Geometry Unit 6: Similarity

Priority Standard:

Unit 6 "I can" Statements:

- 1. I can simplify ratios
- 2. I can solve problems by writing and solving proportions and using the geometric mean.
- 3. I can use proportions to find missing lengths in geometric problems
- 4. I can use proportions to identify similar polygons
- 5. I can use the AA Similarity Postulate to prove triangle similarity
- 6. I can use the SSS Similarity Theorem to prove triangle similarity
- 7. I can use the SAS Similarity Theorem to prove triangle similarity
- 8. I can use proportion theorems to find missing lengths in geometric problems
- 9. I can perform dilations

Unit 6-Section 1: Ratios, Proportions and the Geometric Mean

Ratio:

Example #1: Simplify the ratio. (Check out the conversions chart on page 921)

- a.) 76cm:8 cm
- b.) $\frac{4 \text{ ft}}{24 \text{ in}}$

- c.) 10 mL: 3 L
- d.) 33yd: 9ft

Example #2: The measures of the angle in $\triangle BCD$ are in the extended ratio of 2:3:4. Find the measures of the angles.

Example #3: A triangle's angle measures are in the extended ratio of 1:4:5. Find the measures of the angles.

Example #4: The perimeter of a rectangular table is 21 ft and the ratio of its lengths to its width is 5:2.	Find
the length and width of the table.	

Proportion :

An equation that states that _____ ratios are _____ .

A Property of Proportions:

If ____ = ___ where $b \neq 0$ and $d \neq 0$, then ____

Example #5: Solve the proportion:

a.)
$$\frac{3}{4} = \frac{x}{16}$$

b.)
$$\frac{x-3}{3} = \frac{2x}{9}$$

Example #6: You want to find the total number of rows of boards that make up 24 lanes at a bowling alley. You know that there are 117 rows in 3 lanes. Find the total number of row of board that make up the 24 lanes.

Geometric Mean: The geometric mean of two positive numbers a and b is the positive number x that satisfies =					
Therefore:	•				
Example #7: Find the geometric mean of					
a.) 4 and 25	b.) 14 and 16	c.) 6 and 20			
Unit 6-Section 2: Use Proportions to Solve Geometric Problems					
Scale Drawing:					
A drawing that is the same shape	() as the obj	ect it represents			
Scale:					
A that describes he dimensions of the object.	now the in	n a drawing are related to the			
Example #1: Suppose the scale of a model of the Eiffel Tower is 1 inches; 20 feet. <i>Explain</i> how to determine how many times taller the actual tower is than the model.					
	m for a field hockey field is 1 inch	•			
a.) Find the length of the actua	l field if the length of the diagram	is 2 inches.			

b.) Find the width of the actual field if the width of the diagram is 1.25 inches.

Example #3: A basket manufacturer has a headquarters in an office building that has the same shape as a basket they sell.

- a.) The bottom of the basket is a rectangle with length 15 inches and width 10 inches. The base of the building is a rectangle with length 192 feet. What is the width of the base of the building?
- b.) About how many times as long as the bottom of the basket is the base of the building?

Additional Properties of Proportions:

2. If two ratios are equal, then _____

3. If you interchange the means of a proportion then,

4. In a proportion, if you add the value of each ratio's denominator to its numerator, then

Example #4: Complete the statement- What property was used?

a.) If
$$\frac{8}{x} = \frac{3}{y}$$
, then $\frac{8}{3} =$

b.) If
$$\frac{14}{3} = \frac{x}{y}$$
, then $\frac{17}{3} =$

c.) If
$$\frac{8}{x} = \frac{3}{y}$$
, then $\frac{x}{8} =$

Example #5: Decide whether the statement is true or false.

a.) If
$$\frac{8}{m} = \frac{n}{9}$$
, then $\frac{8+m}{m} = \frac{n+9}{9}$

b.) If
$$\frac{5}{7} = \frac{x}{y}$$
, then $\frac{7}{5} = \frac{x}{y}$

c.) If
$$\frac{d}{2} = \frac{g+10}{11}$$
, then $\frac{d}{g+10} = \frac{2}{11}$

d.) If
$$\frac{4+x}{4} = \frac{3+y}{y}$$
, then $\frac{x}{4} = \frac{3}{y}$

Example #6: Use the diagram and the given information to find the unknown length.

a) Given
$$\frac{CB}{BA} = \frac{DE}{EF}$$
 find BA

Unit 6-Section 3: Use Similar Polygons

Two polygons are **similar polygons** if... 1.

2. _____

Scale Factor: is the ratio of the lengths of two ______ of two similar polygons.

Example #1: In the diagram above, polygons ABCD and EFGH are similar.

a.) List all pairs of congruent angles

- b.) Check that the ratios of the corresponding side lengths are equal.
- c.) Write the ratios of the corresponding side length in a **statement of proportionality.**

Example #2: Determine whether the polygons are similar. If they are write a similarity statement and find the scale factor.

