\qquad
\qquad
\qquad

Geometry Unit Test Prep

Multiple Choice

Identify the letter of the choice that best completes the statement or answers the question. You must show work to get full credit

Find the area. The figure is not drawn to scale.
\qquad 1.

a. 1128 in. ${ }^{2}$
b. 142 in. ${ }^{2}$
c. 1598 in. ${ }^{2}$
d. 71 in. ${ }^{2}$
2.

Not drawn to scale
a. $\quad 77.2$ in. ${ }^{2}$
b. 80 in. ${ }^{2}$
c. 75 in. ${ }^{2}$
d. 70 in. ${ }^{2}$
3.

a. $\quad 144.5 \mathrm{~cm}^{2}$
b. $\quad 127 \mathrm{~cm}^{2}$
c. $\quad 172 \mathrm{~cm}^{2}$
d. $50 \mathrm{~cm}^{2}$

Find the area of the trapezoid. Leave your answer in simplest radical form.
\qquad 4. A kite has diagonals 6.5 ft and 6 ft . What is the area of the kite?
a. $\quad 25 \mathrm{ft}^{2}$
b. $6.25 \mathrm{ft}^{2}$
c. $39 \mathrm{ft}^{2}$
d. $\quad 19.5 \mathrm{ft}^{2}$
5.

Not drawn to scale
a. $\quad 36 \mathrm{~cm}^{2}$
b. $\quad 96 \mathrm{~cm}^{2}$
c. $\quad 11.5 \mathrm{~cm}^{2}$
d. $92 \mathrm{~cm}^{2}$
6. Given the regular hexagon, find the measure of each numbered angle.

a. $m \angle 1=30, m \angle 2=60, m \angle 3=30$
b. $m \angle 1=m \angle 2=m \angle 3=60$
c. $m \angle 1=60, m \angle 2=30, m \angle 3=60$
d. $m \angle 1=60, m \angle 2=30, m \angle 3=30$
\qquad 7. Find the area of a regular hexagon with side length of 8 cm . Round your answer to the nearest tenth.
a. $\quad 55.4 \mathrm{~cm}^{2}$
b. $288 \mathrm{~cm}^{2}$
c. $83.1 \mathrm{~cm}^{2}$
d. $\quad 166.3 \mathrm{~cm}^{2}$
8. You are planning to use a ceramic tile design in your new bathroom. The tiles are blue and white equilateral triangles. You decide to arrange the blue tiles in a hexagonal shape as shown. If the side of each tile measures 10 centimeters, what will be the exact area of each hexagonal shape?

10 cm
a. $200 \sqrt{3} \mathrm{~cm}^{2}$
b. $\quad 30 \mathrm{~cm}^{2}$
c. $150 \sqrt{3} \mathrm{~cm}^{2}$
d. $\quad 3000 \mathrm{~cm}^{2}$
\qquad 9. The widths of two similar rectangles are 36 ft and 32 ft . What is the ratio of the perimeters? Of the areas?
a. $10: 9$ and $100: 81$
b. $10: 9$ and $81: 64$
c. $9: 8$ and $81: 64$
d. $9: 8$ and $100: 81$

Find the area of the regular polygon. Give the answer to the nearest tenth.
10. pentagon with side 8 ft
a. $22 \mathrm{ft}^{2}$
b. $\quad 110.1 \mathrm{ft}^{2}$
c. $88.1 \mathrm{ft}^{2}$
d. $\quad 220.2 \mathrm{ft}^{2}$
\qquad 11. hexagon with side 4 ft
a. $6 \mathrm{ft}^{2}$
b. $\quad 20.8 \mathrm{ft}^{2}$
c. $41.6 \mathrm{ft}^{2}$
d. $83.1 \mathrm{ft}^{2}$
12. decagon with side 4 cm
a. $\quad 123.1 \mathrm{~cm}^{2}$
b. $\quad 129.4 \mathrm{~cm}^{2}$
c. $246.2 \mathrm{~cm}^{2}$
d. $\quad 139.8 \mathrm{~cm}^{2}$

Find the area of the triangle. Give the answer to the nearest tenth. The drawing may not be to scale.
\qquad 13.

