Geometry

Unit #2 – Surface Area & Volume

Name: _____

Hr: _____

N	ame	
1/1	unic	

srushingoe.weelby.com

Monday	<u>Area and Perimeter (1-6)</u>	
September 10		
Tuesdav	Area of Composite Figures (11-4)	
September 11		DHO Area and Perimeter
	MAP Testing	Dirg mea and i emileter
Block		Hour 1 – Room 503
Wed/Thurs.		Hour 5 – Room 601 Writing Lab
Sept 12 & 13	3-dimensional Vocabulary Wkst	Hour 6 – Room 601 Writing Lab
	Volume of Prisms (12-4)	
Friday	Cavalieri's Principle	
September 14	_	
		DHQ Composite Area
Monday	<u>Volume of Pyramids (12-5)</u>	
September 17		DHO Volume of Prisms
	Volume of Cylinders (12-4)	
Tuesday Sentember 18		
september 10		DHQ Volume of Pyramids
Block	Volume of Cones (12-5)	Volume Quiz Prisms/Pyramids
Wed/Thurs.		DHO Volume of Cylinders
Sept 19/20		
Friday	Volume and Surface Area of Spheres (12-6)	
September 21		DUO Valance of Concern
		DHQ volume of Cones
Mondau	Porriour Unit 2	
September 24	<u>Neview Unit 2</u>	
		DHQ Spheres
Tuesday	Review Unit 2	
September 25		
Block	Unit 2 Test – Area and Volume	
Wed/Thurs.	No Calculator Part	
Sept 26/27	Calculator Part	
		Are you ready for Chapter 1?
Friday	Na Sabaal Maashay	Work Dov
september 20	140 SCHOOL – LEACUEL	WOIK Day

Ch 1, 11, & 12 COLONDOR MRS. MUShing

*This is not set in stone, things may change at the teacher's discretion.

Lesson 1-6 Two-Dimensional Figures (Area and Perimeter)

 Objectives:
Identify and name polygons.
Find perimeter, circumference, and area of twodimensional figures.

Side of the Polygon -

Diagonal -

Each endpoint of a side is a ______ of the polygon. The plural is

Polygons are named by the number of sides they have.

# of Sides	Type of Polygon
3	
4	
5	
6	
7	

# of Sides	Type of Polygon
8	
9	
10	
12	
n	

Polygons can be concave or convex. Suppose the line containing each side is drawn. If any of the lines contain any point in the interior of the polygon, then it is concave. Otherwise it is convex.

Tell whether each figure is a polygon. If it is a polygon, name it by the number of sides.

Regular Polygon

A polygon is ______ if no line that contains a side of the polygon contains a point in the interior of the polygon.

A polygon that is not convex is called ______ or _____

Example 1: Name and Classify Polygons

Name the polygon by its number of sides. Then classify it as *convex* or *concave* and *regular* or *irregular*.

(a)

Triangle	Square	Rectangle	Circle
c n b	s s s	e e e e e e e e e e e e e e e e e e e	ď
P = b + c + d	P = s + s + s + s $= 4s$	$P = \ell + w + \ell + w$ $= 2\ell + 2w$	$C = 2\pi r \operatorname{or}$ $C = \pi d$
$A = \frac{1}{2}bh$	$A = s^2$	$A = \ell W$	$A = \pi t^2$
P = perimeter of polyg	yon $A = area$	of figure	C = circumference

How does knowing the area formula for a rectangle help find the area of a triangle?

Pi (π) \rightarrow ratio of circle's circumference to its diameter approximately 3.14 or 22/7

EXACT answers: answers left in terms of π (do NOT multiple out the value for π) APPROXIMATE answers: use π key on a calculator or replace π with a number such as 3.14 or $\frac{22}{7}$

Example 3 – Standardized Test Example

Each of the following shapes has a perimeter of about 88 inches. Which one has the greatest area?

- (a) a rectangle with a length of 26 (b) a square with side length of 22 inches inches and a width of 18 inches
- (c) a right triangle with each leg length (d) a circle with radius of of 26 inches 14 inches

Example 5 – Working Backwards

- a) Find the radius of a circle when the area is 72.38 in².
- b) What is the height of a triangle with an area of 126.5 ft² and a base of 23ft?

Example 5 – Perimeter and Area on the Coordinate Plane

Find the perimeter and area of a pentagon ABCDE with A(0,4), B(4,0), C(3,-4), D(-3,-4), and E(-3,1).

Perimeter: DE ____ + DC ____ + CB ____ + BA ____ + AE ____

Area:

11-4 Area of Composite Figures

Objective: Find areas of composite figures.

A composite figure is a figure that can be separated into regions that are basic figures. To find the area of a composite figure, use basic figures for which we know the area formulas. The sum of the areas of the basic figures is the area of the composite figure.

Example 1: Find the area of the shaded region.

$$A = lw$$
$$A = \pi r^{2}$$
$$A = \frac{h(b_{1} + b_{2})}{2}$$

$$A = bh$$
$$A = \frac{bh}{2}$$

|+ 22 cm →| |+ 42 cm →|

Sometimes you can use a difference of areas of basic figures to find the area of a complex figure.

