\qquad
\qquad
\qquad

Geometry with Trigonometry Midterm Review

UNIT 1

1. Q is between P and $R . P Q=(2 w-3) \mathrm{ft}$., $Q R=(4+w) \mathrm{ft}$., and $P R=34 \mathrm{ft}$. Find the value of w. Then find $P Q$ and $Q R$. Draw a diagram to help!

$$
\begin{aligned}
2 w-3+4+w & =34 \\
3 w+1 & =34 \\
3 w & =33
\end{aligned}
$$

$$
P Q=2 w-3
$$

$$
=2(11)-3
$$

$$
=19
$$

$$
Q R=4+\omega
$$

$$
=4+(11)
$$

$$
=115
$$

2. B is between A and C, D is between B and C, and C is between B and $E . A E=28 \mathrm{~cm} ., B C=10 \mathrm{~cm}$., and $A B=D B=$ DC. Find CE. Draw a diagram to help!

$B D=D C=5$
Therefore, $A B=5$.
So, $A C=15$.
$C E=28-15=13$
A) 5
B) 10
C) 12
(D) 13
E) 15
3. Use the diagram to the right. $\angle 1$ and $\angle 2$ are \qquad angles.
(A) complementary
B) supplementary
C) congruent
D) vertical angles
E) a linear pair

4. If $\angle P$ and $\angle R$ are complementary and $m \angle P$ is 4 times the $m \angle R$, find $m \angle P$ and $m \angle R$.

$$
\begin{array}{ll}
m \not \subset P=4(m \nleftarrow R) \quad & m \not \subset P+m \nvdash R=90 \\
& 4(m \not m R)+m \not R R=90
\end{array}
$$

$$
5(m \notin R)=90 \rightarrow m \nsim R=18^{\circ} \rightarrow m \times P=72^{\circ}
$$

For \#5-6, find the coordinates of the midpoint.
5. $C(2,9), D(-2,-1)$

$$
M\left(\left(\frac{2 x-2}{2}, \frac{9+-1}{2}\right)=M(0,4)\right.
$$

6. $E(-3,-3), F(9,-15)$

$$
M\left(\frac{-3+9}{2}, \frac{-3+-15}{2}\right)=M(3,-9)
$$

7. Given $\overline{A B} \cong \overline{B C}, \overline{B C} \cong \overline{C D}$, find the value of x.

$$
\begin{aligned}
\overline{A B} \cong \overline{C D} \quad 5 x-8 & =3 x+20 \\
2 x & =28 \\
x & =14
\end{aligned}
$$

8. In $W X Y Z, \overline{W Z} \cong \overline{Y Z}$ and $\overline{Y X} \cong \overline{Y Z}$.

What is the value of x ?

$\begin{aligned} & \overline{W Z} \cong \overline{Y X} \quad 9 x+14=5 x+54 \\ & 4 x=40 \\ & x=10\end{aligned}$
9. In the diagram, $\overline{A B} \cong \overline{C D}$. Find $C A$.
$7 x+1=9 x-5$
$6=2 x$
$x=3$
$C A=7 x+1+2 x+20$
$=9 x+21$

$$
\begin{aligned}
& =9(3)+21 \\
& =48
\end{aligned}
$$

Complete the following sentences.
10. The intersection of two lines is a \qquad point .
11. The intersection of two planes is a \qquad _.
12. The intersection of a line and a plane is a \qquad .
13. Find the value of x.

$$
\begin{gathered}
x+15+3 x-17=90 \\
4 x-2=90 \\
4 x=92 \\
x=23
\end{gathered}
$$

Use the diagram to the right.

14. What is another name for plane G ?
one possible answer: plane DAF
15. What is another name for line p ?

16. Name the intersection of lines n and q.

17. Name the opposite ray of $\overrightarrow{F B}$.

$$
\overrightarrow{F A}
$$

18. Find the value of x.

$$
\begin{gathered}
8 x-20+x+2+x+2=180 \\
10 x-16=180 \\
10 x=196 \\
x=19.6
\end{gathered}
$$

For \#19 \& 20, use the diagram to the right.

19. Find the value of x :

$$
\begin{aligned}
2 x+3 x-3+3 x-3 & =90 \\
8 x-6 & =90 \\
8 x-96 & \rightarrow x=12
\end{aligned}
$$

20. a) $m \angle C A D=3(12)-3=33$
b) $\begin{aligned} m \angle B A D=\begin{aligned} 5 x-3 & =5(12)-3 \\ & =57\end{aligned}, ~\end{aligned}$

Find the value of \boldsymbol{x} and \boldsymbol{y}.
21.

