Geometry Unit 1: Basic Geometry

Name

Geometry Helpful Vocabulary

Word	Definition/Explanation	Examples/Helpful Tips		
Collinear Points	Points that lie on the same line	←● ● →		

Geometry Frequently Used Geometric Notations

Geometric Symbol	Interpretation	Example
	Angle	
	Triangle	
	Point	
	Line	
	Line Segment	
	The Measure Of	
	Ray	
	Parallel	
	Perpendicular	
	Congruent	
	Similar	

Geometric Labeling

Figure	Examples of Labeling	Non-Examples of Labeling
Lines Segments Rays		
Angles		
Closed Figures		

Geometry <u>Classifying</u> Angles

Acute	Right	Obtuse	Straight

Labeling Angles and Sides of Triangles

Labeling Congruent Angles and Sides

Classifying Triangles

Acute	Right	Obtuse
Equilateral/Equiangular	Isosceles	Scalene

Geometry Angles of Triangles

9. The measure of the largest angle in a triangle is 4 times the measure of the second largest angle. The smallest angle is 10°. What are the measures of all the angles?			
10. In ΔABC, the measure of ∠A is one-half the measure of ∠B and the measure of ∠C is three times the measure of ∠B. Find the measures of each angle.	11. In Δ PQR, the measure of \angle P is twice the measure of angle \angle Q. The measure of \angle R is three times the measure \angle P. Find the measures of each angle.		
12. Find the degree measure of each angle of a triangle if the ratio of the measures of the three angles are 1 : 3 : 5. Then list them in order from least to greatest.	13. Find the degree measure of each angle of a triangle if the ratio of the measures of the three angles are 1 : 4 : 7. Then list them in order from least to greatest.		

Geometry More Vocabulary

Word	Definition/Explanation	Examples/Helpful Tips
Complementary Angles		
Supplementary Angles		
Linear Pair		
Vertical Angles		

Exterior Angle Theorem

Word	Examples	Non-Examples	
Exterior Angle			

Geometry Development of the Exterior Angle Theorem

Geometry	Unit 1: Basic Geometry
17. $18.$ $x + 30$ $2x + 10$	19. 4x + 30, x 75130
20. Find the measure of either of the exterior angles formed by extending the base of an isosceles triangle, if the vertex angle of the triangle is 20.	28. In $\triangle PQR$, the measure of $\angle P$ is twice the measure of $\angle Q$. If an exterior angle at vertex $\angle R$ has a degree measure of 120, find m $\angle Q$
Find the measure of either of the exterior angles formed by extending the base of an isosceles triangle, if the vertex angle of the triangle is 135.	29. In $\triangle ABC$, m $\angle B$ is four times as large as m $\angle A$. An exterior angle at $\angle C$ measures 125. Find the degrees m $\angle A$.

Parallel Lines

Word	Definition/Explanation	Examples/Helpful Tips
Parallel Lines		
Transversal Line		

Geometry Parallel Lines Cut by a Transversal

r is a transversal for b and *c*.

t is a transversal for l and m.

Note: Parallel Lines can be in any direction

Angle Relationships in Parallel Lines Cut by a Transversal

Type of Relationship	Angle Relationship	Examples
Alternate Interior Angles		
Alternate Exterior Angles		
Corresponding Angles		
Same Side Interior Angles		
Same Side Exterior Angles		

Unit 1: Basic Geometry

Geometry Triangle Inequality Theorem

Practice

Tell whether the given lengths may be the measure of the sides of a triangle.				
1. 3, 4, 5	2. 5, 8, 13	3. 6, 7, 10	4. 3, 9, 15	5. 2, 2, 3
6. 1, 1, 2	7. 3, 4, 4	8. 5, 8, 11	9. 6, 2, 3	10. 5, 3, 7

Triangle Inequality Theorem Discovery

Practice Using the Discovery

Practice Using the Discovery				
Tell	whether the given leng	ths may be the measu	re of the sides of a tria	angle.
11. 4, 6, 3	12. 9, 4, 5	13. 2, 3, 5	14. 4, 4, 8	15. 3, 4, 8
16. 5, 6, 7	17. 6, 10, 9	18. 7, 5, 8	19. 6, 13, 7	20. 2, 5, 3

