Sometimes
OC Never
12 An angle that is less than 90 degrees is
obtuse.
A Always
B Sometimes
C Never
${ }^{13}$ An angle that is greater than 180 degrees is
\ldots referred to as a reflex angle.
OA Always
OB Sometimes
OC Never
${ }^{13}$ An angle that is greater than 180 degrees is

Slide 40 (Answer) / 185

Congruence

We learned earlier that if two line segments have the same length, they are congruent.

Also, all line segments with the same length are congruent.

Are these two segments congruent?

Congruence

How about two angles which are formed by two rays with common vertices. Are all of those congruent?

What would have to be the same for each of them to be congruent?

Congruence

If two angles have the same measure, they are congruent since they can be rotated and moved to overlap at every point.

Slide 43 / 185
\qquad \square \square \square \square
\qquad

Slide 44 / 185

\square

Congruence

However, if their included angles do not have the same measure, they cannot be made to overlap at every point.

For angles to be congruent, they need to have the same measure.

Here you can see clearly when we rotate the two angles from the previous slide, they do not have the same angle measure.

Congruent Angles

One way to indicate that two angles have the same measure is to label them with the same variable.

For instance, labeling both of these angles x indicates that they have the same measure.

\qquad

Slide 49 / 185
14 Is $\angle B$ congruent to $\angle E$?

14 Is $\angle B$ congruent to $\angle E$?

${ }^{15}$ Congruent angles___ have the same
measure.
OA Always
OB Sometimes
OC Never
${ }^{5}$ Congruent angles have the same

OB Sometimes
C Never

Slide 50 (Answer) / 185
${ }^{15}$ Congruent angles measure.

OA Always
OB Sometimes
OC Never
A
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$16 \angle A$ and $\angle B$ are \qquad .

OA Congruent
OB Not Congruent
OC Cannot be determined

Slide 52 (Answer) / 185

Slide 53 (Answer) / 185
$18 \angle \mathrm{C}$ and $\angle \mathrm{D}$ are congruent.

OA True
OB False
OC Cannot be det

Slide 54 / 185

Return to Table of Contents

Adjacent Angles
Adjacent angles share a vertex
and a side.
The two angles are side by side, or adjacent. In this case, Angle DBA is adjacent to Angle ABC.

Angle Addition Postulate
The angle addition postulate
says that the measures of
two adjacent angles add
together to form the
measure of the angle
formed by their exterior
rays.
In this case, Angle DBC = Angle DBA + Angle ABC
Anser
Further, it says that if any
point lies in the interior of
an angle, then the ray
connecting that point to
the vertex creates two
adjacent angles that sum
to the original angle.
If A lies in the interior of
Angle DBC then Angle
DBA + Angle ABC= Angle
DBC
Angle DBA + Angle ABC
Andition Postulate

In this case, Angle $D B C=$ Angle $D B A+$ Angle $A B C$

Angle Addition Postulate

point lies in the interior of point lies in the interior of an angle, then the ray connecting that point to the vertex creates two adjacent angles that sum to the original angle.

If A lies in the interior of Angle DBC then Angle DBA + Angle ABC= Angle DBC

Which yields the same result we had before. Angle DBC = Angle DBA + Angle ABC

Angle Addition Postulate Example

$m \angle P Q S=32^{\circ}$
$m \angle S Q R=26^{\circ}$

What's the measure of $\angle P Q R$?

Angle Addition Postulate Example

A is in the interior of BNJ .
If $\angle \mathrm{ANJ}=(7 \mathrm{x}+11)^{\circ}$,
$\angle A N B=(15 x+24)^{\circ}$,
and $\angle \mathrm{BNJ}=(9 \mathrm{x}+204)^{\circ}$
Solve for x

