Georgia Standardized Test Practice Workbook

McDougal Littell

GEONETRY

correlated to the

GEORGIA QUALITY CORE CURRICULUM

and the

GEORGIA HIGH SCHOOL GRADUATION TEST STANDARDS

Geometry

Applying • Reasoning • Measuring

Georgia Geometry Standardized Test Practice Workbook

The Standardized Test Practice Workbook provides practice exercises for every lesson in a standardized test format. Included are multiple-choice, quantitativecomparison, and multi-step problems. The Standardized Test Practice for every lesson is correlated to the Georgia Quality Core Curriculum and to the Georgia High School Graduation Test standards. At the end of the book you will find practice for the Georgia End-of-Course Test.

A HOUGHTON MIFFLIN COMPANY Evanston, Illinois + Boston + Dallas

Copyright © 2001 McDougal Littell Inc. All rights reserved.

Permission is hereby granted to teachers to reprint or photocopy in classroom quantities the pages or sheets in this work that carry a McDougal Littell copyright notice. These pages are designed to be reproduced by teachers for use in their classes with accompanying McDougal Littell material, provided each copy made shows the copyright notice. Such copies may not be sold, and further distribution is expressly prohibited. Except as authorized above, prior written permission must be obtained from McDougal Littell Inc. to reproduce or transmit this work or portions thereof in any other form or by any other electronic or mechanical means, including any information storage or retrieval system, unless expressly permitted by federal copyright law. Address inquiries to Manager, Rights and Permissions, McDougal Littell Inc., P. O. Box 1667, Evanston, Illinois 60204.

ISBN: 0-618-13259-7

123456789-MDI- 04 03 02 01 00

Contents

Chapter Title

1	Basics of Geometry	1–7
2	Reasoning and Proof	8–13
3	Perpendicular and Parallel Lines	14–20
4	Congruent Triangles	21–27
5	Properties of Triangles	28–33
6	Quadrilaterals	34–40
	Cumulative Standardized Test Practice	41–44
7	Transformations	45–50
8	Similarity	51–57
9	Right Triangles and Trigonometry	58–64
10	Circles	65–71
11	Area of Polygons and Circles	72–77
12	Surface Area and Volume	78-84
	Georgia End-of-Course Practice Test	85-88
Ans	wers	A1-A8

.....

GA QCC: 4, 6

Standardized Test Practice

For use with pages 3–9

LESSON

TEST TAKING STRATEGY Read each test question carefully. Always look for shortcuts that will allow you to work through a problem more quickly.

1. *Multiple Choice* Choose the next figure in the pattern.

- **2**. *Multiple Choice* What is the next number in the sequence?
 - 2, -1, -4, -7 . . .
 - (A) -9 (B) -10 (C) 10 (D) -11 (E) -12
- **3.** *Multiple Choice* What is the next number in the sequence?
 - 0, 2, 6, 12 . . .

A 18
B 24
C 20
D 22
E 26

4. *Multiple Choice* What is the next number in the sequence?

5. *Multiple Choice* Choose the next figure in the pattern.

6. *Multiple Choice* The first three objects in a pattern are shown. How many blocks are in the next object?

7. *Multi-Step Problem* Examine the triangular pattern.

$$1$$

$$1 1$$

$$1 2 1$$

$$1 3 3 1$$

- **a**. Predict the next two rows of the triangle.
- **b.** Describe a pattern for the value of a number in each row.
- **c.** Describe a pattern for the number of entries in each row.

GA OCC: 7, 9, 12

LESSON 1.2

Standardized Test Practice

For use with pages 10–16

TEST TAKING STRATEGY Work as quickly as you can through the easier sections but avoid making careless errors on easy questions.

- **1.** *Multiple Choice* What does the symbol \overrightarrow{BC} represent?
 - (A) segment BC (B) line BC
 - **(C)** point B **(D)** ray BC
 - (E) ray CB

Multiple Choice In Exercises 2–6, refer to the diagram below.

- 2. Name a point that is collinear to points *N* and *Z*.
 - (A) P (B) O (C) M
 - **D** P and X **E** O and M
- **3.** Name a point that lies on line *c*.

A	М	B	Р	C	Ζ
	Q	E	0		

- **4.** Name a point that is collinear to points *P* and *Q*.

 - $\textcircled{D} X \qquad \textcircled{E} M \text{ and } Y$
- **5.** Name a point that is coplanar to line *a*.
- **6.** Name three noncollinear points.

D Q, R, O E X, N, P

- 7. Multiple Choice \overrightarrow{AB} and \overrightarrow{BD} intersect at ? $(A \ A \ B \ B \ C \ C$ $(D \ D \ (E) \ none of these$
- **8.** *Multiple Choice* Points *W*, *X*, *Y* and *Z* are not coplanar. What is the intersection of plane *WXY* and *WYZ*?
 - (A) \overrightarrow{WX} (B) \overrightarrow{WY} (C) W and Y
 - **D** The planes do not intersect.
 - (E) Cannot be determined.
- **9**. *Multi-Step Problem* Follow the directions below to sketch the desired shape.
 - **a.** Draw a plane. Label the four corners *A*, *B*, *C*, and *D*, starting at the bottom left and proceeding clockwise.
 - **b.** Draw four parallel lines, \overrightarrow{AE} , \overrightarrow{BF} , \overrightarrow{CG} , and \overrightarrow{DH} , so that each line intersects plane *ABCD* once, and points *E*, *F*, *G*, and *H* are coplanar. Plane *ABCD* and plane *EFGH* are parallel.
 - **c.** Draw \overline{EH} , \overline{HG} , \overline{FG} , and \overline{EF} .
 - **d**. What shape is outlined by the figure?

For use with pages 17–25

GA QCC: 7, 8, 9, 12, 43, 46 **GHSGT:** 9, 19, 20, 35

TEST TAKING STRATEGY Sketch graphs or figures in your test booklet to help you solve the problems. Even though you must keep your answer sheet neat, you can make any kind of mark you want in your test booklet.

- **1.** *Multiple Choice* A rule that is accepted without proof is called a ? .
 - (A) theorem (B) postulate
 - **C** axiom **D** A and B
 - E B and C
- **2.** *Multiple Choice* Find the length of \overline{AC} if *AB* is 6, *BC* is 10, and *B* is between *A* and *C*.
 - ▲ 4
 ▲ 8
 16
 C -4
 60
 6

Multiple Choice In Exercises 3–7, use the diagram below where MQ = 30, MN = 5, MN = NO and OP = PQ.

- M N O P Q
- **3**. Find the length of \overline{OQ} .

A	5	₿	10	\bigcirc	15
D	20	Ē	25		

4. Find the length of \overline{PQ} .

(\mathbf{A})	5	₿	10	C	15
	20	E	25		

5. Find the length of \overline{NO} .

A	5	₿	10	€	15
D	20	Ē	25		

6. Find the length of \overline{NP} .

A	5	(B	10	$\textcircled{\textbf{C}}$	15
	20	(E	25		

7. Which of the statements below are not true?

Copyright © McDougal Littell Inc. All rights reserved.

- 8. *Multiple Choice* Point *H* is between *G* and *I*. Use the segment addition postulate to solve for *x* when GH = 8x + 7, HI = 3x 2, and GI = 38.
 - A
 3
 B
 5
 C
 7

 D
 31
 E
 39
 39
- **9.** *Multiple Choice* In Exercise 8, the length of \overline{HI} is _?___.
 - (A) 3
 (B) 5
 (C) 7
 (D) 31
 (E) 39
- **10.** *Multiple Choice* Use points A(5, 1), B(5, 6), C(1, 4) and D(4, -2) to determine which of the following is true.
 - (A) $\overline{AB} \cong \overline{BC}$ (B) $\overline{AB} \cong \overline{CD}$
 - $\textcircled{D} \quad \overline{AB} \cong \overline{BD} \qquad \textcircled{D} \quad \overline{AC} \cong \overline{AB}$
 - (**E**) $\overline{BC} \cong \overline{CD}$

Quantitative Comparison In Exercises 11–13, choose the statement below that is true about the given values.

- A The value in column A is greater.
- **B** The value in column B is greater.
- C The two values are equal.
- **D** The relationship cannot be determined from the information given.

	Column A	Column B
11.	<i>AB</i> when $A(1, 3)$ and $B(3, -6)$	XY when $X(5, 2)$ and $Y(-1, 4)$
12.	<i>AB</i> when $A(-2, -4)$ and $B(3, 2)$	XY when $X(-5, 3)$ and $Y(-8, -2)$
13.	XZ	XY + YZ

LESSON 1.4

Standardized Test Practice

For use with pages 26–32

GHSGT: 29, 31

GA QCC: 8, 9

TEST TAKING STRATEGY Avoid spending too much time on one question. Skip questions that are too difficult for you, and spend no more than a few minutes on each question.

- **1.** *Multiple Choice* Angle *A* is an obtuse angle for which measure(s)?
 - $\textcircled{A} \quad 0^{\circ} < m \angle A < 90^{\circ}$

 - \bigcirc 90° < $m \angle A$ < 180°

 - (E) $m \angle A = 180^{\circ}$
- **2.** *Multiple Choice* An angle measuring 35° would be a(n) ? .
 - **A** acute angle **B** obtuse angle
 - **C** right angle **D** straight angle
 - (E) adjacent angle
- **3.** *Multiple Choice* Which angle appears to be a right angle?

4. *Multiple Choice* Find $m \angle WYZ$.

- **5.** *Multiple Choice* Find the measure of $m \angle BDC$.
 - **A** 185°
 - **B** 115°
 - **C** 25°
 - **D** 175°

■ 100°

Geometry Georgia Standardized Test Practice Workbook

- **6.** *Multiple Choice* Plot the points A(-6, 4), B(-1, 1) and C(3, 1) in a coordinate plane. Sketch $\angle ABC$. The angle is a(n) ?
 - (A) acute angle (B) obtuse angle
 - **C** right angle **D** straight angle
 - (E) adjacent angle
- *Multiple Choice* Using the same three points in Exercise 6, sketch ∠ACB. The angle is a(n)
 ?___.
 - (A) acute angle (B) obtuse angle
 - **C** right angle **D** straight angle
 - (E) adjacent angle

8. *Quantitative Comparison* Use the following information.

- *D* is interior to $\angle ABE \cdot m \angle ABD = 50^{\circ}$
- *E* is interior to $\angle DBF$ $m \angle EBC = 90^{\circ}$
- *F* is interior to $\angle EBC$ $m \angle ABD = m \angle EBF$

Choose the statement below that is true about the given values.

- (A) The value in column A is greater.
- **B** The value in column B is greater.
- **C** The two values are equal.
- **D** The relationship cannot be determined from the information given.

Column A	Column B
$m \angle ABC$	$m \angle ABE + m \angle EBC$

For use with pages 34-42

GA OCC: 9, 15, 43, 46

GHSGT: 4, 31

TEST TAKING STRATEGY Staying physically relaxed during the SAT is very important. If you find yourself tensing up, put your pencil down and take a couple of deep breaths. This will help you stay calm.

- **1.** *Multiple Choice* Find the midpoint of a segment with endpoints A(3, -2) and B(8, 1).
 - (A) $\left(\frac{5}{2}, -\frac{3}{2}\right)$ (B) $\left(\frac{11}{2}, \frac{1}{2}\right)$ (C) $\left(\frac{11}{2}, -\frac{1}{2}\right)$ (D) $\left(\frac{5}{2}, -\frac{1}{2}\right)$ (E) $\left(\frac{11}{2}, -\frac{3}{2}\right)$
- **2.** *Multiple Choice* Find the midpoint of a segment with endpoints A(-7, 3) and B(3, -3).
 - (A) (-2, -3) (B) (-2, 0)(C) (-5, 0) (D) (2, 0)(E) (-5, -3)
- **3.** *Multiple Choice* Find the coordinates of the other endpoint of a segment with an endpoint of X(13, 5) and midpoint M(8, 3).
 - ▲ (18, 7)
 (18, 1)
 (3, 7)
 (-29, -11)
 (-29, -11)
- **4.** *Multiple Choice* Find the coordinates of the other endpoint of a segment with an endpoint of X(-2, 3) and midpoint M(1, -2).
 - **▲** (4, −7) **■** (−4, 7)
 - **C** (0, -1) **D** (-5, 8)
 - **E** (4, 8)
- **5.** *Multiple Choice* Choose the congruent angles on the triangle shown.
 - $\textcircled{A} \angle A \text{ and } \angle B$
 - \bigcirc $\angle A$ and $\angle C$
 - $\bigcirc \angle B \text{ and } \angle C$
 - **D** \overline{AB} and \overline{AC}
 - (**E**) \overline{AB} and \overline{BC}

6. <i>Mu</i> <i>m∠</i>	<i>ltiple Choi</i> DBC = 28	i ce E 8°, wha	\overrightarrow{BD} bisects at is the m	∠AB(∠ABL	C. If the D?	,
A	14°	₿	28°	\bigcirc	56°	
	62°	E	152°			

7. *Multiple Choice* \overrightarrow{QS} bisects $\angle MQR$. What is the $m \angle MQR$?