UNIT 3

$$
\begin{gathered}
\text { 22. } \\
\left.\frac{(2 x+10)^{\circ}}{(4 x+20)^{\circ}}{ }^{\circ} 5 y+25\right)^{\circ}
\end{gathered}{ }^{(2 y)+2)^{\circ}}
$$

23.

$$
4 x=70
$$

24. Find the slope of the line that passes through the following points.

$$
2 y+53+70=180
$$

$x_{1} y_{1}$ and $\quad x_{2} y_{z}$
a. $(1,1)$ and $(4,10)$
$m=\frac{10-1}{4-1}=\frac{9}{3}=3$

$$
m=\frac{-7-5}{2-2}=\frac{-12}{0} \text { undefined }
$$

$7 y=203$
$y=29$
gh the following points.
$\begin{aligned} & x_{1}, y_{2} \quad x_{2} y_{2} \\ & \text { b. }(2,5) \text { and }(2,-7) .\end{aligned}$
$7 y=203$
$y=29$
gh the following points.
$\begin{aligned} & x_{1}, y_{2} \quad x_{2} y_{2} \\ & \text { b. }(2,5) \text { and }(2,-7) .\end{aligned}$

$$
\begin{gathered}
70+4 x+40=180 \\
4 x+110=180
\end{gathered}
$$

$$
\begin{aligned}
& 2 y-17+70+4 x=180 \\
& 2 y+53+4(17 / 2)=180
\end{aligned}
$$

$$
2 y+123=180
$$

Write the equation in slope-intercept form for the line described.

25. Passes through the point $(-5,2)$ and is perpendicular to the line $y=-\frac{5}{6} x+2$.

$$
\begin{array}{ll}
m=\frac{6}{5} \\
p x:(-5,2) & y-y_{1}=m(x-x) \\
y-2=\frac{6}{5}(x--5) \\
y-2=\frac{6}{5}(x+5)
\end{array} \quad \subset \quad y-2=\frac{6}{5} x+6
$$

26. Passes through the point $(8,1)$ and is parallel to the line $y=2 x+4$.

$$
\begin{array}{ll}
m=2 \\
p+:(8,1) & y-y_{1}=m\left(x-x_{1}\right) \\
y-1=2(x-8)
\end{array} \quad \therefore y-1=2 x-16
$$

Use the diagram to determine whether the given angles are congruent or supplementary.
27. $\angle 2$ and $\angle 6$

28. $\angle 3$ and $\angle 5$

29. $\angle 4$ and $\angle 7$
$\frac{\text { supp. }}{(x 7 \text { = } 76, ~ \$ 6 \text { supp to } 44 \text {) }}$

Decide whether the lines are parallel, perpendicular or neither.
30. $y=4 x-3 \quad m=4$
31. $y=2 x+5 \quad m=2$
$y=-\frac{1}{2} x+2 \quad m=-\frac{1}{2}$
perpendicular
32. $y=5 x+7 \quad m=5$
$y=5 x-7 \quad m=5$
parallel
33. $y=-2 x+4 \quad m=-2$
$y=-\frac{1}{2} x-8 \quad m=-1 / 2$

Solve for \boldsymbol{x}.

34.

$$
\begin{gathered}
2 x+5+6 x+15=180 \\
8 x+20=180 \\
8 x=160 \\
x=20
\end{gathered}
$$

35.

$$
\begin{aligned}
4 x-12 & =60 \\
4 x & =72 \\
x & =18
\end{aligned}
$$

$\xrightarrow{\substack{\text { 36. } \\ x^{\left(\frac{1}{2} x+15\right)} x^{0}}}$

$$
\begin{aligned}
2\left(\frac{1}{2} x+15+x\right) & =(180) 2 \\
x+30+2 x & =360 \\
3 x+30 & =368 \\
3 x & =330
\end{aligned}
$$

$$
x=110
$$

Use the diagram of the rectangular prism below to complete each statement.
37. A segment that appears to be parallel to $\overline{F E}: \overline{G D}$ or $\overline{A H}$ or $\overline{B C}$
38. A segment that appears to be perpendicular to $\overline{C D}: \frac{\overline{B C} \text { or } \overline{C H}}{\text { or } \overline{D E} \text { or } \overline{G D}}$
39. A segment that appears to be skew to $\overline{B C}$: \qquad or

