

## New Jersey Center for Teaching and Learning Progressive Mathematics Initiative®

This material is made freely available at *www.njctl.org* and is intended for the non-commercial use of students and teachers.

These materials may not be used for any commercial purposes without the written permission of the owners. NJCTL maintains its website for the convenience of teachers who wish to make their work available to other teachers, participate in virtual professional learning community, and/or provide access to course materials to parents, students and others.

We, at the New Jersey Education Association (NJEA) are proud founders and supporters of NJCTL, an independent non-profit organization. NJEA embraces NJCTL's mission of empowering teachers to lead school improvement for the benefit of all students.



Click to go to website: www.njctl.org



| Part 1 Table of Contents                       | Slide 3 / 185 |
|------------------------------------------------|---------------|
| Introduction to Geometry                       |               |
| Points and Lines                               |               |
| Planes                                         |               |
| Congruence, Distance and Length                |               |
| Constructions and Loci                         |               |
| Part 2                                         |               |
| Angles                                         |               |
| Congruent Angles                               |               |
| Angles & Angle Addition Postulate              |               |
| Protractors                                    |               |
| Special Angle Pairs                            |               |
| Proofs Special Angles                          |               |
| Angle Bisectors<br>Locus & Angle Constructions |               |
| Angle Bisectors & Constructions                |               |
|                                                |               |

Slide 1 / 185

| Table of Contents for Videos<br>Demonstrating Constructions | Slide 4 / 185 |
|-------------------------------------------------------------|---------------|
| click on the topic to go<br>to that video                   |               |
| Congruent Angles                                            |               |
| Angle Bisectors                                             |               |
|                                                             |               |
|                                                             |               |
|                                                             |               |
|                                                             |               |
|                                                             |               |



















Slide 12 / 185









































| Slide 24 (Answer) / 185 |
|-------------------------|
|                         |
|                         |
|                         |
|                         |
| <br>                    |
|                         |





| 7 This is an example of a (an)<br>Choose all that apply. | angle. |        | Slide 26 / 185 |
|----------------------------------------------------------|--------|--------|----------------|
| □ acute                                                  |        |        |                |
| obtuse      B                                            | С      | er     |                |
| 🗋 right                                                  | Ū      | Answer |                |
| ☐ reflex                                                 |        |        |                |
| □ straight A                                             |        |        |                |
|                                                          |        |        |                |
|                                                          |        |        |                |
|                                                          |        |        |                |





























Slide 34 (Answer) / 185

















Slide 39 (Answer) / 185





|                     |                                | Slide 41 / 185 |
|---------------------|--------------------------------|----------------|
|                     |                                |                |
| Congruent<br>Angles |                                |                |
| Angles              |                                |                |
|                     |                                |                |
|                     | Return to Table<br>of Contents |                |
|                     |                                |                |
|                     |                                |                |





|  | Slide | 43 / 185 |  |
|--|-------|----------|--|
|  |       |          |  |
|  |       |          |  |
|  |       |          |  |
|  |       |          |  |





Slide 45 / 185













| Slide 49 / 185 |  |  |
|----------------|--|--|
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |



































































Slide 67 (Answer) / 185

























Slide 75 / 185





















| Slide 79 (Answer) / 185 |
|-------------------------|
|                         |
|                         |
|                         |
|                         |
|                         |
|                         |







| Slide 81 / 185 |  |
|----------------|--|
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |







| Slide 82 (Answer) / 185 |
|-------------------------|
|                         |
|                         |
|                         |
|                         |
|                         |
|                         |



































































| Slide | e 97 (An | swer) / ´ | 185 |  |
|-------|----------|-----------|-----|--|
|       |          |           |     |  |
|       |          |           |     |  |
|       |          |           |     |  |
|       |          |           |     |  |
|       |          |           |     |  |
|       |          |           |     |  |



Slide 99 / 185











| Slide 102 / 185 |
|-----------------|
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |























## Complementary Angles Theorem

Theorem: Angles which are complementary to the same angle are equal.