8. Multiple Choice \overrightarrow{AB} bisects $\angle CAD$. Find the value of x. (A) 2 (B) 56 (1.1)

Quantitative Comparison In Exercises 9 and 10, use the diagram below where \overrightarrow{BD} bisects $\angle ABC$ and \overrightarrow{BE} bisects $\angle ABD$.

Choose the statement below that is true about the given values. $A = \begin{bmatrix} E \\ 28^{\circ} \end{bmatrix} D$

- A The value in column A is greater.
- **B** The value in column B is greater.
- **C** The two values are equal.
- **D** The relationship cannot be determined.

	Column A	Column B
9.	$m \angle ABE + m \angle EBD$	$m \angle DBC$
10.	$m \angle ABD$	180°

Č

LESSON 1.6

Standardized Test Practice

For use with pages 44–50

GHSGT: 29, 31

TEST TAKING STRATEGY The mathematical portion of the SAT is based on material taught in your high school mathematics courses. One of the best ways to prepare for the SAT is to keep up with your regular studies and do your homework assignments.

Multiple Choice Refer to the diagram below for Exercises 1–3.

, ,

1. Which angles are a linear pair?

- (A) $\angle 1$ and $\angle 2$ (B) $\angle 2$ and $\angle 3$
- $\textcircled{C} \ \ \angle 1 \ \text{and} \ \angle 4 \qquad \textcircled{D} \ \ \angle 4 \ \text{and} \ \angle 5$
- (E) $\angle 3$ and $\angle 5$
- **2.** Which angles are vertical angles?

 - \bigcirc $\angle 3$ and $\angle 5$ \bigcirc $\angle 1$ and $\angle 4$
 - (E) $\angle 4$ and $\angle 5$

3. Which angles are supplementary?

A	$\angle 1$ and $\angle 4$	B	$\angle 4$ and $\angle 5$
~		_	

- \bigcirc $\angle 1$ and $\angle 5$ \bigcirc B and C
- E all of these
- **4.** *Multiple Choice* Two angles are supplementary. One angle has a measure that is five less than four times the other. What is the measure of the larger angle?
 - **(A)** 19 **(B)** 71 **(C)** 143
 - **D** 148 **E** 153

6. *Multiple Choice* Find the value of *x*.

7. *Multiple Choice* Two angles are complementary. One angle has a measure that is twice the other angle. What is the measure of the smaller angle?

(\mathbf{A})	15	B)	30	\bigcirc	45
\bigcirc	60	Ē)	75		

8. *Multiple Choice* Find the value of *y*.

$$(4x - 12)^{\circ} (2x + 8)^{\circ}$$
(4x - 12)^{\circ} (2x + 8)^{\circ}
(7y + 12)^{\circ}
(2x + 8)^{\circ}

Quantitative Comparison In Exercises 9 and 10, use the diagram below and choose the statement below that is true about the given value. The $m \angle 3 = 76^\circ$.

- The value in column A is greater.
 The value in column B is greater.
- C The two values are equal.
- **D** The relationship cannot be determined from the given information.

0	Column A	Column B
9.	$m \angle 3$	$m \angle 1$
10.	$m \angle 4$	The supplement of $\angle 1$

Geometry Georgia Standardized Test Practice Workbook

For use with pages 51-58

5

6 ft

GHSGT: 4, 9, 21, 26, 27,

GA QCC: 12, 37, 46

35

TEST TAKING STRATEGY

Make sure you are familiar with the directions before taking a standardized test. This way, you do not need to worry about the directions during the test.

1. *Multiple Choice* Find the perimeter of the figure.

- 2. *Multiple Choice* Find the circumference of the circle. (Use $\pi \approx 3.14$.)
 - **A** 18.84 ft
 - **B** 37.68 ft
 - **C** 113.04 ft
 - **D** 37.68 ft²
 - **E** 113.04 ft²
- **3**. *Multiple Choice* Find the area of a square with a side of 7 inches.
 - \mathbf{A} 14 in. **B** 28 in^2 **C** 49 in.
 - **D** 49 in^2 **E** 28 in.
- **4**. *Multiple Choice* Find the area of a triangle with a base of 8 m and a height of 4 m.
 - **B** 32 m^2 (**C**) 16 m^2 **A** 19 m **D** 16 m (E) 12 m^2
- **5**. *Multiple Choice* Find the area of a circle with a radius of 9 meters. (Use $\pi \approx 3.14$.)
 - (A) 28.26 m^2 **B** 28.26 m
 - \bigcirc 56.52 m² **D** 56.52 m
 - **(E)** 254.34 m^2

6. *Multiple Choice* Find the area of the figure.

- (A) 50.24 cm^2
- **(B)** 25.12 cm^2
- $(\hat{\mathbf{C}})$ 401.92 cm²
- 200.96 cm^2 D
- 100.48 cm^2 **E**

- 7. *Multiple Choice* Find the area of the figure.
 - A 18.84 square units **B** 9.42 square units
 - \bigcirc 28.26 square units

- 8. *Multiple Choice* Find the area of the rectangle defined by A(2, 1), B(2, 4), C(6, 4)and D(6, 1).
 - **A** 7 square units **B** 14 square units
 - \bigcirc 12 square units \bigcirc 24 square units
 - **E** 9 square units
- **9**. *Multiple Choice* A square with an area of 64 square inches has a perimeter of ? .
 - A 64 in **B** 16 in. **C** 32 in.
 - (E) cannot be determined 128 in.
- **10.** *Multiple Choice* A triangle has an area of 72 square feet and a height of 9 feet. Find its base.
 - **A** 16 ft (\mathbf{B}) 8 ft **C** 32 ft \mathbf{D} 9 ft **(E)** 34 ft
- **11.** *Multi-Step Problem* A rectangular window pane is 40 inches by 50 inches.
 - **a**. Find the area of the window pane.
 - **b**. Find the perimeter of the window pane.
 - **c.** A frame around the window pane is 1.5 inches wide. Find the area and perimeter of the window pane, including the frame. With the frame, by what percent did the area increase?

GA QCC: 5, 6, 9

2.1

Standardized Test Practice

For use with pages 71–78

TEST TAKING STRATEGY When checking your work, try to use a method other than the one you originally used to get your answer. If you use the same method, you may make the same mistake twice.

- 1. *Multiple Choice* What is the if-then form of "A group is a dozen if it has 12 objects?"
 - (A) If a group does not have 12 objects, then it is not a dozen.
 - (B) If a group is not a dozen, then it does not have 12 objects.
 - C If a group has 12 objects, then it is a dozen.
 - A group is a dozen if and only if it has 12 objects.
 - E None of the above
- **2.** *Multiple Choice* What is the inverse of "If water is ice, then the water's temperature is 32°F?"
 - (A) If water's temperature is 32°F, then it is ice.
 - **B** If water is not ice, then its temperature is not 32°F.
 - C If water's temperature is not 32°F, then water is not ice.
 - **D** Water is ice if and only if its temperature is 32°F.
 - E None of the above
- **3.** *Multiple Choice* What is the converse of "If you are hungry, then you did not eat lunch?"
 - (A) If you did not eat lunch, then you are hungry.
 - **B** If you ate lunch, then you are not hungry.
 - **C** If you are not hungry, then you ate lunch.
 - You are hungry if and only if you did not eat lunch.
 - $\textcircled{\textbf{E}} \quad \text{None of the above}$
- **4.** *Multiple Choice* What is the contrapositive of "If x = 3, then 5x 2 = 13?"
 - (A) 5x 2 = 13 if and only if x = 3.
 - **B** If $x \neq 3$, then $5x 2 \neq 13$.
 - **C** If 5x 2 = 13, then x = 3.

- **D** If $5x 2 \neq 13$, then $x \neq 3$.
- E None of the above
- **5.** *Multiple Choice* Which of the following statements is not true?
 - (A) If x = 4, then $x^2 = 16$.
 - **B** If $x^3 = -27$, then x = -3.
 - \bigcirc If $x \neq -3$, then $x^3 \neq -27$.
 - **D** If x = 2, then $x^2 = 4$.
 - (**E**) If $x^2 = 4$, then x = 2.
- **6.** *Multiple Choice* Use the conditional statement "If an angle is obtuse, then the angle measures 98°" to decide which of the following are true.
 - I. The statement is true.
 - II. The converse of the statement is true.
 - III. The contrapositive of the statement is true.
 - (A) I only (B) II only
 - C III only D I and II
 - E I and III
- 7. *Multi-Step Problem* Use Postulate 8 to answer parts (a)–(e).
 - **Postulate 8**: Through any three noncollinear points there exists exactly one plane.
 - **a**. Rewrite Postulate 8 in if-then form.
 - **b.** Write the converse of Postulate 8.
 - c. Write the inverse of Postulate 8.
 - **d.** Write the contrapositive of Postulate 8.
 - **e**. *Critical Thinking* Are the statements you wrote in parts (a)–(d) true?

GA OCC: 4, 6, 8

Standardized Test Practice

For use with pages 79-85

TEST TAKING STRATEGY If you find yourself spending too much time on one test question and getting frustrated, move to the next question. You can revisit a difficult problem later with a fresh perspective.

- Multiple Choice Given that ∠2 ≅ ∠4 and ∠2 ≅ ∠5, which statement about the diagram is not true?
 - (A) $\angle 5 \cong \angle 4$
 - (B) $\angle 6$ and $\angle 2$ are supplementary.
 - **C** $\angle 8$ and $\angle 5$ are supplementary.
 - **D** $\angle 1 \cong \angle 8$
 - (E) $\angle 1$ and $\angle 3$ are supplementary.
- **2.** *Multiple Choice* What is the biconditional form of the statement "If a whitetail deer has antlers, then it is a male deer?"
 - A whitetail deer has no antlers if and only if it is not a male deer.
 - **B** A whitetail deer has antlers if and only if it is a male deer.
 - C If a whitetail deer has no antlers, then it is not a male deer.
 - **D** If a whitetail deer is male, then it has antlers.
 - $\textcircled{\mbox{\bf E}}$ None of the above
- **3**. *Multiple Choice* Which one of the following statements cannot be written as a true biconditional statement?
 - (A) If the sum of two angles is 90°, then they are complementary.
 - (B) If two angles have the same measurement, then they are congruent.
 - **C** If 5x + 7 = 22, then x = 3.
 - **D** If two angles are linear, then they are supplementary.
 - (E) If y lies between x and z, then xy + yz = xz.

- **4.** *Multiple Choice* Which of the following is true about the conditional statement "If $m \angle 1 = 30^{\circ}$ and the $m \angle 2 = 150^{\circ}$, then the angles are supplementary?"
 - I. The statement is true.
 - II. The converse is true.
 - III. The statement can be written as a true biconditional.
 - A I B II C III
 - **D** I and II **E** I, II, and III
- **5.** *Multiple Choice* Which statement below would be a true biconditional statement?
 - (A) If $\angle ABC$ measures 90°, then it is a right angle.
 - **B** If two angles are adjacent, then they share a common side.
 - C If two squares have the same diagonal length, then they have equal sides.
 - D A and C
 - (E) All of the above

Quantitative Comparison In Exercises 6 and 7, choose the statement below that is true about the given quantities.

- A The quantity in column A is greater.
- **B** The quantity in column B is greater.
- **C** The two quantities are equal.
- **D** The relationship cannot be determined from the given information.

	Column A	Column B
6.	The number of lines created by the inter- section of two planes	The number of lines that can be drawn through any one point
7.	The sum of two sup- plementary angles	The sum of two adjacent angles

9

 $\begin{array}{c|c} 1 & 2 & 3 & 4 \\ \hline 5 & 6 & 7 & 8 \\ \hline \end{array}$

LESSON

GA QCC: 4, 5, 6

LESSON

Standardized Test Practice

For use with pages 87–95

GHSGT: 4

TEST TAKING STRATEGY It is important to remember that your SAT score will not solely determine your acceptance into a college or university. Do not put added pressure on yourself to do well. If you are not satisfied with your SAT score, remember you can take it again.

Multiple Choice For Exercises 1–3, let p be "It is raining," let q be "It is thundering," and let r be "We cannot swim."

