Geometry Semester 2 Review 2013

QUADRILATERALS:
Classifying Quadrilaterals
Properties of Parallelograms
Proving that a Quadrilateral is a Parallelogram
Special Parallelograms
Trapezoids \& Kites
Placing Figures on a Coordinate Plane

1. Judging by appearance, classify the figure in as many ways as possible.

a. rectangle, square, quadrilateral, parallelogram, rhombus
b. rectangle, square, parallelogram
c. rhombus, trapezoid, quadrilateral, square
d. square, rectangle, quadrilateral
2. Find the values of the variables and the lengths of the sides of this kite.

a. $\quad x=9, y=13 ; 7,15$
b. $x=13, y=9 ; 7,15$
c. $x=9, y=13 ; 11,20$
d. $x=13, y=9 ; 11,11$
3. Which statement is true?
a. All quadrilaterals are rectangles.
b. All quadrilaterals are squares.
c. All rectangles are quadrilaterals.
d. All quadrilaterals are parallelograms.
4. Judging by appearances, which figure is a trapezoid?
a.

c.

b.

d.

5. $A B C D$ is a parallelogram. If $m \angle C D A=66$, then $m \angle B C D=$? The diagram is not to scale.

a. 66
b. 124
c. 114
d. 132
6. $L M N O$ is a parallelogram. If $N M=x+15$ and $O L=3 x+5$ find the value of x and then find $N M$ and $O L$.

a. $\quad x=7, N M=20, O L=22$
b. $x=5, N M=20, O L=20$
c. $x=7, N M=22, O L=22$
d. $x=5, N M=22, O L=20$
\qquad 7. For the parallelogram, if $m \angle 2=5 x-28$ and $m \angle 4=3 x-10$, find $m \angle 3$. The diagram is not to scale.

a. 9
b. 17
c. 173
d. 163
\qquad 8. Find the values of the variables in the parallelogram. The diagram is not to scale.

a. $x=49, y=29, z=102$
b. $x=29, y=49, z=131$
c. $x=49, y=49, z=131$
d. $x=29, y=49, z=102$
\qquad 9. $W X Y Z$ is a parallelogram. Name an angle congruent to $\angle W Z Y$.

a. $\angle Z X Y$
b. $\triangle X W Z$
c. $\angle Z X W$
d. $\angle W X Y$
7. In the parallelogram, $m \angle K L O=68$ and $m \angle M L O=61$. Find $\angle K J M$. The diagram is not to scale.

a. 119
b. 61
c. 129
d. 68
8. In parallelogram $D E F G, D H=x+3, H F=3 y, G H=4 x-5$, and $H E=2 y+3$. Find the values of x and y. The diagram is not to scale.

a. $x=6, y=3$
b. $x=2, y=3$
c. $x=3, y=2$
d. $x=3, y=6$
9. Find $A M$ in the parallelogram if $P N=9$ and $A O=4$. The diagram is not to scale.

a. 8
b. 4
c. 9
d. 4.5
10. Find values of x and y for which $A B C D$ must be a parallelogram. The diagram is not to scale.

a. $x=10, y=38$
b. $x=10, y=21$
c. $x=10, y=7$
d. $x=7, y=10$
11. Based on the information in the diagram, can you prove that the figure is a parallelogram? Explain.

a. Yes; opposite sides are congruent.
b. Yes; opposite angles are congruent.
c. No; you cannot prove that the quadrilateral is a parallelogram.
d. Yes; two opposite sides are both parallel and congruent.
12. Based on the information given, can you determine that the quadrilateral must be a parallelogram? Explain.

Given: $\overline{X Y} \cong \overline{W Z}$ and $\overline{X W} \cong \overline{Y Z}$

a. No; you cannot determine that the quadrilateral is a parallelogram.
b. Yes; two opposite sides are both parallel and congruent.
c. Yes; opposite sides are congruent.
d. Yes; diagonals of a parallelogram bisect each other.
16. If $O N=5 x-5, L M=4 x+4, N M=x-9$, and $O L=2 y-5$, find the values of x and y for which $L M N O$ must be a parallelogram. The diagram is not to scale.

a. $x=9, y=\frac{2}{5}$
b. $x=0, y=\frac{2}{5}$
c. $x=0, y=\begin{aligned} & 5 \\ & 2\end{aligned}$
d. $x=9, y=\begin{array}{r}5 \\ 2\end{array}$
17. If $m \angle B=m \angle D=41$, find $m \angle C$ so that quadrilateral $A B C D$ is a parallelogram. The diagram is not to scale.

a. 41
b. 139
c. 82
d. 278
18. Which statement can you use to conclude that quadrilateral $X Y Z W$ is a parallelogram?

a. $\overline{X W} \cong \overline{Y Z}$ and $\overline{X Y} \cong \overline{W Z}$
b. $\overline{X W} \cong \overline{W Z}$ and $\overline{X Y} \cong \overline{W Z}$
c. $\overline{Y N}=\overline{N X}$ and $\overline{X N}=\overline{N Y}$
d. $\overline{X W} \cong \overline{Y Z}$ and $\overline{X Y} \cong \overline{Y Z}$
19. In the rhombus, $m \angle 1=15 x, m \angle 2=x+y$, and $m \angle 3=30 z$. Find the value of each variable. The diagram is not to scale.

a. $\quad x=12, y=84, z=20$
b. $x=6, y=174, z=20$
c. $x=6, y=84, z=10$
d. $x=12, y=174, z=10$
20. $D E F G$ is a rectangle. $D F=5 x-5$ and $E G=x+11$. Find the value of x and the length of each diagonal.
a. $\quad x=4, D F=13, E G=13$
b. $\quad x=4, D F=15, E G=18$
c. $\quad x=4, D F=15, E G=15$
d. $x=2, D F=13, E G=13$
21. Which description does NOT guarantee that a quadrilateral is a parallelogram?
a. a quadrilateral with both pairs of opposite sides congruent
b. a quadrilateral with the diagonals bisecting each other
c. a quadrilateral with consecutive angles supplementary
d. quadrilateral with two opposite sides parallel
22. Find the values of a and b.The diagram is not to scale.

a. $\quad a=144, b=67$
b. $\quad a=144, b=36$
c. $\quad a=113, b=67$
d. $a=113, b=36$
23. Find $m \angle 1$ and $m \angle 3$ in the kite. The diagram is not to scale.

a. 51,51
b. 39,39
c. 39,51
d. 51,39
24. Which description does NOT guarantee that a trapezoid is isoscles?
a. congruent diagonals
b. both pairs of base angles congruent
c. congruent bases
d. congruent legs
25. $\angle J$ and $\angle M$ are base angles of isosceles trapezoid $J K L M$. If $m \angle J=20 x+9$, and $m \angle M=14 x+15$, find $m \angle K$.
a. 151
b. 1
c. 29
d. 75.5
\qquad 26. $m \angle R=130$ and $m \angle S=80$. Find $m \angle T$. The diagram is not to scale.

