Geometry

Unit 4 Congruent Triangles

Name: \qquad

Section 4-1: Classifying Triangles Notes

Parts of a Triangle:

Triangle - a three-sided polygon
Name -
Sides -
Vertices -

Angles -

Classifying Triangles by Angles:
Acute Δ
Obtuse Δ
Right Δ

Equiangular Δ -

Classifying Triangles by Sides:

Example \#1: Identify the indicated type of triangle in the figure.
a.) isosceles triangles
b.) scalene triangles

Example \#2: Find x and the measure of each side of equilateral triangle RST.

Example \#3: Find $x, J M, M N$, and $J N$ if $\triangle J M N$ is an isosceles triangle with $\overline{J M} \cong \overline{M N}$.

\qquad

Practice B

Classify the triangle by its sides.
1.

2.

3.

Classify the triangle by its angles.
4.

5.

6.

Classify the triangle by its angles and by its sides.
7.

8.

9.

Match the triangle description with the most specific name.
10. Side lengths: $6 \mathrm{~cm}, 7 \mathrm{~cm}, 8 \mathrm{~cm}$
A. Isosceles
11. Side lengths: $9 \mathrm{~cm}, 10 \mathrm{~cm}, 9 \mathrm{~cm}$
B. Obtuse
12. Angle measures: $35^{\circ}, 55^{\circ}, 90^{\circ}$
C. Acute
13. Angle measures: $13^{\circ}, 27^{\circ}, 140^{\circ}$
D. Right
14. Angle measures: $59^{\circ}, 60^{\circ}, 61^{\circ}$
E. Scalene

Identify which side is opposite each angle.

15.

16.

17.

In Exercises 18 and 19, use the notebook binder at the right.

18. Use the lengths shown to classify the triangle formed by the bottom edges of the binder by sides.
19. If the triangle formed by the bottom edges of the binder has angles that measure $86^{\circ}, 86^{\circ}$, and 8°, classify the triangle by angles.
\qquad
\qquad

Practice A

For use with pages 173-178

Match the triangle with its classification by sides.

1.

2.

3.

A. Isosceles Triangle
B. Scalene Triangle
C. Equilateral Triangle

Match the triangle with its classification by angles.
4.

5.

6.

7.

A. Acute Triangle
B. Equiangular Triangle
C. Obtuse Triangle
D. Right Triangle

Classify the triangle by its angles and by its sides.
8.

9.

10.

11.

Name the side that is opposite the angle.
12. $\angle X$

13. $\angle M$

14. $\angle C$

The diagram at the right shows the side view of a stepladder.
$\triangle A B C$ is formed by the legs and by the side brace of the stepladder.
15. Classify $\triangle A B C$ by its angles.
16. If $A B=28$ in., $A C=28$ in., and $B C=16$ in., classify $\triangle A B C$ by its sides.

\qquad

Identify each triangle based on both sides and angles.
1)

Isosceles obtuse triangle
4)

7)

8)

9)

10)

11)
\qquad

\qquad
\qquad

Identify each triangle based on both sides and angles.

2)

3)

Equilateral acute triangle
4)

7)

8)

\qquad
10)

\qquad
\qquad
Classifying Triangles
Date \qquad Period

Classify each triangle by each angles and sides. Base your decision on the actual lengths of the sides and the measures of the angles.
1)

5)

2)

${ }^{6)}$

Classify each triangle by each angles and sides.

7)

8)

9)

10)

12)

Classify each triangle by each angles and sides. Equal sides and equal angles, if any, are indicated in each diagram.
13)

14)

15)

16)

17)

18)

Sketch an example of the type of triangle described. Mark the triangle to indicate what information is known. If no triangle can be drawn, write "not possible."
19) acute isosceles
20) right scalene
21) right isosceles
22) right equilateral
23) acute scalene
24) obtuse scalene
25) right obtuse
26) equilateral

Vocabulary Check

1. What is the difference between an obtuse triangle and an acute triangle?

In Exercises 2-4, use the diagram.
2. Name the side opposite $\angle P$.
3. Name the side opposite $\angle Q$.
4. Classify the triangle by its sides.

Skill Check Classify the triangle by its sides.

5.

6.

7.

Classify the triangle by its angles.
8.

9.

10.

Extra Practice

See p. 681.

Classifying Triangles Classify the triangle by its sides.
11.

12.

13.

14.

15.

16.

Classifying Triangles Classify the triangle by its angles.
17.

18.

19.

22.

Classifying Triangles Classify the triangle by its angles and by its sides.
24.

25. E

26. L

27. P

28.

29.

Matching Triangles In Exercises 30-36, use the example above to match the triangle description with the most specific name.
30. Side lengths: $2 \mathrm{~cm}, 3 \mathrm{~cm}, 4 \mathrm{~cm}$
A. Equilateral
31. Side lengths: $3 \mathrm{~cm}, 2 \mathrm{~cm}, 3 \mathrm{~cm}$
B. Scalene
32. Side lengths: $4 \mathrm{~cm}, 4 \mathrm{~cm}, 4 \mathrm{~cm}$
C. Obtuse
33. Angle measures: $60^{\circ}, 60^{\circ}, 60^{\circ}$
D. Equiangular
34. Angle measures: $30^{\circ}, 60^{\circ}, 90^{\circ}$
E. Isosceles
35. Angle measures: $20^{\circ}, 145^{\circ}, 15^{\circ}$
F. Acute
36. Angle measures: $50^{\circ}, 55^{\circ}, 75^{\circ}$
G. Right

Visualize $\mid t!$ Draw an example of the triangle.
48. obtuse scalene 49. right isosceles 50. acute scalene
51. right scalene
52. acute isosceles
53. obtuse isosceles

Angles of Triangles Section 4-2
 Angle Sum Activity

Draw a large triangle on your paper. (Use half the sheet of $8 \frac{1}{2} \times 11$ paper)

STEP 1

Write a, b and c in the interiors of the three angles of the triangle.

STEP 2

Carefully cut out the triangle.

STEP 3

Tear off the three angles.

STEP 4

Arrange the three angles in such a way as to show their sum.

CONJECTURE: Sum of the angles of any triangle is

\qquad

Exterior Angle Activity

Draw a large triangle on your paper. (Use half the sheet of $8 \frac{1}{2} \times 11$ paper). Extend one side of the triangle to form an exterior angle. (See diagram in step 1)

STEP 1

Carefully cut out the triangle and extended side as shown in the diagram.