- **1.** What is $q \rightarrow p$?
 - A If it is raining, then it is thundering.
 - **B** If it is raining, then we cannot swim.
 - **C** If it is thundering, then it is raining.
 - **D** If it is thundering, then we cannot swim.
 - **E** If it is not raining, then it is not thundering.
- **2.** What is the converse of $p \rightarrow q$?
 - **A** If it is thundering, then it is raining.
 - **B** If it is not raining, then it is not thundering.
 - **C** If it is not thundering, then it is not raining.
 - **D** If it is not thundering, then it is raining.
 - **E** If it is thundering, then it is not raining.
- **3.** What is the contrapositive of $r \rightarrow q$?
 - (A) If it is thundering, then we cannot swim.
 - **B** If we can swim, then it is not thundering.
 - **C** If we cannot swim, then it is not thundering.
 - **D** If we can swim, then it is thundering.
 - **E** If it is not thundering, then we can swim.
- **4.** *Multiple Choice* The statement $\sim p \rightarrow \sim r$ could be ? .
 - (A) the inverse of $r \rightarrow p$
 - **B** the inverse of $\sim r \rightarrow \sim p$
 - \bigcirc the contrapositive of $r \rightarrow p$
 - **D** the converse of $r \rightarrow p$
 - (**E**) the contrapositive of $\sim r \rightarrow \sim p$

- **5.** *Multiple Choice* Which law of logic allows the conclusion given the true statement? "If it is Saturday, then Nina's family rents movies. Today is Saturday, therefore Nina concludes her family will rent movies."
 - A Law of Detachment
 - **B** Law of Syllogism
 - **C** Inductive reasoning
 - **D** Deductive reasoning
 - **E** None of the above
- 6. *Multiple Choice* Which law of logic allows the conclusion given the true statement? "For the past 4 weeks the ski club has gone skiing on Friday nights. Wendy concludes that the ski club will go skiing this Friday."
 - A Law of Detachment
 - **B** Law of Syllogism
 - **C** Inductive reasoning
 - **D** Deductive reasoning
 - E None of the above
- 7. *Multi-Step Problem* Let *p* be "You get caught exceeding the speed limit," let q be "You will get a speeding ticket," and let *r* be "You will pay higher insurance rates."
 - **a.** Write $p \rightarrow q$ in words.
 - **b.** Write $q \rightarrow r$ in words.
 - **c.** Write the contrapositive of $p \rightarrow q$ in words and symbols.
 - d. Writing Use the Law of Syllogism and the statements from parts (a) and (b) to write a new conditional statement. How does the Law of Detachment apply?

For use with pages 96–101

GA QCC: 1, 2, 6, 43

GHSGT: 3, 4, 38

TEST TAKING STRATEGY Do not panic if you run out of time before answering all of the questions. You can still receive a high test score without answering every question.

- **1.** *Multiple Choice* Which property of equality matches the conditional statement "If AB = BC and BC = CD, then AB = CD?"
 - Addition property
 - **B** Symmetric property
 - C Reflexive property
 - **D** Substitution property
 - (E) Transitive property
- **2.** *Multiple Choice* Which property of equality matches the conditional statement "If $m \angle X = m \angle Z$, then $m \angle Z = m \angle X$?"
 - Addition property
 - **B** Symmetric property
 - **C** Reflexive property
 - **D** Substitution property
 - (E) Transitive property
- **3.** *Multiple Choice* Solve 5x = -10, then choose the property that applies to the required step.
 - (A) Substitution property
 - **B** Addition property
 - C Division property
 - **D** Distributive property
 - **E** Reflexive property
- **4.** *Multiple Choice* Solve x 7 = 10, then choose the property that applies to the required step.
 - (A) Substitution property
 - **B** Addition property
 - **C** Division property
 - **D** Distributive property
 - **E** Reflexive property

- **5.** *Multiple Choice* Which property of equality matches the conditional statement "If XY + AB = 15 and XY = 5, then AB = 10?"
 - (A) Substitution property
 - **B** Addition property
 - C Division property
 - **D** Distributive property
 - (E) Reflexive property
- 6. *Multiple Choice* Use the Multiplication property of equality to complete "If $m \angle A = 15^\circ$, then $4(m \angle A) = _?_$.
- **(A)** 15° **(B)** 30° **(C)** 45°
- **D** 60° **E** 75°
- 7. *Multi-Step Problem* In the diagram, $m \angle ABE = m \angle EBC$ and $m \angle EBD = m \angle DBC$.

State a reason that makes each statement true.

Α

- **a.** $m \angle EBC = m \angle EBD + m \angle DBC$
- **b.** $m \angle ABE = m \angle EBC$
- **c.** $m \angle ABE = m \angle EBD + m \angle DBC$
- **d.** $m \angle EBD = m \angle DBC$
- **e.** $m \angle ABE = m \angle EBD + m \angle EBD$
- **f.** $m \angle ABE = 2(m \angle EBD)$
- **g.** Writing Use parts (a)–(f) to write an argument for "If $m \angle ABE = m \angle EBC$ and $m \angle EBD = m \angle DBC$, then $m \angle ABE = 2(m \angle EBD)$."

GA OCC: 4, 6, 9

2**.5**

Standardized Test Practice

For use with pages 102-107

GHSGT: 5

TEST TAKING STRATEGY Make sure that you are familiar with the directions before taking a standardized test. This way, you do not need to worry about the directions during the test.

1. *Multiple Choice* In the diagram, $\overline{WX} \cong \overline{YZ}$. Find the length of \overline{XZ} .

5x	(+1	9 <i>x</i> – 3	11			
Ŵ	X	Ŷ	2	Z		
A	11	B	2		C	15
D	4	E	26			

2. *Multiple Choice* In the diagram, $\overline{AB} \cong \overline{DE}$ and $\overline{BC} \cong \overline{CD}$. Find the length of \overline{CE} .

3x	(+ 2	6y - 7	<i>y</i> + 8	11,	x - 6	
Ă	B	Ċ		Ď	Ē	
A	11	B	22		C	10
D	16	E	5			

- **3.** *Multiple Choice* In *KLM*, $\overline{KL} \cong \overline{LM}$, and KL = 8, and KM = 8. Give a reason why \overline{KL} and \overline{KM} are congruent.
 - A Reflexive property
 - **B** Symmetric property
 - C Definition of congruent segments

- **D** Transitive property
- E Addition property
- **4.** *Multiple Choice* In the figure from Exercise 3, $\overline{KL} \cong \overline{LM}$ and $\overline{LM} \cong \overline{KM}$. Give a reason that $\overline{KL} \cong \overline{KM}$.
 - (A) Reflexive property
 - **B** Transitive property
 - **C** Symmetric property
 - **D** Definition of congruent segments
 - (E) Addition property

5. *Multiple Choice* In *WXYZ*, $\overline{WZ} \cong \overline{XY}$. What is the value of *x*?

Quantitative Comparison In Exercises 6–8, use the diagram below to choose the statement that is true about the given value.

- A The value in column A is greater.
- **B** The value in column B is greater.
- **C** The two values are equal.
- **D** The relationship cannot be determined from the given information.

Given: *Y* is the midpoint of \overline{XZ} , $\overline{XW} \cong \overline{ZV}$, and $\overline{XZ} \cong \overline{WV}$.

	Column A	Column B
6.	WY	YV
7.	WV	3(<i>ZV</i>)
8.	WV + ZV	2(XY) + 2(YZ)

LESSON

Standardized Test Practice

C 90°

For use with pages 109–116

GA QCC: 6, 8, 9

GHSGT: 4

TEST TAKING STRATEGY Staying physically relaxed during the SAT is very important. If you find yourself tensing up, put your pencil down and take a couple of deep breaths. This will help you stay calm.

- Multiple Choice Two angles ∠1 and ∠2 are complementary. If ∠1 is 27°, what is ∠2?
 - A 27°
 B 54°
 C 90°
 D 63°
 E 153°
- **2.** *Multiple Choice* Two angles, $\angle 1$ and $\angle 2$, are supplementary to $\angle 3$. If $m \angle 1 = 85^\circ$, then $m \angle 1 + m \angle 3 = _?$.

A	85°	B	170°	C	90°
	265°	E	180°		

3. Multiple Choice What is $m \angle 2$ if $m \angle 1 = 35^{\circ}$.

4. Multiple Choice If $m \angle 3 = 126^\circ$, then $m \angle 2 = \underline{?}$.

5. *Multiple Choice* Solve for *x* in the diagram.

- 6. *Multiple Choice* Solve for y in the diagram. (A) 20 (B) 45 (C) 51 (5x + 2)° 2(y + 6)°(E) 102
- **7.** *Multiple Choice* Given that $\angle 1$ is not a right angle, $\angle 1$ and $\angle 2$ form a linear pair, $\angle 3$ and $\angle 4$ form a linear pair, and $\angle 1$ and $\angle 3$ are vertical angles. Which statement below is *not* true?

B
$$m \angle 3 + m \angle 4 = 180^{\circ}$$

- (**C**) $\angle 2 \cong \angle 4$
- (**D**) $m \angle 2 + m \angle 4 = 180^{\circ}$
- (E) $\angle 1 \cong \angle 3$

Quantitative Comparison In Exercises 8–10, choose the statement that is true about the diagram. In the diagram, $\angle 4 \cong \angle 5$, $m \angle 3 = 40^\circ$, $m \angle 6 = 120^\circ$, and $m \angle 3 + m \angle 5 + m \angle 9 = 180^\circ$.

- B The value in column B is 10 9 5 greater. 7
- C The two values are equal.
- **D** The relationship cannot be determined from the given information.

	Column A	Column B
8.	$m \angle 1$	4(<i>m</i> ∠7)
9.	$m \angle 9$	$m \angle 11$
10.	$2(m \angle 4)$	<i>m</i> ∠10

GA QCC: 8, 9, 11, 12

3.1

Standardized Test Practice

For use with pages 129–134

GHSGT: 29

TEST TAKING STRATEGY Work as quickly as you can through the easier sections, but avoid making careless errors on easy questions.

- 1. *Multiple Choice* In the diagram, how many lines can be drawn through point *X* that are skew to line *a*?
 - (A) 0 (B) 1
 - © 2 D 3
 - E More than 3 $\Huge{}$
- *Multiple Choice* In Exercises 2–5, use the diagram below.

- 2. Which angles are corresponding angles?
 - (A) $\angle 1$ and $\angle 5$ (B) $\angle 4$ and $\angle 6$
 - \bigcirc $\angle 2$ and $\angle 6$ \bigcirc A and B
 - (E) A and C
- 3. Which angles are alternate exterior angles?
 - (A) $\angle 2$ and $\angle 8$ (B) $\angle 2$ and $\angle 7$
 - \bigcirc $\angle 3$ and $\angle 8$ \bigcirc A and B
 - (E) A and C
- 4. Which angles are consecutive interior angles?
 - (A) $\angle 3$ and $\angle 5$ (B) $\angle 4$ and $\angle 6$
 - **(C)** $\angle 3$ and $\angle 7$ **(D)** A and B
 - E A and C
- **5.** What type of angles are $\angle 4$ and $\angle 5$?
 - (A) Corresponding angles
 - **B** Alternate exterior angles
 - C Alternate interior angles
 - **D** Consecutive interior angles
 - E Consecutive exterior angles

14 Geometry

Georgia Standardized Test Practice Workbook

Multiple Choice In Exercises 6–8, use the diagram below. Think of each segment as part of a line.

- (A) \overrightarrow{CD} and \overrightarrow{CA} (B) \overrightarrow{GH} and \overrightarrow{EF} (C) \overrightarrow{HF} and \overrightarrow{CA} (D) A and B
- **E** B and C
- **9**. *Multi-Step Problem* Use the diagram below to answer parts (a)–(d). Think of each segment as part of a line.

- **a.** Name all lines parallel to \overrightarrow{AD} .
- **b.** Name all lines skew to \overrightarrow{FG} .
- **c.** Name all lines perpendicular to \overrightarrow{BF} .
- **d.** *Critical Thinking* If you did not know ∠*ABC* was a right angle, which answers above would be affected?

Copyright © McDougal Littell Inc. All rights reserved.

GA QCC: 6, 9, 12

GHSGT: 29

For use with pages 136–141

TEST TAKING STRATEGY Avoid spending too much time on one question. Skip questions that are too difficult for you, and spend no more than a few minutes on each question.

- **1**. *Multiple Choice* Find the value of *x*. **A** 55 B 35
 - **C** 90 145 **E** 125 55
- **2**. *Multiple Choice* Find the value of *x*.
 - **A** 25 B 50
 - **C** 90 65
 - **E** 155
- 25°
- 3. Multiple Choice b Which of the following must be true if 2 3 $a \perp b?$
 - I. $\angle 1$ and $\angle 2$ are complementary.
 - II. $m \angle 1 + m \angle 2 < 180^{\circ}$
 - III. $m \angle 1 = m \angle 2$
 - A I only **B** II only
 - \bigcirc I and II \bigcirc I and III
 - **E** I, II, and III
- **4**. *Multiple Choice* Find the value of *x*.

