Geometry

 Unit 1: Basic Geometry

 Unit 1: Basic Geometry}

Name

Helpful Vocabulary

Word	Definition/Explanation	Examples/Helpful Tips
Collinear Points	Points that lie on the same line	

Frequently Used Geometric Notations

Geometric Symbol	Interpretation	Example
	Angle	
	Triangle	
	Point	
	Line	
	Line Segment	
	The Measure Of	
	Ray	
	Perpendicular	
	Congruent	
	Similar	

Geometric Labeling

Figure	Examples of Labeling	Non-Examples of Labeling
Lines Segments Rays		
Angles		
Closed Figures		

Classifying Angles

Acute	Right	Obtuse	Straight

Labeling Angles and Sides of Triangles

Labeling Congruent Angles and Sides

Classifying Triangles

Acute	Right	Obtuse
Equilateral/Equiangular		

Practice

(2)
9. The measure of the largest angle in a triangle is 4 times the measure of the second largest angle. The smallest angle is 10°. What are the measures of all the angles?
10. In $\triangle A B C$, the measure of $\angle A$ is one-half the measure of $\angle \mathrm{B}$ and the measure of $\angle \mathrm{C}$ is three times the measure of $\angle \mathrm{B}$. Find the measures of each angle.
12. Find the degree measure of each angle of a triangle if the ratio of the measures of the three angles are $1: 3: 5$. Then list them in order from least to greatest.
11. In $\triangle \mathrm{PQR}$, the measure of $\angle \mathrm{P}$ is twice the measure of angle $\angle \mathrm{Q}$. The measure of $\angle \mathrm{R}$ is three times the measure $\angle \mathrm{P}$. Find the measures of each angle.
13. Find the degree measure of each angle of a triangle if the ratio of the measures of the three angles are 1:4:7. Then list them in order from least to greatest.

More Vocabulary

Word	Definition/Explanation	Examples/Helpful Tips
Complementary Angles		
Supplementary Angles		
Linear Pair		
Vertical Angles		

7.	8.	9.
10.	11. $x=$	12. $x=$ \qquad
13. $x=$ \qquad	14. $x=$	15.
16.	17. If $\mathrm{m}<\mathrm{FTE}=58^{\circ}$, find the measures of all the remaining angles.	

18. Based on the diagram, are the following true or false?
a) $\angle 5$ and $\angle 3$ are vertical angles T or F
b) $\angle 1$ and $\angle 5$ are a linear pair $\quad T$ or F
c) $\angle 4$ and $\angle 3$ are adjacent angles T or F
d) $\angle 4$ and $\angle 1$ are vertical angles T or F
e) $\angle 3$ and $\angle 4$ are a linear pair

19. If $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are supplements and $m \angle A=150^{\circ}$, what is $m \angle B$?
20. If $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are complements and $m \angle A=27^{\circ}$, what is $m \angle B$?
21. If $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are vertical angles and $m \angle A=36^{\circ}$, what is $\mathrm{m} \angle \mathrm{B}$?
22. If $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are a linear pair and $\mathrm{m} \angle \mathrm{A}=2 \mathrm{x}+8$ and $m \angle B=3 x+2$, what is the value of x ?
23. If $m \angle A=7 x-5$ and $m \angle B=4 x+10$ and $\angle A$ and $\angle B$ are vertical angles, what is the value of x ?
24.

25.
$\mathrm{x}=\ldots \mathrm{m} \angle \mathrm{C}=$ \qquad

Exterior Angle Theorem

Word	Examples	Non-Examples
Exterior Angle		

Practice

(20)

Parallel Lines

Word	Definition/Explanation	Examples/Helpful Tips
Parallel Lines		
Transversal Line		

Parallel Lines Cut by a Transversal

t is a transversal for \mathscr{C} and m.
Note: Parallel Lines can be in any direction
Angle Relationships in Parallel Lines Cut by a Transversal

Type of Relationship	Angle Relationship	Examples
Alternate Interior Angles		
Alternate Exterior Angles		
Corresponding Angles		
Same Side Interior		
Angles		
Same Side Exterior		
Angles		

(3x-31)