40. A plane that appears to be parallel to plane $A B C$: plane FED

Classify the relationship between each pair of angles as alternate interior, alternate exterior, corresponding, or consecutive interior angles.
41. $\angle 6$ and $\angle 10$ are Corresponding angles.
42. $\angle 7$ and $\angle 9$ are alt interior angles.
43. $\angle 8$ and $\angle 9$ are \qquad angles.
44. $\angle 5$ and $\angle 11$ are \qquad angles.

UNIT 4

Classify the following triangles by angles and sides.
45.

46.

47.

48. The vertices of $\triangle A B C$ are at $A(2,3), B(5,1)$, and $C(0,-3)$.
a) Draw a median from vertex B.
start at B, go to midpt. of $\overline{A C}$
midpt of $\overline{A C}:(1,0)$
b) Draw an altitude from vertex C.
start at C, go \perp to $\overline{A B}$
m of $\overline{A B}=\frac{2}{-3} \rightarrow m$ of altitude $=\frac{3}{2}$

49. Determine the possible values for x, if the sides lengths of a triangle are 7 yds., 24 yds., and ($2 x-1$) yds.
$7 \int_{2 x^{-1}}^{24}$
(1) $7+24>2 x-1$
$3 \backslash>2 x-1$
$32>2 x \quad 16>x$
(2) $24+2 x-1>7$ $2 x+23>7$
$2 x>-16$
$x>-8$
(3) $2 x-1+7>24$
(4) $2 x-1>0$
$2 x+6>24$ $2 x>18$
$x>9$
Determine whether it is possible to draw a triangle with sides of the given lengths. Explain.

50. 12, 11, 17
$11+12>17$
$23>17$
Yes the sum of any 2 sides is greater than the $3^{\text {rd }}$.
51. 1, 2, 3

$$
\begin{aligned}
& 1+2>3 \\
& 3>3 x \\
& \text { No the sum of } \\
& \text { land } 2 \text { is not } \\
& \text { greater than } 3 \text {. }
\end{aligned}
$$

52. $9,41,30$

$$
\begin{aligned}
9+30 & >41 \\
39 & >41 x
\end{aligned}
$$

No. The sum of 9
and 30 is not
greater than 41.

Find the value of x.
53.

$4 x+10=5 x-25$
$35=x$
54.

$$
\begin{aligned}
4 x-40 & =x+50 \\
3 x & =96 \\
x & =30
\end{aligned}
$$

55.

$$
3 x+4 x+x=180
$$

$$
\begin{aligned}
& 8 x=180 \\
& x=22.5
\end{aligned}
$$

56.

$$
\begin{aligned}
3 x+5 x-14 & =90 \\
8 x-14 & =90 \\
8 x & =104 \\
x & =13
\end{aligned}
$$

57. $\begin{array}{rc}8 x+\int_{3 x} & \begin{array}{c}8 x+5=2 x+11 \\ 6 x+11\end{array} \\ 6 x=6\end{array}$
58.

$$
\begin{gathered}
x+51+51=180 \\
x+102=180 \\
x=78
\end{gathered}
$$

61. List the sides in order from smallest to largest.
62. Given $\triangle A B C$ and $B C<B A<A C$. List the angles from smallest to largest. (Draw a diagram to help!)

63.

$$
\begin{aligned}
& y=120 \\
& x=30
\end{aligned}
$$

$$
m \nleftarrow A<m \neq c<m \notin B
$$

$m \notin A<m \notin c<m \notin B$
63. Determine if lengths $12,17,9$ can represent the lengths of the sides of a triangle.

$$
12+9>17 \quad \text { Yer. The sum of any } 2 \text { sides is }
$$

$$
21>17
$$

greater than the $3^{\text {rad }}$
64. Identify the special segment (perpendicular bisector, angle bisector, altitude, or median).
a. \qquad
b. \qquad
c. \qquad
d. \qquad
must

UNIT 5
65. Point $P(-2,-11)$ is reflected in the line $y=-1$. What are the coordinates of $P{ }^{\prime}$? horizontal

$$
p(-2,-11) \rightarrow f^{\prime}(-2,9)
$$

66. Find the image of $\triangle A B C$ after the transformation described. Translation: $(x, y) \rightarrow(x, y+1)$; Reflection: in $x=1$.

