
\qquad

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Monday \\
September 10
\end{tabular} \& Area and Perimeter (1-6) \\
\hline \begin{tabular}{l}
Tuesday \\
September 11
\end{tabular} \& \(\begin{array}{ll}\text { Area of Composite Figures (11-4) } \& \\ \\ \text { DHQ Area and Perimeter }\end{array}\) \\
\hline \begin{tabular}{l}
Block \\
Wed/Thurs. \\
Sept 12 \& 13
\end{tabular} \& \begin{tabular}{lr}
MAP Testing \& Hour 1 - Room 503 \\
\& Hour 5-Room 601 Writing Lab \\
3-dimensional Vocabulary Wkst \& Hour 6-Room 601 Writing Lab
\end{tabular} \\
\hline Friday September 14 \& \begin{tabular}{l}
Volume of Prisms (12-4) \\
Cavalieri's Principle \\
DHQ Composite Area
\end{tabular} \\
\hline \begin{tabular}{l}
Monday \\
September 17
\end{tabular} \& Volume of Pyramids (12-5)

DHQ Volume of Prisms \\
\hline Tuesday September 18 \& Volume of Cylinders (12-4) \quad DHQ Volume of Pyramids \\

\hline | Block |
| :--- |
| Wed/Thurs. |
| Sept 19/20 | \& | Volume of Cones (12-5) | Volume Quiz Prisms/Pyramids |
| ---: | ---: |
| | DHQ Volume of Cylinders | \\

\hline | Friday |
| :--- |
| September 21 | \& Volume and Surface Area of Spheres (12-6)

DHQ Volume of Cones \\
\hline Monday September 24 \& Review Unit 2

DHQ Spheres \\
\hline Tuesday September 25 \& Review Unit 2 \\
\hline Block
Wed/Thurs.

Sept 26/27 \& | Unit 2 Test - Area and Volume |
| :--- |
| No Calculator Part |
| Calculator Part |
| Are you ready for Chapter 1? | \\

\hline Friday September 28 \& No School - Teacher Work Day \\
\hline
\end{tabular}

[^0]Objectives:

1. Identify and name polygons.
2. Find perimeter, circumference, and area of twodimensional figures.

KeyConcept Polygons

A polygon is a closed figure formed by a finite number of coplanar segments called sides such that

- the sides that have a common endpoint are noncollinear, and
- each side intersects exactly two other sides, but only at their endpoints.

The vertex of each angle is a vertex of the polygon.
A polygon is named by the letters of its vertices, written in order of consecutive vertices.

polygon GHJKLM

Side of the Polygon -

Diagonal -

Each endpoint of a side is a \qquad of the polygon. The plural is
\qquad _.

Polygons are named by the number of sides they have.

\# of Sides	Type of Polygon
3	
4	
5	
6	
7	

\# of Sides	Type of Polygon
8	
9	
10	
12	
n	

Polygons can be concave or convex. Suppose the line containing each side is drawn. If any of the lines contain any point in the interior of the polygon, then it is concave. Otherwise it is convex.

Tell whether each figure is a polygon. If it is a polygon, name it by the number of sides.
A.

B.

C.

A polygon is \qquad if no line that contains a side of the polygon contains a point in the interior of the polygon.

A polygon that is not convex is called \qquad or \qquad _.

Example 1: Name and Classify Polygons

Name the polygon by its number of sides. Then classify it as convex or concave and regular or irregular.
(a)

(b)

| KeyConcept Perimeter, Circumference, and Area | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Triangle | Square | | Rectangle | |

Pi $(\pi) \rightarrow$ ratio of circle's circumference to its diameter approximately 3.14 or 22/7

EXACT answers: answers left in terms of π (do NOT multiple out the value for π) APPROXIMATE answers: use π key on a calculator or replace π with a number such as 3.14 or $\frac{22}{7}$

Example 2 - Find the perimeter and area

(a)

(b)

(c)

Example 3 - Standardized Test Example

Each of the following shapes has a perimeter of about 88 inches. Which one has the greatest area?
(a) a rectangle with a length of 26
(b) a square with side length of 22 inches inches and a width of 18 inches
(c) a right triangle with each leg length of 26 inches
(d) a circle with radius of 14 inches

Example 5 - Working Backwards

a) Find the radius of a circle when the area is $72.38 \mathrm{in}^{2}$.
b) What is the height of a triangle with an area of $126.5 \mathrm{ft}^{2}$ and a base of 23ft?