a. $\quad 35.4 \mathrm{~cm}^{2}$
b. $15 \mathrm{~cm}^{2}$
c. $\quad 90.7 \mathrm{~cm}^{2}$
d. $\quad 70.9 \mathrm{~cm}^{2}$
14.

a. $\quad 10.5 \mathrm{~m}^{2}$
b. $\quad 9.8 \mathrm{~m}^{2}$
c. $\quad 19.6 \mathrm{~m}^{2}$
d. $\quad 21.0 \mathrm{~m}^{2}$
15. Grade 7 students were surveyed to determine how many hours a day they spent on various activities. The results are shown in the circle graph below. Find the measure of each central angle in the circle graph.
a. Sleeping
b. Eating

How Students Spend Their Time

a. $118.8^{\circ} ; 28.8^{\circ}$
b. $108^{\circ} ; 28.8^{\circ}$
c. $118.8^{\circ} ; 288^{\circ}$
d. $59.4^{\circ} ; 288^{\circ}$

Find the circumference. Leave your answer in terms of π.
\qquad 16.

a. $\quad 17.4 \pi \mathrm{~cm}$
b. $\quad 4.35 \pi \mathrm{~cm}$
c. $\quad 8.7 \pi \mathrm{~cm}$
d. $\quad 13.05 \pi \mathrm{~cm}$
17. Find the length of arc $X P Y$. Leave your answer in terms of π.

a. $\quad 12 \pi \mathrm{~m}$
b. $360 \pi \mathrm{~m}$
c. $6 \pi \mathrm{~m}$
d. $2 \pi \mathrm{~m}$

Find the area of the circle. Leave your answer in terms of π.
\qquad 18.

a. $\quad 64.98 \pi \mathrm{~m}^{2}$
b. $\quad 32.49 \pi \mathrm{~m}^{2}$
c. $\quad 185.19 \pi \mathrm{~m}^{2}$
d. $2.85 \pi \mathrm{~m}^{2}$
19.

a. $\quad 9.3025 \pi \mathrm{~m}^{2}$
b. $\quad 37.21 \pi \mathrm{~m}^{2}$
c. $\quad 18.605 \pi \mathrm{~m}^{2}$
d. $\quad 15.2 \pi \mathrm{~m}^{2}$
20. Given a regular nonagon, find the measures of the angles formed by (a) two consecutive radii and (b) a radius and a side of the polygon.
a. $36^{\circ} ; 234^{\circ}$
b. $40^{\circ} ; 70^{\circ}$
c. $60^{\circ} ; 240^{\circ}$
d. $72^{\circ} ; 252^{\circ}$
21. Two triangles each have adjacent sides of length 120 feet and 180 feet. The first triangle has an angle between the two sides of 40°, while the second triangle has an angle between the two sides of 60°. What is the approximate difference between the areas of the two triangles?
a. $4822 \mathrm{ft}^{2}$
b. $2873 \mathrm{ft}^{2}$
c. $5746 \mathrm{ft}^{2}$
d. $2411 \mathrm{ft}^{2}$
22. The circumference of a circle is $46 \pi \mathrm{~cm}$. Find the diameter, the radius, and the length of an arc of 70°.
a. $\quad 46 \mathrm{~cm} ; 92 \mathrm{~cm} ; 4.5 \pi \mathrm{~cm}$
b. $92 \mathrm{~cm} ; 23 \mathrm{~cm} ; 125 \pi \mathrm{~cm}$
c. $23 \mathrm{~cm} ; 46 \mathrm{~cm} ; 4.5 \pi \mathrm{~cm}$
d. $46 \mathrm{~cm} ; 23 \mathrm{~cm} ; 8.9 \pi \mathrm{~cm}$
23. A team in science class placed a chalk mark on the side of a wheel and rolled the wheel in a straight line until the chalk mark returned to the same position. The team then measured the distance the wheel had rolled and found it to be 10 cm . To the nearest tenth, what is the area of the wheel?
a. $\quad 15.9 \mathrm{~cm}^{2}$
b. $8 \mathrm{~cm}^{2}$
c. $\quad 31.8 \mathrm{~cm}^{2}$
d. $7.9 \mathrm{~cm}^{2}$

Essay

1. The diameter of a basketball rim is 18 inches. A standard basketball has a circumference of 30 inches. About how much room is there between the ball and the rim in a shot in which the ball goes in exactly in the center of the rim? Show your work.