5. *Multiple Choice* Find the value of *y* from Exercise 4.

A	35	₿	70	\bigcirc	55
D	110	E	90		

Quantitative Comparison For Exercises 6-8, use the diagram below. Choose the statement that is true about the given values.

A The value in column A is greater.

- B The value in column B is greater.
- **C** The values are equal.
- **D** The relationship cannot be determined from the given information.

	Column A	Column B
6.	$m \angle 2 + m \angle 4$	$m \angle 6$
7.	$m \angle 1 + m \angle 2$	$m \angle 3 + m \angle 6$
8.	<i>m</i> ∠3	<i>m</i> ∠5

Chapter 3

TEST TAKING STRATEGY

Sketch graphs or figures in your test booklet to help you solve the problem. Even though you must keep your answer sheet neat, you can make any kind of mark you want in your test booklet.

Multiple Choice For Exercises 1–4, use the diagram at the right, where $a \parallel b$.

1. Choose the reason

- $\begin{array}{c}
 1 \\
 2 \\
 3 \\
 4 \\
 5 \\
 6 \\
 7 \\
 8 \\
 b
 \end{array}$
- $m \angle 1 = 85^\circ$, then $m \angle 5 = 85^\circ$ " is true.

the statement "If the

- Alternate Interior Angles Theorem
- **B** Alternate Exterior Angles Theorem
- C Consecutive Interior Angles Theorem
- **D** Vertical Angles Theorem
- (E) Corresponding Angles Postulate
- **2.** Choose the reason the statement "If the $m \angle 3 = 55^\circ$, then $m \angle 5 = 135^\circ$ " is true.
 - Alternate Interior Angles Theorem
 - (B) Alternate Exterior Angles Theorem
 - C Consecutive Interior Angles Theorem
 - (D) Vertical Angles Theorem
 - (E) Corresponding Angles Postulate
- **3.** Choose the reason the statement "If the $m \angle 2 = 110^\circ$, then $m \angle 7 = 70^\circ$ " is true.
 - A Alternate Interior Angles Theorem
 - (B) Alternate Exterior Angles Theorem
 - C Consecutive Interior Angles Theorem
 - **D** Vertical Angles Theorem
 - (E) Corresponding Angles Postulate

4. If the $m \angle 6 = 120^\circ$, then the $m \angle 3 = _$?

- **A** 60° **B** 120° **C** 180°
- **D** 90° **E** cannot be determined

5. *Multiple Choice* Which of the following is *not* true when $a \parallel b$?

Quantitative Comparison In Exercises 6–8, use the diagram below where $a \parallel b$ and $x \parallel y$. Choose the statement that is true about the given values.

- (A) The value in column A is greater.
- **B** The value in column B is greater.
- **C** The two values are equal.
- **D** The relationship cannot be determined from the given information.

	Column A	Column B
6.	$m \angle 2$	$m \angle 8$
7.	$m \angle 10 + m \angle 6$	$m \angle 3 + m \angle 12$
8.	$m \angle 4$	$m \angle 14$

For use with pages 150–156

GA OCC: 6, 9, 11, 12

GHSGT: 29

TEST TAKING STRATEGY

When checking your work, try to use a method other than the one you originally used to get your answer. If you use the same method, you may make the same mistake twice.

- 1. Multiple Choice Which postulate or theorem would prove x || y?
 A Consecutive Interior Angles Converse
 - **B** Corresponding Angles Converse
 - **C** Alternate Interior Angles Converse
 - **D** Alternate Exterior Angles Converse
 - (E) Cannot prove $x \parallel y$ with given information

2. Multiple Choice

Which postulate or theorem would prove $a \parallel b$?

Consecutive
 Interior Angles
 Converse

- **B** Corresponding Angles Converse
- C Alternate Interior Angles Converse
- **D** Alternate Exterior Angles Converse
- **(E)** Cannot prove $a \parallel b$ with given information

3. Multiple Choice

Which postulate or theorem would prove $x \parallel y$?

- A Consecutive Interior Angles Converse
- **B** Corresponding Angles Converse
- **C** Alternate Interior Angles Converse
- **D** Alternate Exterior Angles Converse
- (E) Cannot prove $x \parallel y$ with given information

4. *Multiple Choice* What value of *x* would make lines *w* and *v* parallel?

^{5.} *Multiple Choice* Which lines are parallel?

- (E) All of the above
- 6. *Quantitative Comparison* Use the diagram below to find the values of x and y that would make $a \parallel b$.

Choose the statement that is true about the given values.

- (A) The value in column A is greater.
- **B** The value in column B is greater.
- **C** The two values are equal.
- **D** The relationship cannot be determined from the given information.

Column A	Column B
X	у

LESSON

Standardized Test Practice

For use with pages 157–164

TEST TAKING STRATEGY It is important to remember that your SAT score will not solely determine your acceptance into a college or university. Do not put added pressure on yourself to do well. If you are not satisfied with your SAT score, remember that you can take it again.

- **1**. *Multiple Choice* Complete the following to make a true statement. "In a plane, if two lines are ? to the same line, then they are ? to each other."
 - **A** perpendicular, parallel
 - B perpendicular, perpendicular
 - parallel, parallel \bigcirc
 - D parallel, perpendicular
 - (E) None of these
- **2**. *Multiple Choice* Which theorem or 30 postulate shows $J \parallel K?$ -
 - A Alt. Int. 🖄 Converse
 - B Cons. Int. A Converse
 - C Alt. Ext. A Converse
 - **D** Cons. Ext. <u>A</u> Converse
 - € Corresp. ∠ Postulate
- **3**. *Multiple Choice*

Alt. Int. 🖄

- Which theorem or postulate shows $J \parallel K$?
- Converse 🕒 Cons. Int. / Converse
- C Alt. Ext. 🖄 Converse
- D Cons. Ext. 🖄 Converse
- **(E)** Corresp. ∠ Postulate

4. *Multiple Choice* Which of the statements must be true if $a \parallel b$ and $x \parallel y$?

5. Multiple Choice Determine which lines must be parallel.

6. Multiple Choice What value of *x* makes $a \parallel b?$

A 10 B 30 (\mathbf{C}) 50

Κ

70 (E) 90

7. Multi-Step Problem Given $a \parallel b, m \parallel n$, and

GHSGT: 29, 43

GA QCC: 12, 44

For use with pages 165–171

TEST TAKING STRATEGY Read each test question carefully. Always look for shortcuts that will allow you to work through a problem more quickly.

- **1**. *Multiple Choice* Find the slope of the line that passes through (5, 2) and (8, -1).
 - **(B)** -1 **(C)** $-\frac{1}{2}$ **A** 1 $\bigcirc \frac{1}{3}$ **E** 2
- 2. *Multiple Choice* Which equation of the line has a slope of 5 and passes through point (-2, 1)?
 - (A) y = 5x 11 (B) y = 5x 2**(c)** y = 5x - 9 **(b)** y = 5x + 11(E) y = 11x + 5
- **3**. *Multiple Choice* Which equation of the line has a *y*-intercept of 6 and is parallel to $y = -\frac{1}{2}x + 2?$ **(A)** $y = -\frac{1}{2}x - 6$ **(B)** $y = \frac{1}{2}x - 6$ **(C)** $y = -\frac{1}{2}x + 6$ **(D)** $y = \frac{1}{2}x + 6$ **(E)** y = 2x + 6
- **4**. *Multiple Choice* Which equation of the line passes through (3, -2) and is parallel to
 - $y = \frac{2}{3}x?$ **(A)** $y = \frac{2}{3}x - 2$ **(B)** $y = \frac{2}{3}x + 3$ **(C)** $y = \frac{2}{3}x - 4$ **(D)** $y = \frac{2}{3}x$ (E) $y = \frac{2}{3}x + 4$
- 5. *Multiple Choice* Which of the following is an equation of a line parallel to 4y - 8 = 3x? **(A)** $y = -\frac{3}{4}x + 6$ **(B)** $y = \frac{4}{3}x + 2$ **(c)** $y = -\frac{4}{3}x - 1$ **(d)** y = 3x - 4(E) $y = \frac{3}{4}x$

6. *Multiple Choice* Which lines are parallel?

- 7. *Multiple Choice* A line *k* has equation $y = -\frac{2}{3}x + 1$. If $k \parallel i$ and i passes through point (4, 1), what is the equation of *i*? (A) $y = -\frac{2}{3}x + \frac{11}{3}$ (B) $y = -\frac{3}{2}x + 4$
 - **(C)** $y = -\frac{2}{3}x + 4$ **(D)** $y = \frac{2}{3}x + \frac{11}{3}$ (E) $y = -\frac{2}{3}x + 1$

Quantitative Comparison In Exercises 8 and 9, choose the statement below which is true about the given values.

- A The value in column A is greater.
- **B** The value in column B is greater.
- **C** The two values are equal.
- **D** The relationship cannot be determined from the given information.

	Column A	Column B
8.	The slope of the line passing through (7, 5) and (4, 6)	The slope of the line passing through (7, 3) and (11, 2)
9.	The <i>y</i> -intercept of $y = \frac{3}{4}x$	The <i>y</i> -intercept of the line passing through $(-1, 2)$ and $(4, -1)$

3.7

Standardized Test Practice

For use with pages 172–178

GA OCC: 2, 9, 11, 12, 44, 46 **GHSGT:** 43

TEST TAKING STRATEGY Do not panic if you run out of time before answering all of the questions. You can still receive a high test score without answering every question.

- **1.** *Multiple Choice* Which is the slope of a line perpendicular to the line y = -2x + 6?
 - (A) 2 (B) $\frac{1}{2}$ (C) $-\frac{1}{2}$ (D) -6 (E) $-\frac{1}{6}$
- 2. Multiple Choice Which equation of a line is perpendicular to $y = -\frac{2}{5}x - \frac{1}{3}$? (A) $y = -\frac{2}{5}x + 3$ (B) $y = -\frac{5}{2}x + 2$ (C) $y = -\frac{5}{2}x + 3$ (D) y = 3x + 3
 - (E) $y = \frac{5}{2}x + 6$
- 3. Multiple Choice The product of the slopes of two nonvertical perpendicular lines is

 ?
 A 0
 B 1
 C -1

 D 2
 E Cannot be determined

(D) 2 (E) Cannot be determined with given information

4. *Multiple Choice* A line *k* has equation $y = -\frac{8}{11}x + 3$. If $k \perp l$ and *l* passes through point (4, 3), what is the equation of line *l*?

(A)
$$y = \frac{11}{8}x - \frac{5}{2}$$

(B) $y = \frac{8}{11}x + \frac{1}{11}$
(C) $y = \frac{8}{11}x + \frac{5}{2}$
(D) $y = -\frac{11}{8}x + \frac{17}{2}$
(E) $y = \frac{11}{8}x + \frac{17}{2}$

5. *Multiple Choice* A line *i* has equation $y = \frac{1}{2}x$. If $i \perp j$ and *j* passes through point (6, 2), what is the equation of *j*?

A
$$y = -2x + 14$$
 B $y = -2x - 14$

C
$$y = -2x - 10$$
 D $y = -2x + 10$

(E) $y = -\frac{1}{2}x + 10$

- **6**. *Multiple Choice* Which lines are perpendicular?
- (A) $y = \frac{1}{2}x + 6$ $y = -\frac{1}{2}x + 1$ (B) $y = 3x + \frac{1}{3}$ y = 5x - 3(C) $y = \frac{2}{3}x + 3$ $y = -\frac{3}{2}x - 1$ (D) y = 2x + 3 $y = \frac{1}{2}x - 2$
- E None of these
- 7. *Multiple Choice* Which of the following statements are true about lines *w*, *n*, *p*, and *z*?

w:
$$y = \frac{3}{2}x + 2$$

n: $y = \frac{2}{3}x + 6$
p: $y = -\frac{3}{2}x - 3$
z: $y = \frac{2}{3}x + 1$

I. $w \perp p$ II. $n \parallel z$ III. $z \perp p$

- A I only B II only
- C III only D I and II
- E $\,$ II and III $\,$
- 8. Multi-Step Problem
 - **a.** On a coordinate plane, plot points *A*(2, 1) and *B*(5, 2).
 - **b.** Find the equation of the line *x* passing through points *A* and *B*.
 - **c.** Find the equation of the line *y*, perpendicular to line *x* and passing through point *A*.
 - **d.** Find the equation of the line *z*, parallel to line *y* and passing through point *B*.
 - **e**. *Critical Thinking* If the bottom of a rectangle lies along line *x*, and its sides lie on lines *y* and *z*, find the slope of the line representing the top.

For use with pages 194-201

GHSGT: 22, 29, 31

GA OCC: 10, 13

TEST TAKING STRATEGY If you find yourself spending too much time on one test question and getting frustrated, move on to the next question. You can revisit a difficult problem later with a fresh perspective.