Practice

Tell whether the given lengths may be the measure of the sides of a triangle.				
$1.3,4,5$	2. 5, 8, 13	3.6,7,10	$4.3,9,15$	$5.2,2,3$
$6.1,1,2$	$7.3,4,4$	$8.5,8,11$	$9.6,2,3$	$10.5,3,7$

Triangle Inequality Theorem Discovery

Practice Using the Discovery

Tell whether the given lengths may be the measure of the sides of a triangle.				
$11.4,6,3$	$12.9,4,5$	$13.2,3,5$	$14.4,4,8$	$15.3,4,8$
$16.5,6,7$	$17.6,10,9$	$18.7,5,8$	$19.6,13,7$	$20.2,5,3$

More Practice

1. Which set of numbers could not be the lengths of the sides of a triangle?
1) $1,1,2$
2) $2,3,4$
3) $1, \sqrt{3}, 2$
4) $3,4,5$
3. Which set of numbers could not be the lengths of the sides of a triangle?
1) $9,12,19$
2) $6,8,11$
3) $7,18,11$
4) $7,5,6$
5. Two sides of an isosceles triangle have lengths 2 and 12 respectively. What is the length of the third side?
1) 9
2) 8
3) 12
4) 14

7. Two sides of a triangle have lengths 5 and 8.
Which length can not be the length of the third side?

1) 5
2) 4
3) 3
4) 6
2. Which set of numbers could not be the lengths of the sides of a triangle?
1) $4,7,9$
2) $4,8,12$
3) $9,10,11$
4) $6,6,11$
4. Which set of numbers could be the lengths of the sides of a isosceles triangle?
1) $15,5,10$
2) $3,4,5$
3) $1,1,3$
4) $6,6,5$
6. Two sides of an isosceles triangle have lengths 4 and 8 . What is the third side?
1) 4
2) 6
3) 5
4) 8
8. Two sides of a triangle have lengths 4 and 7. Which length can not be the length of the third side?
1) 11
2) 5
3) 7
4) 4

Practice

1. In $\triangle \mathrm{DNA}$, find:
2. On the banks of a river, surveyors marked locations A, B, and C. The measure of $\angle A C E=70^{\circ}$ and the measure of $\angle \mathrm{ABC}=65^{\circ}$.

Which expression shows the relationship between the lengths of the sides of this triangle?

1) $A B<B C<A C$
2) $B C<A B<A C$
3) $\mathrm{BC}<\mathrm{AC}<\mathrm{AB}$
4) $A C<A B<B C$
9. In $\triangle A B C, \angle A \cong \angle B$ and $m \angle C$ is an obtuse angle.

Which statement is true?

1) $\overline{A C} \cong \overline{A B}$ and $\overline{B C}$ is the longest side.
2) $\overline{A C} \cong \overline{B C}$ and $\overline{A B}$ is the longest side.
3) $\overline{A C} \cong \overline{A B}$ and $\overline{B C}$ is the shortest side.
4) $\overline{A C} \cong \overline{B C}$ and $\overline{A B}$ is the shortest side.
11. In $\triangle \mathrm{ABC}, \mathrm{m} \angle A=x^{2}+12, \mathrm{~m} \angle B=11 x+5$, and $\mathrm{m} \angle C=13 x-17$. Determine the longest side of $\triangle \mathrm{ABC}$.
12. In $\triangle \mathrm{PQR}, P Q=8, Q R=12$, and $R P=13$. Which statement about the angles of $\triangle \mathrm{PQR}$ must be true?
1) $\mathrm{m} \angle Q>\mathrm{m} \angle P>\mathrm{m} \angle R$
2) $\mathbf{m} \angle Q>\mathbf{m} \angle R>\mathbf{m} \angle P$
3) $\mathrm{m} \angle R>\mathrm{m} \angle P>\mathrm{m} \angle Q$
4) $\mathrm{m} \angle P>\mathbf{m} \angle R>\mathbf{m} \angle Q$
10. In $\triangle \mathrm{ABC}, \mathrm{m} \angle \mathrm{A}=60^{\circ}, \mathrm{m} \angle \mathrm{B}=80^{\circ}, \mathrm{m} \angle A=60$, and $\mathrm{m} \angle \mathrm{C}=40^{\circ}$. Which inequality is true?
1) $A B>B C$
2) $A C>B C$
3) $A C<B A$
4) $B C<B A$
12. As shown in the diagram of $\triangle A C D$ below, B is a point on $\overline{A C}$ and $\overline{D B}$ is drawn.

