Name_

Geometry with Trigonometry Midterm Review

UNIT 1

- 1. *Q* is between *P* and *R*. PQ = (2w 3) ft., QR = (4 + w) ft., and PR = 34 ft. Find the value of *w*. Then find *PQ* and *QR*. Draw a diagram to help!
- 2. *B* is between *A* and *C*, *D* is between *B* and *C*, and *C* is between *B* and *E*. AE = 28 cm., BC = 10 cm., and AB = DB = DC. Find *CE*. Draw a diagram to help!

4. If $\angle P$ and $\angle R$ are complementary and $m \angle P$ is 4 times the $m \angle R$, find $m \angle P$ and $m \angle R$.

E) a linear pair

$$m \not= P = 4 (m \not= R) \qquad m \not\neq P + m \not= R = 90 4 (m \not= R) + m \not= R = 90 5 (m \not= R) = 90 \qquad m \not= R = 18^{\circ} \qquad m \not= P = 72^{\circ}$$

For #5 -6, find the coordinates of the midpoint.

D) vertical angles

- 5. C(2, 9), D(-2, -1) $M\left(\begin{pmatrix} 2+-2\\ -2 \end{pmatrix}, \frac{9+-1}{2} \end{pmatrix} = M\left(0, 4\right)$
- 7. Given $\overline{AB} \cong \overline{BC}$, $\overline{BC} \cong \overline{CD}$, find the value of *x*.

- 6. E(-3, -3), F(9, -15) $\mathcal{M}\left(\frac{-3+9}{2}, -\frac{3+-15}{2}\right) = \mathcal{M}\left(3, -9\right)$
- 8. In WXYZ, $WZ \cong YZ$ and $\overline{YX} \cong \overline{YZ}$. What is the value of x?

Period

Date_

- 9. In the diagram, $\overline{AB} \cong \overline{CD}$. Find CA. $7 \times +1 = 9 \times -5$ $CA = 7 \times +1 + 2 \times + 20$ x = 3 $(a = 2 \times x) = 9(3) + 21$ $\chi = 3$ Complete the following sentences. 10. The intersection of two lines is a $p \circ \overline{M}$. 11. The intersection of two planes is a $p \circ \overline{M}$. 12. The intersection of a line and a plane is a $p \circ \overline{M}$.
- 13. Find the value of x.

$$\begin{array}{c} (x+15)^{\circ} & \chi+15+3x-17=96 \\ & 4x-2=90 \\ & 4x=92 \\ \hline x=23 \end{array}$$

Use the diagram to the right.

14. What is another name for plane G? ONE pessible answer: plane DAF 15. What is another name for line p? CD or DC 16. Name the intersection of lines n and q. B 17. Name the opposite ray of \overline{FB} . \overline{FA}

18. Find the value of x.

$$8 \times -20 + \times +2 + \times +2 = 180$$

 $10 \times -16 = 180$
 $10 \times = 19.6$
 $\times = 19.6$

For #19 & 20, use the diagram to the right.

19. Find the value of x:

$$m = \frac{6}{5} \qquad \begin{array}{c} y - y_{1} = m(x - x_{1}) \\ y - 2 = \frac{6}{5}(x - 5) \\ y - 2 = \frac{6}{5}(x + 5) \end{array} \qquad \begin{array}{c} y - 2 = \frac{6}{5}x + 6 \\ y = \frac{6}{5}x + 8 \end{array}$$

26. Passes through the point (8, 1) and is parallel to the line y = 2x + 4.

$$m=2 \qquad y-y_1=m(x-x_1) \qquad y-1=2x-1/9 \\ p+:(8_1) \qquad y-1=2(x-8) \qquad y=2x-1/9 \\ y=2x-1/9 y=2x$$

Use the diagram to determine whether the given angles are congruent or supplementary.

27. $\angle 2$ and $\angle 6$ $(corr. x^{s})$ 28. $\angle 3$ and $\angle 5$ $(corr. x^{s})$ $(corr. x^{s})$

29. $\angle 4$ and $\angle 7$ <u>5</u>6 7 8 Supp. Supp. (\$7=\$6,\$6 supp to \$4)

Decide whether the lines are parallel, perpendicular or neither.

Use the diagram of the rectangular prism below to complete each statement.