STEP 3

Tear off angles a and c only. Arrange angles a and c in such a way as to show their relationship to angle d.

CONJECTURE: The measure of the exterior angle of any triangle is

Angle Sum Theorem:

- The sum of the measures of the angles of a is \qquad .

Example \#1: Find the missing angle measures.
a.)
b.)

Third Angle Theorem:

- If two angles of one triangle are \qquad to two angles of a second triangle, then the third angles of the triangles are \qquad .

Exterior Angle Theorem:

- An exterior angle is formed by one side of a \qquad and the extension of another \qquad .
- Remote interior angles are the angles of a triangle that are not \qquad to a given \qquad angle.
- The measure of an exterior angle of a triangle is \qquad to the sum of the measures of the two \qquad interior angles.

Example \#2: Find the measure of each of the following angles.
a.)

b.)

$m \angle A=$

Triangle Angle Sum

Solve for the given variable.
1)

5)

$$
f=
$$

\qquad
2)

$$
\mathrm{h}=
$$

6)

$$
\mathrm{e}=
$$

\qquad
3)

$c=$

$$
\mathrm{n}=
$$

\qquad

$$
v=
$$

\qquad
8)

$\mathrm{z}=$ \qquad

Triangle Angle Sum

Solve for the given variable.
1)

$$
\mathrm{k}=
$$

2)

$$
f=
$$

6)

$\mathrm{c}=$ \qquad
3)

$$
\mathrm{V}=
$$

\qquad $\mathrm{b}=$ \qquad
4)

8)

$$
s=
$$

\qquad
\qquad

Practice A

1. Which equation can be used to find $m \angle 1$ in the diagram?
A. $75^{\circ}+40^{\circ}=m \angle 1$
B. $m \angle 1+40^{\circ}+75^{\circ}=180^{\circ}$
C. $75^{\circ}+m \angle 1=40^{\circ}$
D. $m \angle 1+40^{\circ}=75^{\circ}$

Find the measure of $\angle 1$.
2.

3.

4.

Find the measure of $\angle \mathbf{2}$.
5.

6.

7.

Find the measure of $\angle 3$.
8.

9.

10.

Find the value of x.

11.

12.

13.

14. From your house, you walk north for two miles. Then you walk east for two miles. Next, you turn 45° to your right and walk back to your house. What is the measure of $\angle 1$, as shown in the diagram at the right?

2. Use the diagram to determine which equation can be used to find $m \angle D E F$.
A. $55^{\circ}+x^{\circ}=110^{\circ}$
B. $55^{\circ}+110^{\circ}=x^{\circ}$
C. $55^{\circ}-x^{\circ}=110^{\circ}$
D. $55^{\circ}-110^{\circ}=x^{\circ}$

Find the value of x.

3.

4.

5.

Finding Angle Measures Find the measure of $\angle 1$.
6.

7.

8.

9.

10.

11.

Exterior Angles Find the measure of $\angle \mathbf{2}$.
12.

13.

14.

Classify the triangle by its angles and by its sides. (Lesson 4.1)
1.

2.

3.

Find the measure of $\angle 1$. (Lesson 4.2)
4.

5.

6.

Find the value of \boldsymbol{y}.
1.

3.

1. What is the difference between equilateral and equiangular?

Tell which sides and angles of the triangle are congruent.
2.

3.

4.

Find the value of x. Tell what theorem(s) you used.
5.

6.

Finding Measures Find the value of \boldsymbol{x}. Tell what theorem(s) you used.
7.

8.

9.

(3) Using Algebra Find the value of \boldsymbol{x}.
10.

11.

12.

13.

14.

15.

3. Using Algebra Find the measure of $\angle A$.
17.

18.

19.

Guided Notes
Inequalities in One Triangle

The longest side of a triangle is opposite its \qquad angle.

The shortest side of a triangle is opposite its \qquad angle.

The largest angle is opposite the \qquad side.

The smallest angle is opposite the \qquad side.

\qquad
Smallest Angle \qquad

Shortest Side \qquad

Smallest Angle \qquad

Theorem: If one side of a triangle is longer than another side, then the angle opposite the \qquad
\qquad is larger than the angle opposite the \qquad .

Theorem: If one angle of a triangle is larger than another angle, then the side opposite the \qquad
\qquad is longer than the side opposite the \qquad .

Example \#1: Write the sides of the triangle in order from shortest to longest.

Examole \#2: Write the angles in order from smallest to largest.

\qquad

Guided Notes

Inequalities in One Triangle
Date: \qquad Period: \qquad
Theorem: The sum of the lengths of any two sides of a triangle is greater than the third side. (Start with the two smaller sides, if they satisfy the theorem, than the remaining sums will also satisfy it.)

Example \#3: Could the following be the side lengths of a triangle?
a. $27,18,12$
b. $5,14,7$
c. $12,14,26$
d. $2.001,3,5$
e. $\sqrt{5}, 2,5$

Example \#4: Find the possible values for the 3rd side of the triangle.

Example \#5: List the sides in order from shortest to longest.

Example \#6: Find the range of values for x.

Triangle Inequality of Sides

Order each triangle's sides from largest to smallest.

2)

3) For $\triangle S Q I$
$m \angle Q=55^{\circ}$
$\mathrm{m} \angle \mathrm{S}=42^{\circ}$
$\mathrm{m} \angle \mathrm{I}=83^{\circ}$
4) For $\triangle A C N$
$m \angle A=42^{\circ}$
$\mathrm{m} \angle \mathrm{N}=84^{\circ}$
$m \angle C=54^{\circ}$

Name the largest and smallest side for each triangle.
5)

largest: \qquad
smallest: \qquad

largest: \qquad
smallest: \qquad
7) For $\triangle K N L$
$m \angle K=44^{\circ}$
$m \angle L=77^{\circ}$
largest: \qquad
$m \angle N=59^{\circ}$
8) For \triangle GAE
$m \angle G=56^{\circ}$
largest: \qquad
$m \angle E=66^{\circ}$
smallest: \qquad
$m \angle A=58^{\circ}$

Triangle Inequality Theorem

State if each set of three numbers can be the lengths of the sides of a triangle.