Example 5 - Perimeter and Area on the Coordinate Plane

Find the perimeter and area of a pentagon $A B C D E$ with $A(0,4), B(4,0), C(3,-4), D(-3,-4)$, and $E(-3,1)$.

Perimeter: DE \qquad + DC \qquad $+C B$ \qquad $+B A$ \qquad $+\mathrm{AE}$ \qquad

Area:

11-4 Area of Composite Figures

Objective: Find areas of composite figures.
$A=l w$
$A=\pi r^{2}$
$A=\frac{h\left(b_{1}+b_{2}\right)}{2}$
$A=b h$
$A=\frac{b h}{2}$

A composite figure is a figure that can be separated into regions that are basic figures. To find the area of a composite figure, use basic figures for which we know the area formulas. The sum of the areas of the basic figures is the area of the composite figure.

Example 1: Find the area of the shaded region.

Sometimes you can use a difference of areas of basic figures to find the area of a complex figure.
Example 2: Find the area of the shaded region.

Example 3: Find the area of the shaded region.

Example 4: Find the area of the shaded region.

Objective:

- Identify and name three-dimensional figures.
- Find volume.

A solid with all flat surfaces that enclose a single region of space is called a polyhedron. Each flat surface or face is a polygon. The line segments where the faces intersect are called edges. The point where three or more edges intersect is called a vertex. Below are examples and definitions of polyhedrons and other types of solids.

KeyConcept Types of Solids

Polyhedrons

A prism is a polyhedron with two parallel congruent faces called bases connected by parallelogram faces.

A pyramid is a polyhedron that has a polygonal base and three or more triangular faces that meet at a common vertex.

Not Polyhedrons

A cylinder is a solid with congruent parallel circular bases connected by a curved surface.

A cone is a solid with a circular base connected by a curved surface to a single vertex.

A sphere is a set of points in space that are the same distance from a given point. A sphere has no faces, edges, or vertices.

Polyhedrons or polyhedra are named by the shape of their bases.

A polyhedron is a regular Polyhedron if all of its faces are regular congruent polygons and all of the edges are congruent. There are exactly five types of regular polyhedrons, called P1atonic Solids because Plato used them extensively.

| KeyConcept Platonic Solids | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Tetrahedron | Hexahedron
 or Cube | Octahedron | Dodecahedron | Icosahedron |
| | | | | |

Example 1: Identify Solids

Determine whether the solid is a polyhedron. Then identify the solid. If it is a polyhedron, name the bases, faces, edges, and vertices.

Surface Area:

Volume:

KeyConcept Surface Area and Volume

Prism	Regular Pyramid	Cylinder	Cone	Sphere
$T=P h+2 B$	$T=\frac{1}{2} P \ell+B$	$T=2 \pi r h+2 \pi r^{2}$	$T=\pi r \ell+\pi r^{2}$	$T=4 \pi r^{2}$
$V=B h$	$V=\frac{1}{3} B h$	$V=\pi r^{2} h$	$V=\frac{1}{3} \pi r^{2} h$	$V=\frac{4}{3} \pi r^{3}$
$T=$ total surface area $P=$ perimeter of the base	$V=$ volume $B=$ area of base	$h=$ height of a solid $\ell=$ slant height, $r=$ radius		

Net \rightarrow

Describe the three-dimensional figure that can be made from the given net.
C.

D.

