Name of Lesson
10.1 Circles and Circumference
10.2 Measuring Angles and Arcs Part 1
10.2 Measuring Angles and Arcs Part 2
10.3 Arcs and Chords
Quiz 1
10.4 Inscribed Angles
10.5 Tangents
Quiz 2
Circles Review (if needed)
10.6 Secants, Tangents, and Angle Measures
Review of Secants, Tangents, and Angle Measures (if needed)
Quiz 3
Constructing Circumscribed and Inscribed Figures
11.3 Area of Circles and Arc Lengths
Practice Test
Unit 10 Test

Special Segments in	n a Circle	B
radius		AC
chord		
diameter		F
Guided Practice		
1. Use the circle to t Name of Circle	the right to find the below parts:	
Radius		
Chord		N
Diameter		
<u>Your Turn</u> 2. Use the circle to t Name of Circle	the right to find the below parts:	H F
Radius		
Chord		
Diameter		KG
Radius and Diamet	er Relationships	

Circle Pairs				
Congruent Circles	Concentric Circles			
G G G G G G G G G G G G G G G G G G G				

Geometry Unit 10 Note Sheets 2018 Guided Practice

^{3.} The diameter of $\odot S$ is 30 units, the diameter of $\odot R$ is 20 units, and DS = 9 units. Find *CD*.

Your Turn

^{4.} The diameter of $\odot X$ is 22 units, the diameter of $\odot Y$ is 16 units, and WZ = 5 units. Find XY.

Circumference

Guided Practice

5. Find the circumference of a circle with radius of 64.6 cm

6. Find the circumference of a circle with the diameter of 87.3 in.

Your Turn

7. Find the circumference of a circle with the radius 97.2 ft.

8. Find the circumference of a circle with the diameter of 12.35 m.

Guided Practice

9. Given the circumference of a circle is 345 in., find the diameter and radius.

Your Turn

10. Given the circumference of a circle is 19.4 ft., find the diameter and radius.

Geometry Unit 10 Note Sheets 2018 Guided Practice \overline{GI} is the diameter of $\bigcirc K$. Identify each arc as a *major arc, minor arc, or semicircle*. Then find the measure. 4. 3. mGLH mGH Н 122° G J Κ Your Turn Χ 5. mXZY Ζ \overline{WC} is a radius of $\odot C$. Identify each arc as a major arc, minor arc, or semicircle. 6. mWZX Then find its measure. С W 7. $m \widehat{XW}$ V Guided Practice **Female Participation in Sports** Refer to the circle graph. Find each measure. Α $_8 mCD$ Other F 14% Basketball 20% В Soccer 14% S Track & $_{9.}$ mBC Field Ε 18% Softball 16% Volleyball 18% С **Bicycles Bought** Your Turn Refer to the circle graph. Find each measure. (by type) _{10.} *mKI* J Mountain Youth 37% 26%

11. mNJL

K

P

9%

Other

М

7%

L

Ν

Hybrid

Comfort

21%

Your Turn

- 1. **RESTAURANTS** The graph shows the results of a survey taken by diners relating what is most important about the restaurants where they eat.
 - **a.** Find \widehat{mAB} .
 - **b.** Find \widehat{mBC} .
 - **c.** Describe the type of arc that the category Great Food represents.

<u>Vocabulary</u>

Adjacent Arcs

4. mABD

NOTE: There is a difference between the measure of an Arc and the Arc Length! <u>Guided Practice</u>

Find the length of \widehat{ZY} . Round to the nearest hundredth.

<u>Your Turn</u>

A 12 cm 28° C

8.

Guided Practice

Theorem

1. Find the value of x.

- Your Turn
- 2. Find the value of x.

Guided Practice

3. Find the value of x.

Your Turn 4. Find the value of x.

A 3x + 4

5x

Х

W

В

9

H

R

2*x* + 3.

G

Inscribed Angles Notes

<u>Vocabulary:</u>

Inscribed Angle _____

Intercepted Arc

Find each measure.

1. $m \angle P$

Your Turn 3. mCF

Q

•C

s

Theorem

Guided Practice

5. Find $m \angle T$.

 $\frac{Y_{\text{our Turn}}}{6}$ Find $m \angle R$.