1) $3,12,10$
2) $5,7,10$
3) $4,5,12$
4) $3,13,20$
5) $5,8,10$
6) $7,10,16$
7) $13,3,13$
8) $7,9,21$
9) $9,5,19$
10) $13,2,16$

Given are the lengths of two sides of a triangle. Find the range of lengths for the third side.
11) 3,6
12) 2,8
13) 12,2
14) 4,12
15) 13,7
16) 10,12

Triangle Inequality Theorem

State if each set of three numbers can be the lengths of the sides of a triangle.

1) $6,11,22$
2) $4,7,12$
3) $5,11,19$
4) $2,6,10$
5) $8,13,13$
6) $10,3,18$
7) $11,5,10$
8) $7,8,3$
9) $12,9,26$
10) $2,3,10$

Given are the lengths of two sides of a triangle. Find the range of lengths for the third side.
11) 9,4
12) 11,5
13) 2,6
14) 13,4
15) 3,10
16) 8,4

Triangle Inequality of Sides

Order each triangle's sides from largest to smallest.
1)

2)

3)
For \triangle VQI
$m \angle V=53^{\circ}$
$m \angle I=70^{\circ}$
$m \angle Q=57^{\circ}$
4) For $\triangle K U Q$
$\mathrm{m} \angle \mathrm{Q}=66^{\circ}$
$\mathrm{m} \angle \mathrm{U}=62^{\circ}$
$m \angle K=52^{\circ}$

Name the largest and smallest side for each triangle.
5)

largest: \qquad
smallest: \qquad
7) For $\triangle C N G$
$\mathrm{m} \angle \mathrm{G}=86^{\circ}$
largest: \qquad
$\mathrm{m} \angle \mathrm{N}=48^{\circ}$
smallest: \qquad
8) For $\triangle X E T$
$m \angle E=49^{\circ}$
largest: \qquad
$m \angle X=46^{\circ}$ smallest: \qquad
$\mathrm{m} \angle \mathrm{T}=85^{\circ}$

Date:

\qquad

Section 4-6: Isosceles Triangles
 Notes

Isosceles Triangle: A triangle with at least \qquad sides congruent.

The angle formed by the congruent sides is called the
___ angle.

The two angles formed by the base and one of the congruent sides are called
___ angles.

Isosceles Triangle Theorem: If two sides of a triangle are \qquad , then the angles opposite those sides are \qquad .

Ex:

Example \#1: If $\overline{D E} \cong \overline{C D}, \overline{B C} \cong \overline{A C}$, and $m \angle C D E=120$, what is the measure of $\angle B A C$?

Theorem 4.10: If two angles of a \qquad are congruent, then the sides opposite those angles are
\qquad .

Ex:

Example \#2:

a.) Name all of the congruent angles.
b.) Name all of the congruent segments.

Corollary 4.3: A triangle is \qquad if and only if it is \qquad .

Corollary 4.4: Each angle of an equilateral triangle measures
\qquad .

Example \#3: $\triangle E F G$ is equilateral, and $\overline{E H}$ bisects $\angle E$.

a.) Find $m \angle 1$ and $m \angle 2$.
b.) Find x.

4-1
 Congruent Figures

Vocabulary

Review

1. Underline the correct word to complete the sentence.

A polygon is a two-dimensional figure with two / three or more segments that meet exactly at their endpoints.
2. Cross out the figure(s) that are NOT polygons.

Vocabulary Builder

congruent (adjective) kahng Groo unt
Main Idea: Congruent figures have the same size and shape.
Related Word: congruence (noun)

Use Your Vocabulary

3. Circle the triangles that appear to be congruent.

Write T for true or F for false.
\qquad 4. Congruent angles have different measures.
\qquad 5. A prism and its net are congruent figures.
6. The corresponding sides of congruent figures have the same measure.

Key Concept Congruent Figures

Congruent polygons have congruent corresponding parts-their matching sides and angles. When you name congruent polygons, you must list corresponding vertices in the same order.
7. Use the figures at the right to complete each congruence statement.

$A B C D \cong E F G H$
$\overline{A B} \cong$
$\overline{B C} \cong$
$\overline{C D} \cong$
$\overline{D A} \cong$
$\angle A \cong$
$\angle B \cong$
$\angle C \cong$
$\angle D \cong$

Problem 1 Using Congruent Parts

Got lt? If $\triangle W Y S \cong \triangle M K V$, what are the congruent corresponding parts?
8. Use the diagram at the right. Draw an arrow from each vertex of the first triangle to the corresponding

$$
\triangle W Y S \cong \triangle M K V
$$ vertex of the second triangle.

9. Use the diagram from Exercise 8 to complete each congruence statement.

Sides	$\overline{W Y} \cong$	$\overline{Y S} \cong$	$\overline{W S} \cong$
Angles	$\angle W \cong$	$\angle Y \cong$	$\angle S \cong$

Problem 2 Finding Congruent Parts

Got It? Suppose that $\triangle W Y S \cong \triangle M K V$. If $m \angle W=62$ and $m \angle Y=35$, what is $m \angle V$? Explain.

Use the congruent triangles at the right.
10. Use the given information to label the triangles. Remember to write corresponding vertices in order.
11. Complete each congruence statement.
$\angle W \cong$

$\angle Y \cong$
$\angle S \cong$
12. Use the Triangle Angle-Sum theorem.
$m \angle S+m+m=180$, so $m \angle S=180-(+\quad+\quad$, or \quad.
13. Complete.

Since $\angle S \cong \quad$ and $m \angle S=\quad, m \angle V=\quad$.

Date:

Section 4-3: Congruent Triangles
 Notes

Congruent Triangles: triangles that are the same \qquad and \qquad

- Each triangle has three \qquad and three \qquad .
- If all of the corresponding parts of two triangles are
\qquad , then the triangles are \qquad .

Congruent Triangles:

Corresponding Congruent Angles:

Corresponding Congruent Sides:

Definition of Congruent Triangles (CPCTC):

- Two triangles are congruent if and only if their corresponding parts are
\qquad .
- CPCTC - Corresponding parts of congruent triangles are congruent

Example \#1: In the following figure, $Q R=12, R S=23, Q S=24, R T=12$,
$T V=24$, and $R V=23$.