a. 65
b. 70
c. 35
d. 80
27. One side of a kite is 8 cm less than four times the length of another side. The perimeter of the kite is 78 cm . Find the lengths of the sides of the kite.
a. $\quad 9.4 \mathrm{~cm}$ and 29.6 cm
b. $\quad 23.5 \mathrm{~cm}$ and 86 cm
c. 23.5 cm
d. 9.4 cm
28. For the parallelogram, find coordinates for P without using any new variables.

a. $(a-c, c)$
b. (c, a)
c. $(a+c, b)$
d. (c, b)

Short Answer

30. a. Place the points $A(-5,2), \mathrm{B}(-3,6), \mathrm{C}(6,6)$, and $D(4,2)$ on the coordinate plane and construct the quadrilateral.
b. Using the distance formula, find the length of each side as well as the length of each diagonal (round to the nearest tenth if necessary).
c. Using the slope formula, determine if the sides are parallel and or perpendicular.
d. Using the slope formula, determine if the diagonals are perpendicular.
e. Using the midpoint formula, determine if the diagonals bisect eachother.
f. What is the most precise name for quadrilateral $A B C D$.

Geometry Semester 2 Review 2013-Quadrilaterals
Answer Section

MULTIPLE CHOICE

1. A
2. C
3. C
4. B
5. C
6. B
7. D
8. D
9. D
10. C
11. C
12. B
13. C
14. B
15. C
16. D
17. B
18. A
19. C
20. C
21. D
22. A
23. C
24. C
25. A
26. B
27. A
28. C
29. B

SHORT ANSWER

30. parallelogram

Geometry Semester 2 Review 2013

RIGHT TRIANGLES \& TRIGONOMETRY

Pythagorean Theorem
Radical Form
30-60-90
45-45-90
SOH CAH TOA
Inverse Functions
Angles of Elevation and Depression
Vectors
Find the length of the missing side. The triangle is not drawn to scale.
\qquad 1.

a. 28
b. 100
c. 10
d. 48
\qquad 2.

a. 35
b. 49
c. 7
d. 2

Find the length of the missing side. Leave your answer in simplest radical form.
\qquad 3.

a. $\quad \sqrt{ } 17 \mathrm{~m}$
b. 113 m
c. $\sqrt{ } 113 \mathrm{~m}$
d. $\sqrt{ } 71 \mathrm{~m}$
4.

Not drawn to scale
a. $3 \sqrt{ } 29 \mathrm{~cm}$
b. $3 \sqrt{ } 21 \mathrm{~cm}$
c. $\sqrt{ } 21 \mathrm{~cm}$
d. 3 cm
5. In triangle $A B C, \angle A$ is a right angle and $m \angle B=45^{\circ}$. Find $B C$. If you answer is not an integer, leave it in simplest radical form.

Not drawn to scale
a. 22 ft
b. $22 \sqrt{2} \mathrm{ft}$
c. 11 ft
d. $11 \sqrt{2} \mathrm{ft}$
\qquad 6. Find the length of the hypotenuse.

a. 12
b. 6
c. 5
d. 18
\qquad 7. Find the length of the leg. If your answer is not an integer, leave it in simplest radical form.

Not drawn to scale
a. 128
b. $8 \sqrt{ } 2$
c. 16
d. $2 \sqrt{ } 2$
8. Find the lengths of the missing sides in the triangle. Write your answers as integers or as decimals rounded to the nearest tenth.

Not drawn to scale
a. $x=7, y=9.9$
b. $x=9.9, y=7$
c. $x=4.9, y=6.1$
d. $x=6.1, y=4.9$
\qquad 9. Find the value of the variable. If your answer is not an integer, leave it in simplest radical form.

Not drawn to scale
a. $5 \sqrt{2}$
b. $\frac{5 \sqrt{3}}{2}$
c. $\frac{5 \sqrt{2}}{2}$
d. $5 \sqrt{3}$

Find the value of the variable(s). If your answer is not an integer, leave it in simplest radical form.
\qquad 10.

12
Not drawn to scale
a. 2
b. $12 \sqrt{3}$
c. 1
d. $6 \sqrt{3}$
11.

Not drawn to scale
a. $x=10 \sqrt{3}, y=30$
b. $x=10, y=30 \sqrt{3}$
c. $x=30 \sqrt{3}, y=10$
d. $x=30, y=10 \sqrt{3}$
12.

Not drawn to scale
a. $x=17, y=34 \sqrt{3}$
b. $x=34, y=17 \sqrt{3}$
c. $x=34 \sqrt{3}, y=17$
d. $x=17 \sqrt{3}, y=34$
13. Find the value of x and y rounded to the nearest tenth.

a. $x=48.1, y=46.4$
b. $x=48.1, y=139.3$
c. $x=24.0, y=139.3$
d. $x=24.0, y=46.4$

Find the value of \boldsymbol{x}. Round your answer to the nearest tenth.
14.

Not drawn to scale
a. 2.8
b. 1
c. 8.2
d. 1.1
15.

Not drawn to scale
a. 3.3
b. 3.1
c. 24.7
d. 8.5
16.

a. $\quad 6.2 \mathrm{~cm}$
b. 12.7 cm
c. $\quad 15.5 \mathrm{~cm}$
d. $\quad 10.9 \mathrm{~cm}$

Find the value of \boldsymbol{x} to the nearest degree.
17.

Not drawn to scale
a. 30
b. 60
c. 70
d. 85
18. A large totem pole in the state of Washington is 100 feet tall. At a particular time of day, the totem pole casts a 249 -foot-long shadow. Find the measure of $\angle A$ to the nearest degree.

a. 68°
b. 45°
c. 35°
d. 22°

Find the value of x. Round to the nearest tenth.
19.

Not drawn to scale
a. 12.5
b. 10
c. 13
d. 9.7
20.

Not drawn to scale
a. $\quad 12.9$
b. 8.5
c. $\quad 12.4$
d. 8.1
21.

Not drawn to scale
a. $\quad 10.3$
b. $\quad 31.4$
c. $\quad 10.7$
d. 31.8
22.

Not drawn to scale
a. 52.6
b. 52.9
c. 6.2
d. 6.5

Find the value of x. Round to the nearest degree.
23.

Not drawn to scale
a. 62
b. 25.5
c. 28
d. 25
24.