Cross section \rightarrow

Describe each cross section.
E.

F.

Objective:

- Find the volume of a prism.

Volume of Prisms (12-4)

Recall that the volume of a solid is the measure of the amount of space the solid encloses. Volume is measured in cubic units.

Volume of a Prism	If a prism has a volume of V cubic units, a height of h units, and each base has an area of B square units, then $V=B h$. Or $V=I$ wh

Example 1: Volume of a Prism

Find the volume of the prism.

Example 2: Volume of a Prism

Find the volume of the prism.

Example 3: Real World: Volume backwards

Jenny has some boxes for shipping merchandise. Each box is in the shape of a rectangular prism with a length of 18 inches, a width of 14 inches, and a volume of 2520 inch 2. Find the height of the prism.
A. Draw, label and find the height.

Objective:

- Find the volume of a pyramid.

Volume of Pyramid (12-5)

KeyConcept Volume of a Pyramid

Words \quad The volume of a pyramid is
$V=\frac{1}{3} B h$, where B is the area
of the base and h is the
height of the pyramid.
Symbols

$$
V=\frac{1}{3} B h
$$

Example 1: Volume of square pyramid

Find the volume of the square pyramid.

Example 2: Volume of square pyramid

Find the volume of the hexagonal pyramid.

Base area $=31.2 \mathrm{ft}^{2}$

Example 2: Volume backwards

Find the height given the volume of the triangular pyramid is $96 \mathrm{ft}^{3}$.

Objective:

- Find the volume of a cylinder.

Volume of Cylinders (12-4)

KeyConcept Volume of a Cylinder

Words \quad The volume V of a cylinder is $V=B h$ or $V=\pi r^{2} h$, where B is the area of the base, h is the height of the cylinder, and r is the radius of the base.

Symbols

$$
V=B h \text { or } V=\pi r^{2} h
$$

When a solid is not a right solid, use Cavalieri's Principle to find the volume. The principle states that if two solids have the same height and the same cross sectional area at every level, then they have the same volume.

Example 1: Volume of a cylinders

Find the volume of the cylinder.

Example 2: Volume of a cylinders

Find the volume of the oblique cylinder.

Example 3: Volume Backwards

The volume of a cylinder is $3600 \pi \mathrm{~cm}^{3}$ and the height is 16 cm . Find the radius.

Volume of Cone (12-5)

Objective:

- Find the volume of a cone.

KeyConcept Volume of a Cone

Words The volume of a circular
cone is $V=\frac{1}{3} B h$, or
$V=\frac{1}{3} \pi r^{2} h$, where B is the
area of the base, h is the
height of the cone, and r is
the radius of the base.
Symbols $\quad V=\frac{1}{3} B h$ or $V=\frac{1}{3} \pi r^{2} h$

Example 1: Volume of a cone

Find the volume of the cone.

Example 2: Find Surface Area and Volume
Find the surface area and volume of the cone.

Example 3: Volume Backwards

The volume of a cone is $238 \mathrm{~cm}^{3}$ with a height of 74 cm . What is the radius?

Objective:

- Find the volume of a sphere
- Find the surface area of a sphere

Volume of a Sphere
$V=\frac{4}{3} \pi r^{3}$

EX 1: Finding Volumes of Spheres
Find each measurement. Give your answers to the nearest tenth.
A. the volume of the sphere

B. the volume of the hemisphere

C. Find the radius of a sphere with a volume $\approx 65.45 \mathrm{~cm}$.

Surface Area of a Sphere

$$
\mathrm{SA}=4 \pi \mathrm{r}^{2}
$$

EX 3: Find Surface Area of Spheres
Find each measurement. Give your answers to the nearest tenth.
A. Sphere with a diameter 17 in .
B. the surface area of a sphere with a great circle that has an area of $49 \pi m i^{2}$

C. Give the surface area of a sphere is 144π, find the volume.

[^0]: *This is not set in stone, things may change at the teacher's discretion.