Given: Angles 1 and 2 are complementary Angles 1 and 3 are complementary

Prove: m#2 = m#3

Slide 110 / 185

## Complementary Angles Theorem Slide 111 / 185 Theorem: Angles which are complementary to the same angle are equal. Image: Complementary angles is and 2 are complementary angles 1 and 3 are complementary Reason 1 Given What do we know about the sum of the measures of complementary angles? Image: Complementary angles? Image: Complementary angles

| Complementary Angles Theorem                                                     | Slide 112 / 185 |
|----------------------------------------------------------------------------------|-----------------|
| Statement 2Reason 2m#1 + m#2 = 90Definition of complementarym#1 + m#3 = 90angles |                 |
| Now, we can set the left sides equal by substituting for 90                      |                 |

| Complementary Angles Theorem                                                                     | Slide 113 / 185 |
|--------------------------------------------------------------------------------------------------|-----------------|
| Statement 3       Reason 3         m#1 + m#2 = m#1 + m#3       Substitution property of equality |                 |
| And, now subtract m#1 from both sides.                                                           |                 |

| Complementary Angles Theorem                                | Slide 114 / 185 |
|-------------------------------------------------------------|-----------------|
|                                                             |                 |
| Statement 4Reason 4m#2 = m#3Subtraction propertyof equality |                 |
| Which is what we set out to prove                           |                 |

## **Complementary Angles Theorem**

Given: Angles 1 and 2 are complementary Angles 1 and 3 are complementary

Prove: m 2 = m 3

| Statement                                                            | Reason                               |
|----------------------------------------------------------------------|--------------------------------------|
| Angles 1 and 2 are complementary<br>Angles 1 and 3 are complementary | Given                                |
| m#1 + m#2 = 90<br>m#1 + m#3 = 90                                     | Definition of complementary angles   |
| m#1 + m#2 = m#1 + m#3                                                | Substitution Property of<br>Equality |
| m#2 = m#3                                                            | Subtraction Property of<br>Equality  |

| Supplementary Angles Theorem                                                               | Slide 116 / 185 |  |
|--------------------------------------------------------------------------------------------|-----------------|--|
| Theorem: Angles which are supplementary to the same angle are equal.                       |                 |  |
| Given: Angles 1 and 2 are supplementary<br>Angles 1 and 3 are supplementary                |                 |  |
| Prove: m#2 = m#3                                                                           |                 |  |
| This is so much like the last proof, that we'll do this by just examining the total proof. |                 |  |
|                                                                                            |                 |  |

## Supplementary Angles Theorem

Given: Angles 1 and 2 are supplementary Angles 1 and 3 are supplementary

Prove: m#2 = m#3

| Statement                                                            | Reason                             |
|----------------------------------------------------------------------|------------------------------------|
| Angles 1 and 2 are supplementary<br>Angles 1 and 3 are supplementary | Given                              |
| m#1 + m#2 = 180<br>m#1 + m#3 = 180                                   | Definition of supplementary angles |
| m#1 + m#2 = m#1 + m#3                                                | Substitution property of equality  |
| m#2 = m#3                                                            | Subtraction property of equality   |

| Slide 117 / 185 |  |  |  |
|-----------------|--|--|--|
|                 |  |  |  |
|                 |  |  |  |
|                 |  |  |  |
|                 |  |  |  |
|                 |  |  |  |
|                 |  |  |  |
|                 |  |  |  |
|                 |  |  |  |



















| Slide 125 / 185 |  |
|-----------------|--|
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |
|                 |  |





| Slide 127 / 185 |
|-----------------|
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |



Slide 128 / 185

































| Slide 136 (Answer) / 185 |  |
|--------------------------|--|
|                          |  |
|                          |  |
|                          |  |
|                          |  |
|                          |  |
|                          |  |





























| Slide 144 (Answer) / 185 |
|--------------------------|
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |









| <sup>65</sup> Ray NP bisects ∠MNO Given that ∠MNP = 57°,<br>what is ∠MNO? |        | Slide 147 / 185 |
|---------------------------------------------------------------------------|--------|-----------------|
|                                                                           | Answer |                 |
|                                                                           | 4      |                 |
| Hint:                                                                     |        |                 |
| click to reveal                                                           |        |                 |
|                                                                           |        |                 |
|                                                                           |        |                 |
|                                                                           |        |                 |
|                                                                           |        |                 |























Slide 153 / 185



### **Constructing Congruent Angles**

Given: ∠FGH

Construct: ∠ABC such that ∠AB∉∠FGH

Our approach will be based on the idea that the measure of an angle is how much we would have rotate one ray it overlap the other.

The larger the measure of the angle, the farther apart they are as you move away from the vertex.



| Slide 154 / 185 |  |
|-----------------|--|
|                 |  |
|                 |  |
|                 |  |

#### **Constructing Congruent Angles**

So, if we go out a fixed distance from the vertex on both rays and draw points there, the distance those points are apart from one another defines the measure of the angle.

The bigger the distance, the bigger the measure of the angle.

If we construct an angle whose rays are the same distance apart at the same distance from the vertex, it will be congruent to the first angle.















### **Constructing Congruent Angles**

5. Now place your compass where the arc intersects one ray of the original angle and set it so it can draw an arc where it crosses the other ray.

(This defines how far apart the rays are at that distance from the vertex.)







|   | Slide 161 / 185 |
|---|-----------------|
|   |                 |
|   |                 |
|   |                 |
|   |                 |
| _ |                 |
|   |                 |
|   |                 |
|   |                 |
|   |                 |

Slide 159 / 185









| Slide 165 / 185 |
|-----------------|
|                 |
|                 |
|                 |
|                 |





## Angle Bisectors & Constructions

Return to Table of Contents



Slide 168 / 185

## Constructing Angle Bisectors

1. With the compass point on the vertex, draw an arc that intersects both rays.

(This will establish a fixed distance from the vertex on both rays.



|   | Slide 169 / 185 |
|---|-----------------|
| _ |                 |
|   |                 |
|   |                 |
|   |                 |
|   |                 |
|   |                 |
|   |                 |
|   | <br>            |

### **Constructing Angle Bisectors**

2. Without changing the compass setting, place the compass point on the intersection of each arc and ray and draw a new arc such that the two new arcs intersect in the interior of the angle.

(This fixes the distance from each original ray to the new ray to be the same, so that the two new angles will be congruent.)



**Constructing Angle Bisectors** 3. With a straightedge, draw a ray from the vertex through the

Because we know that the distance of each original ray to the new ray is the same, at the same distance from the vertex, we know the measures of the new angles is the same and that

Х

w

intersection of the arcs and label that point.

m∠UVX = m∠XVW









# Constructing Angle Bisectors w/ string, rod, pencil & straightedge

Everything we do with a compass can also be done with a rod and string. In both cases, the idea is to mark a center (either the point of the compass or the rod) and then draw an part of a circle by keeping a fixed radius (with the span of the compass or the length of the string. Slide 174 / 185



w

### Constructing Angle Bisectors w/ string, rod, pencil & straightedge

2. Place the rod on the arc intersections of the sides & draw 2 arcs, one from each side showing an intersection point.



|  | Slide | 176 / 18 | 5 |      |
|--|-------|----------|---|------|
|  |       |          |   |      |
|  |       |          |   |      |
|  |       |          |   | <br> |



Slide 177 / 185





### **Constructing Angle Bisectors by Folding**

1. On patty paper, create any angle of your choice. Make it appear large on your patty paper. Label the points A, B & C.





### **Constructing Angle Bisectors by Folding**

2. Fold your patty paper so that ray BA lines up with ray BC. Crease the fold.





### **Constructing Angle Bisectors by Folding**

3. Unfold your patty paper. Draw a ray along the fold, starting at point B. Draw and label a point on your ray.



| Slide 182 / 185 |
|-----------------|
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |
|                 |



