Geometry Unit 10: Circles

Geometry Unit 10: Circles

Name

Geometry Unit 10: Circles

Definition/Explanation	Examples/Helpful Tips
	Definition/Explanation

Equation of a Circle

Determine the center and radius of the given circles:

1.(x –	$(7)^2 +$	(y +	$(10)^2$	= 81

center_____ radius____

$$4. (x + 9)^2 + (y - 5)^2 = 12$$

, , ,

center____ radius___

2. $(x + 5)^2 + (y + 1)^2 = 25$

center____ radius___

5.
$$(x-1)^2 + (y-5)^2 = 16$$

center____ radius___

3. $(x-4)^2 + (y+5)^2 = 9$

center____ radius____

6.
$$(x + 5)^2 + (y + 6)^2 = 9$$

center____ radius____

7.

A) center____radius____

equation_____

B) center____radius____

equation

8.

A) center____radius____

equation_____

B) center____radius____

equation_____

Graph the following circles. State the center and radius.

1. a) $(x-3)^2 + (y+2)^2 = 4$

1. a)
$$(x-3)^2 + (y+2)^2 = 4$$

b)
$$(x + 6)^2 + (y - 7)^2 = 9$$

2. a)
$$x^2 + (y - 7)^2 = 25$$

b)
$$(x-4)^2 + (y+5)^2 = 9$$

Standard Form and Perfect Square Trinomials

1.
$$(x-2)^2$$

2.
$$(x + 5)^2$$

3.
$$(x-9)^2$$

Completing the Square

Determine the value of the constant term, c, to create a perfect square trinomial then write the trinomial in

$$x^2 + 14x + ____$$

Factored Form _____

Factored Form _____

Factored Form _____

$$x^2 - 12x + ____$$

Factored Form _____

Factored Form

Factored Form _____

Finding the Equation of a Circle

1. Circle A

center____ radius____ equation

2. Circle B

center____ radius____ equation

3. Circle O

center____ radius____ equation

Using Completing the Square with Quadratic Equations to Rewrite from Standard Form to Vertex Form

1.

$$x^2 + 6x + 3 = 0$$

2.

$$x^2 + 10x + 20 = 0$$

3.

$$x^2 - 8x - 3 = 0$$

Using Completing the Square with Circle Equations to Rewrite from Standard Form to Center Radius Form

Determine the center and radius of the given circles

1.

$$x^2 + y^2 + 4x - 16y + 52 = 0$$

$$x^2 + 10x + y^2 - 16 = 0$$

Determine the	contor	ممما	ra di ua	of the	air ran	aireles
i Determine the	center	and	radilis	or the	given	circies

1.

$$x^2 + y^2 + 2x + 18y + 1 = 0$$

2.

$$x^2 + y^2 + 18x + 17 = 0$$

3.

$$x^2 - 14x + y^2 - 2y - 50 = 0$$

4.

$$x^2 + y^2 - 10x + 10y = -48$$

Circle Vocabulary & Activity

Using correct circle vocabulary, name each line:

AC =

HK =

GD =

GH =

FB =

ED =

Arc Measure

Central Angle

1. In a circle O, m∠AOB = 87, m∠BOC = 93, and m∠COD = 35. Find the measure of each of the following:

- a) $\angle DOA$ b) \widehat{AB} c) \widehat{BC} d) \widehat{ABC}

- e) \widehat{DC} _____ f) \widehat{AD} ____ g) \widehat{BCD} ____ h) \widehat{CDB} ____ i) \widehat{DBC} ____

2. Given Circle B with diameters \overline{HC} , \overline{EG} and \overline{DA} .

- a) m∠DBH = _____
- b) $\widehat{mDCE} =$
- c) $\widehat{mHG} = \underline{\hspace{1cm}}$
- d) *mHCF* = _____
- e) m∠HBA = _____
- f) m∠DBA = _____

3. Triangle ABC is inscribed in a circle, mA = 80, $m\overrightarrow{AC} = 88$. Find:

- a) mBC_____ b) m∠B _____
- c) m∠C_____ d) mÂB_____

4. Diameter DOE ⊥ chords AB at F, DOE is a diameter and \overline{BC} is a chord of circle O. If mBC = 60, find:

- a) m AB b) m∠A c) m∠C
- d) m AD ____e) m∠AOD ___f) m ĈE_____

Extra Practice

m∠1 =

m∠2 = _____

2.

m∠1 =

m∠1 = _____

6.

m∠1 = _____

7.

m∠1 = _____

8.

m∠1 = ____

9.

m∠1 = _____

10.

m∠1 = _____

11.

m∠1 = _____

12.

m∠1 = _____

13.