More Practice

1. Which set of numbers could not be the lengths of the sides of a triangle?	2. Which set of numbers could not be the lengths of the sides of a triangle?
1) 1, 1, 2 2) 2, 3, 4	1) 4, 7, 9 2) 4, 8, 12
3) 1, $\sqrt{3}$, 2 4) 3, 4, 5	3) 9, 10, 11 4) 6, 6, 11
3. Which set of numbers could not be the lengths of the sides of a triangle?	4. Which set of numbers could be the lengths of the sides of a isosceles triangle?
1) 9, 12, 19 2) 6, 8, 11	1) 15, 5, 10 2) 3, 4, 5
3) 7, 18, 11 4) 7, 5, 6	3) 1, 1, 3 4) 6, 6, 5
 5. Two sides of an isosceles triangle have lengths 2 and 12 respectively. What is the length of the third side? 1) 9 2) 8 3) 12 4) 14 	 6. Two sides of an isosceles triangle have lengths 4 and 8. What is the third side? 1) 4 2) 6 3) 5 4) 8
 7. Two sides of a triangle have lengths 5 and 8. Which length can not be the length of the third side? 1) 5 2) 4 3) 3 4) 6 	 8. Two sides of a triangle have lengths 4 and 7. Which length can not be the length of the third side? 1) 11 2) 5 3) 7 4) 4

Unit 1: Basic Geometry

Geometry Triangle Largest and Smallest Angles and Sides

Geometry	Unit 1: Basic Geometry
7. On the banks of a river, surveyors marked	8. In \triangle PQR, PQ = 8, QR = 12, and RP = 13. Which
locations A, B, and C. The measure of $\angle ACE = 70^{\circ}$	statement about the angles of Δ PQR must be true?
and the measure of $\angle ABC = 65^{\circ}$.	1) $\mathbf{m} \angle Q > \mathbf{m} \angle P > \mathbf{m} \angle R$
	$2) \mathbf{m} \angle Q > \mathbf{m} \angle R > \mathbf{m} \angle P$
В	3) $\mathbf{m} \angle R > \mathbf{m} \angle P > \mathbf{m} \angle Q$
	$4) \mathbf{m} \angle P > \mathbf{m} \angle R > \mathbf{m} \angle Q$
A C	
Which averagion ob even the velotion which between	
Which expression shows the relationship between	
the lengths of the sides of this triangle?AB < BC < AC	
$\begin{array}{c} 1 \\ 2 \\ BC < AB < AC \end{array}$	
3) BC < AC < AB	
4) $AC < AB < BC$	
9. In $\triangle ABC$, $\angle A \cong \angle B$ and m $\angle C$ is an obtuse angle.	10. In $\triangle ABC$, m $\angle A = 60^{\circ}$, m $\angle B = 80^{\circ}$, m $\angle A = 60$, and
Which statement is true?	$m \angle C = 40^{\circ}$. Which inequality is true?
1) $\overline{AC} \cong \overline{AB}$ and \overline{BC} is the longest side.	1) AB > BC
2) $\overrightarrow{AC} \cong \overrightarrow{BC}$ and \overrightarrow{AB} is the longest side.	2) AC > BC
3) $\overrightarrow{AC} \cong \overrightarrow{AB}$ and \overrightarrow{BC} is the shortest side.	3) AC < BA
	4) BC < BA
4) $AC \cong BC$ and AB is the shortest side.	
11. In $\triangle ABC$, $\mathbf{m} \angle A = x^2 + 12$, $\mathbf{m} \angle B = 11x + 5$, and	12. As shown in the diagram of $\triangle ACD$ below, <i>B</i> is a
$\mathbf{m} \angle C = \mathbf{13x} - 17$. Determine the longest side of $\triangle ABC$.	point on AC and DB is drawn.
	D
	180
	$A^{466^{\circ}}$ B C
	If $\mathbf{m} \angle A = 66$, $\mathbf{m} \angle CDB = 18$, and $\mathbf{m} \angle C = 24$, what is the
	longest side of $\triangle ABD$?
	1) <u>AB</u>
	2) \overline{DC}
	3) $\frac{-}{AD}$
	4) $\frac{1}{BD}$
	·
l	

Polygons

Word	Definition/Explanation	Examples/Helpful Tips
Polygon		
Regular Polygon		

Identifying Polygons

Exterior Angles of Polygons

Word	Examples	Non-Examples
Exterior Angles of Polygons		

Geometry Exterior Angles of Polygons Discovery

1. The pentagon in the diagram below is formed by five rays. What is the degree measure of angle x? 1) 72 2) 96 3) 108 4) 112 x 4 68° 68° 68° 84° 84°	 2. A stop sign in the shape of a regular octagon is resting on a brick wall, as shown in the accompanying diagram. What is the measure of angle x? 4) 45° 50° 120° 135°
 3. Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself? 1) octagon 2) decagon 3) hexagon 4) pentagon 	4. A regular hexagon is rotated in a counterclockwise direction about its center. Determine and state the minimum number of degrees in the rotation such that the hexagon will coincide with itself.