Not drawn to scale
a. 41
b. 36
c. 46
d. 44
25. A slide 4.1 meters long makes an angle of 35° with the ground. To the nearest tenth of a meter, how far above the ground is the top of the slide?

a. $\quad 7.1 \mathrm{~m}$
b. 3.4 m
c. 5.0 m
d. 2.4 m
26. To find the height of a pole, a surveyor moves 140 feet away from the base of the pole and then, with a transit 4 feet tall, measures the angle of elevation to the top of the pole to be 44°. To the nearest foot, what is the height of the pole?
a. $\quad 145 \mathrm{ft}$
b. $\quad 149 \mathrm{ft}$
c. 135 ft
d. $\quad 139 \mathrm{ft}$
27. A spotlight is mounted on a wall 7.4 feet above a security desk in an office building. It is used to light an entrance door 9.3 feet from the desk. To the nearest degree, what is the angle of depression from the spotlight to the entrance door?
a. 39°
b. 51°
c. 53°
d. 37°
28. Find the angle of elevation of the sun from the ground to the top of a tree when a tree that is 10 yards tall casts a shadow 14 yards long. Round to the nearest degree.
a. 54°
b. 36°
c. 46°
d. 44°

Describe the vector as an ordered pair. Give the coordinates to the nearest tenth. (Not drawn to scale)
29.

a. $\langle-91.9,91.9\rangle$
b. $\langle-46,46\rangle$
c. $\langle-91.9,91.9\rangle$
d. $\langle-46,46\rangle$
30.

a. $\langle-1,-2.8\rangle$
b. $\langle-8.8,-3.2\rangle$
c. $\langle-3.2,-8.8\rangle$
d. $\langle-2.8,-1\rangle$

Use compass directions to describe the direction of the vector.
(Not drawn to scale)
31.

a. 10° west of south
b. 10° east of north
c. 10° east of south
d. 10° west of north
32.

a. 43° east of north
b. 43° east of south
c. 43° west of south
d. 43° west of north
33. A glider lands 17 miles west and 9 miles south from where it took off. The result of the trip can be described by the vector $\langle-17,-9\rangle$. Use distance (for magnitude) and direction to describe this vector a second way.

a. $\quad 19$ miles at 28° south of west
b. 28 miles at 19° north of west
c. $\quad 19$ miles at 28° north of west
d. 28 miles at 19° south of west

Find the magnitude and direction of the vector. Round length to nearest tenth and degree to the nearest unit. (Not drawn to scale)
34.

a. about $586.7 \mathrm{mi} ; 30^{\circ}$ south of east
c. about $30 \mathrm{mi} ; 586.7^{\circ}$ south of east
b. about $586.7 \mathrm{mi} ; 30^{\circ}$ south of west
d. about $30 \mathrm{mi} ; 586.7^{\circ}$ south of west

Write the sum of the two vectors as an ordered pair.

35. $\langle 1,6\rangle$ and $\langle-5,-2\rangle$
a. $(7,-7)$
b. $\langle-4,4\rangle$
c. $(-7,7)$
d. $\langle 4,-4\rangle$
36. $\langle-6,5\rangle$ and $\langle 6,-5\rangle$
a. $\langle 0,0\rangle$
b. $\langle-12,-10\rangle$
c. $\langle 12,10\rangle$
d. $\langle 1,1\rangle$

Short Answer

37. A forest ranger spots a fire from a 21 -foot tower. The angle of depression from the tower to the fire is 12°.
a. Draw a diagram to represent this situation.
b. To the nearest foot, how far is the fire from the base of the tower? Show the steps you use to find the solution.

Essay

38. From the top of a 210 -foot lighthouse located at sea level, a boat is spotted at an angle of depression of 23°.
a. Draw a sketch to represent this situation.
b. Use the angle of depression to find the distance from the base of the lighthouse to the boat. Explain your steps in finding the distance.
c. Use another angle to verify the distance you found in part (b). Explain your steps in finding the distance and tell why your method works.
d. Use the Pythagorean Theorem to find the shortest distance from the top of the lighthouse to the boat. Explain your steps in finding this distance.

Geometry Semester 2 Review 2013 Right Triangles
Answer Section

MULTIPLE CHOICE

1. C
2. C
3. C
4. B
5. D
6. B
7. B
8. B
9. C
10. D
11. D
12. D
13. D
14. D
15. C
16. A
17. B
18. D
19. A
20. D
21. B
22. C
23. C
24. D
25. D
26. D
27. A
28. B
29. D
30. D
31. B
32. D
33. A
34. B
35. B
36. A
37.

a.

b. $\tan 12^{\circ}=\frac{21}{x} \quad$ Use the tangent ratio.
$x=\frac{21}{\tan 12^{\circ}} \quad$ Solve for x.
$x$$\quad \$ 99 \quad l$

The fire is about 99 feet from the base of the tower.
38.
[4] a.

b. $\quad \tan 23^{\circ}=\frac{210}{x} \quad$ Use the tangent ratio.

$$
\begin{aligned}
\tan 23^{\circ}(x) & =210 & & \text { Multiply each side by } x . \\
\frac{\tan 23^{\circ}(x)}{\tan 23^{\circ}} & =\frac{210}{\tan 23^{\circ}} & & \text { Divide each side by } \tan 23^{\circ} . \\
x & \approx 494.7 & & \text { Use a calculator. }
\end{aligned}
$$

The distance from the base of the lighthouse to the boat is about 494.7 feet.
c. Since the measures of the acute angles of a right triangle add to 90°, you can use the other angle in the triangle to find the distance. The measure of the other acute angle is $90^{\circ}-23^{\circ}$, or 67°.

$$
\begin{aligned}
\tan 67^{\circ} & =\frac{x}{210} & & \text { Use the tangent ratio. } \\
x & =210\left(\tan 67^{\circ}\right) & & \text { Multiply each side by } 210 . \\
x & & 494.7 &
\end{aligned}
$$

d. The shortest distance from the top of the lighthouse to the boat is the hypotenuse of the right triangle with legs of length 210 feet and 494.7 feet.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} & & \text { Pythagorean The } \\
210^{2}+494.7^{2} & =c^{2} & & \text { Substitute. } \\
44,100+244,728 & =c^{2} & & \text { Simplify. } \\
288,828 & =c^{2} & & \text { Simplify. } \\
537.4 & \approx c & & \text { Use a calculator. }
\end{aligned}
$$

The shortest distance from the top of the lighthouse to the boat is about 537.4 feet.