Angle Addition Postulate Example

Slide 60 (Answer) / 185

20 Given $m \# A B C=22^{\circ}$ and $m \# D B C=46^{\circ}$.
Find m\#ABD.

20 Given m\#ABC $=22^{\circ}$ —...d...annon - 1n0

21 Given $\mathrm{m} \# \mathrm{OLM}=64^{\circ}$ and $\mathrm{m} \# \mathrm{OLN}=53^{\circ}$.
Find m\#NLM.

OA 28
○ 15
○C 11
○D 117

21 Given $\mathrm{m} \#$ OLM $=64^{\circ}$ and $\mathrm{m} \# \mathrm{OLN}=53^{\circ}$.

22 Given $m \# A B D=95^{\circ}$ and $m \# C B A=48^{\circ}$.
Find m\#DBC.

22 Given $m \# A B D=95^{\circ}$ and $m \# C B A=48^{\circ}$.
Find m\#DBC.

23 Given $\mathrm{m} \# \mathrm{KLJ}=145^{\circ}$ and $\mathrm{m} \# \mathrm{KLH}=61^{\circ}$.

Find m\#HLJ.

Find.

Slide 64 (Answer) / 185
23 Given $\mathrm{m} \# \mathrm{KLJ}=145^{\circ}$ and $\mathrm{m} \# \mathrm{KLH}=61^{\circ}$.

24 Given $\mathrm{m} \#$ TRS $=61^{\circ}$ and $\mathrm{m} \# \mathrm{SRQ}=153^{\circ}$.
Find m\#QRT.

24 Given $m \#$ TRS $=61^{\circ}$ and $m \# S R O=153^{\circ}$.

25 C is in the interior of \#TUV.
If m \#TUV $=(10 x+72) \#$,
$m \#$ TUC $=(14 x+18) \#$ and
$m \# C U V=(9 x+2) \#$
Solve for x .

25 C is in the interior of $\boldsymbol{\mu} \boldsymbol{\operatorname { c o n }}$

Slide 66 (Answer) / 185
$26 D$ is in the interior of \#ABC.
If m \# CBA $=(11 x+66) \#$,
$m \#$ DBA $=(5 x+3) \#$ and
$m \# C B D=(13 x+7) \#$
Solve for \mathbf{x}.

Slide 67 (Answer) / 185
$26 D$ is in the interior of + .--
If m \#CBA $=(11 x+$
m\#DBA $=(5 x+3) \neq$ $m \# C B D=\left(13 x+\frac{\sum_{3}^{\prime}}{4}\right.$
Solve for x .
$11 x+66=5 x+3+13 x+7$
$11 x+66=18 x+10$
$7 x=56$
$x=8$
$27 F$ is in the interior of \#DQP.
$m \# D Q P=(3 x+44) \#$
$m \# F Q P=(8 x+3) \#$
m \#DQF $=(5 x+1) \#$
Solve for \mathbf{x}.
$27 F$ is in the interior of \#nno

28 The figure shows lines r, n, and p intersecting to form angles numbered 1,2,3,4,5, and 6. All three lines lie in the same plane. Based on the figure, which of the individual statements would provide enough information to conclude that line r is perpendicular to line \boldsymbol{p} ? Select all that apply.

- B. $m \angle 6=90^{\circ}$
- C. $m \angle 3=m \angle 6$
- D. $m \angle 1+m \angle 6=90^{\circ}$
- E. $m \angle 3+m \angle 4=90^{\circ}$
- F. $m \angle 4+m \angle 5=90^{\circ}$
angles numberd $1,2,3,4,5$, and 6 . All thre lines lie Slide 69 / 185

28 The figure shows lines r, n, and p intersecting to form angles numbered 1, 2, 3, 4, 5, and 6. All three lines lie in the same plane. Basp.................................. individual statements information to concli line p ? Select all that
all that apply
Х A. $m \angle 2=90^{\circ}$
, B. $m \angle 6=90^{\circ}$
X c. $m \angle 3=m \angle 6$
X . $m \angle 1+m \angle 6=90^{\circ}$
X E. $m \angle 3+m \angle 4=90^{\circ}$
$\bigvee_{\text {F. } . ~} \quad$ $\angle 4+m \angle 5=90^{\circ}$

■ E. $m \angle 3+m \angle 4=90^{\circ}$

- F. $m \angle 4+m \angle 5=90^{\circ}$

From PARCC sample test
not to scale
Slide 69 (Answer) / 185
Protractors \(n\left|\begin{array}{l}Return to Table

of Contents\end{array}\right|\)| |
| :--- |

Protractors

Return to Table of Contents

Protractors

Angles are measured in degrees, using a protractor.