- **1**. *Multiple Choice* A triangle with three acute angles and no congruent sides is ? .
 - **A** an equiangular triangle
 - **B** a right triangle
 - **C** an isosceles triangle
 - **D** an obtuse triangle
 - **(E)** an acute scalene triangle
- 2. *Multiple Choice* A triangle with side lengths of 5 cm, 3 cm, and 5 cm is ?
 - **A** an equilateral triangle
 - **B** an obtuse triangle
 - **C** an isosceles triangle
 - **D** an acute triangle
 - **E** a scalene triangle
- **3**. *Multiple Choice* The triangle below can be classified as ? .
 - **A** acute isosceles
 - **B** acute scalene
 - **C** obtuse isosceles
 - **D** obtuse scalene **E** right scalene
- **4**. *Multiple Choice* The triangle below can be classified as ? .
 - **A** acute isosceles
 - **B** acute scalene
 - **C** obtuse isosceles
 - **D** obtuse scalene

35

- **E** right scalene
- **5.** *Multiple Choice* An isosceles triangle has a perimeter of 82 cm. The lengths of the legs of the triangle are represented by (3x + 2) and (5x - 14). Find the length of the base of the triangle.
- \mathbf{A} 8 cm B 16 cm **C** 26 cm E **D** 30 cm 52 cm

6. *Multiple Choice* Find the measure of $\angle BCD.$

7. *Multiple Choice* Find the measure of $\angle 1$.

- 40° A 40° B 70° **C** 80° **D** 140°
- (E) Cannot be determined

8. *Multiple Choice* Find the measure of $\angle 1$.

- 9. *Quantitative Comparison* Choose the statement below which is true about the given number.
 - (A) The value in column A is greater.
 - **B** The value in column B is greater.
 - **C** The two values are equal.
 - **D** The relationship cannot be determined from the given information.

Column A	Column B
$m \angle 1$	<i>m</i> ∠2

LESSON 4.2

Standardized Test Practice

For use with pages 202–210

TEST TAKING STRATEGY One of the best ways to prepare for the SAT is to keep up with your regular studies and do your homework.

1. *Multiple Choice* If $\triangle ABC \cong \triangle XYZ$, which of the following statements below is *not* true?

(A) $\angle B \cong \angle Y$ (B) $\overline{AB} \cong \overline{XY}$

- (**C**) $\angle CBA \cong \angle ZXY$ (**D**) $\overline{AC} \cong \overline{XZ}$
- (E) $\angle BAC \cong \angle YXZ$
- **2.** *Multiple Choice* In the diagram, $\triangle EFG \cong \triangle HIJ$. What is the measure of $\angle H$?

- **3.** *Multiple Choice* In the diagram in Exercise $2, EG = \underline{?}$.
 - (A) HI (B) HJ (C) JI
 - **(D)** FG **(E)** Cannot be determined
- **4.** *Multiple Choice* Given $\angle X \cong \angle N$ and $\angle Z \cong \angle O$, find the value of *x*.

5. *Multiple Choice* Use the diagram in Exercise 4 to find $m \angle Z$.

A	19°	B	38°	C	95°
D	85°	Ð	20°		

6. *Multiple Choice* Given $\angle M \cong \angle B$ and $\angle K \cong \angle C$, find the value of *x*.

Quantitative Comparison In Exercises 7 and 8, use the given information to find the indicated value. Choose the statement below that is true about the given value.

- A The value in column A is greater.
- **B** The value in column B is greater.
- **C** The two values are equal.
- **D** The relationship cannot be determined from the given information.

Given: $ABCD \cong EFGH$

	Column A	Column B
7.	X	у
8.	m∠CBD	m∠GHE

GHSGT: 4, 22

For use with pages 212–219

TEST TAKING STRATEGY Work as quickly as you can through the easier sections, but avoid making careless errors on easy questions.

1. *Multiple Choice* Use the diagram below. Which additional congruence is correct to prove $\triangle ABC \cong \triangle DEF$?

- (A) $\angle B \cong \angle E$ by SAS Congruence Postulate
- **B** $\overline{BC} \cong \overline{FE}$ by SSS Congruence Postulate
- **C** $\angle A \cong \angle D$ by SAS Congruence Postulate
- \bigcirc A or B

LESSON

- **E** B or C
- **2.** *Multiple Choice* Use the diagram below. Which congruence is correct to prove $\triangle XYZ \cong \triangle JKL?$

- (A) $\angle Y \cong \angle K$ by SAS Congruence Postulate
- **(B)** $\overline{XY} \cong \overline{JK}$ by SAS Congruence Postulate
- **(C)** $\overline{ZY} \cong \overline{LK}$ by SAS Congruence Postulate
- D A or B
- E B or C

Multiple ChoiceUse the followingchoices to complete the proofs that $\triangle ABE \cong \triangle DBC$ and $\triangle AED \cong \triangle CDE$.Given: B is the midpoint of \overline{EC} and \overline{AD} .

- (A) Given
- **B** Def. of midpoint
- C Reflexive Prop. of Congruence

- D SSS Congruence Postulate
- (E) SAS Congruence Postulate

Sta	atements	Reasons
a.	$\overline{AE} \cong \overline{CD}$	a. 3.
b.	$\angle AED \cong \angle CDE$	b. 4
c.	$\overline{ED} \cong \overline{ED}$	c. 5.
d.	$\triangle AED \cong \triangle CDE$	d. 6
<u>Sta</u>	atements	Reasons
е.	B is the midpoint	e. 7
	of \overline{AD} and \overline{EC} .	
f.	$\overline{BC} \cong \overline{BE},$	f. 8
	$\overline{AB} \cong \overline{BD}$	
g.	$\triangle ABE \cong \triangle DBC$	g. 9

- **10.** *Multiple Choice* In rectangle *ABCD*, a diagonal is drawn from *B* to *D*. Which statement is not true?
 - (A) $\angle DAB \cong \angle BCD$ (B) $\angle ABD \cong \angle CDB$
 - $\textcircled{D} \quad \overline{AB} \cong \overline{BC} \qquad \textcircled{D} \quad \overline{DB} \cong \overline{DB}$
 - (E) $\angle ADB \cong \angle CBD$
- **11.** *Multiple Choice* In $\triangle MNO$ and $\triangle XYZ$, $\overline{MN} \cong \overline{XY}$ and $\overline{NO} \cong \overline{YZ}$. If the triangles are congruent, what else must be true?

 - $\textcircled{\textbf{C}} \quad \overline{MO} \cong \overline{XZ} \qquad \textcircled{\textbf{D}} \quad \text{A and } \text{C}$
 - (E) All of the above

12. Multi-Step Problem

- **a.** Prove that $\triangle ADF \cong \triangle ADB$.
- **b.** Prove that $\triangle ACD \cong \triangle AED$.
- **c.** Prove that $\triangle BCD \cong \triangle FED$.

For use with pages 220–227

GA QCC: 1, 6, 14, 15, 16 **GHSGT:** 4, 22

TEST TAKING STRATEGY Do not panic if you run out of time before answering all of the questions. You can still receive a high test score without answering every question.

- **1.** *Multiple Choice* Which postulate or theorem can be used to prove that $\triangle ABC \cong \triangle BAD$?
 - A SSS
 - **B** SAS
 - C ASA
 - D AAS
 - (\mathbf{E}) none of the above
- **2.** *Multiple Choice* Which postulate or theorem can be used to prove that $\triangle EFG \cong \triangle IHG$?

- **D** AAS **E** none of the above
- **3.** *Multiple Choice* What is the third congruence needed to prove that $\triangle ABD \cong \triangle CBD$ by AAS?
 - $\textcircled{A} \quad \overline{AB} \cong \overline{BC}$
 - (**B**) $\angle ABD \cong \angle CBD$
 - $\bigcirc \overline{AD} \cong \overline{DC}$

D $\angle DBA \cong \angle CDB$

- **E** B or C
- **4.** *Multiple Choice* What is the third congruence needed to prove that $\triangle MNQ \cong \triangle PNO$ by ASA?

Α

D

- **5.** *Multiple Choice* You are given the following information about $\triangle GHI$ and $\triangle EFD$.
 - I. $\angle G \cong \angle E$ II. $\angle H \cong \angle F$ III. $\angle I \cong \angle D$ IV. $\overline{GH} \cong \overline{EF}$ V. $\overline{GI} \cong \overline{ED}$

Which combination cannot be used to prove that $\triangle GHI \cong \triangle EFD$?

- (A) V, IV, II (B) II, III, V
- **C** III, V, I **D** V, IV, I
- E none of the above
- **6.** *Multiple Choice* Given that $\angle X \cong \angle D$, and $\overline{DE} \cong \overline{XW}$, what is the third congruence needed to prove that $\triangle XWY \cong \triangle DEC$ by ASA?
- E none of the above
- **7.** *Multiple Choice* Given that $\angle G \cong \angle E$ and $\angle I \cong \angle D$, what is the third congruence needed to prove that $\triangle GHI \cong \triangle EFD$ by AAS?
- $\textcircled{\textbf{C}} \quad \overline{HI} \cong \overline{FD} \qquad \textcircled{\textbf{D}} \quad \overline{ED} \cong \overline{GI}$
- E none of the above
- 8. *Multi-Step Problem* In the diagram, $\overline{AB} \parallel \overline{CD}, \overline{CB} \parallel \overline{DE}$, and $\overline{AB} \cong \overline{CD}$.

- **a.** Prove that $\triangle ABC \cong \triangle CDE$.
- **b.** Prove that *C* is the midpoint of \overline{AE} .

GA QCC: 14, 15, 16

GHSGT: 22

For use with pages 229–235

TEST TAKING STRATEGY Make sure that you are familiar with the directions before taking a standardized test. This way, you do not need to worry about the directions during the test.

- **1.** *Multiple Choice* Which postulate or theorem can be used to prove that the triangles are congruent given *M* is the midpoint of \overline{KQ} and $\overline{KL} \parallel \overline{PQ}$?
 - A SSS
 - B SAS
 - C ASA
 - D AAS
 - E AAA
- <
- AAA L
- **2.** *Multiple Choice* Which statement correctly describes the congruence of the triangles in Exercise 1?
 - (A) $\triangle KML \cong \triangle PQM$

 - $\textcircled{C} \quad \triangle KML \cong \triangle QMP$
 - (**D**) $\triangle KLM \cong \triangle PMQ$
 - (E) $\triangle KML \cong \triangle PQM$
- **3.** *Multiple Choice* After proving the triangles congruent in Exercise 1, what reason could you give to prove $\overline{KL} \cong \overline{PQ}$?
 - (A) Vertical Angles Theorem
 - **B** Reflexive Prop. of Congruence
 - **C** Corresp. parts of $\cong \mathbb{A}$ are \cong .
 - D ASA
 - (E) Definition of midpoint
- 4. *Multiple Choice* You want to prove $\overline{BC} \cong \overline{AF}$. As a first step, which pair of triangles would you prove congruent?

 - $\textcircled{C} \quad \triangle BCD \cong \triangle FED$
 - D B or C
 - E Any of the above

 $F \xrightarrow{A} B$ E C Multiple Choice In Exercises 5–16, use the choices below to complete the proof that $\overline{AG} \cong \overline{FE}$.

- (A) Alternate Interior Angles Theorem
- **B** ASA Congruence Postulate
- \bigcirc Corresp. parts of $\cong \mathbb{A}$ are \cong .
- **D** Vertical Angles Theorem
- **E** Definition of Congruence

StatementsReasonsa. $\overline{AB} \parallel \overline{GC}, \overline{GB} \parallel \overline{EC},$ a. Given $\overline{AG} \parallel \overline{BE}, \overline{GF} \cong \overline{FC},$ $\angle AGB \cong \angle FEC$ b. $\angle BFG \cong \angle EFC$ b. 5.

- **b.** $\angle BFG \cong \angle EFC$ **b. 5.** _____ **c.** $\angle BGF \cong \angle ECF$ **c. 6.** _____
- **d.** $\triangle BGF \cong \triangle ECF$ **d.** 7.
- $e. \quad \overline{BG} \cong \overline{EC}$
- **f.** $\angle ABG \cong \angle FGB$ **f.**
- **g.** $m \angle ABG = m \angle FGB$, **g. 10.** _____ $m \angle BGF = m \angle ECF$
- **h.** $m \angle ABG = m \angle ECF$ **h.** Sub. prop. of equality

j. –

e. 8.

9.

12.

- i. $\angle ABG \cong \angle ECF$ i. 11.
- $ABG \cong \triangle FCE$
- **k**. $\overline{AG} \cong \overline{FE}$ **k**. 13.
- **14.** *Multi-Step Problem* In the diagram, $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$.

c. Prove that $\triangle CDG \cong \triangle EDG$.