 $m1 = _{_{_{_{_{_{_{_{1}}}}}}}}$

14.

m∠1 = _____

$$m2 =$$

15.

m∠1 = _____

16.

m∠1 =

$$m3 =$$

Take it a Step Further

$$_{\mathrm{X}} =$$

m∠ADC = _____

2.

$$\mathbf{x} =$$

3.

$$\mathbf{x} =$$

4. Given concentric circles with $mGF = 76^{\circ}$, m \angle HIE = 147° and \overline{CA} & \overline{FH} are diameters.

$$\widehat{mCB} = \underline{\qquad} \widehat{mHE} = \underline{\qquad}$$

$$\widehat{mHE} =$$

5. Given concentric circles with $mBC = 31^{\circ}$, m \angle FKJ = 68° and \overline{EB} is a diameter.

$$\widehat{mED} =$$

$$\widehat{mABD} =$$

Angles Formed ON a Circle

2.

3.

4.

m∠1 = _____

5.

6.

7

8

m1=

m1=

m∠1 =

x = ____

m∠1 = ____

10.

m∠1 = ____

11.

 $m1 = _{---}$

12.

13.

14.

15.

m∠1 = _____

17.

m1 =_____

18.

m1 =_____

19.

m1 =_____

20.

*m*1 = _____

Extra Practice

1.

 $m \angle 1 = ___ m \angle 2 = ____$

2.

 $m \angle 1 = ___ m2 = ___$

3.

m∠1 = ____ m∠2 = ____

5.

6.

m∠1 =

m∠1 = ____ m∠2 = ____

m∠1 = ____ m∠2 = ____

7.

8.

 $m1 = _{_}$

m∠1 = _____ m∠2 = _____

m∠1 = _____ *m*2 = _____

10.

11.

12.

m∠ABC =

x = _____

13.

 $m1 = ___ m \angle 2 = ____$

14.

 $m \angle 1 = \underline{\qquad} m \angle 2 = \underline{\qquad}$

15.

m∠1 = ____

17.

18.

19.

20.

21.

22. Solve for the missing values.

a)
$$m \angle 1 =$$
_____ b) $m \angle 2 =$ _____

d)
$$m4 =$$

Unit 10: Circles

 $\widehat{mAB} = \widehat{mCD}$

If $\widehat{AB} \cong \widehat{CD}$	$\widehat{mAB} = \widehat{mCD}$
Then	
$\overline{AB} \cong \overline{CD}$	AB = CD

If
$$\overline{AB} \parallel \overline{CD} \qquad AB \parallel CD$$
Then
$$AC \cong BD \qquad mAC \cong mBD$$

Chords and Diameters/Radii

If diameter \overline{BE} is \bot to a chord, then $\overline{AB}\cong \overline{BC}$ (AB=BC) And $\widehat{AF}\cong \widehat{FC}$ ($\widehat{mAF}=\widehat{mFC}$)

If \overline{BE} is the perpendicular bisector of \overline{AC} , then \overline{BE} is a diameter.

If $\overline{GE} \cong \overline{GF}$ and $\overline{GE} \perp \overline{AB}$ and $\overline{GF} \perp \overline{CD}$, then $\overline{AB} \cong \overline{CD}$

If $\overline{AB} \cong \overline{CD}$

Then

 $\overline{GE} \cong \overline{GF}$

1.

2.

7.

10.

11.

14.

15.

AC = ____(2 dec.)

16.

17.

18.

x = ____(E)

19.

20.

$$AB = \underline{\hspace{1cm}}(E)$$

$$x = \underline{\hspace{1cm}}(E)$$

Tangent to a Radius/Diameter

15 cm

CB = ____

6.

CB =

7.

8.

5.

AB =

- 9. Triangle ABC is circumscribed about a circle, and D, E, and F are points of tangency. Let AD = 5, EB = 5, and CF = 10.
- a) Find the lengths 0f AB, BC, and CA
- b) Show that $\triangle ABC$ is isosceles.

10. Triangle ABC is circumscribed about a circle, and D, E, and F are points of tangency. Let

AF = 10, CE = 20, and BD = 30.