Geometry Semester 2 Review 2013

CIRCLES:

Tangent Lines
Chords \& Arcs
Central Angles
Inscribed Angles
Angle Measures and Side Lengths
Circumference/Arc Length
Major/Minor Arcs/Semicircles
Assume that lines that appear to be tangent are tangent. O is the center of the circle. Find the value of \boldsymbol{x}. (Figures are not drawn to scale.)
\qquad 1. $m \angle O=111$

a. 291
b. 69
c. 55.5
d. 222
2. $m \angle P=12$

a. 78
b. 39
c. 102
d. 24
3. $\overline{J K}, \overline{K L}$, and $\overline{L J}$ are all tangent to O (not drawn to scale). $J A=9, A L=10$, and $C K=14$. Find the perimeter of $\triangle J K L$.

a. 66
b. 38
c. 46
d. 33
4. Pentagon RSTUV is circumscribed about a circle. Solve for x for $R S=10, S T=13$, $T U=11, U V=12$, and $V R=12$. The figure is not drawn to scale.

a. 4
b. 8
c. 11
d. 6

Find the value of \boldsymbol{x}. If necessary, round your answer to the nearest tenth. The figure is not drawn to scale.
5. $F G \perp O P, R S \perp O Q, F G=40, R S=37, O P=19$

a. $\quad 27.2$
b. $\quad 18.5$
c. 19
d. 20.5
6. $N A \cong P A, M O \perp N A, R O \perp P A, M N=6$ feet

a. 12 ft
b. 36 ft
c. 6 ft
d. 3 ft
\qquad 7.

a. 13
b. 26
c. 77
d. 38.5
\qquad 8.

a. $\quad 18.8$
b. 120
c. 5.3
d. 12
9. $A B=20, B C=6$, and $C D=8$

a. $\quad 18.5$
b. 11.5
c. 19.5
d. 15
-10.

a. $\quad 19.34$
b. $\quad 10.49$
c. 110
d. 9.22
11. $\overline{W Z}$ and $\overline{X R}$ are diameters. Find the measure of arc $Z W X$. (The figure is not drawn to scale.)

a. 226
b. 275
c. 39
d. 321
_ 12. $m \angle R=22$. Find $m \angle O$. (The figure is not drawn to scale.)

a. 68
b. 22
c. 158
d. 44
13. Given that $\angle D A B$ and $\angle D C B$ are right angles and $m \angle B D C=41$, what is the measure of arc $C A D$? (The figure is not drawn to scale.)

a. 164
b. 303
c. 246
d. 262
14. Find the measure of $\angle B A C$. (The figure is not drawn to scale.)

a. 57
b. 28.5
c. 33
d. 114
_ 15. Find x. (The figure is not drawn to scale.)

a. 92
b. 44
c. 23
d. 46
16. Find $m \angle B A C$. (The figure is not drawn to scale.)

a. 114
b. 57
c. 132
d. 33
\qquad 17. If $m(\operatorname{arc} B Y)=40$, what is $m \angle Y A C$? (The figure is not drawn to scale.)

a. 140
b. 100
c. 70
d. 80
_- 18. $m(\operatorname{arc} D E)=96$ and $m(\operatorname{arc} B C)=67$. Find $m \angle A$. (The figure is not drawn to scale.)

a. 14.5
b. 62.5
c. 81.5
d. 29
19. Find the value of x for $m(\operatorname{arc} A B)=46$ and $m(\operatorname{arc} C D)=25$. (The figure is not drawn to scale.)

a. 35.5°
b. 58.5°
c. 71°
d. 21°
20. Find $m \angle D$ for $m \angle B=50$. (The figure is not drawn to scale.)

a. 80
b. 130
c. 65
d. 160
21. Find $A B$. Round to the nearest tenth if necessary.

a. 1.1
b. 11.5
c. 3.5
d. 4.3
22. Grade 7 students were surveyed to determine how many hours a day they spent on various activities. The results are shown in the circle graph below. Find the measure of each central angle in the circle graph.
a. Sleeping
b. Eating

How Students Spend Their Time

a. $118.8^{\circ} ; 28.8^{\circ}$
b. $108^{\circ} ; 28.8^{\circ}$
c. $118.8^{\circ} ; 288^{\circ}$
d. $59.4^{\circ} ; 288^{\circ}$
23. Name the major arc and find its measure.

a. $\operatorname{arc} A D B ; 50^{\circ}$
b. $\operatorname{arc} A B ; 50^{\circ}$
c. $\operatorname{arc} A D B ; 310^{\circ}$
d. $\operatorname{arc} A B ; 310^{\circ}$

Find the circumference. Leave your answer in terms of π.

24.

a. $\quad 11.4 \pi \mathrm{~cm}$
b. $8.55 \pi \mathrm{~cm}$
c. $2.85 \pi \mathrm{~cm}$
d. $5.7 \pi \mathrm{~cm}$
25.

a. $54 \pi \mathrm{in}$.
b. $36 \pi \mathrm{in}$.
c. $18 \pi \mathrm{in}$.
d. 324π in.
26. A team in science class placed a chalk mark on the side of a wheel and rolled the wheel in a straight line until the chalk mark returned to the same position. The team then measured the distance the wheel had rolled and found it to be 35 cm . To the nearest tenth, what is the area of the wheel?
a. $\quad 195.1 \mathrm{~cm}^{2}$
b. $97.5 \mathrm{~cm}^{2}$
c. $27.5 \mathrm{~cm}^{2}$
d. $390.1 \mathrm{~cm}^{2}$
27. Find the length of arc $X P Y$. Leave your answer in terms of π.

a. $24 \pi \mathrm{~m}$
b. $12 \pi \mathrm{~m}$
c. $4 \pi \mathrm{~m}$
d. $720 \pi \mathrm{~m}$

Geometry Semester 2 Review 2013 - Circles
Answer Section

MULTIPLE CHOICE

1. B
2. A
3. A
4. A
5. D
6. D
7. C
8. D
9. B
10. B
11. A
12. D
13. D
14. B
15. C
16. B
17. C
18. A
19. A
20. A
21. C
22. A
23. C
24. D
25. B
26. B
27. B

Geometry Semester 2 Review 2013

AREA OF:

Circles \& Sectors/Segment
Parallelogram
Triangle
Trapezoid
Rhombus
Kite
Regular Polygons
Using special right triangles
Using trigonometry
Find the area. The figure is not drawn to scale.
\qquad 1.

a. $\quad 28.12 \mathrm{~cm}^{2}$
b. $3.9 \mathrm{~cm}^{2}$
c. $11.3 \mathrm{~cm}^{2}$
d. $56.24 \mathrm{~cm}^{2}$
\qquad 2.

a. $1188 \mathrm{in}^{2}{ }^{2}$
b. 69 in. ${ }^{2}$
c. 138 in. ${ }^{2}$
d. $1440 \mathrm{in}^{2}{ }^{2}$
3.

a. $\quad 10.8 \mathrm{~cm}^{2}$
b. $5.4 \mathrm{~cm}^{2}$
c. $21.6 \mathrm{~cm}^{2}$
d. $7.4 \mathrm{~cm}^{2}$
4.

a. $\quad 144.5 \mathrm{~cm}^{9}$
b. $127 \mathrm{~cm}^{2}$
c. $172 \mathrm{~cm}^{2}$
d. $50 \mathrm{~cm}^{2}$
\qquad 5.

a. 188 in. ${ }^{2}$
b. 278 in. ${ }^{2}$
c. 322 in. ${ }^{2}$
d. none of these
6.

a. $\quad 607.32$ in. ${ }^{2}$
b. 36.7 in. ${ }^{2}$
c. $\quad 303.66$ in. ${ }^{2}$
d. 77.2 in. ${ }^{2}$
7.