Name the congruent triangles.

Properties of Triangle Congruence:

Reflexive	Symmetric	Transitive

Example \#2: If $\Delta W X Z \cong \Delta S T J$, name the congruent angles and congruent sides. Angles -

Sides -
\qquad Class \qquad Date \qquad

4-1
 Additional Problems
 Congruent Figures

Problem 1

If $R S T U \cong W X Y Z$, what are the congruent corresponding parts?

Problem 2

The sides of a roof suggest congruent triangles. What is $m \angle 1$?
A. 90

B. 48
C. 42
D. 32
\qquad
\qquad
\qquad

4-1
 Additional Problems (continued)
 Congruent Figures

Problem 3

Are the triangles congruent? Justify your answer.

Problem 4

Given: $\overline{R S} \cong \overline{R U}, \overline{T S} \cong \overline{T U}$, $\angle S \cong \angle U, \angle S R T \cong \angle U R T$

Prove: $\triangle R S T \cong \triangle R U T$

\qquad
\qquad Date \qquad

ELL Support

$4=1$
Congruent Figures

Concept List

algebraic equation	angle measure	congruency statement
congruent angles	congruent polygons	congruent segments
congruent triangles	proof	segment measure

Choose the concept from the list above that best represents the item in each box.

1. $\overline{G H} \cong \overline{\mathrm{ST}}$	2. $m \angle A=45$	3.
4. $Y Z=M N$	5. $\triangle A B C \cong \triangle X Y Z$	6. Given: $\overline{B D}$ is the angle bisector of $\angle A B C$, and $\overline{B D}$ is the perpendicular bisector of $\overline{A C}$. Prove: $\triangle A D B \cong \triangle C D B$
7. $m \angle H=5 x$ $m \angle W=x+28$ Solve $5 x=x+28$ to find the measures of $\angle H$ and $\angle W$.	8. $B C=3 \mathrm{~cm}$	9. $\angle A D B$ and $\angle S D T$ are vertical angles. So, $\angle A D B \cong \angle S D T$.

4-2
 Triangle Congruence by SSS and SAS

Vocabulary

Review

1. Use the diagram at the right. Find each.
included angle between $\overline{A B}$ and $\overline{C A}$
included side between $\angle A$ and $\angle C$
included angle between $\overline{B C}$ and $\overline{C A}$
included side between $\angle B$ and $\angle C$
included angle between $\overline{B C}$ and $\overline{A B}$
included side between $\angle B$ and $\angle A$

- Vocabulary Builder

postulate (noun) PAHs chuh lit
Definition: A postulate is a statement that is accepted as true without being proven true.

Main Idea: In geometry, you use what you know to be true to prove new things true. The statements that you accept as true without proof are called postulates or axioms.

Use Your Vocabulary

2. Underline the correct word to complete the sentence.

You can use properties, postulates, and previously proven theorems as reasons / statements in a proof.
3. Multiple Choice What is a postulate?
(A) a convincing argument using deductive reasoning
(B) a conjecture or statement that you can prove true
(C) a statement accepted as true without being proven true
(D) a conclusion reached by using inductive reasoning

Postulate 4-1 Side-Side-Side (SSS) Postulate

If the three sides of one triangle are congruent to the three sides of another triangle, then the two triangles are congruent.
4. Use the figures at the right to complete the sentence.

If $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}$, and $\overline{A C} \cong$, then $\triangle A B C \cong \triangle$

Problem 1 Using SSS

Got It? Given: $\overline{B C} \cong \overline{B F}, \overline{C D} \cong \overline{F D}$
Prove: $\triangle B C D \cong \triangle B F D$
5. You know two pairs of sides that are congruent. What else do you
 need to prove the triangles congruent by SSS?
6. The triangles share side
7. Complete the steps of the proof.

Statement

1) $\overline{B C} \cong$
2) $\overline{C D} \cong$
3) $\overline{B D} \cong$
4) $\triangle B C D \cong$

Reason

1) Given
2) Given
3) Reflexive Property of \cong
4) SSS

E note

Postulate 4-2 Side-Angle-Side (SAS) Postulate

Postulate 4-2 Side-Angle-Side (SAS) Postulate

If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the two triangles are congruent.

Use the figures below to complete each statement.

8. $\triangle D E F \cong$ by SAS.
9. $\triangle A B C \cong$ by SSS.

Section 4-4: Proving Congruence - SSS, SAS
 Notes

Side-Side-Side Congruence: If the \qquad of one triangle are congruent to the sides of a second triangle, then the triangles are \qquad .

Abbreviation:

Side-Angle-Side Congruence: If two sides and the included \qquad of one triangle are congruent to two \qquad and the included angle of another triangle, then the triangles are \qquad .

Abbreviation:

Example \#1: Write a proof.
Given: $\overline{E I} \cong \overline{F H}, \overline{F E} \cong \overline{H I}$, and G is the midpoint of both $\overline{E I}$ and $\overline{F H}$.
Prove: $\triangle F E G \cong \Delta H I G$

Example \#2: Write a proof.
\qquad
\qquad
\qquad

4-2 $\frac{\text { Additional Problems }}{\text { Triangle Congruence by SSS and SAS }}$

Problem 1

Given: $\overline{R S} \cong \overline{U T}, \overline{R T} \cong \overline{S U}$
Prove: $\triangle R S T \cong \triangle U T S$

Problem 2

What other information do you need to prove $\triangle A B C \cong \triangle A D C$ by SAS? Explain your answer.

\qquad
\qquad
\qquad

4-2 $\frac{\text { Additional Problems (continued) }}{\text { Triangle Congruence by } \mathrm{SSS} \text { and } \mathrm{SAS}}$

Problem 3

Would you use SSS or SAS to prove the triangles congruent? If there is not enough information to prove the triangles congruent by SSS or SAS, write not enough information. Explain your answer.
a.

b.

C.

d.

\qquad

SSS and SAS Congruence

Date \qquad Period

State if the two triangles are congruent. If they are, state how you know.

2)

4)

6)

7)

8)

9)

10)

State what additional information is required in order to know that the triangles are congruent for the reason given.
11) SAS

13) SSS

15) SAS

17) SAS

12) SAS

14) SSS

16) SSS

18) SAS

\qquad

Congruent Triangles: SSS and SAS Theorems - Independent Practice Worksheet
Using either SSS or SAS determine which triangles are congruent.
1.