Reasoning and Writing in Math

1. Explain why the radius of a regular polygon is greater than the apothem.

ID: Version

Geometry Unit Test Prep

Answer Section

MULTIPLE CHOICE

1. ANS: A PTS: 1 DIF: L2

REF: 10-1 Areas of Parallelograms and Triangles
OBJ: 10-1.1 Area of a Parallelogram
TOP: 10-1 Example 1 KEY: area | parallelogram | base | height
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52
2. ANS: D PTS: 1 DIF: L2

REF: 10-2 Areas of Trapezoids, Rhombuses, and Kites OBJ: 10-2.1 Area of a Trapezoid
TOP: 10-2 Example 1 KEY: trapezoid | area
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.52
3. ANS: A PTS: 1 DIF: L3

REF: 10-1 Areas of Parallelograms and Triangles
OBJ: 10-1.2 Area of a Triangle
TOP: 10-1 Example 3 KEY: area | triangle | rectangle
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.52
4. ANS: D PTS: 1 DIF: L2

REF: 10-2 Areas of Trapezoids, Rhombuses, and Kites
OBJ: 10-2.2 Finding Areas of Rhombuses and Kites TOP: 10-2 Example 3
KEY: area | kite
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.52
5. ANS: D PTS: 1 DIF: L3

REF: 10-2 Areas of Trapezoids, Rhombuses, and Kites OBJ: 10-2.1 Area of a Trapezoid
TOP: 10-2 Example 2 KEY: area | trapezoid
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.52
6. ANS: C PTS: 1 DIF: L2 REF: 10-3 Areas of Regular Polygons

OBJ: 10-3.1 Areas of Regular Polygons TOP: 10-3 Example 1
KEY: regular polygon
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.52
7. ANS: D PTS: 1 DIF: L2 REF: 10-3 Areas of Regular Polygons

OBJ: 10-3.1 Areas of Regular Polygons TOP: 10-3 Example 3
KEY: regular polygon | hexagon \mid area \mid apothem \mid radius
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.52

ID: Version

8. ANS: C PTS: 1 DIF: L2 REF: 10-3 Areas of Regular Polygons

OBJ: 10-3.1 Areas of Regular Polygons TOP: 10-3 Example 3
KEY: regular polygon | hexagon | area | apothem | radius | word problem | problem solving
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.52
9. ANS: C PTS: 1 DIF: L2

REF: 10-4 Perimeters and Areas of Similar Figures
OBJ: 10-4.1 Finding Perimeters and Areas of Similar Figures TOP: 10-4 Example 1
KEY: perimeter | area | similar figures
MSC: NAEP M2g | NAEP N4c | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM |
IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 |
TV.LV20.14 | TV.LV20.52
10. ANS: B PTS: 1 DIF: L2 REF: 10-5 Trigonometry and Area

OBJ: 10-5.1 Finding the Area of a Regular Polygon TOP: 10-5 Example 1
KEY: area of a regular polygon | area | regular polygon | tangent | measure of central angle of a regular polygon
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.16
11. ANS: C PTS: 1 DIF: L2 REF: 10-5 Trigonometry and Area

OBJ: 10-5.1 Finding the Area of a Regular Polygon TOP: 10-5 Example 1
KEY: area of a regular polygon | area | regular polygon | tangent | measure of central angle of a regular polygon
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 | TV.LV20.16
12. ANS: A PTS: 1 DIF: L2 REF: 10-5 Trigonometry and Area

OBJ: 10-5.1 Finding the Area of a Regular Polygon TOP: 10-5 Example 1
KEY: area of a regular polygon | area \mid regular polygon | tangent | measure of central angle of a regular polygon
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.16
13. ANS: A PTS: 1 DIF: L2 REF: 10-5 Trigonometry and Area

OBJ: 10-5.2 Finding the Area of a Triangle TOP: 10-5 Example 3
KEY: area of a triangle | area | sine
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA \| S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.16
14. ANS: A PTS: 1 DIF: L2 REF: 10-5 Trigonometry and Area

OBJ: 10-5.2 Finding the Area of a Triangle TOP: 10-5 Example 3
KEY: area of a triangle | area | sine
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.16