Not drawn to scale
a. 77.2 in. ${ }^{2}$
b. 80 in. 2
c. $75 \mathrm{in.}^{2}$
d. $70 \mathrm{in.}^{2}$
\qquad 8. The area of a parallelogram is $420 \mathrm{~cm}^{2}$ and the height is 35 cm . Find the corresponding base.
a. 385 cm
b. 455 cm
c. $\quad 14,700 \mathrm{~cm}^{2}$
d. 12 cm

Find the area of a parallelogram with the given vertices.
9. $P(1,3), Q(3,3), R(7,8), S(9,8)$
a. $\quad 10$ units 2
b. 5 units 2
c. 20 units 2
d. none of these
10. $P(-2,-5), Q(9,-5), R(1,5), S(12,5)$
a. $\quad 110$ units 2
b. 55 units 2
c. 220 units 2
d. none of these
11. Find the value of h in the parallelogram.

Not drawn to scale
a. 32
b. 28
c. 40.5
d. 35
12. An isosceles triangle has area of $110 \mathrm{ft}^{2}$. If the base is 14 ft , what is the length of the legs? Round your answer to the nearest tenth.
a. 21 ft
b. $\quad 17.2 \mathrm{ft}$
c. $\quad 14.8 \mathrm{ft}$
d. 442.9 ft
13. Find the area of a polygon with the vertices of $(-2,3),(1,3),(5,-3)$, and $(-2,-3)$.
a. 120 units 2
b. 7 units 2
c. 30 units 2
d. 60 units 2
14. When designing a building, you must be sure that the building can withstand hurricane-force winds, which have a velocity of $73 \mathrm{mi} / \mathrm{h}$ or more. The formula $F=0.004 A \nu^{2}$ gives the force F in pounds exerted by a wind blowing against a flat surface. A is the area of the surface in square feet, and v is the wind velocity in miles per hour. How much force is exerted by a wind blowing at $81 \mathrm{mi} / \mathrm{h}$ against the side of the building shown?

a. about 54 tons
c. about 10,826 tons
b. about 5 tons
d. about 28 tons

Find the area of the trapezoid. Leave your answer in simplest radical form.

\qquad 15.

Not drawn to scale
a. $\quad 40 \sqrt{3} \mathrm{ft}^{2}$
b. $16 \sqrt{3} \mathrm{ft}^{2}$
c. $24 \sqrt{3} \mathrm{ft}^{2}$
d. $32 \sqrt{3} \mathrm{ft}^{2}$
16. A kite has diagonals 9.2 ft and 8 ft . What is the area of the kite?
a. $36.8 \mathrm{ft}^{2}$
b. $8.6 \mathrm{ft}^{2}$
c. $73.6 \mathrm{ft}^{2}$
d. $34.4 \mathrm{ft}^{2}$
17. Find the area of the rhombus.

a. $12 \mathrm{~m}^{2}$
b. $4096 \mathrm{~m}^{2}$
c. $128 \mathrm{~m}^{2}$
d. $32 \mathrm{~m}^{2}$
18. Find the area of the rhombus. Leave your answer in simplest radical form.

a. 50
b. $10 \sqrt{ } 3$
c. $25 \sqrt{ } 6$
d. $50 \sqrt{ } 3$
19. Find the area of a regular hexagon with an apothem 16.5 feet long and a side 19 feet long. Round your answer to the nearest tenth.
a. $\quad 156.3 \mathrm{ft}^{2}$
b. $\quad 625.3 \mathrm{ft}^{2}$
c. $\quad 1875.8 \mathrm{ft}^{2}$
d. $\quad 937.9 \mathrm{ft}^{2}$
20. Find the area of a regular hexagon with side length of 8 m . Round your answer to the nearest tenth.
a. $\quad 55.4 \mathrm{~m}^{2}$
b. $\quad 166.3 \mathrm{~m}^{2}$
c. $83.1 \mathrm{~m}^{2}$
d. $288 \mathrm{~m}^{2}$
21. Find the area of an equilateral triangle with side 12 .
a. $36 \sqrt{3}$
b. 72
c. 36
d. $3 \sqrt{3}$
22. Find the area of the regular polygon. Round your answer to the nearest tenth.

a. $\quad 176.6$ in. 2
b. $966.1 \mathrm{in}^{2}$
c. 80.0 in. ${ }^{2}$
d. 483.0 in. 2
23. You are planning to use a ceramic tile design in your new bathroom. The tiles are blue and white equilateral triangles. You decide to arrange the blue tiles in a hexagonal shape as shown. If the side of each tile measures 7 centimeters, what will be the exact area of each hexagonal shape?

a. $73.5 \sqrt{3} \mathrm{~cm}^{2}$
b. $98 \sqrt{3} \mathrm{~cm}^{2}$
c. $21 \mathrm{~cm}^{2}$
d. $1029 \mathrm{~cm}^{2}$
24. Find the area of an equilateral triangle with radius $8 \sqrt{3} \mathrm{~m}$. Leave your answer in simplest radical form.
a. $96 \sqrt{3} \mathrm{~m}^{2}$
b. $144 \sqrt{3} \mathrm{~m}^{2}$
c. $18 \sqrt{3} \mathrm{~m}^{2}$
d. $12 \sqrt{3} \mathrm{~m}^{2}$
25. A regular hexagon has a perimeter of 150 m . Find its area. Leave your answer in simplest radical form.
a. $5625 \sqrt{3} \mathrm{~m}^{2}$
b. $\quad 1875 \sqrt{3} \mathrm{~m}^{2}$
c. $\quad 25 \sqrt{3} \mathrm{~m}^{2}$
d. ${ }_{2}^{5625} \sqrt{3} \mathrm{~m}^{2}$