Example #3: In the diagram WXYZ~MNOP

- a.) Find the scale factor of WXYZ to MNOP
- b.) Find the value of x, y and z
- c.) Find the perimeter of WXYZ
- d.) Find the perimeter of MNOP

Example #4: Basketball: A larger cement court is being poured for a basketball hoop in place of a smaller one. The court will be 20 feet wide and 25 feet long. The old court was similar in shape, but only 16 feet wide.

- a.) Find the scale factor of the new court to the old court.
- b.) Find the perimeters of the new court and the old court.

Example #5: \triangle *MNO* \sim \triangle *MLP*. Find the values of *m* and *n*.

Unit 6-Section 4: Prove Triangles Similar by AA

Angle-Angle (AA) Similarity Postulate (Postulate 22):

If two angles of one triangle are ______ to two angles of another triangle, then the two triangles are

K M

Example #1: Determine whether the triangles are similar. If they are, write a similarity statement. Explain your reasoning.

a.)

b.)

c.)

d.)

e.)

f.)

Example #2: Use the diagram to complete the statement

- a.) $\triangle PQR \sim$ _____
- b.) $\frac{LM}{PQ} = \frac{1}{QR}$
- c.) $\frac{12}{y} = \frac{15}{}$
- d.) $y = ____$
- e.) The scale factor of \triangle *LMN* and \triangle *PQR* is _____

Unit 6-Section 5: Prove Triangles Similar by SSS and SAS

Side-Side (SSS) Similarity Theorem (Theorem 6.2):

If the corresponding side lengths of two triangles are ______, then the triangles are similar.

Example #1: Is either \triangle *EDF* and \triangle *GHJ* similar to \triangle *ABC*?

Example #2: Find the value of x that makes \triangle ABC \sim \triangle DEF

$Side-Angle-Side\ (SAS)\ Similarity\ Theorem\ ({\tt Theorem\ 6.3}):$

If an angle of one triangle is ______ to an angle of a second triangle and the lengths of the sides _____ these angles are _____, then the triangles are similar.

Example #3: Determine if the two triangles are similar by SAS.

a.) Δ LNM and Δ JNK

b.) ΔCDB and ΔCEA

Example #4: Determine whether the triangles are similar. If they are, state what postulate or theorem you used and write a similarity statement.

c.)

Example #5: Show that the two triangles are similar. Write a similarity statement.

a.) $\triangle ABE$ and $\triangle ACD$

b.) Δ SVR and Δ UVT

c.) Δ SRT and Δ PNQ

d.) Δ HGJ and Δ HFK

8.) A flagpole casts a shadow that is 50 feet long. At the same time, a woman standing nearby who is five feet four inches tall casts a shadow that is 40 inches long. How tall is the flagpole to the nearest foot?

Unit 6-Section 6: Use Proportion Theorems

Triangle Proportionality Theorem (Theorem 6.4):

If a line ______ to one side of a triangle _____ the other two sides, then it divides the two sides _____.

Converse of the Triangle Proportionality Theorem (Theorem 6.5):

If a line divides two sides of a triangle ______, then it is ______ to the third side.

Example #1: In the diagram, $\overline{QS} \parallel \overline{UT}$, RS = 4, ST = 6, and QU = 9.

What is the length of \overline{RQ} ?

Example #2: Determine whether $\overline{PS} \parallel \overline{QR}$

Theorem 6.6:

If three _____ lines intersect two transversals, then they divide the transversals

Theorem 6.7:

If a ray _____ an angle of a triangle, then it divides the opposite side into segments whose lengths are _____ to the lengths of the other two sides.

Example #5: Find the length of \overline{AB} .

Example #6: Find the length of \overline{AB} .

Example #7: Use the diagrams to find the value of each variable.

a.)

b.)

c)

d.)

Unit 6- Section 7: Perform Similarity Transformations

Dilation: A dilation	is a transformation that	or
	a figure to create a similar figur	re
Center of Dilation	1: In a dilation, a figure is	
or	with respect to a fixed poi	nt called the
		·
Scale Factor of a	Dilation: The scale factor "	" of a dilation
is the	of a side length of the _	to
the corresponding	side length of the	figure.
Reduction: A dilati	ion where	
Enlargement A d	ilation where	

Coordinate Notation for a Dilation: You can describe a dilation with respect to the origin with the

notation $(x, y) \rightarrow (kx, ky)$, where k is the _____

If 0 < k < 1, the dilation is a ______.

If k > 1, the dilation is an _____

Example #1:

Graph the dilated image of triangle JKL using a scale factor of 2 and (0,0) as the center of dilation.

J: _____

K':

L: ______ L': _____

Example #2:

Graph the dilated image of quadrilateral MNOP using a scale factor of 1/3 and the origin as the center of dilation.

M': _____

N': _____

O: _____

0':_____

P: _____

P':_____

Example #3:

Describe the dilation of quadrilateral MNOP, using the origin as the center.