Geometry Interior Angles of Polygons Discovery

actice	2. The sum of the interior angles of a regular polygor
I. What is the measure of each interior angle in a egular octagon?	is 540°. Determine and state the number of degrees
1) 108º	in one interior angle of the polygon.
2) 135º	
3) 144º	
4) 1080º	
4) 1080-	
3. The measure of an interior angle of a regular	4. The measure of an interior angle of a regular
oolygon is 108°. What is the name of the polygon?	polygon is 120°. How many sides does the polygon
	have?
	1) 5
	2) 6
	3) 3
	4) 4

Unit 1: Basic	Geometry
---------------	----------

8. The diagram below shows ΔABD , with ABC,	9. In the diagram of Δ JEA below, m \angle JEA = 90° and
BE \perp AD, and \angle EBD $^{=}\angle$ CBD.	m∠EAJ = 48°. Line segment <i>MS</i> connects points M
	and S on the triangle, such that $m \angle EMS = 58^{\circ}$.
$E = \frac{1}{B + C}$ If m∠ABE = 52°, what is m∠D? 1) 26 2) 38 3) 52 4) 64	What is $m \angle JSM$? 1) 163 2) 121
	3) 42
	4) 17
 10. The angles of triangle ABC are in the ratio of 8:3:4. What is the measure of the smallest angle? 1) 12⁹ 2) 24⁹ 3) 36⁹ 	 In an equilateral triangle, what is the difference between the sum of the exterior angles and the sum of the interior angles? 180° 120° 90°
4) 72º	4) 60°
 12. Triangle PQR has angles in the ratio of 2 : 3 : 5. Which type of triangle is △PQR? 1) acute 2) isosceles 3) obtuse 4) right 	13. In $\triangle ABC$, $m \angle A = 3x + 1$, $m \angle B = 4x - 17$, and $m \angle C = 5x - 20$. Which type of triangle is $\triangle ABC$? 1) right 2) scalene 3) isosceles 4) equilateral
14. In $\triangle ABC$, m $\angle A = x$, m $\angle B = 2x + 2$, and m $\angle C = 3x + 4$. What is the value of x? 1) 29 2) 31 3) 59 4) 61	15. In $\triangle DEF$, $m \angle D = 3x + 5$, $m \angle E = 4x - 15$, and $m \angle F = 2x + 10$. Which statement is true? 1) DF = FE 2) DE = FE 3) $m \angle E = m \angle F$ 4) $m \angle D = m \angle F$
 16. Juliann plans on drawing △ABC, where the measure of m∠A can range from 50° to 60° and the measure of m∠B can range from 90° to 100°. Given these conditions, what is the correct range of measures possible for m∠C? 1) 20° to 40° 2) 30° to 50° 3) 80° to 90° 4) 120° to 130° 	17. The degree measures of the angles of \triangle ABC are represented by x, 3x, and 5x - 24. Find the value of x.

Geometry

Geometry	Unit 1: Basic Geometry
18. What is the measure of the largest angle in the accompanying triangle? $(2x + 1)^{\circ}$	19. A billboard on level ground is supported by a brace, as shown in the accompanying diagram. The measure of angle A is 15° greater than twice the measure of angle B. Determine the measure of angle A and the measure of angle B.
$(x + 15)^{\circ} \qquad x^{\circ}$ 1) 41 2) 46.5 3) 56 4) 83	A
 20. In right triangle ABC, m∠C = 3y - 10, m∠B = y + 40, and m∠A = 90. What type of right triangle is triangle ABC? 1) scalene 2) isosceles 3) equilateral 4) obtuse 	 21. If the measures of the angles of a triangle are represented by 2x, 3x – 15, and 7x - 15 the triangle is 1) an isosceles triangle 2) a right triangle 3) an acute triangle 4) an equiangular triangle
 22. If the measures, in degrees, of the three angles of a triangle are x, x + 10 and 2x - 6, the triangle must be 1) isosceles 2) equilateral 3) right 4) scalene 	 23. If the vertex angles of two isosceles triangles are congruent, then the triangles must be 1) acute 2) congruent 3) right 4) similar
24. The accompanying diagram shows the roof of a house that is in the shape of an isosceles triangle. The vertex angle formed at the peak of the roof is 84°.	25. Tina wants to sew a piece of fabric into a scarf in the shape of an isosceles triangle, as shown in the accompanying diagram.
×	x° y° 42°
What is the measure of <i>x</i> ? 1) 138°2) 96°3) 84°4) 48°	What are the values of x and y? 1) x = 42 and y = 96 2) x = 69 and y = 69 3) x = 90 and y = 48 4) x = 96 and y = 42