Every angle has a measure from 0 to 180 degrees.

Angles can be drawn in any size.

Protractors

\# ABC is a 23° degree angle
The measure of \# ABC is 23° degrees

Slide 71 / 185

Slide 72 / 185

From our prior results we know that Angle DBC = 118 and Angle $\mathrm{ABC}=23^{\circ}$.

So, the Angle Addition Postulatetells us that Angle DBA must be what?

Without those prior results, we could just read the values of 118 and 23° from the protractor to get the included angle to be 95°.

Slide 74 / 185

Slide 75 / 185

29 What is the $\mathrm{m} \angle \mathrm{CJD}$?

- 39°

O 54°
(130°
(1) 180°

Slide 76 (Answer) / 185
29 What is the $\mathrm{m} \angle \mathrm{CJD}$?

30 What is the $\mathrm{m} \angle \mathrm{CJG}$

31 What is the $m \angle D J E$?

. 141°
O 54°

Slide 78 (Answer) / 185

540
540
540
540

32 What is the $\mathrm{m} \angle E J G ?$

Slide 79 (Answer) / 185

33 What is the $m \angle D J F ?$

O 39°
○ 51°
(90°
O 141°

33 What is the $\mathrm{m} \angle \mathrm{DJF}$?

34 \#PJK =

34 \#PJK =

35 \#PJM =

Slide 82 (Answer) / 185

36 \#PJO =

Slide 83 / 185

37 \# PJL =

Slide 84 (Answer) / 185

Slide 85 (Answer) / 185

39 \# NJM =

Slide 86 / 185

40 \# MJL =

0

Slide 87 / 185

ләмsu*

41 \#LJK =

42 \#NJK =

Slide 88 (Answer) / 185
\qquad
\qquad

\qquad
\qquad

Complementary Angles

Adjacent complementary angles form a right angle.

43 What is the complement of angle whose measure is $72^{\mathbf{0}}$?

43 What is the complement of an anale whose measure is 77

44 What is the complement of angle

Slide 94 (Answer) / 185

44 What is the complement of an angle whose measure is 28°

62°

Example

Two angles are complementary.
The larger angle is twice the size of the smaller angle. What is the measure of both angles?

[^0]

45 An angle is 34° more than its complement.

What is its measure?

45 An angle is 34° more then ite nomnlamant What is its measure

46 An angle is 14° less than its complement.

What is the angle's measure?

46 An angle is 14° less than its complement.

Supplementary Angles

Supplementary angles are angles whose sum measures 180°.
Supplementary angles may be adjacent, but don't need to be.
One angle is said to supplement the other.

Supplementary Angles

Any two angles that add to a straight angle are supplementary.
Or, two adjacent angles whose exterior sides are opposite rays, are supplementary.

If Angle $A B C$ is a straight angle, its measure is 180°.
Then Angle ABD and Angle DBC are supplementary since their measures add to 180°.

47 What is the supplement of angle whose measure is $\mathbf{7 2}^{\circ}$?

47 What is the supplement of angle whose

 measure is $\mathbf{7 2}^{\circ}$?

48 What is the supplement of angle whose measure is $\mathbf{2 8}^{\circ}$?

48 What is the supplement of angle whose measure is 28° ?

49 The measure of an angle is 98° more than its supplement.

What is the measure of the angle?

49 The measure of an angle is 98° more than its supplement.

50 An measure of angle is 74° less than its supplement.

What is the angle?
What is angle?

50 An measure of angle is 74° less than its supplement.

What is the angle

51 The measure of an angle is 26° more than its supplement.

What is the angle?

Slide 104 (Answer) / 185
51 The measure of an anale is 26° more than its supplement.

What is the angle?
angle $=$ supplement +26
$x=(180-x)+26$
$2 x=180+26$
$2 x=206$
$x=103$

Vertical Angles

Vertical Anglesare two angles whose sides form two pairs of opposite rays

Whenever two lines intersect, two pairs of vertical angles are formed.
$\angle \mathrm{ABC} \& \angle \mathrm{DBE}$ are vertical angles, and $\angle A B E \& \angle C B D$ are vertical angles.

 to both prove three theorems.