Chapter

GA OCC: 10, 16, 17

LESSON 4.6

Standardized Test Practice

For use with pages 236–242

TEST TAKING STRATEGY Avoid spending too much time on one question. Skip questions that are too difficult for you, and spend no more than a few minutes on each question.

- **1**. *Multiple Choice* What is the value of *x*? \bigcirc 3 x + 113x + 1**B** 5 **C** 7 **D** 9 2x + 8**(E)** 11 2. Multiple Choice What is the length 5x + 2of a leg? 3x + 4**A** 3 B 17 **C** 12 13 **E** 19 **3**. *Multiple Choice* What are the values of *x* and y? (A) x = 72.5, y = 72.5**B** x = 35, y = 35**C** x = 35, y = 110**D** x = 55, y = 55(E) x = 110, y = 35**4**. *Multiple Choice* What is the value of *x*? A 30 B 60 \bigcirc 90 **D** 100 (E) Cannot be determined 5. *Multiple Choice* Choose the reason the triangles are congruent. A SSS
 - B SAS
 - C AAS
 - D ASA

26

(E) Cannot be proven congruent

6. Multiple Choice Solve for x and y. (A) x = 120, y = 60(B) x = 60,

- y = 60 x = 30, y = 120x = 120, y = 30
- **E** x = 60, y = 120
- **7.** *Multiple Choice* Solve for *x* and *y*.

- **8**. *Multiple Choice* Use the diagram in Exercise 7 to solve for *w* and *z*.
 - (A) w = 145, z = 70 (B) w = 110, z = 55

C
$$w = 110, 70$$
 D $w = 145, z = 55$

(E)
$$w = 70, z = 55$$

- 9. Quantitative Comparison Use the diagram to find the missing values. Choose the statement below that is true about the given number.
 - (A) The value in column A is greater.
 - **B** The value in column B is greater.
 - **C** The two values are equal.
 - **D** The relationship cannot be determined from the given information.

Column A	Column B
$m \angle 1$	$m \angle 3$

Geometry

For use with pages 243-250

GA OCC: 14, 42, 43, 46

GHSGT: 25

TEST TAKING STRATEGY Staying physically relaxed during the SAT is very important. If you find yourself tensing up, put your pencil down and take a couple of deep breaths. This will help you stay calm.

- **1.** *Multiple Choice* An isosceles right triangle has a vertex at (0, 0) and another at (0, 8). If its legs are 8 units, what point below *might* be the third vertex?
 - **A** (8,0) **B** (-8,0)
 - **C** (0, -8) **D** A or B
 - (E) All of the above
- **2.** *Multiple Choice* A rectangle with sides of 3 units and 6 units is placed on a coordinate plane. If one vertex is at (0, 0), which set of points could be the other vertex points?
 - **(**0, 6), (6, 3), (3, 6)
 - **B** (3, 0), (0, 6), (3, 6)
 - **C** (-3, 0), (-3, 6), (0, -6)
 - **D** (3, 0), (0, -6), (-3, -6)
 - E All of the above
- **3.** *Multiple Choice* A right triangle has legs of 8 units and 10 units. Use a coordinate plane to solve for the hypotenuse.

A	$\sqrt{18}$	B	$4\sqrt{5}$	$2\sqrt{41}$
	80	Ē	$3\sqrt{2}$	

4. *Multiple Choice* A rectangle with length *h* and width *k* is placed in a coordinate plane with one vertex at (0, 0). What is a possible point for the vertex diagonal to (0, 0)?

(A)
$$(0, h)$$
 (B) $(h, 0)$ (C) $(0, -k)$
(D) $(h, -k)$ (E) $(-h, 0)$

- 5. *Multiple Choice* Use the diagram in Exercise 6 to find the length of \overline{MP} . *M* is the midpoint of \overline{PQ} .
 - **A** 25 **B** 50 **C** 40
 - **D** 30 **E** 125

6. *Multiple Choice* What are the coordinates of the midpoint *M*?

Quantitative Comparison In Exercises 7 and 8, use the diagram below. Choose the statement below that is true about the given value.

- (A) The value in column A is greater.
- **B** The value in column B is greater.
- **C** The two values are equal.
- **D** The relationship cannot be determined from the given information.

	Column A	Column B
7.	AD	BC + CD
8.	ОВ	OC

For use with pages 264–271

LESSON

Make sure that you are familiar with the directions before TEST TAKING STRATEGY taking a standardized test. This way, you do not need to worry about the directions during the test.

1. *Multiple Choice* In the diagram, \overrightarrow{WY} is the perpendicular bisector of \overline{AB} . What is the value of *x*?

2. *Multiple Choice* Which diagram below allows you to conclude that C is on the perpendicular bisector of \overline{AB} ?

3. *Multiple Choice* In the diagram, $\overrightarrow{KM} \perp \overrightarrow{OQ}$, and $\overline{OP} \cong \overline{PO}$. Find PO.

4. *Multiple Choice* In the diagram, in Exercise 3, \overrightarrow{KM} bisects $\angle OKQ$. Find LM.

A	8	₿	10	12
	13	Ð	15	

Quantitative Comparison In Exercises 5 and 6, choose the statement below that is true about the given values.

- A The value in column A is greater.
- **B** The value in column B is greater.
- **C** The two values are equal.
- The relationship cannot be determined D from the given information.

Given: \overrightarrow{MN} is the perpendicular bisector of \overline{AB} .

	Column A	Column B
5.	AB	NB
6.	AM	МО

GA QCC: 17, 18

GHSGT: 20

Standardized Test Practice

For use with pages 272–278

TEST TAKING STRATEGY Work as quickly as you can through the easier sections, but avoid making careless errors on easy questions.

- Multiple Choice Complete the statement so that it is true. "The point of concurrency of the _____ of a triangle is called the _____ of the triangle."
 - (A) perpendicular bisectors; incenter
 - **B** perpendicular bisectors; circumcenter
 - **C** angle bisectors; circumcenter
 - **D** angle bisectors; inscribecenter
 - E A and C
- **2.** *Multiple Choice* In the diagram, *P* is the circumcenter of $\triangle ABC$. Find the value of *x*.
 - $\begin{array}{c} \textbf{A} & 1 \\ \textbf{B} & 3 \\ \textbf{C} & 9 \\ \textbf{D} & 15 \\ \textbf{E} & 21 \end{array} \qquad \begin{array}{c} B \\ P \\ A \end{array} \qquad \begin{array}{c} B \\ P \\ H \\ F \end{array} \qquad \begin{array}{c} B \\ P \\ F \end{array} \qquad \begin{array}{c} B \\ P \\ F \end{array} \qquad \begin{array}{c} B \\ F \end{array} \qquad \begin{array}{c} B \\ F \\ F \end{array} \qquad \begin{array}{c} B \\ F \end{array} \qquad \begin{array}{c} B \\ F \\ F \end{array} \qquad \begin{array}{c} B \\ F \end{array} \qquad \begin{array}{c} B \\ F \\ F \end{array} \qquad \begin{array}{c} B \\ F \end{array} \qquad \begin{array}{c} B \\ F \\ F \end{array} \qquad \begin{array}{c} B \\ F \end{array} \qquad \begin{array}{c} B \\ F \\ F \end{array} \qquad \begin{array}{c} B \\ F \end{array} \qquad \begin{array}{c} B \\ F \\ F \end{array} \qquad \begin{array}{c} B \\ F \end{array} \qquad \begin{array}{c} E \\ F \end{array} \qquad \begin{array}{c} E \\ F \end{array} \qquad \begin{array}{c} E \\ F \end{array} \end{array} \qquad \begin{array}{c} E \\ F \end{array} \end{array} \qquad \begin{array}{c} E \\ F \end{array} \end{array} \qquad \begin{array}{c} E \\ \end{array} \end{array} \end{array}$ \qquad \begin{array}{c} E \\ F \end{array} \end{array} \qquad \begin{array}{c} E \\ \end{array} \end{array} \end{array} \qquad \begin{array}{c} E \\ F \end{array} \end{array} \qquad \begin{array}{c} E \\ \end{array} \end{array} \end{array} \end{array} \qquad \begin{array}{c} E \\ \end{array} \end{array} \end{array} \qquad \begin{array}{c} E \\ \end{array} \end{array} \end{array} \end{array} \end{array} \qquad \begin{array}{c} E \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \qquad \begin{array}{c} E \\ \end{array} \end{array}

Given: PB = 15; PC = 3x + 6

- **3.** *Multiple Choice* The point of concurrency of the three perpendicular bisectors of an obtuse triangle is _?___ the triangle.
 - A always inside **B** always outside
 - **C** always on **D** sometimes inside
 - (E) sometimes outside
- **4.** *Multiple Choice* The point of concurrency of the three angle bisectors of a right triangle is ? the triangle.
 - (A) always inside (B) always outside
 - C always on D sometimes inside
 - (E) sometimes on

5. *Multiple Choice* In the diagram, the angle bisectors of $\triangle ACE$ meet at point *G*. Find *GD*.

6. *Multiple Choice* In the diagram below, the angle bisectors of $\triangle KLM$ meet at point *N*. Find *NP*.

- **7.** *Multi-Step Problem* A city is planning a new recreational park. They want to locate the new park so that it is equidistant from three large apartment complexes.
 - **a.** What term best describes the point the city is looking for?
 - **b.** The three apartment complexes would be located at (4, 5), (2, 1), and (6, 1) on a coordinate plane. Plot the points and draw the perpendicular bisectors of the triangle formed.
 - **c.** What are the coordinates of the best position for the new park?
 - **d.** If each unit on the coordinate plane is 1 mile, how far is each apartment complex from the park?

GA QCC: 1, 15, 17, 18, 43, 46 **GHSGT:** 4

Standardized Test Practice

For use with pages 279–285

LESSON

TEST TAKING STRATEGY It is important to remember that your SAT score will not solely determine your acceptance into a college or university. Do not put added pressure on yourself to do well. If you are not satisfied with your SAT score, remember that you can take it again.

- **1.** *Multiple Choice* In the diagram, *C* is the centroid of $\triangle XYZ$, $UY \perp XZ$, CW = 3, and CZ = 8. Find *CX*.
- **2.** *Multiple Choice* Use the diagram in Exercise 1. Find *VZ*.
 - (A) $\frac{16}{3}$ (B) 4 (C) 8 (D) 12 (E) 16
- **3.** *Multiple Choice* In the diagram in Exercise 1, if $\overline{XU} \cong \overline{UZ}$, then \overline{UY} is _?_.
 - A an altitude
 - **B** a perpendicular bisector
 - \bigcirc a median

30

- D an angle bisector E all of these
- **4.** *Multiple Choice* What are the coordinates of the centroid of a triangle whose vertices are A(3, 1), B(7, 3), and C(5, 7)?

A $(5, \frac{11}{3})$ **B** $(5, \frac{16}{3})$ **C** (5, 2)**D** $(6, \frac{8}{3})$ **E** $(6, \frac{11}{3})$

- **5.** *Multiple Choice* What is the area of $\triangle ABC$?
 - $\begin{array}{c} \textbf{A} & 50 \\ \textbf{B} & 48 \\ \textbf{C} & 51 \\ \textbf{D} & 42 \\ \textbf{E} & 320 \end{array} \begin{array}{c} B \\ 16 \\ \textbf{C} \end{array}$

- 6. *Multiple Choice* Complete the statement to make a true statement. "The three altitudes of an obtuse triangle <u>?</u> intersect <u>?</u> the triangle."
 - **A** always; inside
 - **B** sometimes; inside
 - **C** always; outside
 - **D** sometimes; outside
 - (E) never; outside

Quantitative Comparison In Exercises 7–9, use the diagram below. Point C is the centroid of $\triangle DEF$, CH = 6, GE = 10, and GF = 15. Choose the statement below that is true about the given value.

- (A) The value in column A is greater.
- **B** The value in column B is greater.
- **C** The two values are equal.
- **D** The relationship cannot be determined from the given information.

	Column A	Column B
7.	DE	DH
8.	GC	CF
9.	CE	CD

For use with pages 287–293

GA QCC: 17, 18, 43

GHSGT: 35

Chapter 5

TEST TAKING STRATEGY Do not panic if you run out of time before answering all of the questions. You can still receive a high test score without answering every question.

- **1.** *Multiple Choice* In the diagram, \overline{UV} and \overline{WU} are midsegments of $\triangle XYZ$. Find *WX*.
- **2.** *Multiple Choice* Use the diagram in Exercise 1 to find *WU*.

A	5	₿	10	\bigcirc	15
	4	Ð	8		

3. *Multiple Choice* Find the coordinates of the endpoints of the midsegment parallel to \overline{AB} .