Find the area of the regular polygon. Give the answer to the nearest tenth.
26. pentagon with side 10 cm
a. $\quad 344.1 \mathrm{~cm}$
b. $\quad 34.4 \mathrm{~cm}^{\text {a }}$
c. $\quad 137.6 \mathrm{~cm}{ }^{\text { }}$
d. $172 \mathrm{~cm}{ }^{\text { }}$
27. hexagon with side 8 yd
a. 332.6 yd
b. 12 yd
c. 41.6 yd
d. $\quad 166.3 \mathrm{yd}{ }^{\text {² }}$
28. decagon with side 4 cm
a. $\quad 123.1 \mathrm{~cm}$
b. $\quad 129.4 \mathrm{~cm}$
c. 246.2 cm
d. $\quad 139.8 \mathrm{~cm}$
29. dodecagon with perimeter 108 cm
a. $\quad 1813.8 \mathrm{~cm}$
b. $906.9 \mathrm{~cm}{ }^{\text { }}$
c. $923.6 \mathrm{~cm}{ }^{\text { }}$
d. $938.9 \mathrm{~cm}{ }^{\text { }}$
30. pentagon with radius 8 m
a. $\quad 304.3 \mathrm{~m}$
b. $152.2 \mathrm{~m}^{\text {a }}$
c. 30.4 m
d. $154.2 \mathrm{~m}^{\circ}$
31. square with radius 16 ft
a. 520 ft
b. $512 \mathrm{ft}{ }^{\text {a }}$
c. $256 \mathrm{ft}{ }^{\text {a }}$
d. $1024 \mathrm{ft}^{\text {a }}$
32. hexagon with radius 5 in .
a. 259.8 in.
b. $\quad 129.9$ in.
c. 65.0 in.
d. 53.0 in .
33. The Ruffs are planning to buy an above-ground swimming pool shaped as a regular octagon. The radius of the octagon is 9 feet. To the nearest tenth, find the area of the surface of the water in the pool.
a. $\quad 458.2 \mathrm{ft}$
b. 553.1 ft
c. 94.8 ft
d. 229.1 ft

Find the area of the triangle. Give the answer to the nearest tenth. The drawing may not be to scale.
34.

a. $\quad 126.9 \mathrm{~cm}$
b. $63.4 \mathrm{~cm}{ }^{\text { }}$
c. $23.1 \mathrm{~cm}{ }^{\text {² }}$
d. $185.5 \mathrm{~cm}{ }^{\text {a }}$
35.

a. 10.5 m
b. 9.8 m
c. 19.6 m
d. 21.0 m
36. A gardener needs to cultivate a triangular plot of land. One angle of the garden is 47°, and two sides adjacent to the angle are 77 feet and 76 feet. To the nearest tenth, what is the area of the plot of land?
a. 2163.5 ft
b. 2139.9 ft
c. $\quad 4279.9 \mathrm{ft}$
d. 1995.5 ft
37. A park in a subdivision is triangular-shaped. Two adjacent sides of the park are 573 feet and 536 feet. The angle between the sides is 58°. To the nearest unit, find the area of the park in square yards.
a. $32,557 \mathrm{yd}$
b. $14,470 \mathrm{yd}$
c. $28,940 \mathrm{yd}$
d. $43,410 \mathrm{yd}$
38. Divers looking for a sunken ship have defined the search area as a triangle with adjacent sides of length 2.75 miles and 1.32 miles. The angle between the sides of the triangle is 35°. To the nearest hundredth, find the search area.
a. $\quad 2.08 \mathrm{mi}$
b. 2.97 mi
c. $\quad 1.04 \mathrm{mi}$
d. 1.49 mi

Find the area of the circle. Leave your answer in terms of π.
\qquad 39.

a. $25.92 \pi \mathrm{~m}^{2}$
b. $1.8 \pi \mathrm{~m}^{2}$
c. $12.96 \pi \mathrm{~m}^{2}$
d. $46.66 \pi \mathrm{~m}^{2}$
\qquad 40.

a. $4.2025 \pi \mathrm{~m}^{2}$
b. $8.405 \pi \mathrm{~m}^{2}$
c. $16.81 \pi \mathrm{~m}^{2}$
d. $11.2 \pi \mathrm{~m}^{2}$
41. The figure represents the overhead view of a deck surrounding a hot tub. What is the area of the deck? Round to the nearest tenth.

a. $\quad 75.4 \mathrm{~m}^{2}$
b. $\quad 89.8 \mathrm{~m}^{2}$
c. $\quad 278.7 \mathrm{~m}^{2}$
d. $22.9 \mathrm{~m}^{2}$
42. Find the area of the figure to the nearest tenth.

a. $\quad 74.2$ in. ${ }^{2}$
b. $8.2 \mathrm{in}^{2}{ }^{2}$
c. $\quad 148.4 \mathrm{in.}^{2}$
d. 23.6 in. ${ }^{2}$
43. Find the area of a sector with a central angle of 180° and a diameter of 5.6 cm . Round to the nearest tenth.
a. $\quad 49.2 \mathrm{~cm}^{2}$
b. $\quad 12.3 \mathrm{~cm}^{2}$
c. $2.2 \mathrm{~cm}^{2}$
d. $5.6 \mathrm{~cm}^{2}$

Essay

44. An outdoor deck for a new restaurant forms a square with radius 30 feet.
a. Draw and label a diagram of the deck. Explain your diagram.
b. Find the perimeter of the deck. Explain your method for finding the perimeter.
c. Find the area of the deck. Explain your method for finding the area.
d. Show a method for finding the area of the deck that is different from the method you used in part (c).

Geometry Semester 2 Review 2013 - AREA
Answer Section

MULTIPLE CHOICE

1. A
2. A
3. B
4. A
5. B
6. C
7. D
8. D
9. A
10. A
11. A
12. B
13. C
14. B
15. D
16. A
17. C
18. D
19. D
20. B
21. A
22. D
23. A
24. B
25. B
26. D
27. D
28. A
29. B
30. B
31. B
32. C
33. D
34. B
35. A
36. B
37. B
38. C
39. C
40. A
41. B
42. A
43. B

ESSAY

44.

[4] a.

The radius of the square from its center to a corner is 30 feet. A triangle can be formed where x is half the side length and a is the apothem.
b. The triangle in the diagram is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle. The hypotenuse 30 is $x \sqrt{2}$ and $a \sqrt{2}$ and $a=x$. To find the value of x, or a, write and solve an equation.

$$
\begin{aligned}
30 & =x \sqrt{2} & & \text { Write an equation. } \\
\frac{30}{\sqrt{2}} & =\frac{x \sqrt{2}}{\sqrt{2}} & & \text { Divide each side by } \sqrt{2} .
\end{aligned}
$$

$$
21.2 \approx x \quad \text { Use a calculator. }
$$

So, $x=a \approx 21.2$ and the perimeter is about 2(21.2)(4) feet, or 169.6 feet.
c. Now, use the formula for the area of a regular polygon.

$$
\begin{array}{rlr}
A & =\frac{1}{2} a p & \\
& =\frac{1}{2}(21.2)(169.6) & \\
\text { Substitute. } \\
& =1797.76 & \text { Simplify. }
\end{array}
$$

The area of the deck is about 1798 square feet.
d. Another way to find the area is to use the formula for the area of a square. The length of the side of the deck is $2(21.2)$, or 42.4 .

$$
\begin{aligned}
A & =s^{2} \\
& =42.4^{2} \\
& =1797.76
\end{aligned}
$$

The area of the deck is about 1798 square feet.
[3] one mathematical error or correct answers with incomplete explanations
[2] two mathematical errors or correct answers with errors in explanation
[1] correct answers with no explanation

Geometry Semester 2 Review 2013

SURFACE AREA

Nets
Prisms
Cylinders
Pyramids
Cones
Spheres
Composite Figures

1. Which three-dimensional figure matches this net?

a.

c.

b.

d.