$$
\begin{aligned}
& A^{\prime}(3,4) \rightarrow A^{\prime}(3,5) \rightarrow A^{\prime \prime}(-1,5) \\
& B^{\prime}(9,4) \rightarrow B^{\prime}(9,5) \rightarrow B^{\prime \prime}(-7,5) \\
& C^{\prime}(6,8) \rightarrow C^{\prime}(6,9) \rightarrow C^{\prime \prime}(-4,9)
\end{aligned}
$$

67. Rotate point $A(-2,5) \ldots$
a. $90^{\circ} \mathrm{cw}$ about the origin

$$
A(-2,5) \rightarrow \sqrt{A^{\prime}(5,2)}
$$

68. Find the angle of rotation that maps P onto P^{\prime}.

$$
120 . \mathrm{cv} 240 \cdot \mathrm{ccw}
$$

b. $180^{\circ} \mathrm{cw}$ about the origin

$$
A(-2,5) \rightarrow A^{\prime}(2,-5)
$$

c. $90^{\circ} \mathrm{ccw}$ about the origin
$A(-2,5) \rightarrow A^{\prime}(-5,-2)$

6 wedges

$$
\frac{360}{6}=60^{\circ}
$$

UNIT 6

69. Given $\triangle A B C \cong \triangle H I J$, complete the statements below. Draw a diagram to help.
a) $\angle I \cong \angle ß$
b) $\overline{C A} \cong \overline{J+1}$
c) $\triangle I H J \cong \triangle B A C$

Is it possible to prove the triangles are congruent? Write yes or no. If possible, tell which congruence postulate or theorem you would use (ASA, SAS, AAS, SSS, or HL).
70.

Yes. AAS or ASA
71.

Yes. sas
72.

73.

No
74.

75. To prove these two triangles congruent by ASA, it must also be given that \qquad .

76. To prove these two triangles congruent by AAS, it must also be given that \qquad .

77. Use the diagram to the right to complete the following.
a. Name the included side between $\angle \mathrm{P}$ and $\angle \mathrm{KLP}$. $\overline{P L}$.
b. Name the included angle between $\overline{J K}$ and $\overline{J L}$. \qquad .
c. Name the included side between $\angle \mathrm{JKL}$ and $\angle \mathrm{JLK}$. \qquad .

78. Complete the proof.

Given: O is the midpoint of $\overline{N P}$
$\angle N \cong \angle P$
Prove: $\overline{S O} \cong \overline{R O}$

79. Complete the proof.

Given: $\overline{A D} \perp \overline{E B}$
Prove: $m \angle E C D=m \angle B C A$

Formulas for Coordinate Geometry

Slope	$m=\frac{y_{2}}{}$$y_{1}$ $x_{2}$$x_{1}$	- $\left(x_{1}, y_{1}\right)=$ a point on the line - $\left(x_{2}, y_{2}\right)=\mathrm{a} 2^{\text {nd }}$ point on the line - $m=$ rise/run
Distance	$d=\sqrt{\left(\begin{array}{ll}x_{2} & x_{1}\end{array}\right)^{2}+\left(\begin{array}{ll}y_{2} & y_{1}\end{array}\right)^{2}}$	- $\left(x_{1}, y_{1}\right)=$ a point on the line - $\left(x_{2}, y_{2}\right)=\mathrm{a} 2^{\text {nd }}$ point on the line - distance $=$ length of segment
Midpoint	$M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$	- $\left(x_{1}, y_{1}\right)=$ a point on the line - $\left(x_{2}, y_{2}\right)=\mathrm{a} 2^{\text {nd }}$ point on the line - Hint: Take the average!
Slope-Intercept Form of a Line	$y=m x+b$	- $m=$ slope - $b=y$-intercept - $(x, y)=$ a point on the line
Point-Slope Form of a Line	$y-y_{1}=m\left(x-x_{1}\right)$	- $\left(x_{1}, y_{1}\right)=$ a point on the line - $m=$ slope - optional to use, but must then change to slope-intercept form

Finding the Missing Side Length of a Right Triangle

Pythagorean Theorem	$a^{2}+b^{2}=c^{2}$

- for right triangles only
- must be given 2 of the 3 side lengths
- $c=$ length of hypotenuse (side opposite right angle)