- **4.** *Multiple Choice* Given the midpoints of a triangle are (7, 4), (5, 6) and (8, 7), which coordinates below are the vertices?
 - **A** (6, 9), (5, 4), (11, 6)
 - **B** (5, 4), (10, 5), (6, 9)
 - **C** (4, 3), (10, 5), (6, 9)
 - **D** (4, 3), (7, 9), (11, 5)
 - **E** (4, 3), (6, 9), (11, 6)

5. *Multiple Choice* Use the diagram to find the perimeter of $\triangle KLM$.

6. *Multiple Choice* Use the diagram below to find *FG*.

Quantitative Comparison In Exercises 7 and 8, use the diagram below. \overline{BD} , \overline{DF} , and \overline{BF} are midsegments of ΔACE . BC = 10, AE = 12. Choose the statement below that is true about the given value.

- A The value in column A is greater.
- **B** The value in column B is greater.
- C The two values are equal.

	Column A	Column B
7.	BD	BF
8.	The perimeter of $\triangle CDB$	The perimeter of $\triangle DEF$

Georgia Standardized Test Practice Workbook
GA QCC: 1, 2, 15, 17, 18, 46 **GHSGT:** 4

Standardized Test Practice

For use with pages 295–301

т

LESSON

TEST TAKING STRATEGY Read each test question carefully. Always look for shortcuts that will allow you to work through a problem more quickly.

1. *Multiple Choice* Use the diagram below to determine which statement is true.

- (A) $m \angle H < m \angle J < m \angle I$
- $\textcircled{B} \quad HI < HJ < JI$
- $\textcircled{C} \quad JI < HJ < HI$
- 2. *Multiple Choice* Which is the shortest side?

В

65

- A AC
- B AB
- C BC

32

- **D** A or C
- (E) cannot be determined A
- **3.** *Multiple Choice* List the sides in order from longest to shortest.

4. *Multiple Choice* A triangle has two sides that have lengths of 8 cm and 14 cm. Which length below could *not* represent the length of the third side?

A	7 cm	₿	13 cm	\bigcirc	18 cm
D	22 cm	Ð	15 cm		

- 5. *Multiple Choice* Which statement below is false? $m = \frac{y^{\circ}}{n - 2}$
 - (A) $m \angle x < m \angle y$
 - **B** $m \angle x + m \angle y > m \angle w$
 - $\bigcirc m \angle y < m \angle w$
 - **D** $m \angle x < m \angle w$
 - (E) $m \angle w > m \angle z$
- **6.** *Multiple Choice* Use the diagram to solve the inequality AB + BC > AC.

Quantitative Comparison In Exercises 7 and 8, use the diagram below. Choose the statement that is true about the given value.

- (A) The value in column A is greater.
- **B** The value in column B is greater.
- \bigcirc The two values are equal.
- **D** The relationship cannot be determined from the given information.

	Column A	Column B
7.	AB	AD
8.	BC	DC

Georgia Standardized Test Practice Workbook

For use with pages 302–308

GA QCC: 17, 18

GHSGT: 29

TEST TAKING STRATEGY

When checking your work, try to use a method other than the one you originally used to get your answer. If you use the same method, you may make the same mistake twice.

1. *Multiple Choice* Use the diagram to determine which of the following is a possible length for \overline{AC} .

2. *Multiple Choice* In the diagram, which of the following is *not* a possible measure for $\angle DCB$?

3. *Multiple Choice* Use the Hinge Theorem and the diagram below to choose the statement which must be true.

- (A) $m \angle 1 > m \angle 3$
- **B** $m \angle 1 = m \angle 2$
- $\bigcirc m \angle 1 > m \angle 2$
- (**D**) $m \angle 1 < m \angle 2$
- (E) $m \angle 4 > m \angle 2$

4. *Multiple Choice* Use the diagram below and the given information to choose the conclusion that is true.

5. *Multiple Choice* Use the diagram and the Hinge Theorem to choose the inequality that correctly describes the restriction on the value of *x*.

6. Multi-Step Problem

- **a.** Sketch an acute triangle *ABC* with $m \angle A = 45^{\circ}$ and $m \angle C = 55^{\circ}$.
- **b.** Draw an exterior angle adjacent to \overline{BC} with vertex at *C*, and label it $\angle BCD$.
- **c.** Determine $m \angle BCD$.
- **d**. What is the shortest side of $\triangle ABC$?
- e. Use your diagram as a reference to write the first statement of an indirect proof of "the measure of an exterior angle of a triangle is equal to the sum of the two nonadjacent interior angles."

For use with pages 322–328

TEST TAKING STRATEGY Do not panic if you run out of time before answering all of the questions. You can still receive a high test score without answering every question.

Multiple Choice Which figure below is a polygon?
 I. A II. III.

(E) none of these

LESSON

- 2. *Multiple Choice* A polygon with 7 sides is called a _____.
 - (A) nonagon (B) dodecagon
 - C heptagon D hexagon
 - E decagon
- **3.** *Multiple Choice* An octagon has how many sides?
 - A
 5
 B
 6
 C
 7

 D
 8
 E
 9
- **4.** *Multiple Choice* The figure below is a _____.
 - (A) convex hexagon
 - **B** convex heptagon
 - **C** concave heptagon
 - **D** concave hexagon
 - (E) concave pentagon
- 5. *Multiple Choice* The polygon below is best described as _____.
 - (A) an equilateral pentagon
 - **B** an equiangular pentagon
 - **C** a regular pentagon
 - **D** an equilateral hexagon
 - (E) an equiangular hexagon

Geometry

34

Georgia Standardized Test Practice Workbook

Find $m \angle A$.

6. Multiple Choice

- **8.** *Quantitative Comparison* Choose the statement below that is true about the given value. Given: $ABCF \cong EDCF$
 - (A) The value in column A is greater.
 - **B** The value in column B is greater.
 - **C** The two values are equal.
 - **D** The relationship cannot be determined from the given information.

Column A	Column B	
X	У	

For use with pages 330–337

GA OCC: 1, 15, 17, 18, 19, 46 **GHSGT:** 4, 29, 30

TEST TAKING STRATEGY If you find yourself spending too much time on one test question and getting frustrated, move on to the next question. You can revisit a difficult problem later with a fresh perspective.

- **1.** *Multiple Choice* Opposite angles of a parallelogram must be _____?___.
 - (A) complementary (B) supplementary
 - \bigcirc congruent \bigcirc A and C
 - **E** B and C
- **2.** *Multiple Choice* What are the values of the variables in parallelogram *ABCD*?

(A) x = 40, y = 60 (B) x = 30, y = 40(C) x = 60, y = 20 (D) x = 20, y = 60

(E) x = 40, y = 30

- **4.** *Multiple Choice* In the parallelogram in Exercise 3, what is the length of \overline{MN} if the perimeter is 70 units?
 - **A** 20 units **B** 15 units
 - \bigcirc 10 units \bigcirc 30 units
 - E 50 units
- **5.** *Multiple Choice* Which statement is not always true about parallelogram *WXYZ*?

 - (**B**) $\overline{XY} \cong \overline{WZ}$
 - \bigcirc $\angle WXY \cong \angle YZW$
 - (**D**) $\overline{WY} \cong \overline{XZ}$

- (E) x = 15, y = 8
- **7.** *Multiple Choice* Three coordinate points of a parallelogram are (2, 1), (4, 4), and (7, 4). Find the fourth vertex.
 - (A) (5, 1)
 (B) (2, 7)
 (C) (5, 4)
 (D) (5, 7)
 (E) (1, 7)
- **8.** *Quantitative Comparison* Use the information given. Choose the statement below that is true about the given value.
 - A The value in column A is greater.
 - **B** The value in column B is greater.
 - **C** The two values are equal.
 - **D** The relationship cannot be determined from the given information.

Given: *ABCD*, *DEFG*, and *FHIJ* are parallelograms.

GA QCC: 6, 17, 18, 19, 46 GHSGT: 4, 29, 30

For use with pages 338-346

- 1. *Multiple Choice* Which additional piece of information do you need to prove ABCD is a parallelogram?
 - (A) $\overline{AB} \cong \overline{DC}$

LESSON

- **(B)** $\overline{AD} \cong \overline{BC}$
- $\bigcirc \overline{AB} \parallel \overline{DC}$
- \bigcirc A or B
- (\mathbf{E}) B or C
- **2.** *Multiple Choice WXYZ* is a quadrilateral. Which information would not allow you to conclude that WXYZ is a parallelogram?

D

- (A) $\overline{WX} \cong \overline{ZY}, \overline{WZ} \cong \overline{XY}$
- **(B)** $\angle W \cong \angle Y, \angle X \cong \angle Z$
- \bigcirc $\overline{WX} \parallel \overline{ZY}, \overline{WZ} \cong \overline{XY}$
- $\textcircled{D} \quad \overline{WZ} \parallel \overline{XY}, \ \overline{WX} \parallel \overline{ZY}$
- (E) $\overline{WZ} \cong \overline{XY}, \overline{WZ} \parallel \overline{XY}$
- **3**. *Multiple Choice* To prove that *ABCD* is a parallelogram, you would have to first prove $\triangle ACD \cong \triangle CAB$ using the ?

- A SAS Congruence Postulate
- **B** SSS Congruence Postulate
- **C** AAS Congruence Postulate
- **D** ASA Congruence Postulate
- Œ none of these

36

4. *Multiple Choice* What value of *x* will make the quadrilateral a parallelogram?

5. *Multiple Choice* Given that $\triangle AED \cong \triangle CEB$, ABCD would be a parallelogram because 9

- A both pairs of opposite sides are parallel
- B the diagonals bisect each other
- **C** both pairs of opposite sides are congruent
- **D** both pairs of opposite angles are congruent
- **(E)** one pair of opposite sides is congruent and parallel
- 6. *Multi-Step Problem* Consider the four points A(5, 4), B(6, 2), C(3, 1), and D(8, 5).
 - **a.** Show that *ABCD* is a parallelogram by showing that opposite sides are parallel.
 - **b.** Show that *ABCD* is a parallelogram by showing that opposite sides are congruent.
 - **c.** Show that *ABCD* is a parallelogram by showing that the diagonals bisect each other. Label the intersection of diagonals \overline{AB} and \overline{CD} point E.

For use with pages 347-355

GA QCC: 17, 18, 19

GHSGT: 30

TEST TAKING STRATEGY When checking your work, try to use a method other than the one you originally used to get your answer. If you use the same method, you may make the same mistake twice.

- **1.** *Multiple Choice* What special type of quadrilateral has the vertices A(-2, 1), B(2, -3), C(2, 1), and D(-2, -3)?
 - (A) rhombus (B) square
 - **C** rectangle **D** parallelogram
 - E none of these
- **2.** *Multiple Choice WXYZ* is a rhombus. What is the value of *x*?

3. *Multiple Choice* In the diagram below, *PQRS* is a rhombus. What are the values of *x* and *y*?

x + 5

S

2x

- (A) $x = \frac{5}{3}, y = 4$
- **B** x = 5, y = 2
- **C** x = 10, y = 4
- **D** x = 5, y = 6
- (E) x = 10, y = 6
- *R Multiple Choice* The diagonals of a rectangle must <u>?</u>.
 - (\mathbf{A}) bisect each other (\mathbf{B}) be perpendicular
 - \bigcirc be congruent \bigcirc A and B
 - (E) A and C
- **5.** *Multiple Choice* If a quadrilateral has four equal sides, then it must be a _____.
 - A rectangle B square
 - D rhombus D A and B
 - **E** B and C
- Copyright © McDougal Littell Inc. All rights reserved.

same method, you may make the same mistake twice.al type of6. Multiple ChoiceIn rectangle ABCD,

D 9

- $AB = \frac{1}{2}x + 6 \text{ and } CD = \frac{5}{2}x 2.$ Find the value of x. (A) 4 (B) $\frac{3}{4}$ (C) 5
- D 2 (E) ³/₃
 7. *Multiple Choice* The perimeter of a square
- *MNOP* is 72 inches, and NO = 2x + 6. What is the value of x? (A) 15 (B) 12 (C) 6
- **8.** *Multiple Choice KLMN* is a rectangle. Find the values of *x* and *y*.

18

E

$$M = \frac{1}{5} \frac{1}{5}$$

Quantitative Comparison In the diagram, ACEG is a rhombus, BDFH is a rectangle, and $\triangle BCH$ is an equilateral triangle. For Exercises 9 and 10, choose a statement below that is true about the given value F

- A The value in column A
- \bigcirc is greater.
- **B** The value in column B is greater.
- \mathbf{c} The two values are equal.
- The relationship cannot be determined
 from the given information.

9.	Column A	Column B
10.	m∠BAI	m∠ICD
	BC	GF

GA OCC: 17, 18, 19

6.5

Standardized Test Practice

For use with pages 356–363

GHSGT: 30

TEST TAKING STRATEGY

Staying physically relaxed during the SAT is very important. If you find yourself tensing up, put your pencil down and take a couple of deep breaths. This will help you stay calm.