2. Find *m∠C*.

Theorem

Guided Practice

4. Quadrilateral *WXYZ* is inscribed in $\bigcirc V$. Find *m* $\angle X$ and *m* $\angle Y$.

 $\frac{\text{Your Turn}}{5}$ Find $m \angle S$ and $m \angle T$.

Geometry Unit 10 Note Sheets 2018	point of tangency
Tangents Notes Vocabulary Tangent	C. B. L
Point of Tangency	
Common Tangent	r G
Theorem	
	T L
<u>Guided Practice</u> \overline{U} is a radius of $\bigcirc I$ Determine whether \overline{KI} is tangent	
1. to $\odot J$. Justify your answer.	
₂ \overline{JH} is tangent to $\odot G$ at J. Find the value of x.	_
Z. G G X J	х К 12 Н
Determine whether \overline{GH} is tangent to $\odot F$. 3. Justify your answer. 8 G	12 6 F
Find the value of <i>x</i> . Assume that segments that appear to be tangent are tan	ngent
$\begin{array}{c} 4. \\ B \\ \hline 14 \\ C \\ \end{array} \\ \begin{array}{c} 5. \\ Q \\ 4 \\ 2 \\ \end{array} \\ \begin{array}{c} Q \\ A \\ 2 \\ \end{array} \\ \begin{array}{c} Q \\ A \\ 2 \\ \end{array} \\ \begin{array}{c} Q \\ X \\ 2 \\ \end{array} \\ \begin{array}{c} Q \\ X \\ \end{array} \\ \begin{array}{c} Q \\ X \\ 2 \\ \end{array} \\ \begin{array}{c} Q \\ X \\ \end{array} \\ \begin{array}{c} Q \\ X \\ Y \\ \end{array} \\ \begin{array}{c} Q \\ X \\ Y \\ Y$	14

Guided Practice

Theorem

Find the value of x. Assume that segments that appear to be tangent are tangent. 6. Δ

Your Turn

Find the value of x. Assume that segments that appear to be tangent are tangent. 7. $Q \longrightarrow Q$

Circumscribed Polygons

Guided PracticeQuadrilateral RSTU is circumscribed about $\odot J$.8.8.8.8.9.<

Your Turn Triangle *JKL* is circumscribed about ⊙*R*. 9. Find x.

10. Find the perimeter of ΔJLK .

Secants, Tangents, and Angle Measures Notes

Vocabulary Secant ____

Theorem A 12 C

Guided Practice

Find x.

2.

С

Your Turn

1. \overrightarrow{mBC}

2. mXYZ

Circle and Angle Relationship Review				
on the circle	x° 1 x°			
inside the circle	x° 1 y°			
outside the circle	y°			

Constructing Circumscribed and Inscribed Figures Notes

Ζ

Vocabulary Circumscribed _

Review:

Construct a perpendicular bisector of the line.

To construct a circumcircle (or to circumscribe the triangle) of a triangle you will have to find the center of the circle.

The circumcircle will need to pass through points P, Q and R. So the center of the circle must be equidistant from all three points. To find this we will construct ______ from two of the sides

Once the center is found you can put your compass on the center (point C) and measure out to any of the points P, Q or R to find the distance and then draw the circle.

Geometry Unit 10 Note Sheets 2018 Vocabulary

Inscribed ____

Review: Construct the angle bisector.

To inscribe a circle in a figure we have to find a point equidistant from each side and will have to use a different method.

The inscribed circle must be equidistant from each side of the triangle. To find these points we will construct ______ of two of the angles.

Now that you have what will become the center of the circle you can put the tip of your compass on the center point C and then the pencil on the a side where the angle bisector goes through the opposite side of the triangle.

11.3 Area of Sectors of Circles Notes Sheet

Reminder – Formula for Area of a circle:

Area of a Sector

Guided Practice

Find the area of each shaded section. Round to the nearest tenth, if necessary. 1.

Geometry Unit 10 Note Sheets 2018 Guided Practice 4.

Guided Practice

6. A circular pizza has a diameter of 12 inches and is cut into 8 congruent slices. What is the area of one slice to the nearest hundredth?

Your Turn

7. A pie has a diameter of 9 inches and is cut into 10 congruent slices. What is the area of one slice to the nearest hundredth?