Describe the cross section.
\qquad 2.

a. cube
b. trapezoid
c. pentagon
d. square

3．Pierre built the model shown in the diagram below for a social studies project．He wants to be able to show the inside of his model，so he sliced the figure as shown．Describe the cross section he created．

a．hexagon
b．pentagon
c．pyramid
d．rectangle

Use formulas to find the lateral area and surface area of the given prism．Show your answer to the nearest whole number．
4.

Not drawn to scale
a． $468 \mathrm{~m}_{\mathrm{a}} ; 519 \mathrm{~m}$ 。
c． $504 \mathrm{~m}_{\mathrm{e}} ; 512 \mathrm{~m}$ 。
b． $468 \mathrm{~m}^{\text { }} ; 534 \mathrm{~m}^{\text { }}$
d． $504 \mathrm{~m}^{\text { }} ; 519 \mathrm{~m}^{\text { }}$
\qquad 5.

Not drawn to scale
a． $192 \mathrm{~m}_{\text {® }} ; 287 \mathrm{~m}$ ．
c． $192 \mathrm{~m}_{\mathrm{e}} ; 382 \mathrm{~m}$ 。
b． $342 \mathrm{~m} ; 287 \mathrm{~m}$
d． $342 \mathrm{~m} ; 382 \mathrm{~m}$
6. A jewelry store buys small boxes in which to wrap items that they sell. The diagram below shows one of the boxes. Find the lateral area and the surface area of the box to the nearest whole number.

Not drawn to scale
a. $90 \mathrm{~cm}_{\star}^{\circ} ; 146 \mathrm{~cm}_{\text {. }}^{\text {. }}$

b. $90 \mathrm{~cm} ; 206 \mathrm{~cm}$
d. $181 \mathrm{~cm}^{\circ} ; 146 \mathrm{~cm}$

Find the surface area of the cylinder in terms of π.
\qquad 7.

Not drawn to scale
a. 688 in.
b. 304π in.
c. 176π in.
d. 208π in.
8.

Not drawn to scale
a. $518 \mathrm{~cm}{ }^{\text { }}$
b. $602 \pi \mathrm{~cm}^{\wedge}$
c. $812 \pi \mathrm{~cm}^{\text { }}$
d. $308 \pi \mathrm{~cm}^{\circ}$
9. The radius of the base of a cylinder is 28 cm and its height is 48 cm . Find the surface area of the cylinder in terms of π.
a. $4332 \pi \mathrm{~cm}{ }^{\text {a }}$
b. $4256 \pi \mathrm{~cm}$
c. $4208 \pi \mathrm{~cm}$
d. $4228 \pi \mathrm{~cm}^{2}$
10. Find the surface area of the cylinder to the nearest whole number.

Not drawn to scale
a. $\quad 1257 \mathrm{in}$.
b. 4200 in .
c. 3770 in.
d. 14002 in. ${ }^{\text {. }}$
11. Allison is planning to cover the lateral surface of a large cylindrical garbage can with decorative fabric for a theme party. The can has a diameter of 3 feet and a height of 3.5 feet. How much fabric does she need? Round to the nearest square foot.
a. 123 ft
b. $61 \mathrm{ft}^{\text { }}$
c. 33 ft
d. $66 \mathrm{ft}^{\text {a }}$

Find the surface area of the pyramid shown to the nearest whole number.

\qquad 12.

Not drawn to scale
a. 85 ft
b. 145 ft
c. $60 \mathrm{ft}^{\text {² }}$
d. $25 \mathrm{ft}^{\text {a }}$
13. Find the slant height x of the pyramid shown to the nearest tenth.

Not drawn to scale
a. $\quad 2.4 \mathrm{~mm}$
b. 5 mm
c. 2.6 mm
d. 4.3 mm
14. Find the surface area of the figure to the nearest whole number.

a. 310 ft
b. 155 ft
c. 135 ft
d. 74 ft
15. Find the surface area of the cone in terms of π.

Not drawn to scale
a. $54 \pi \mathrm{~cm}$
b. $99 \pi \mathrm{~cm}^{\text {a }}$
c. $51 \pi \mathrm{~cm}$
d. 49.5 cm
16. Find the slant height of the cone to the nearest whole number.

Not drawn to scale
a. $\quad 21 \mathrm{~m}$
b. 19 m
c. 22 m
d. 24 m
17. Find the lateral area and surface area of the cone. Round the answers to the nearest tenth. (The figure is not drawn to scale.)

a. L.A. $=395.8 \mathrm{ft}^{\star}$; S.A. $=791.7 \mathrm{ft}^{\star}$
c. L.A. $=622.0 \mathrm{ft}^{\circ}$; S.A. $=791.7 \mathrm{ft}^{\star}$
b. L.A. $=1583.4 \mathrm{ft} ;$ S.A. $=1244.1 \mathrm{ft}$
d. L.A. $=791.7 \mathrm{ft} ;$ S.A. $=1244.1 \mathrm{ft}$
18. Find the surface area of a conical grain storage tank that has a height of 30 meters, a diameter of 20 meters, and a slant height of 32 meters. Round the answer to the nearest square meter.
a. 3267 m
b. 1319 m
c. 2325 m
d. 1005 m

Find the surface area of the sphere with the given dimension. Leave your answer in terms of π.
19. diameter of 16 cm
a. $256 \pi \mathrm{~cm}$
b. $128 \pi \mathrm{~cm}$
c. $32 \pi \mathrm{~cm}$
d. $1024 \pi \mathrm{~cm}$
20. radius of 30 m
a. $1,800 \pi \mathrm{~m}$
b. $900 \pi \mathrm{~m}$
c. $3,600 \pi \mathrm{~m}$
d. $450 \pi \mathrm{~m}$
21. A balloon has a circumference of 23 cm . Use the circumference to approximate the surface area of the balloon to the nearest square centimeter.
a. 1662 cm
b. 529 cm
c. 168 cm
d. 674 cm

Other

22. Tyler built a dog house for his chihuahua as shown in the diagram below.
a. How many square feet of shingles are required to cover the roof?
b. In order to buy the right amount of paint, Tyler needs to know the surface area of the exterior walls. If one quart covers 30 square feet, how many quarts will he need? Justify your answer.