Slide 107 / 185

We can prove some important propeties about these three special cases: angles which are complementary, supplementary or vertical.

Two column proofs use one column to make a statement and the column next to it to provide the reason, as shown below.

We're going to use those a lot, so we're going to use this example

Vertical Angles

20 \longrightarrow L
 \square
\qquad
\qquad
\qquad

Proofs

Special Angles

Return to Table of Contents

Two Column Proofs

Proofs all start out with a goal: what it is we are trying to prove.
They are not open-ended explorations, but are directed towards a specific end.

We know the last statement of every proof when we start, it is what we are trying to prove.

We don't know the reason in advance.

Complementary Angles Theorem

Theorem: Angles which are complementary to the same

 angle are equal.Given: Angles 1 and 2 are complementary Angles 1 and 3 are complementary

Prove: $m \# 2=m \# 3$

Complementary Angles Theorem

Theorem: Angles which are complementary to the same

 angle are equal.
Statement 1

Angles 1 and 2 are complementary
Angles 1 and 3 are complementary

What do we know about the sum of the measures of complementary angles?

Reason 1
Given

\qquad
\qquad
\qquad
\qquad \square
\qquad
\qquad

Complementary Angles Theorem

$\frac{\text { Statement 2 }}{m \# 1+m \# 2}=90$	$\frac{\text { Reason 2 }}{\text { Definition of complementary }}$
$m \# 1+m \# 3=90$	angles

Now, we can set the left sides equal by substituting for 90

Complementary Angles Theorem

Statement 3
$\mathrm{m} \# 1+\mathrm{m} \# 2=\mathrm{m} \# 1+\mathrm{m} \# 3$

Reason 3
Substitution property of equality

And, now subtract m\#1 from both sides.

Complementary Angles Theorem

Statement 4

Reason 4
$\mathrm{m} \# 2=\mathrm{m} \# 3$
Subtraction property
of equality

Which is what we set out to prove

Complementary Angles Theorem

Given: Angles 1 and 2 are complementary
Angles 1 and 3 are complementary
Prove: m $2=\mathrm{m} 3$

Statement	Reason
Angles 1 and 2 are complementary Angles 1 and 3 are complementary	Given
$m \# 1+m \# 2=90$ $m \# 1+m \# 3=90$	Definition of complementary angles
$m \# 1+m \# 2=m \# 1+m \# 3$	Substitution Property of Equality
$m \# 2=m \# 3$	Subtraction Property of Equality

Supplementary Angles Theorem

Slide 116 / 185

Theorem: Angles which are supplementary to the same angle are equal.

Given: Angles 1 and 2 are supplementary
Angles 1 and 3 are supplementary
Prove: m \#2 = m\#3

This is so much like the last proof, that we'll do this by just examining the total proof.

Supplementary Angles Theorem

Given: | Angles 1 and 2 are supplementary |
| :--- |
| Angles 1 and 3 are supplementary |

Prove: $\mathrm{m} \mathrm{\# 2}=\mathrm{m} \mathrm{\#} 3$

Statement	Reason
Angles 1 and 2 are supplementary Angles 1 and 3 are supplementary	Given
$m \# 1+m \# 2=180$ $m \# 1+m \# 3=180$	Definition of supplementary angles
$m \# 1+m \# 2=m \# 1+m \# 3$	Substitution property of equality
$m \# 2=m \# 3$	Subtraction property of equality

Vertical Angles Theorem

Vertical angles have equal measure

Given: line AD and line EC are straight lines that intersect at Point B and form angles 1, 2, 3 and 4

Prove: $\mathrm{m} \# 1=\mathrm{m} \# 3$ and $\mathrm{m} \# 2=\mathrm{m} \# 4$

Vertical Angles Theorem

The first statement will focus on what we are given which makes this situation unique.

In this case, it's just the Givens.

Vertical Angles Theorem

Statement 1
line AD and line EC are straight lines that intersect at Point B and form angles 1,
2, 3 and 4
Then, we know we want to know something about the relationship between the pairs of vertical angles: \#1 \& \#3 and \#2 \& \# 4.