2.

3.

4.

\qquad
6.

7.

8.

9.

10.

4-3
 Triangle Congruence by ASA and AAS

Vocabulary

Review

1. Cross out the figure(s) that are NOT triangle(s).

2. A triangle is a polygon with sides.
3. A triangle with a right angle is called a(n) obtuse / right / scalene triangle.

Vocabulary Builder

corresponding (adjective) kawr uh SPAHN ding
Other Word Forms: correspond (verb); correspondence (noun)

Definition: Corresponding means similar in position, purpose, or form.

Math Usage: Congruent figures have congruent corresponding parts.

Use Your Vocabulary

Draw a line from each part of $\triangle A B C$ in Column A to the corresponding part of $\triangle X Y Z$ in Column B.

Column A

4. $\overline{B C}$
5. $\angle A$
6. $\overline{A B}$
7. $\angle C$
8. $\overline{A C}$
9. $\angle B$

Column B

$\angle Z$
$\angle Y$
$\overline{Y Z}$
$\angle X$

Postulate

If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the two triangles are congruent.

If . . .
$\angle A \cong \angle D, \overline{A C} \cong \overline{D F}, \angle C \cong \angle F$

Then...
$\triangle A B C \cong \triangle D E F$
10. Explain how the ASA Postulate is different from the SAS Postulate.
\qquad
\qquad
\qquad

Problem 1 Using ASA

Got It? Which two triangles are congruent by ASA? Explain.

11. Name the triangles. List the vertices in corresponding order: list the vertex with the one arc first, the vertex with the two arcs second, and the third vertex last.
12. $\angle G \cong \angle \cong \angle$
13. $\angle H \cong \angle \quad \cong$
14. $\overline{H G} \cong \quad \cong$
15. The congruent sides that are included between congruent angles are
and
16. Write a congruence statement. Justify your reasoning.
$\triangle \quad \cong \triangle$
\qquad
\qquad

Section 4 - 5: Proving Congruence - ASA, AAS

Notes

Angle-Side-Angle Congruence: If two
\qquad and the included \qquad of one triangle are congruent to two angles and the included side of another triangle, then the triangles are \qquad .

Abbreviation:

Angle-Angle-Side Congruence: If two angles and a non-included side of one triangle are congruent to the corresponding two \qquad and a side of a second triangle, then the two triangles are

\qquad .

Abbreviation:

Example \#1: Write a two-column proof.
Given: $\overline{A B}$ bisects $\angle C A D$

$$
\angle 1 \cong \angle 2
$$

Prove: $\triangle C A B \cong \triangle D A B$

Example \#2: Write a two-column proof.
Given: $\overline{A D} \| \overline{C B}$
$\angle A \cong \angle C$
\qquad
\qquad
\qquad

4-3 Additional Problems
 Triangle Congruence by ASA and AAS

Problem 1

Which two triangles are congruent by ASA?

Problem 2

Given: $\overline{L M} \cong \overline{P O}, \angle L \cong \angle P, \angle M$ and $\angle O$ are both right angles.

Prove: $\triangle L M N \cong \triangle P O N$

\qquad

State if the two triangles are congruent. If they are, state how you know.

3)

5)

7)

9)

2)

4)

6)

8)

10)

State what additional information is required in order to know that the triangles are congruent for the reason given.
11) ASA

13) ASA

15) AAS

17) ASA

16) AAS

12) ASA

14) ASA

18) AAS

4-4
 Using Corresponding Parts of Congruent Triangles

Vocabulary

Review

Underline the correct word(s) to complete each sentence.

1. The Reflexive Property of Congruence states that any geometric figure is congruent / similar to itself.
2. The Reflexive Property of Equality states that any quantity is equal to / greater than / less than itself.
3. Circle the expressions that illustrate the Reflexive Property of Equality.

$$
\begin{array}{lc}
a=a & \text { If } A B=2, \text { then } 2=A B \\
3(x+y)=3 x+3 y & 5+c=5+c
\end{array}
$$

4. Circle the expressions that illustrate the Reflexive Property of Congruence.
If $\angle A \cong \angle B$, then $\angle B \cong \angle A$.
If $\overline{C D} \cong \overline{L M}$ and $\overline{L M} \cong \overline{X Y}$, then $\overline{C D} \cong \overline{X Y}$.
$\angle A B C \cong \angle A B C$
$\overline{C D} \cong \overline{C D}$

- Vocabulary Builder

proof (noun) proof
Related Word: prove (verb)
Definition: A proof is convincing evidence that a statement or theory is true.
Math Usage: A proof is a convincing argument that uses deductive reasoning.

Use Your Vocabulary

Complete each statement with proof or prove.
5. In geometry, a ? uses definitions, postulates, and theorems to prove theorems.
6. No one can ? how our universe started.
7. He can ? when he bought the computer because he has a receipt.

8. Complete the steps in the proof.

Given: $\overline{A B} \cong \overline{A D}, \overline{B C} \cong \overline{D C}$,

$$
\angle D \cong \angle B, \angle D A C \cong \angle B A C
$$

Prove: $\triangle A B C \cong \triangle A D C$

Statements

1) $\overline{A B} \cong \quad \overline{B C} \cong$
2) $\overline{A C} \cong$
3) $\angle D \cong \quad \angle D A C \cong$
4) $\angle D C A \cong$
5) $\triangle A B C \cong$

Reasons

1) Given
2) Reflexive Property of \cong
3) Given
4) Third Angles Theorem
5) Definition of \cong triangles

Problem 1 Proving Parts of Triangles Congruent

Got It? Given: $\overline{B A} \cong \overline{D A}, \overline{C A} \cong \overline{E A}$
Prove: $\angle C \cong \angle E$
9. Name four ways you can use congruent parts of two
 triangles to prove that the triangles are congruent. D
10. To prove triangles are congruent when you know two pairs of congruent corresponding sides, you can use or

Underline the correct word to complete the sentence.
11. The Given states and the diagram shows that there are one / two / three pairs of congruent sides.
12. Give a reason for each statement of the proof.