Geometry	Unit 1. Basic Geometry
26. In the accompanying diagram, isosceles $\triangle ABC \cong$ isosceles $\triangle DEF$, m $\angle C = 5x$, and m $\angle D = 2x + 18$. Find m $\angle B$ and m $\angle BAG$.	27. In the accompanying diagram, $\triangle ABC$ and $\triangle ABD$ are isosceles triangles with m $\angle CAB = 50$ and m $\angle BDA = 55$. If AB = AC and AB = BD, what is m $\angle CBD$?
$\begin{array}{c} \\ G \\ \hline \\ G \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$	A 50° B
 28. In isosceles triangle DOG, the measure of the vertex angle is three times the measure of one of the base angles. Which statement about ΔDOG is true? 1) ΔDOG is a scalene triangle. 2) ΔDOG is an acute triangle. 3) ΔDOG is a right triangle. 4) ΔDOG is a obtuse triangle. 	29. Vertex angle <i>A</i> of isosceles triangle <i>ABC</i> measures 20° more than three times m∠B. Find m∠C.
30. Hersch says if a triangle is an obtuse triangle, then it cannot also be an isosceles triangle. Using a diagram, show that Hersch is incorrect, and indicate the measures of all the angles and sides to justify your answer.	31. In $\triangle ABC$, the measure of $m \angle B$ is 21 less than four times the measure of $m \angle A$, and the measure of $m \angle C$ is 1 more than five times the measure of $m \angle A$. Find the measure, in degrees, of each angle of
 32. Triangle ABC is congruent to triangle A`B`C`. If m∠C is represented by 2x - 10 and m∠C` is represented by x + 30: a) Find x b) Find the m∠C c) Find m∠B if it is represented by x - 25 	 33. In isosceles triangle ABC, AB = BC. Which statement will always be true? 1) m∠B = m∠A 2) m∠A > m∠B 3) m∠A = m∠C 4) m∠C < m∠B

Geometry

Geometry	Unit 1: Basic Geometry
 34. Triangle DEF is congruent to triangle D'E'F'. If EF is represented by 3x + 2 and E'F' is represented by x + 10 and ED is represented by x + 2: a) find x, b) Find ED c) Find E'D' d) Find EF 	35. Given that $AD \cong CB$ and $\angle 1 \cong \angle 2$ and AB = 5x - 3, $CD = 3x + 10$ and $BC = 2x + 5$, write an equation to solve for x, and then find AB, CD, and BC. AB = 5x - 3 AB = 5x - 3 BB C 2x + 5 B B B B B B B B
 36. If ΔABC, BD is the median to side AC and must be congruent if ΔABD In ΔABC ΔCBD, then ΔABC must be 1) scalene 2) isosceles 3) right 4) equilateral 	 37. Two right triangles: 1) The hypotenuse of one triangle is congruent to the hypotenuse of the other. 2) An acute angle of one triangle is congruent to an acute triangle of the other. 3) Two leg of one triangle are congruent to two legs of the other. 4) Each contains a right angle.
 38. Two isosceles triangles are congruent if 1) The vertex angle of one triangle is congruent to the vertex angle of the other. 2) A base angle of one triangle is congruent to a base angles of the other. 3) Leg of one triangle is congruent to a leg of the other 4) A leg and vertex angle of one triangle are congruent to a leg and vertex angle of the other. 	39. In \triangle ABC, D is a point on BC such that AD is both angle bisector and an altitude in \triangle ABC. Which statement may be false? 1) BD = CD 2) AB = AC 3) AC = BC 4) m \angle B = m \angle C