- a) Find the lengths 0f AB, BC, and CA
- b) Show that \triangle ABC is a right triangle.

11. \overline{PQ} is tangent to circle O at P, \overline{ST} is tangent to circle O at S, and \overline{OQ} intersect circle O at T and R. If OP = 15 and PQ = 20, find:

12. PQ is tangent to circle O at P, ST is tangent to circle O at S, and \overline{OQ} intersect circle O at T and R. If OQ = 25 and PQ = 24, find PO.

Unit 10: Circles

Segments Formed INDISE and OUTSIDE a Circle

Examples

Practice

1.
8 cm × 3 cm

5.

6.

7.

8.

x =

9.

10.

11.

 $\mathbf{x} =$

x =

 $\mathbf{x} =$

Geometry Unit 10: Circles

Radian Measure

Do Now

About how many radii fit around a circle? (Hint: think back to an inscribed hexagon construction)

What does Radian mean?

Converting Degree to Radian and Radian to Degree

Converting Degree to Nadian and Nadian to Degree			
Unit Conversions	Proportion		

1. Express in radian measure an angle of 75° .

2. Find the degree measure of an angle of $\frac{\pi}{4}$ rad.

Find the radian measure or the degree measure of the following:				
1. 30°	2. 90°	3. 45°	4. 120°	5. 160°
π	π	π	2π	π
6. $\frac{\pi}{3}$	7. $\frac{\pi}{9}$	8. $\frac{\pi}{10}$	9. $\frac{2\pi}{5}$	10. $\frac{\pi}{2}$

Arc Length

Example

- 1. Central Angle of 30°, radius of 3 cm
- 2. Central Angle of 90°, radius of 8 cm
- 3. Central Angle of 72°, radius of 10 cm

- $s = \underline{\hspace{1cm}}(E)$
- s = (E)
- $s = \underline{\hspace{1cm}}(E)$

- 4. Central Angle of $\frac{\pi}{4}$ rad., radius of 12 cm
- 5. Central Angle of $\frac{2\pi}{3}$ rad., radius of 15 cm
- 6. Central Angle of $\frac{4\pi}{5}$ rad., radius of 10 cm

- $s = \underline{\hspace{1cm}}(E)$
- $s = \underline{\hspace{1cm}}(E)$
- $s = \underline{\hspace{1cm}}(E)$

Extra Practice

Determine the arc length of the following circles.

1.

2.

3.

1. $r = 10 \text{ cm}, \Theta = 2 \text{ rad}.$

2. $A = 6\pi \text{ cm}^2, \Theta = \frac{\pi}{3} \text{ rad.}$

3. $r = 3 \text{ cm}, \Theta = 300^{\circ}$

Extra Practice

Determine the area of the following sectors.

2.

3.

Proofs

1 10015	
	 In a circle, a radius perpendicular to a chord bisects the chord and the arc. In a circle, a radius that bisects a chord is perpendicular to the chord.
	3) In a circle, the perpendicular bisector of a chord passes through the center of the circle.
Radius	4) If a line is tangent to a circle, it is perpendicular to the radius draw to the point of tangency
	5) In a circle, congruent chords are equidistant from the center.
	6) In a circle, congruent chords have congruent arcs.
Chords	7) In a circle, congruent arcs have congruent chords.
	8) In a circle, parallel chords intercept congruent arcs.
	In a circle, congruent central angles have congruent chords.
Tangents	10) Tangents segments to a circle from the same external point are congruent.
Arcs	11) In a circle, congruent central angles have congruent arcs.
Angles	12) An inscribed in a semi-circle is a right angle.
	13) The opposite angles of a quadrilateral are supplement.

Examples	
1.	Given: Chords \overline{AB} , \overline{CD} , \overline{AD} , and \overline{CB} Prove: $AE \bullet EB = CE \bullet ED$
Statement	Reasons
2. A C C B	Given: Diameters \overline{AB} and \overline{CD} Prove: $\widehat{AC} \cong \widehat{BD}$
Statement	Reasons

Geometry	Unit 10: Circles
3.	Given: $\overline{AB} \cong \overline{AC}$ Prove: $\Delta AOC \cong \Delta AOB$
Statement 4.	Reasons
O B C P	Given: Tangent \overline{AC} Prove: $\angle O \cong \angle P$
Statement	Reasons