If $\mathrm{m} \angle A=66, \mathrm{~m} \angle C D B=18$, and $\mathrm{m} \angle C=24$, what is the longest side of $\triangle A B D$?

1) $\overline{A B}$
2) $\overline{D C}$
3) $\overline{A D}$
4) $\overline{B D}$

Word	Definition/Explanation	Examples/Helpful Tips
Polygon		
Regular Polygon		

Identifying Polygons

Exterior Angles of Polygons

Word	Examples	Non-Examples
Exterior Angles of Polygons		

Practice

1. The pentagon in the diagram below is formed by five rays. What is the degree measure of angle x ?
1) 72
2) 96
3) 108
4) 112

3. Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself?
1) octagon
2) decagon
3) hexagon
4) pentagon
2. A stop sign in the shape of a regular octagon is resting on a brick wall, as shown in the accompanying diagram.
What is the measure of angle x ?
1) 45°
2) 60°
3) 120°
4) 135°

4. A regular hexagon is rotated in a counterclockwise direction about its center. Determine and state the minimum number of degrees in the rotation such that the hexagon will coincide with itself.

Determine the Sum of the Interior Angles of Each Figure

Practice

1. What is the measure of each interior angle in a regular octagon?
1) $108 \circ$
2) $135 \bigcirc$
3) 1440
4) 10800
3. The measure of an interior angle of a regular polygon is 108°. What is the name of the polygon?
4. The sum of the interior angles of a regular polygon is 540°. Determine and state the number of degrees in one interior angle of the polygon.
5. The measure of an interior angle of a regular polygon is 120°. How many sides does the polygon have?
1) 5
2) 6
3) 3
4) 4
1. In the diagram of parallelogram $F R E D$ shown below, $\overline{E D}$ is extended to A, and $\overline{A F}$ is drawn such that $\overline{A F} \cong \overline{D F}$. If $\mathrm{m} \angle R=124^{\circ}$, what is $\mathrm{m} \angle A F D$?
1) 124°
2) 112°
3) 68°
4) 56°

2. In parallelogram $Q R S T$ shown below, diagonal $T R$ is drawn, U and V are points on $\overline{T S}$ and $\overline{Q R}$, respectively, and $\overline{U V}$ intersects $\overline{T R}$ at W. If $\mathrm{m} \angle S=60^{\circ}, \mathrm{m} \angle S R T=83^{\circ}$, and $\mathrm{m} \angle T W U=35^{\circ}$, what is $\mathrm{m} \angle W V Q$?
1) 370
2) 600
3) 720
4) 830

4. Steve drew line segments $A B C D, E F G, B F$, and $C F$ as shown in the diagram below. Scalene $\triangle B F C$ is formed.
Which statement will allow Steve to prove
$\overline{A B C D} \| \overline{E F G}$?
1) $\angle C F G \cong \angle F C B$
2) $\angle A B F \cong \angle B F C$
3) $\angle E F B \cong \angle C F B$

4) $\angle C B F \cong \angle G F C$
6. In the diagram below, lines ℓ, m, n, and p intersect line r. Which statement is true?
1) $\ell \| n$
2) $\ell \| p$
3) $m \| p$
4) $m \| n$

5. In the diagram below, $E F$ intersects $A B$ and $C D$ at G and H, respectively, and $\overline{G I}$ is drawn such that $\overline{G H} \cong \overline{I H}$. If $\mathrm{m} \angle E G B=50^{\circ}$ and $\mathrm{m} \angle D I G=115^{\circ}$, explain why $\overline{A B} \| \overline{C D}$.

1) $\triangle A B D$ is obtuse.
2) $\triangle A B D$ is obtuse.
3) $\mathrm{m} \angle A B D=80^{\circ}$
4) $\mathrm{m} \angle A B D=80^{\circ}$
3. In the diagram below, $\mathrm{m} \angle B D C=100^{\circ}, \mathrm{m} \angle A=50^{\circ}$, and $\mathrm{m} \angle D B C=30^{\circ}$.