What do you know about these four angles that the givens can help us with.

Reason 1
Given

Slide 119 / 185
\qquad
\qquad
\qquad
\qquad L
\qquad
\qquad (

52 We know that angles

\qquad .

OA \#1\&\#4 are supplementary
OB \#1\&\#3 are supplementary
OC \#2 \& \#3 are supplementary
OD \#3 \& \#4 are supplementary
OE All of the above

Slide 121 (Answer) / 185

52 We know that angles

\qquad -
$\begin{array}{lll}\text { OA } & \# 1 \& \# 4 \text { are supp } \\ \text { OB } & \# 1 \& \# 3 \text { are sup } \\ \text { OC } & \# 2 \& \# 3 \text { are sur } \\ \text { OD } & \# 3 \& \# 4 \text { are s䵟 } \\ \text { OE All of the abover }\end{array}$

Vertical Angles Theorem

Statement 2
\#1 \& \#2 are supplementary \#1 \& \#4 are supplementary \#2 \& \#3 are supplementary \#3 \& \#4 are supplementary

Reason 2
Angles that form a linear pair are supplementary

Vertical Angles Theorem

Statement 2
\#1 \& \#2 are supplementary
\#1 \& \#4 are supplementary \#2 \& \#3 are supplementary \#3 \& \#4 are supplementary

Reason 2
Angles that form a linear pair are supplementary

Let's look at the fact that \#2 \& \#4 are both supplementary to \#1 and that $1 \& 3$ are both supplementary to \#4, since that relates to the vertical angles we're interested in.

Vertical Angles Theorem

Slide 124 / 185

$$
\begin{array}{ll}
\text { Statement 3 } & \text { Reason 3 } \\
m \# 1=m \# 3 & \text { Two angles supplementary to } \\
m \# 2=m \# 4 & \text { the same angle are equal }
\end{array}
$$

But those are the pairs of vertical angles which we set out to prove are equal.

So, our proof is complete: vertical angles are equal

Vertical Angles Theorem

We have proven that vertical angles are congruent.
This becomes a theorem we can use in future proofs.
Also, we can solve problems with it.

Vertical Angles

Given: $m \angle A B C=55^{\circ}$, solve for x, y and z.

Vertical Angles

Given: $m \angle A B C=55^{\circ}$
We know that $x+55=180^{\circ}$, since they are supplementary.
And that $y=55^{\circ}$, since they are vertical angles.
And that $x=z$ for the same reason.

Slide 128 / 185

Example

Find $m \# 1, m \# 2$ \& $m \# 3$. Explain your answer.

$\mathrm{m} \# 2=36^{\circ}$; Vertical angles are congruent (original angle \& m\#2) $m \# 3=144^{\circ} ;$ Vertical angles are congruent (m\#1 \& m\#3)

53 What is the measure of angle 1 ?

\square A 77°
\square B 103 ${ }^{\circ}$
\square C 113none of the above

Slide 130 / 185
\qquad
\qquad

53 What is the measure of angle 1 ?A $77^{\circ}$$103^{\circ}$
\square C 113D none of the ab 㓣

Slide 130 (Answer) / 185

54 What is the measure of angle 2?

\square B 103 ${ }^{\circ}$
\square C 113°D none of the above

\square A 77°

Slide 131 (Answer) / 185

54 What is the measure of angle 2?

55 What is the measure of angle 3 ?

Slide 133 / 185

56 What is the measure of angle 4?A 112°
\square B 78°
\square C 102°
$\begin{array}{lll}102^{\circ} & \text { D) } m<4=68^{\circ} \\ \text { none of the ab }\end{array}$
Slide 133 (Answer) / 185

\qquad

Slide 134 (Answer) / 185

57 What is the measure of analo 5 ?

Slide 136 / 185

Example

Find the value of x.
The angles shown are vertical,

Example

Find the value of x.