ID: Version

15. ANS: A PTS: 1 DIF: L2 REF: 10-6 Circles and Arcs

OBJ: 10-6.1 Central Angles and Arcs TOP: 10-6 Example 1
KEY: central angle | circle graph | multi-part question | word problem | problem solving
MSC: NAEP M1h | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM |
TV.LV20.13 | TV.LV20.14
16. ANS: C PTS: 1 DIF: L2 REF: 10-6 Circles and Arcs

OBJ: 10-6.2 Circumference and Arc Length TOP: 10-6 Example 4
KEY: circumference | diameter
MSC: NAEP M1h | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM |
TV.LV20.13 | TV.LV20.14
17. ANS: C PTS: 1 DIF: L2 REF: 10-6 Circles and Arcs

OBJ: 10-6.2 Circumference and Arc Length TOP: 10-6 Example 5
KEY: arc | circumference
MSC: NAEP M1h | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM | TV.LV20.13 | TV.LV20.14
18. ANS: B PTS: 1 DIF: L2 REF: 10-7 Areas of Circles and Sectors

OBJ: 10-7.1 Finding Areas of Circles and Parts of Circles TOP: 10-7 Example 1
KEY: area of a circle | radius
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.52
19. ANS: A PTS: 1 DIF: L2 REF: 10-7 Areas of Circles and Sectors

OBJ: 10-7.1 Finding Areas of Circles and Parts of Circles TOP: 10-7 Example 1
KEY: area of a circle | radius
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP |
S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.52
20. ANS: B PTS: 1 DIF: L3 REF: 10-3 Areas of Regular Polygons

OBJ: 10-3.1 Areas of Regular Polygons TOP: 10-3 Example 1
KEY: regular polygon | multi-part question
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.52
21. ANS: D PTS: 1 DIF: L3 REF: 10-5 Trigonometry and Area

OBJ: 10-5.2 Finding the Area of a Triangle TOP: 10-5 Example 3
KEY: area | area of a triangle | sine
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.16
22. ANS: D PTS: 1 DIF: L3 REF: 10-6 Circles and Arcs

OBJ: 10-6.2 Circumference and Arc Length TOP: 10-6 Example 4
KEY: circumference | radius
MSC: NAEP M1h | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM |
TV.LV20.13 | TV.LV20.14

ID: Version

23. ANS: B PTS: 1 DIF: L3 REF: 10-6 Circles and Arcs
OBJ: 10-6.2 Circumference and Arc Length TOP: 10-6 Example 4
KEY: circumference | radius | diameter | area of a circle | word problem | problem solving
MSC: NAEP M1h | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM |
TV.LV20.13 | TV.LV20.14

ESSAY

1. ANS:
[4] Answers may vary. Sample: If a basketball has a circumference of 30, then its diameter is $\frac{30}{\pi} \approx 9.549$. If the ball goes in exactly in the center of the rim, then there is a total of $(18-9.549)$ inches or 8.551 inches on both sides of the ball. Therefore, there is half of this distance, or about 4.2 inches, between the ball and the rim.
[3] correct methods used, but with a computational error
[2] error in method
[1] correct answer with no work shown

PTS: 1 DIF: L3 REF: 10-6 Circles and Arcs
OBJ: 10-6.2 Circumference and Arc Length TOP: 10-6 Example 4
KEY: circumference | diameter | extended response | rubric-based question
MSC: NAEP M1h | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.CP | S9.TSK2.GM | S10.TSK2.GM |
TV.LV20.13 | TV.LV20.14

OTHER

1. ANS:

Answers may vary. Sample: The apothem is one leg of a right triangle and the radius is the hypotenuse. A hypotenuse is always longer than either of the two legs.

PTS: 1 DIF: L3 REF: 10-3 Areas of Regular Polygons
OBJ: 10-3.1 Areas of Regular Polygons
TOP: 10-3 Example 1
KEY: apothem | radius | regular polygon | reasoning
MSC: NAEP M1h | CAT5.LV20.50 | CAT5.LV20.55 | CAT5.LV20.56 | IT.LV16.AM | IT.LV16.CP | S9.TSK2.GM | S9.TSK2.PRA | S10.TSK2.GM | S10.TSK2.PRA | TV.LV20.13 | TV.LV20.14 |
TV.LV20.52