Which statement is true?
8. The diagram below shows $\triangle A B D$, with $A B C$, $B E \perp A D$, and $\angle E B D=\angle C B D$.

If $m \angle A B E=52^{\circ}$, what is $m \angle D$?

1) 26
2) 38
3) 52
4) 64
10. The angles of triangle $A B C$ are in the ratio of $8: 3: 4$. What is the measure of the smallest angle?
1) 120
2) 240
3) 360
4) 720
12. Triangle $P Q R$ has angles in the ratio of $2: 3: 5$. Which type of triangle is $\triangle \mathrm{PQR}$?
1) acute
2) isosceles
3) obtuse
4) right
14. In $\triangle A B C, m \angle A=x, m \angle B=2 x+2$, and $m \angle C=3 x+4$. What is the value of x ?
1) 29
2) 31
3) 59
4) 61
16. Juliann plans on drawing $\triangle A B C$, where the measure of $\mathrm{m} \angle \mathrm{A}$ can range from 50° to 60° and the measure of $m \angle B$ can range from 90° to 100°. Given these conditions, what is the correct range of measures possible for $\mathrm{m} \angle \mathrm{C}$?
1) 20° to 40°
2) 30° to 50°
3) 80° to 90°
4) 120° to 130°
9. In the diagram of $\triangle \mathrm{JEA}$ below, $\mathrm{m} \angle \mathrm{JEA}=90^{\circ}$ and $\mathrm{m} \angle \mathrm{EAJ}=48^{\circ}$. Line segment $M S$ connects points M and S on the triangle, such that $\mathrm{m} \angle \mathrm{EMS}=58^{\circ}$.

What is $\mathrm{m} \angle \mathrm{JSM}$?

1) 163
2) 121
3) 42
4) 17
11. In an equilateral triangle, what is the difference between the sum of the exterior angles and the sum of the interior angles?
1) 180°
2) 120°
3) 90°
4) 60°
13. In $\triangle A B C, m \angle A=3 x+1, m \angle B=4 x-17$, and $\mathrm{m} \angle \mathrm{C}=5 \mathrm{x}-20$. Which type of triangle is $\triangle \mathrm{ABC}$?
1) right
2) scalene
3) isosceles
4) equilateral
15. In $\triangle D E F, m \angle D=3 x+5, m \angle E=4 x-15$, and $\mathrm{m} \angle \mathrm{F}=2 \mathrm{x}+10$. Which statement is true?
1) $D F=F E$
2) $D E=F E$
3) $m \angle E=m \angle F$
4) $m \angle D=m \angle F$
17. The degree measures of the angles of $\triangle A B C$ are represented by $x, 3 x$, and $5 x-24$. Find the value of x.
18. What is the measure of the largest angle in the accompanying triangle?

1) 41
2) 46.5
3) 56
4) 83
20. In right triangle $A B C, m \angle C=3 y-10$, $\mathrm{m} \angle \mathrm{B}=\mathrm{y}+40$, and $\mathrm{m} \angle \mathrm{A}=90$. What type of right triangle is triangle $A B C$?
1) scalene
2) isosceles
3) equilateral
4) obtuse
22. If the measures, in degrees, of the three angles of a triangle are $x, x+10$ and $2 x-6$, the triangle must be
1) isosceles
2) equilateral
3) right
4) scalene
24. The accompanying diagram shows the roof of a house that is in the shape of an isosceles triangle. The vertex angle formed at the peak of the roof is 84°.

What is the measure of x ?

1) 138°
2) 96°
3) 84°
4) 48°
19. A billboard on level ground is supported by a brace, as shown in the accompanying diagram. The measure of angle A is 15° greater than twice the measure of angle B. Determine the measure of angle A and the measure of angle B.

20. If the measures of the angles of a triangle are represented by $2 x, 3 x-15$, and $7 x-15$ the triangle is
1) an isosceles triangle
2) a right triangle
3) an acute triangle
4) an equiangular triangle
23. If the vertex angles of two isosceles triangles are congruent, then the triangles must be
1) acute
2) congruent
3) right
4) similar
25. Tina wants to sew a piece of fabric into a scarf in the shape of an isosceles triangle, as shown in the accompanying diagram.