Statements

1) $\overline{B A} \cong \overline{D A}$
2) $\overline{C A} \cong \overline{E A}$
3) $\angle C A B \cong \angle E A D$
4) $\triangle C A B \cong \triangle E A D$
5) $\angle C \cong \angle E$

Reasons

1) \qquad
2) \qquad
3) \qquad
4) \qquad
5) \qquad
\qquad
\qquad Class \qquad Date \qquad

4-4
 Additional Problems
 Using Corresponding Parts of Congruent Triangles

Problem 1

Given: $\overline{R S} \cong \overline{U T}, \overline{R T} \cong \overline{U S}$
Prove: $\angle T \cong \angle S$

Problem 2

Given: $\overline{R S} \cong \overline{V S}, \overline{R T} \cong \overline{V U}, \angle R$ and $\angle V$ are both right angles.

Prove: $\angle T \cong \angle U$

\qquad Class \qquad Date \qquad
4-4

ELL Support

Using Corresponding Parts of Congruent Triangles

There are two sets of note cards below that show how to prove $\overline{B D}$ is the perpendicular bisector of $\overline{A E}$. The set on the left has the statements and the set on the right has the reasons. Write the statements and the reasons in the correct order.

Statements

Statements

1)
2)
3)
4)
5)
6)

Reasons

Reasons

Prentice Hall Geometry • Teaching Resources
Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.
\qquad Class \qquad Date \qquad
4-4

ELL Support

Using Corresponding Parts of Congruent Triangles

There are two sets of note cards below that show how to prove $\overline{B D}$ is the perpendicular bisector of $\overline{A E}$. The set on the left has the statements and the set on the right has the reasons. Write the statements and the reasons in the correct order.

Statements

Statements

1)
2)
3)
4)
5)
6)

Reasons

Reasons

Prentice Hall Geometry • Teaching Resources
Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

4-6
 Congruence in Right Triangles

Vocabulary

Review

Write T for true or F for false.
\qquad 1. Segments that are congruent have the same length.
\qquad 2. Polygons that are congruent have the same shape but are not always the same size.
\qquad 3. In congruent figures, corresponding angles have the same measure.

- Vocabulary Builder

hypotenuse (noun) hy pAH tuh noos

Related Word: leg

You can prove that two triangles are congruent without having to show that all corresponding parts are congruent. In this lesson, you will prove right triangles congruent by using one pair of right angles, a pair of hypotenuses, and a pair of legs.

Use the information in the Take Note for Exercises 10-12.

10. How do the triangles in the Take Note meet the first condition in Exercise 9? Explain.
\qquad
\qquad
11. How do the triangles in the Take Note meet the second condition in Exercise 9? Explain.
\qquad
\qquad
12. How do the triangles in the Take Note meet the third condition in Exercise 9? Explain.
\qquad
\qquad

Got It? Given: $\angle P R S$ and $\angle R P Q$ are right angles, $\overline{S P} \cong \overline{Q R}$ Prove: $\triangle P R S \cong \triangle R P Q$
13. Complete each step of the proof.

HL Theorem
$\triangle P R S \cong \triangle$

Problem 2 Writing a Proof Using the HL Theorem

Got It? Given: $\overline{C D} \cong \overline{E A}, \overline{A D}$ is the perpendicular bisector of $\overline{C E}$ Prove: $\triangle C B D \cong \triangle E B A$
14. Circle what you know because $\overline{A D}$ is the perpendicular bisector of $\overline{C E}$.

$\angle C B D$ and $\angle E B A$ are right angles. $\angle C B D$ and $\angle E B A$ are acute angles.
B is the midpoint of $\overline{A D} . \quad B$ is the midpoint of $\overline{C E}$.
15. Circle the congruent legs.

$\overline{A B}$	$\overline{C B}$	$\overline{D B}$	$\overline{E B}$

16. Write the hypotenuse of each triangle.
$\triangle C B D$ $\triangle E B A$
17. Complete the proof.

Statements

1) $\overline{C D} \cong$ Reasons
2) Given
3) $\angle C B D$ and \angle are right $\angle \mathrm{s}$.
4) Definition of \perp bisector
5) $\triangle C B D$ and \triangle are right $\triangle \mathrm{s}$.
6) Definition of right \triangle
7) $\overline{C B} \cong$
8) Definition of \perp bisector
9) $\triangle C B D \cong$ \qquad 5) HL Theorem

Lesson Check - Do you UNDERSTAND?

Error Analysis Your classmate says that there is not enough information to determine whether the two triangles at the right are congruent. Is your classmate correct? Explain.

Write T for true or F for false.

18. There are three right angles.
19. There are two right triangles.
20. There are two congruent hypotenuses.
21. There are no congruent legs.
22. You need to use the Reflexive Property of Congruence.
23. $\overline{L J} \cong \overline{L J}$ is given.
24. Do you always need three congruent corresponding parts to prove triangles congruent? Explain.
\qquad
\qquad
25. Is your classmate correct? Explain.
\qquad
\qquad
\qquad
\qquad

Math Success

Check off the vocabulary words that you understand.
hypotenuse
legs of a right triangle
Rate how well you can use the Hypotenuse-Leg (HL) Theorem.

\qquad Class \qquad
\qquad

4-6
 Additional Problems
 Congruence in Right Triangles

Problem 1

Raymond built two triangular supports for a picnic table with the dimensions shown below. Are the supports congruent?
Explain.

Problem 2

Given: $\overline{A D} \cong \overline{C B}, \angle B$ and $\angle D$ are right angles
Prove: $\triangle A B C \cong \triangle C D A$

\qquad Class \qquad
\qquad

4-6 Standardized Test Prep
 Congruence in Right Triangles

Multiple Choice

For Exercises 1-4, choose the correct letter.

1. Which additional piece of information would allow you to prove that the triangles are congruent by the HL theorem?
(A) $m \angle D F E=40$
(C) $\overline{A B} \cong \overline{D E}$
(B) $m \angle F=m \angle A B C$
(D) $\overline{A C} \cong \overline{D F}$

2. For what values of x and y are the triangles shown congruent?
(F) $x=1, y=4$
(H) $x=4, y=1$
(G) $x=2, y=4$
(I) $x=1, y=3$

3. Two triangles have two pairs of corresponding sides that are congruent. What else must be true for the triangles to be congruent by the HL Theorem?
(A) The included angles must be right angles.
(B) They have one pair of congruent angles.
(C) Both triangles must be isosceles.
(D) There are right angles adjacent to just one pair of congruent sides.
4. Which of the following statements is true?
(F) $\triangle B A C \cong \triangle G H I$ by SAS.
(G) $\triangle D E F \cong \triangle G H I$ by SAS.
(H) $\triangle B A C \cong \triangle D E F$ by HL.