37. A segment that appears to be parallel to \overline{FE} : \overline{GD} or \overline{AH} or \overline{BC} 38. A segment that appears to be perpendicular to \overline{CD} : \overline{BC} or \overline{CH} or \overline{DE} or \overline{GD} 39. A segment that appears to be skew to \overline{BC} : \overline{AE} or \overline{HE} or \overline{GE} or \overline{DE} 40. A plane that appears to be parallel to plane ABC: <u>plane</u> \overline{FED}

Classify the relationship between each pair of angles as *alternate interior*, *alternate exterior*, *corresponding*, or *consecutive interior angles*.

41. $\angle 6$ and $\angle 10$ are <u>Corresponding</u> angles. 42. $\angle 7$ and $\angle 9$ are $\underline{\alpha H}$ interior angles. 43. $\angle 8$ and $\angle 9$ are Consecutive interior angles. 44. 25 and 211 are alt. exterior angles.

UNIT 4

Classify the following triangles by <u>angles</u> and <u>sides</u>.

61. List the sides in order from smallest to largest.

62. Given $\triangle ABC$ and BC < BA < AC. List the angles from *smallest to largest*. (*Draw a diagram to help!*)

= 120

- 30

63. Determine if lengths 12, 17, 9 can represent the lengths of the sides of a triangle.

64. Identify the special segment (perpendicular bisector, angle bisector, altitude, or median).

A(-25)

P

6 wedges

360 = 60°

68. Find the angle of rotation that maps *P* onto *P*'.

$$120$$
 cw 240 ccw

UNIT 6

69. Given $\triangle ABC \cong \triangle HIJ$, complete the statements below. Draw a diagram to help.

a) $\angle I \cong \angle \mathcal{B}$ b) $\overline{CA} \cong \overline{JH}$ c) $\Delta IHJ \cong \Delta \square BAC$

Is it possible to prove the triangles are congruent? Write yes or no. If possible, tell which congruence postulate or theorem you would use (ASA, SAS, AAS, SSS, or HL).

7 DF it must also be given that _ AR

> П В

76. To prove these two triangles congruent by AAS,

77. Use the diagram to the right to complete the following.

a. Name the included side between $\angle P$ and $\angle KLP$. b. Name the included angle between \overline{JK} and \overline{JL} . c. Name the included side between \angle JKL and \angle JLK. $\underline{-}$

78. Complete the proof.

<u>Given</u>: O is the midpoint of \overline{NP} $\angle N \cong \angle P$ <u>Prove</u>: $\overline{SO} \cong \overline{RO}$

Statements	Reasons
1) O is midpoint of NP	1) Given
$\stackrel{2)}{N0} \cong \overline{P0}$	2) If a pt. is the midpt. of a segment, then it divides the deg, into 2 = segments.
3) ZN ≈ ZP	3) Given
4) Z SON Z XROP	4) If 2 x's are vertical X's, then they are =.
$5)$ \triangle SGN \cong \triangle ROP	5) If the AJA of a & are = to the ASA of another &, then the SS are =.
6) So = RO	⁶⁾ If 2 \angle 's are \cong , then all the corresponding parts are \cong .
79. Complete the proof.	
$\underline{\text{Given:}} \underline{AD \perp EB}$ $\underline{Prove:} m \angle ECD = m \angle BCA$	

Statements	Reasons
1) $\overline{AD} \perp \overline{EB}$	1) Given
2) $\angle ECD$ and $\angle BCA$ are rt $\angle s$	2) If 2 seg. are I, then they form right anales.
$^{3)}$ $4ECD \cong ABCA$	3) If angles are right, then they are congruent.
4) $m \angle ECD = m \angle BCA$	4) If 2 x's are \cong , then their measures are equal.

Formulas for Coordinate Geometry

Slope	$m = \frac{y_2 y_1}{x_2 x_1}$	 (x1, y1) = a point on the line (x2, y2) = a 2nd point on the line m = rise/run
Distance	$d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$	 (x1, y1) = a point on the line (x2, y2) = a 2nd point on the line distance = length of segment
Midpoint	$M\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$	 (x1, y1) = a point on the line (x2, y2) = a 2nd point on the line Hint: Take the <u>average</u>!
Slope-Intercept Form of a Line	y = mx + b	 m = slope b = y-intercept (x, y) = a point on the line
Point-Slope Form of a Line	$y-y_1=m(x-x_1)$	 (x1, y1) = a point on the line m = slope optional to use, but must then change to slope-intercept form

Finding the Missing Side Length of a Right Triangle

Pythagorean Theorem	$a^2 + b^2 = c^2$	 for <u>right</u> triangles only must be given 2 of the 3 side lengths
		• c = length of hypotenuse (side opposite right angle)