What are the values of x and y ?

1) $x=42$ and $y=96$
2) $x=69$ and $y=69$
3) $x=90$ and $y=48$
4) $x=96$ and $y=42$
26. In the accompanying diagram, isosceles $\triangle A B C$ \cong isosceles $\triangle D E F, m \angle C=5 x$, and $m \angle D=2 x+18$. Find $m \angle B$ and $m \angle B A G$.

27. In isosceles triangle DOG, the measure of the vertex angle is three times the measure of one of the base angles. Which statement about \triangle DOG is true?
1) $\triangle D O G$ is a scalene triangle.
2) $\triangle \mathrm{DOG}$ is an acute triangle.
3) $\triangle D O G$ is a right triangle.
4) $\triangle \mathrm{DOG}$ is a obtuse triangle.
30. Hersch says if a triangle is an obtuse triangle, then it cannot also be an isosceles triangle. Using a diagram, show that Hersch is incorrect, and indicate the measures of all the angles and sides to justify your answer.
31. In the accompanying diagram, $\triangle A B C$ and $\triangle A B D$ are isosceles triangles with $\mathrm{m} \angle \mathrm{CAB}=50$ and $m \angle B D A=55$. If $A B=A C$ and $A B=B D$, what is $\mathrm{m} \angle \mathrm{CBD}$?

32. Vertex angle A of isosceles triangle $A B C$ measures 20° more than three times $\mathrm{m} \angle \mathrm{B}$. Find $\mathrm{m} \angle \mathrm{C}$.
33. In $\triangle A B C$, the measure of $m \angle B$ is 21 less than four times the measure of $m \angle A$, and the measure of $\mathrm{m} \angle \mathrm{C}$ is 1 more than five times the measure of $\mathrm{m} \angle A$. Find the measure, in degrees, of each angle of
34. Triangle $A B C$ is congruent to triangle $A^{\prime} B^{\prime} C^{\prime}$. If $m \angle C$ is represented by $2 x-10$ and $m \angle C^{\prime}$ is represented by $\mathrm{x}+30$:
a) Find x
b) Find the $m \angle C$
c) Find $\mathrm{m} \angle \mathrm{B}$ if it is represented by $\mathrm{x}-25$
35. In isosceles triangle $A B C, A B=B C$. Which statement will always be true?
1) $m \angle B=m \angle A$
2) $m \angle A>m \angle B$
3) $m \angle A=m \angle C$
4) $m \angle C<m \angle B$

34. Triangle DEF is congruent to triangle D`E`F'. If $E F$ is represented by $3 x+2$ and $E^{\prime} F^{\prime}$ is represented by $x+10$ and ED is represented by $x+2$: a) find x, b) Find ED c) Find E`D` d) Find EF	35. Given that $\mathrm{AD} \cong \mathrm{CB}$ and $\angle 1 \cong \angle 2$ and $A B=5 x-3, C D=3 x+10$ and $B C=2 x+5$, write an equation to solve for x, and then find $A B, C D$, and $B C$.
36. If $\triangle A B C, B D$ is the median to side $A C$ and must be congruent if $\triangle A B D \ln \triangle A B C \triangle C B D$, then $\triangle A B C$ must be 1) scalene 2) isosceles 3) right 4) equilateral	37. Two right triangles: 1) The hypotenuse of one triangle is congruent to the hypotenuse of the other. 2) An acute angle of one triangle is congruent to an acute triangle of the other. 3) Two leg of one triangle are congruent to two legs of the other. 4) Each contains a right angle.
38. Two isosceles triangles are congruent if 1) The vertex angle of one triangle is congruent to the vertex angle of the other. 2) A base angle of one triangle is congruent to a base angles of the other. 3) Leg of one triangle is congruent to a leg of the other 4) A leg and vertex angle of one triangle are congruent to a leg and vertex angle of the other.	39. In $\triangle A B C, D$ is a point on $B C$ such that $A D$ is both angle bisector and an altitude in $\triangle A B C$. Which statement may be false? 1) $B D=C D$ 2) $A B=A C$ 3) $A C=B C$ 4) $m \angle B=m \angle C$