(1) $\triangle D E F \cong \triangle G H I$ by HL.

Extended Response

5. Are the given triangles congruent by the HL Theorem? Explain.

\qquad
\qquad Date \qquad

4-6

ELL Support

Congruence in Right Triangles

The column on the left shows the steps used to prove that $\overline{A B} \cong \overline{E D}$. Use the column on the left to answer each question in the column on the right.

$\begin{aligned} & \text { Problem } \\ & \text { Given: } C \text { is the } \text { in Right Triangles } \\ & \text { midpoint of } \overline{A E} \\ & \text { and } \overline{B D} \\ & \text { Prove: } \overline{A B} \cong \overline{E D} \end{aligned}$	1. What is the definition of the midpoint of a line segment? \qquad \qquad \qquad			
1) C is the midpoint of $\overline{A B} \\| \overline{D E}$ and $\overline{B D}$; $\overline{A B} \\| \overline{D E} ; m \angle B=90$ Given	2. How do you know that $\overline{A B} \\| \overline{D E}$ and $m \angle B=90$?			
2) $\overline{A C} \cong \overline{E C} ; \overline{B C} \cong \overline{D C}$ Definition of midpoint	3. What does the symbol \cong between two line segments mean?			
3) $\angle B=\angle D$ Alternate Interior Angles Theorem	4. What does the word interior mean?			
4) $\angle B$ and $\angle D$ are right angles. Definition of a right angle	5. What is the measure of $\angle D$?			
5) $\triangle A B C \cong \triangle E D C$ Hypotenuse-Leg (HL) Postulate	6. What information is necessary to apply the HL Postulate?			
6) $\overline{A B} \cong \overline{E D}$ Corresponding parts of congruent	7. What are the corresponding angles and sides for $\triangle A B C$ and $\triangle E D C$?			

Congruence Postulates: SSS, ASA,SAS, AAS, and HL

 © 2013 Kuta Software LLC. All rights reserved.
State if the two triangles are congruent. If they are, state how you know.

1)

3)

5)

7)

9)

2)

4)

6)

8)

10)

11)

12)

14)

16)

18)

20)

17)
13)

15)

19)

21)

22)

23)

24)

25)

27)

28)

29)

30)

31)

32)

33)

34)

35)

36)

37)

38)

39)

40)

4-7
 Congruence in Overlapping Triangles

Vocabulary

Review

1. Circle the common side of $\triangle A B C$ and $\triangle A D C$.

$\overline{A B}$	$\overline{A C}$	$\overline{A D}$	$\overline{B C}$

2. Circle the common side of $\triangle X W Z$ and $\triangle Y W Z$.

$\overline{W Z}$	$\overline{W X}$	$\overline{W Y}$	$\overline{Z Y}$

3. Circle the common side of $\triangle R S T$ and $\triangle R P T$.

| $\overline{R P}$ | $\overline{R S}$ | $\overline{R T}$ |
| :--- | :--- | :--- | :--- |

- Vocabulary Builder

overlapping (adjective) oh vur LAP ing
Other Word Form: overlap (noun)
Definition: Overlapping events or figures have parts in common.
Math Usage: Two or more figures with common regions are overlapping figures.

Use Your Vocabulary

Circle the common regions of the overlapping figures in the diagram at the right.
4. $\triangle F G D$ and $\triangle C B E$
$\triangle A B G$
$\triangle A C F$
$\triangle E H D$
$\triangle G H B$
5. $\triangle B E C$ and $\triangle H E D$

$$
\triangle B E C \quad \triangle G B H \quad \triangle G D F \quad \triangle H E D
$$

6. $\triangle A C F$ and $\triangle A B G$
$\triangle A B G \quad \triangle A C F \quad \triangle G B H \quad \triangle E H D$
7. $\triangle A C F$ and $\triangle G B H$
$\triangle A B G \quad \triangle A C F \quad \triangle G B H \quad \triangle H E D$

Problem 1 Identifying Common Parts

Got It? What is the common side in $\triangle A B D$ and $\triangle D C A$?
8. Separate and redraw $\triangle A B D$ and $\triangle D C A$.

9. You drew twice, so the common side is

Problem 2 Using Common Parts

Got li? Given: $\triangle A C D \cong \triangle B D C$
Prove: $\overline{C E} \cong \overline{D E}$
10. Use the information in the problem to complete the problem-solving model below.

Know

Need

Plan
11. Use the justifications below to complete each statement.

Statements

1) $\triangle A C D \cong$
2) $\overline{A C} \cong$
3) $\angle A \cong$
4) $\cong \angle B E D$
5) $\cong \triangle B E D$
6) $\overline{C E} \cong$

Reasons

1) Given
2) Corresponding parts of \cong triangles are \cong.
3) Corresponding parts of \cong triangles are \cong.
4) Vertical angles are congruent.
5) Angle-Angle-Side (AAS) Theorem
6) Corresponding parts of \cong triangles are \cong.
12. How could you use the Converse of the Isosceles Triangle Theorem to prove $\overline{C E} \cong \overline{D E}$?
\qquad
\qquad

Problem 3 Using Two Pairs of Triangles

Got It? Given: $\overline{P S} \cong \overline{R S}, \angle P S Q \cong \angle R S Q$
Prove: $\triangle Q P T \cong \triangle Q R T$
13. Give the reason for each statement in the proof.

Problem 4 Separating Overlapping Triangles

Got It? Given: $\angle C A D \cong \angle E A D, \angle C \cong \angle E$
Prove: $\overline{\boldsymbol{B D}} \cong \overline{\boldsymbol{F D}}$
14. Circle the angles that are vertical angles.

$\angle A D B \quad \angle A D C \quad \angle A D E \quad \angle A D F \quad \angle F D C$
15. Mark the angles that you know are congruent in each pair of separated triangles below.

16. Which triangles are congruent by AAS? Explain.
\qquad
\qquad
\qquad

4-7 Additional Problems
 Congruence in Overlapping Triangles

Problem 1

What is the common side in $\triangle W X Z$ and $\triangle X W Y$?