Slide 137 / 185
\qquad \longrightarrow

59 Find the value of x.

\square A 95
\square B $\quad 50$
\square C 45
D 40

Slide 139 / 185
60 Find the value of x.
$\square \mathrm{A} \quad 75$
\square B 17
\square C 13
\square D 12
\qquad

Slide 139 (Answer) / 185

61 Find the value of x.

$\square \mathrm{A}$	13.1
$\square \mathrm{~B}$	14
$\square \mathrm{C}$	15
$\square \mathrm{D}$	122

Slide 140 (Answer) / 185

62 Find the value of x.

$\square \mathrm{A}$	12
$\square \mathrm{~B}$	13
$\square \mathrm{C}$	42
\square	138

Slide 141 / 185

62 Find the value of x.

$\square \mathrm{A} \quad 12$B 13

D 138

\qquad

Angle Bisectors

Return to Table of Contents

Angle Bisector

An angle bisector is a ray or line which starts at the vertex and cuts an angle into two equal halves

Bisect means to cut it into two equal parts. The 'bisector' is the thing doing the cutting.

The angle bisector is equidistant from the sides of the angle when measured along a segment perpendicular to the sides of the angle.

Finding the missing measurement.

Example: $\angle A B C$ is bisected by ray $B D$. Find the measures of the missing angles.

Finding the missing measurement.

63 \#EFG is bisected by $\overrightarrow{F H}$. The m\#EFG $=56^{\circ}$. Find the measures of the missing angles.

63 \#EFG is bisected by $\overrightarrow{\mathrm{FH}}$. The $\mathrm{m} \# E F G=56^{\circ}$. Find the measures of the min-.............

$64 \overrightarrow{\mathrm{MO}}$ bisects \#LMN. Find the value of x .

$64 \overrightarrow{\mathrm{MO}}$ bisects \#LMN. Find the value of x .

65 Ray NP bisects $\angle \mathrm{MNO}$ Given that $\angle \mathrm{MNP}=57^{\circ}$, what is $\angle M N O ?$

Hint:
click to reveal

65 Ray NP bisects $\angle M N O$ what is $\angle \mathrm{MNO}$? click to reveal

Slide 147 (Answer) / 185 \square L $\mathrm{m} \angle \mathrm{MNO}=2(57)$

$$
=114^{\circ}
$$

\qquad \square
\qquad
\qquad
\qquad
\qquad

66 Ray RT bisects $\angle \mathrm{QRS}$ Given that $\angle \mathrm{QRT}=78^{\circ}$, what is $\angle Q R S ?$

66 Ray RT bisects \angle QRS Given that $\angle \mathrm{QRT}=78^{\circ}$.

67 Ray VY bisects $\angle U V W$. Given that $\angle U V W=165^{\circ}$, what is $\angle U V Y ?$

67 Ray VY bisects $\angle U V W$. Given that $\angle U V W=165^{\circ}$, what is $\angle U V Y ?$

68 Ray $B D$ bisects $\angle A B C$. Find the value of x.

68 Ray BD bisects $\angle A B C$. Find the value of x.

69 Ray FH bisects $\angle E F G$. Find the value of x.

69 Ray FH bisects $\angle E F G$. Find the value of x

70 Ray JL bisects $\angle \mathrm{IJK}$. Find the value of x .

70 Ray JL bisects LIJK. Find tho valuo of v

Return to Table of Contents

Constructing Congruent Angles

Slide 154 / 185

Given: \angle FGH

Construct: $\angle A B C$ such that $\angle A B \not \subset \angle F G H$
Our approach will be based on the idea that the measure of an angle is how much we would have rotate one ray it overlap the other.

The larger the measure of the angle, the farther apart they are as you move away from the vertex.

Constructing Congruent Angles

So, if we go out a fixed distance from the vertex on both rays and draw points there, the distance those points are apart from one another defines the measure of the angle.

The bigger the distance, the bigger the measure of the angle.
If we construct an angle whose rays are the same distance apart at the same distance from the vertex, it will be congruent to the first angle.

Constructing Congruent Angles

1. Draw a reference line with your straight edge. Place a reference point (B) to indicate where your new ray will start on the line.

Constructing Congruent Angles

2. Place the compass point on the vertex G and stretch it to any length so long as your arc will intersect both rays
3. Draw an arc that intersects both rays of $\angle \mathrm{FGH}$.
(This defines a common distance from the vertex on both rays since the arc is part of a circle and all its points are equidistant from the center of the circle.)