Geometry Semester 2 Review 2013 - Surface Area

 Answer Section
MULTIPLE CHOICE

1. B
2. D
3. B
4. D
5. D
6. C
7. B
8. D
9. B
10. C
11. D
12. A
13. D
14. B
15. A
16. A
17. D
18. B
19. A
20. C
21. C

OTHER

22. To find the surface of the dog house,

Volume of the prism:

$$
\begin{array}{rll}
V & =B h & \text { Use the volume formula for a rectangular prism. } \\
V & =(2.5 \cdot 3)(2) & B=(2.5 \cdot 3), h=2 \\
V & =15 &
\end{array}
$$

Volume of the pyramid:

$$
\begin{array}{rlrl}
V & =\frac{1}{3} B h & & \text { Use the volume formula for a pyramid. } \\
V & =\frac{1}{3}(2.5 \cdot 3)(1.5) & & B=(2.5 \cdot 3), h=1.5 \\
V & =3.75 & 3 & \text { Cimplify. }
\end{array}
$$

The total volume is $15 \mathrm{ft}^{3}+3.75 \mathrm{ft}^{3}$, or $18.75 \mathrm{ft}^{3}$.

Geometry Semester 2 Review 2013

VOLUME

Prisms
Cylinders
Pyramids
Cones
Spheres
Composite Shapes
Find the volume of the given prism. Round to the nearest tenth if necessary.
1.

11 ft
Not drawn to scale
a. $\quad 308 \mathrm{ft}^{\text {² }}$
b. 301 ft
c. 298 ft
d. 312 ft
\qquad 2.

a. 17 m
b. 34 m
c. 8.5 m
d. $1 \mathrm{~m}^{\text {? }}$
\qquad 3. Concrete can be purchased by the cubic yard. How much will it cost to pour a slab 17 feet by 17 feet by 2 inches for a patio if the concrete costs $\$ 40.00$ per cubic yard?
a. $\quad \$ 1926.67$
b. $\$ 71.36$
c. $\$ 214.07$
d. $\$ 321.11$
\qquad 4. Find the volume of the composite space figure to the nearest whole number.

a. $\quad 170 \mathrm{~cm}^{\text { }}$
b. $180 \mathrm{~cm}^{2}$
c. 120 cm
d. 60 cm ?

Find the volume of the cylinder in terms of π.
\qquad 5.

Not drawn to scale
a. $\quad 140 \pi$ in.
b. 490π in.
c. 70π in.
d. 245π in.
\qquad 6.

$h=6$ and $r=3$
a. $27 \pi \mathrm{in}$.
b. 108π in.
c. $54 \pi \mathrm{in}$.
d. 324π in.
\qquad 7. Find the volume of the composite space figure to the nearest whole number.

Not drawn to scale
a. $\quad 546 \mathrm{~mm}$
b. $\quad 174 \mathrm{~mm}$
c. 364 mm
d. 438 mm
8. Find the height of the cylinder.

a. 2.4 in .
b. 7.2 in.
c. 14.4
d. 4.8 in .
9. The volume of a cylinder is $980 \pi \mathrm{in}^{3}$. The height of the cylinder is 20 in . What is the radius of the cylinder?
a. 7 in .
b. 49 in.
c. 327 in .
d. 18 in.

Find the volume of the square pyramid shown. Round to the nearest tenth as necessary.
\qquad 10.

Not drawn to scale
a. 40 cm
b. 480 cm
c. $\quad 147.3 \mathrm{~cm}$
d. 720 cm
11.

Not drawn to scale
a. 192 ft
b. $9216 \mathrm{ft}^{\text { }}$
c. $4608 \mathrm{ft}^{\text { }}$
d. $3072 \mathrm{ft}^{\text {² }}$
12. A rectangular pyramid fits exactly on top of a rectangular prism. The prism has length 15 cm , width 5 cm , and height 7 cm , and the pyramid has height 13 cm . Find the volume of the composite space figure.
a. $\quad 1500 \mathrm{~cm}$
b. 500 cm
c. 2275 cm
d. 850 cm

Find the volume of the cone shown as a decimal rounded to the nearest tenth.
13.

Not drawn to scale
a. $366.5 \mathrm{yd}^{-}$
b. 1026.3 yd
c. 73.3 yd
d. 549.8 yd
14.

Not drawn to scale
a. $\quad 552.9 \mathrm{~m}$
b. 829.4 m
c. $1,244.1 \mathrm{~m}$
d. $3,317.5 \mathrm{~m}$

Find the volume of the sphere shown. Give each answer rounded to the nearest cubic unit.
15.

a. $\quad 262 \mathrm{~mm}$
b. 524 mm
c. $\quad 314 \mathrm{~mm}^{-}$
d. 105 mm
16.

a. $\quad 1,767 \mathrm{~cm}$
b. $442 \mathrm{~cm}^{2}$
c. $236 \mathrm{~cm}^{2}$
d. $14,137 \mathrm{~cm}^{\text {? }}$
17. Three balls are packaged in a cylindrical container as shown below. The balls just touch the top, bottom, and sides of the cylinder. The diameter of each ball is 13 cm .

a. What is the volume of the cylinder? Explain your method for finding the volume.
b. What is the total volume of the three balls? Explain your method for finding the total volume.

Geometry Semester 2 Review 2013 - Volume

Answer Section

MULTIPLE CHOICE

1. A
2. A
3. B
4. B
5. B
6. C
7. D
8. A
9. A
10. B
11. D
12. D
13. A
14. B
15. B
16. A

OTHER

17.

a. To find the volume of the cylinder, use the formula. You need to use the height and the radius of the cylinder. The radius is the radius of the ball or $13 \mathrm{~cm} \div 2=6.5 \mathrm{~cm}$. The height of the cylinder is $13 \mathrm{~cm} \cdot 3=39 \mathrm{~cm}$ since 3 balls occupy the cylinder.

$$
\begin{array}{lll}
V=\pi r^{2} h & & \text { Use the formula for the volume of a cylinder. } \\
V=\pi(6.5)^{2}(39) & \text { Substitute } 6.5 \text { for } r \text { and } 39 \text { for } h . \\
V \approx 5177 & \text { Use a calculator. }
\end{array}
$$

The volume of the cylinder is about 5177 cm .
b. Use the formula for volume of a sphere to find the volume of one sphere. Then multiply the result by 3 .

$$
\begin{array}{rlr}
V & =\frac{4}{3} \pi r^{3} & \\
\text { Use the formula for the volume of a sphere. } \\
V & =\frac{4}{3} \pi(6.5)^{3} & \text { Substitute } 6.5 \text { for } r . \\
V & \approx 1150 &
\end{array}
$$

The volume of the three balls is about $3.1150 \mathrm{~cm}^{\text {. }}$, or 3450 cm .