Problem 2

Given: $\overline{R T} \cong \overline{U S}, \angle U R S$ and $\angle T S R$ are right angles.
Prove: $\angle T \cong \angle U$

\qquad
\qquad
\qquad

4-7
 Additional Problems (continued)
 Congruence in Overlapping Triangles

Problem 3

Given: $\overline{A R} \cong \overline{L R}, \overline{P R} \cong \overline{I R}$
Prove: $\overline{A S} \cong \overline{L S}$

Problem 4

Given: $\overline{A E} \cong \overline{B E}, \angle C \cong \angle D$
Prove: $\triangle A B D \cong \triangle B A C$

\qquad
\qquad Date \qquad

4-7

ELL Support

Congruence in Overlapping Triangles

A student wanted to prove $\overline{E B} \cong \overline{D B}$ given $\angle A E D \cong \angle C D E$. She wrote the statements and reasons on note cards, but they got mixed up.

Use the note cards to write the steps in order.

1. First, \qquad
2. Second, \qquad
3. Third, \qquad
4. Next, \qquad
5. Then, \qquad
6. Then, \qquad
7. Finally, \qquad
\qquad Class \qquad
\qquad

4-7 Standardized Test Prep
 Congruence in Overlapping Triangles

Multiple Choice

For Exercises 1-5, choose the correct letter.

1. What is the common angle of $\triangle P Q T$ and $\triangle R S Q$?
(A) $\angle P Q T$
(C) $\angle S R Q$
(B) $\angle S P T$
(D) $\angle S U T$

Use the following information for Exercises 2-5.
Given: $\triangle Z W X \cong \triangle Y X W, \overline{Z W} \| \overline{Y X}$
Prove: $\triangle Z W R \cong \triangle Y R X$

2. Which corresponding parts statement is needed to prove $\triangle Z W R \cong \triangle Y R X$?
(F) $\angle Z W R \cong \angle Y X R$
(H) $Z W=Y X$
(G) $\angle Z \cong \angle R$
(1) $W X=W X$
3. A classmate writes the statement $\angle Z R W \cong \angle Y R X$ to help prove the congruence of the triangles. What reason should the classmate give?
(A) Given
(B) Angles cut by a bisector are congruent.
(C) Base angles of an isosceles triangle are congruent.
(D) Vertical angles are congruent.
4. After using the congruence statements from Exercises 2 and 3, which statement can be used to prove the triangles congruent?
(F) $\angle Z \cong \angle Y$
(G) $\angle Z W R \cong \angle R Y X$
(H) $\overline{W X} \cong \overline{W X}$
(1) $\overline{W R} \cong \overline{R X}$
5. Which theorem or postulate will prove $\triangle Z W R \cong \triangle Y R X$?
(A) SAS
(B) SSS
(C) ASA
(D) AAS

Short Response

6. In the diagram at the right, which two triangles should be proved congruent first to help prove $\triangle A B F \cong \triangle E D F$?

\qquad
\qquad
\qquad

Do you know HOW?

State the postulate or theorem you would use to prove each pair of triangles congruent. If the triangles cannot be proven congruent, write not enough information.
1.

2.

3.

4.

5.

6.

7.

8.

9.

Find the value of x and y.
10.

11.

13.

14. $\Delta C G I \cong \triangle M P R$. Name all of the pairs of corresponding congruent parts.
\qquad
\qquad Date \qquad

Name a pair of overlapping congruent triangles in each diagram. State whether the triangles are congruent by SSS, SAS, ASA, AAS, or HL.
15. Given: $\overline{L M} \cong \overline{L K} ; \overline{L N} \cong \overline{L J}$

16. Given: $\angle A B C \cong \angle D C B ; \angle D B C \cong \angle A C B$

18. Given: $\overline{H I} \cong \overline{J G}$

Do you UNDERSTAND?

19. Reasoning Complete the following proof by providing the reason for each statement.

Given: $\angle 1 \cong \angle 2 ; \overline{W X} \cong \overline{Z Y}$
Prove: $\angle 3 \cong \angle 4$

Statements

Reasons

1) $\angle 1 \cong \angle 2 ; \overline{W X} \cong \overline{Z Y}$
2) $\overline{W P} \cong \overline{Z P}$
3) $\triangle W X P \cong \triangle Z Y P$
4) $\overline{X P} \cong \overline{Y P}$
5) $\angle 3 \cong \angle 4$

$$
\begin{array}{ll}
\text { 1) } & \frac{?}{\text { 2) }} \\
\frac{?}{?} \\
\text { 3) } & \frac{?}{?} \\
\text { 4) } & \frac{?}{?} \\
\text { 5) } & ?
\end{array}
$$

20. Reasoning Write a proof for the following:

Given: $\overline{B D} \perp \overline{A C}, D$ is the midpoint of $\overline{A C}$.
Prove: $\overline{B C} \cong \overline{B A}$

\qquad
\qquad Date \qquad

Chapter 4 Part B Test

Lessons 4-4 through 4-7

Do you know HOW?

State the postulate or theorem you can use to prove each pair of triangles congruent. If the triangles cannot be proven congruent, write not enough information.

1. A

2.

3. What is $m \angle X$?
a.

b.

4. What is the value of x ?
a.

b.

Write a congruence statement for each pair of triangles. If the triangles cannot be proven congruent, write not enough information.
5.

6.

Prentice Hall Foundations Geometry • Teaching Resources
\qquad Class \qquad Date \qquad
Chapter 4 Part B Test (continued)
Lessons 4-4 through 4-7

Write a congruence statement for each pair of triangles. If the triangles cannot be proven congruent, write not enough information.
7.

8.

Identify any common angles or sides for the indicated triangles.
9. $\triangle A D C$ and $\triangle B D C$

10. $\Delta F H J$ and $\Delta G K J$

Separate and redraw the indicated triangles.
11.

12.

Do you UNDERSTAND?

13. Error Analysis Your friend claims isosceles triangles are congruent if two corresponding sides are congruent. He explains there are only two different lengths of sides, so the third side must always be congruent. Explain the error in his reasoning.
14. Compare and Contrast How can you use the Isosceles Triangle Theorem to prove that all equilateral triangles are also equiangular?