Constructing Congruent Angles

4. Without changing the span of the compass, place the compass tip on your reference point B and swing an arc that goes through the line and above it.
(This defines that same distance from the vertex on both our reference ray and the ray we will draw as we used for the original angle.)

Constructing Congruent Angles

5. Now place your compass where the arc intersects one ray of the original angle and set it so it can draw an arc where it crosses the other ray.
(This defines how far apart the rays are at that distance from the vertex.)

Constructing Congruent Angles

6. Without changing the span of the compass place the point of the compass where the first arc crosses the first ray and draw an arc that intersects the arc above the ray.
(This will make the separation between the rays the same at the same distance from the new vertex as was the case for the original angle.)

Constructing Congruent Angles

6. Now, use your straight edge to draw the second ray of the new angle which is congruent with the first angle.

Constructing Congruent Angles

It should be clear that these two angles are congruent. Ray FG would have to be rotated the same amount to overlap Ray GH as would Ray AB to overlap Ray BC.

Notice that where we place the points is not relevant, just the shape of the angle indicates congruence.

Constructing Congruent Angles

Slide 163 / 185

Try this!

Construct a congruent angle on the given line segment.
5)

Try this!

\square

Angle Bisectors \& Constructions

Return to Table of Contents

Constructing Angle Bisectors

As we learned earlier, an angle bisector divides an angle into two adjacent angles of equal measure.

To create an angle bisector we will use an approach similar to that used to construct a congruent angle, since, in this case, we will be constructing two congruent angles.

Constructing Angle Bisectors

1. With the compass point on the vertex, draw an arc that intersects both rays.
(This will establish a fixed distance from the vertex on both rays.

Constructing Angle Bisectors

2. Without changing the compass setting, place the compass point on the intersection of each arc and ray and draw a new arc such that the two new arcs intersect in the interior of the angle.
(This fixes the distance from each original ray to the new ray to be the same, so that the two new angles will be congruent.)

Constructing Angle Bisectors

3. With a straightedge, draw a ray from the vertex through the intersection of the arcs and label that point.

Because we know that the distance of each original ray to the new ray is the same, at the same distance from the vertex, we know the measures of the new angles is the same and that $m \angle U V X=m \angle X V W$

Slide 171 / 185

Try This!

Bisect the angle
7)

Slide 172 / 185

Try This!

Try This!

Bisect the angle
8)

Constructing Angle Bisectors w/ string, rod, pencil \& straightedge

Everything we do with a compass can also be done with a rod and string. In both cases, the idea is to mark a center (either the point of the compass or the rod) and then draw an part of a circle by keeping a fixed radius (with the span of the compass or the length of the string.

Constructing Angle Bisectors w/ string,

 rod, pencil \& straightedge1. With the rod on the vertex, draw an arc across each side.

Constructing Angle Bisectors w/ string, rod, pencil \& straightedge
2. Place the rod on the arc intersections of the sides \& draw 2 arcs, one from each side showing an intersection point.

Constructing Angle Bisectors w/ string, rod, pencil \& straightedge
3. With a straightedge, connect the vertex to the arc intersections. Label your point.

$$
m \angle U V X=m \angle X V W
$$

Try This!

Bisect the angle with string, rod, pencil \& straightedge.
9)

\qquad
-

Try This!

Bisect the angle with string, rod, pencil \& straightedge.
10)

Slide 179 / 185
\qquad
\qquad $\square-$ L \longrightarrow (1)

Constructing Angle Bisectors by Folding

1. On patty paper, create any angle of your choice. Make it appear large on your patty paper. Label the points A, B \& C.

Constructing Angle Bisectors by Folding

2. Fold your patty paper so that ray BA lines up with ray BC.

Crease the fold.

Slide 182 / 185
Constructing Angle Bisectors by Folding
3. Unfold your patty paper. Draw a ray along the fold, starting at point B. Draw and label a point on your ray.

Try This!

Bisect the angle with folding.
11)

[^0]: Let $x=$ the smaller angle and the larger angle $=2 x$.