Example 2: Find the area of the shaded region.

Example 3: Find the area of the shaded region.

Example 4: Find the area of the shaded region.

Three Dimensional Figures and Vocabulary (1.7)

Objective:

 Identify and name three-dimensional figures.

• Find volume.

A solid with all flat surfaces that enclose a single region of space is called a polyhedron. Each flat surface or *face* is a polygon. The line segments where the faces intersect are called *edges*. The point where three or more edges intersect is called a *vertex*. Below are examples and definitions of polyhedrons and other types of solids.

Polyhedrons or polyhedra are named by the shape of their bases.

A polyhedron is a *regular Polyhedron* if all of its faces are regular congruent polygons and all of

the edges are congruent. There are exactly <u>five</u> types of regular polyhedrons, called P1atonic Solids because Plato used them extensively.

(eyConcept Pla	atonic Solids			
Tetrahedron	Hexahedron or Cube	Octahedron	Dodecahedron	Icosahedron
\bigtriangleup	and and a	\bigcirc		
4 equilateral triangle faces	6 square faces	8 equilateral triangular faces	12 regular pentagonal faces	20 equilateral triangular faces

Example 1: Identify Solids

Determine whether the solid is a polyhedron. Then identify the solid. If it is a polyhedron, name the bases, faces, edges, and vertices.

(a) G G C	(b)	(c)
Faces:	Faces:	Faces:
Edges:	Edges:	Edges:
Verticies:	Verticies:	Verticies:

Surface Area:

Volume:

KeyConcept S	urface Area and V	olume		
Prism	Regular Pyramid	Cylinder	Cone	Sphere
P	e de	h	n l	
T = Ph + 2B	$T = \frac{1}{2}P\ell + B$	$T = 2\pi r h + 2\pi r^2$	$T = \pi t \ell + \pi t^2$	$T = 4\pi r^2$
V = Bh	$V = \frac{1}{3}Bh$	$V = \pi r^2 h$	$V = \frac{1}{3}\pi r^2 h$	$V = \frac{4}{3}\pi r^3$
T = total surface a P = perimeter of the second secon	irea he base	V = volume B = area of base	h = heig $\ell = slan$	ht of a solid t height, <i>r</i> = radius

Describe the three-dimensional figure that can be made from the given net.

Cross section \rightarrow

E.

Describe each cross section.

Volume of Prisms (12-4)

F.

Objective:Find the volume of a prism.

Recall that the volume of a solid is the measure of the amount of space the solid encloses. Volume is measured in cubic units.

Volume	If a prism has a volume of V cubic units, a height of h units, and each
of a Prism	base has an area of <i>B</i> square units, then $V = Bh$. Or $V = Iwh$

Example 1: Volume of a Prism

Find the volume of the prism.

Example 2: Volume of a Prism

Find the volume of the prism.

Example 3: Real World: Volume backwards

Jenny has some boxes for shipping merchandise. Each box is in the shape of a rectangular prism with a length of 18 inches, a width of 14 inches, and a volume of 2520 inch². Find the height of the prism.

A. Draw, label and find the height.

Objective:

• Find the volume of a pyramid.

Volume of Pyramid (12-5)

KeyConcept Volume of a Pyramid				
Words	The volume of a pyramid is $V = \frac{1}{3}Bh$, where <i>B</i> is the area of the base and <i>h</i> is the height of the pyramid.	Models	h H B	B
Symbols	$V = \frac{1}{3}Bh$			

Example 1: Volume of square pyramid

Find the volume of the square pyramid.

Example 2: Volume of square pyramid Find the volume of the hexagonal pyramid.

Example 2: Volume backwards

Find the height given the volume of the triangular pyramid is 96 ft³.

Objective:

• Find the volume of a cylinder.

ទ Key Co	ncept Volume of a Cylinder		
Words	The volume V of a cylinder is $V = Bh$ or $V = \pi r^2 h$, where B is the area of the base, h is the height of the cylinder, and r is the radius of the base.	Model r	
Symbols	$V = Bh$ or $V = \pi r^2 h$		

When a <u>solid is not a right solid</u>, use <u>Cavalieri's Principle</u> to find the volume. The principle states that if two solids have the same height and the same cross sectional area at <u>every</u> level, then they have the same volume.

Example 1: Volume of a cylinders

Find the volume of the cylinder.

Example 2: Volume of a cylinders

Find the volume of the oblique cylinder.

Example 3: Volume Backwards

The volume of a cylinder is 3600π cm³ and the height is 16 cm. Find the radius.

Objective:

• Find the volume of a cone.

Example 1: Volume of a cone Find the volume of the cone.

Example 2: Find Surface Area and Volume Find the surface area and volume of the cone.

Example 3: Volume Backwards The volume of a cone is 238 cm³ with a height of 74 cm. What is the radius?

Spheres (12-6)

C. Find the radius of a sphere with a volume ≈ 65.45 cm.

<u>EX 3</u>: Find Surface Area of Spheres

Find each measurement. Give your answers to the nearest tenth. A. Sphere with a diameter 17 in.

B. the surface area of a sphere with a great circle that has an area of $49\pi mi^2$

C. Give the surface area of a sphere is 144π , find the volume.