- **1.** *Multiple Choice* In trapezoid *KLMN*, \overline{KL} and \overline{NM} are ___? ___.
 - (A) legs
 - B bases
 C consecutive angles
 D diagonals
 - E none of these
- **2.** *Multiple Choice* In the isosceles trapezoid *ABCD*, find $m \angle B$.

- **3.** *Multiple Choice* Which statements below must be true if *ABCD* is an isosceles trapezoid with a leg \overline{AD} ?
 - I. $\overline{AB} \cong \overline{DC}$ III. $\overline{AB} \parallel \overline{DC}$ II. $\overline{AD} \cong \overline{BC}$ IV. $\overline{AD} \parallel \overline{BC}$ II. and IIII and IV
 - C II and III D II and IV
 - **E** I, II, and III
- **4.** *Multiple Choice* ABCD is a trapezoid. Find the length of midsegment \overline{EF} .

5. *Multiple Choice* Find the length of \overline{KL} in the trapezoid below.

- 6. *Multiple Choice* What special type of quadrilateral has the vertices A(6, 3), B(2, 5), C(3, 2), and D(5, 6)?
 - A square B rectangle
 - C rhombus D trapezoid
 - **E** kite
- **7.** *Multiple Choice* The midsegment of a trapezoid is 9 cm long. What choice below is *not* a possible choice for the lengths of the bases?

A	2, 16	₿	5,4	8, 10
D	6, 12	Œ	5, 13	

- **8**. *Quantitative Comparison* In the diagram, *DEFG* is a kite. Choose the statement below that is true about the given value.
 - (A) The value in column A is greater.
 - **B** The value in column B is greater.
 - \bigcirc The values are equal.
 - **D** The relationship cannot be determined with the given information.

Geometry Georgia Standardized Test Practice Workbook

For use with pages 364–370

GA QCC: 17, 18, 19

GHSGT: 29

TEST TAKING STRATEGY Avoid spending too much time on one question. Skip questions that are too difficult for you, and spend no more than a few minutes on each question.

R

- **1.** *Multiple Choice* The quadrilateral below is most specifically a ? .
 - A rhombus
 - **B** rectangle
 - **C** kite
 - **D** parallelogram
 - (E) trapezoid
- **2.** *Multiple Choice* A quadrilateral with at least two sides parallel and two congruent sides might be ? .
 - (A) a rhombus
 - **B** an isosceles trapezoid
 - C a kite
 - D A or B
 - E none of these
- **3.** *Multiple Choice* What kind of quadrilateral would meet the conditions of the diagram? *ABCD* is not drawn to scale.
 - A kite
 - **B** rhombus
 - **C** trapezoid
 - **D** square
 - (E) parallelogram
- **4.** *Multiple Choice* What value of *x* would make quadrilateral *ABCD* a trapezoid?

- **5.** *Multiple Choice* Which statements below are always true about a rectangle?
 - I. Both pairs of opposite angles are congruent.
 - II. The diagonals are perpendicular.
 - III. Both pairs of opposite sides are congruent.
 - (A) I (B) II (C) III
 - D I and III E none of these
- **6.** *Multiple Choice* Which statements below are always true about a trapezoid?
 - I. Exactly one pair of opposite sides are congruent.
 - II. Exactly one pair of opposite sides are parallel.
 - III. The diagonals are congruent.
- A I B II C III
- $\textcircled{D} I and II \qquad \textcircled{E} none of these$
- **7.** *Multi-Step Problem* In the diagram, *DEFG* is a rectangle and $\triangle ABC$ is regular.

- **a.** If GE = 10y 2 and $DF = \frac{2}{3}y + 12$, find the value of y.
- **b.** If the midsegment of trapezoid *DECG* is 5 inches, DE = 3x + 2, and GC = 8x 3, find the value of *x*.

39

c. Prove that $\triangle ADG \cong \triangle CEF$.

For use with pages 372–380

TEST TAKING STRATEGY One of the best ways to prepare for the SAT is to keep up with your regular studies and do your homework.

- **1.** *Multiple Choice* Find the area of a square with a perimeter of 30 cm.
 - (A) 225 cm^2 (B) 15 cm^2
 - **C** 30 cm^2 **D** 56.25 cm^2
 - **(E)** 60 cm^2

LESSON

- **2**. *Multiple Choice* Find the area of $\triangle ABC$.
 - (A) 17.5 square units
 - **B** 7.5 square units
 - **C** 30 square units
 - **D** 15 square units

- (E) 9 square units
- 7 A 3 B
- **3.** *Multiple Choice* Find the base length of a triangle with an area of 52 cm^2 and a height of 13 cm.
 - **A** 8 cm **B** 16 cm **C** 4 cm
 - **D** 2 cm **E** 26 cm
- **4.** *Multiple Choice* Find the area of parallelogram *EFGH*.

- (A) 75 square units (B) 112 square units
- **C** 120 square units **D** 56 square units
- (E) 60 square units
- **5.** *Multiple Choice* The area of the rectangle is 60 square units. Find the value of x.

- **6.** *Multiple Choice* The area of the kite is 160 square inches. Find the length of \overline{BD} .
- **7.** *Multiple Choice* Find the area of a trapezoid with vertices at A(0, 0), B(2, 4), C(6, 4), and D(9, 0).
 - (A) 26 square units (B) 13 square units
 - **C** 52 square units **D** 36 square units
 - (E) 18 square units
- **8.** *Multi-Step Problem* A doll house is sketched below. There is no back to the house or roof, but there are sides to both.
 - **a.** Find the area of the walls (including the windows and the doors).
 - b. Find the area of the window openings. The window above the door consists of 5 congruent isosceles triangles.
 - **c.** Find the area of the roof.

- (A) point XB point Y
- \bigcirc point W \overline{WX}
- (\mathbf{E}) none of these
- **2.** *Multiple Choice* Point *B* is between *A* and C. Use the Segment Addition Postulate to solve for x when AB = 5x + 2, AC = 12x + 7, and BC = 26.

A 1 **B** 2 **C** 3

- **D** 4 **E** 5
- **3**. *Multiple Choice* Find the measure of $\angle ABD.$
 - **A** 30°
 - **B** 60°
 - \bigcirc 90° 120°
 - **D** 120° **(E)** 150°
- \overrightarrow{AB} bisects $\angle CAD$. Find 4. Multiple Choice the value of *x*.
 - A 2 B 4 **C** 6 (3x + 6) \bigcirc 8
 - **E** 10
- 5. *Multiple Choice* Find the value of *y*.

- 6. *Multiple Choice* What is the converse of "If there is ice on the lake, then it is cold?"
 - (A) If there is not ice on the lake, then it is not cold.
 - (\mathbf{B}) If it is cold, then there is ice on the lake.
 - **C** If it is not cold, then there is not ice on the lake.
 - **D** There is ice on the lake if and only if it is cold.
 - E none of these
- 7. *Multiple Choice* Which of the following is true about the conditional statement. "If $m \angle 1 = 40^{\circ}$ and the $m \angle 2 = 50^{\circ}$, then the angles are complementary."
 - I. The statement is true.
 - The biconditional is true. Π
 - III. The converse is true.
- (A) I B Π **C** III
- \bigcirc I and II **E** I and III
- **8.** *Multiple Choice* In *HIJK*, $\overline{HK} \cong \overline{IJ}$. What is the value of *x*?

- **9**. *Multi-Step Problem* Let *p* be "You stay up late," q be "You are tired" and r be "You are cranky."
 - **a.** Write $p \rightarrow q$ in words.
 - **b.** Write $q \rightarrow r$ in words.
 - **c.** Write the contrapositive of $p \rightarrow q$ in words and symbols.
 - **d**. *Writing* Use the Law of Syllogism and the statements from parts (a) and (b) to write a new conditional statement.

Cumulative Standardized Test Practice

For use after Chapters 1-6

- **10.** *Multiple Choice* Solve x + 12 = 24, then choose the property that applies to the required step.
 - A Substitution property of equality.
 - **B** Division property of equality.
 - **C** Subtraction property of equality.
- D Distributive property of equality.
 E Reflexive property of equality.
 11. Multiple Choice Two angles are supplemented. tary. If $m \angle 1$ is 67°, what is $m \angle 2$?
 - **A** 67° **B** 23° **C** 46° **D** 134° **(E)** 113°

12. *Multiple Choice* Solve for *x* and *y*.

- (A) x = 21.25, y = 24(3*y* - 15)° **B** $x = 25, y = 41\frac{2}{3}$ **C** x = 22, y = 31.675(x - 4)(*x* + 10)° **D** x = 25, y = 30(E) x = 24, y = 28.3
- **13.** *Multiple Choice* In the diagram, $\angle 4$ and $\angle 5$ are what type of angles?

- (A) corresponding angles
- **B** alternate interior angles
- **C** alternate exterior angles
- **D** consecutive interior angles
- (E) consecutive exterior angles

14. *Multiple Choice* Find the value of *x* when $a \parallel b.$

15. *Multiple Choice* What value of *a* would make lines x and y parallel?

16. Quantitative Comparison Choose the statement below that is true.

- A The value in column A is greater.
- **B** The value in column B is greater.
- \bigcirc The two values are equal.
- **D** The relationship cannot be determined from the given information.

Column A	Column B	
Slope of	Slope of the	
the line	line perpendicular	
5x + 2y = 12	to $y = \frac{2}{3}x + 6$	

17. *Multiple Choice* Find the measure of $\angle 1$.

Cumulative Standardized Test Practice

For use after Chapters 1–6

18. *Multiple Choice* Given $\angle X \cong \angle A$ and $\angle Z \cong \angle C$, find the value of *x*.

- **19.** *Multiple Choice* Which postulate or theorem can be used to prove that $\triangle ABC \cong \triangle DCB$?
 - A SSS
 - B SAS
 - C ASAD AAS

- (E) none of these
- **20.** *Multiple Choice* Which postulate or theorem can be used to prove that $\triangle MNO \cong \triangle KNL$ if $\overrightarrow{MO} \parallel \overrightarrow{LK}$?
 - A SSS M
 B SAS AS
 - C HL
 - D AAS
 - (E) none of these
- **21.** *Multiple Choice* What are the values of *x* and *y*?
 - (A) x = 37, y = 5(B) x = 106, y = 5(C) x = 54, y = 4 3y + 7 3y + 7 3y + 7 3y + 7 x° 3y + 12 37°
 - **D** x = 106, y = 19
 - (E) x = 37, y = 19

- **22.** *Multiple Choice* A right triangle has legs of 24 units and 18 units. The length of the hypotenuse is ? .
 - **A** 15 units **B** 30 units
 - **C** 45 units **D** 15.9 units
 - (E) 32 units
- **23.** *Multiple Choice* In the diagram, \overrightarrow{CD} is the perpendicular bisector of \overrightarrow{AB} . What is the value of *x*?
 - **A** 2.43

24. *Multiple Choice* In the diagram, \overrightarrow{AD} bisects $\angle CAE$. Which statements below are true?

- I. $\overline{BG} \cong \overline{GF}$ II. $\overline{BC} \cong \overline{FE}$ B III. $\overline{CD} \cong DE$ $\Box G$
- B II
- © III
- D I and III
- $\textcircled{\textbf{E}}$ none of these
- **25.** *Multiple Choice* In the diagram, *C* is the circumcenter of $\triangle XYZ$. Find the value of *XC*.

D

Cumulative Standardized Test Practice

For use after Chapters 1–6

26. *Multiple Choice* In the diagram, \overline{BD} and \overline{BF} are midsegments of $\triangle ACE$. Find *BD* and *CE*.

- (A) BD = 7.5, CE = 18
- **B** BD = 7.5, CE = 6
- **C** BD = 7.5, CE = 12
- **D** BD = 15, CE = 6
- **E** BD = 8, CE = 12
- **27.** *Multiple Choice* Use the Hinge Theorem and the diagrams below to choose the statement which must be true.

(A) $m \angle 1 > m \angle 2$ (B) $m \angle 1 < m \angle 3$ (C) $m \angle 1 > m \angle 3$ (D) $m \angle 2 < m \angle 4$ (E) $m \angle 4 > m \angle 2$

28. *Multiple Choice* Find the value of *x*.

Chapter 6

29. *Multiple Choice* What are the values of *x* and *y*?

30. *Multiple Choice* What value of *x* will make the quadrilateral a parallelogram?

31. *Multiple Choice* The perimeter of a square is 68 m. If one side is represented by 3x + 2, what is the value of x?

A	3	₿	5	€	4
	6	Ē	10		

Quantitative Comparison In Exercises 32 and 33, choose the statement below that is true about the given statement.

- (A) The value in column A is greater.
- **B** The value in column B is greater.
- **C** The two values are equal.

32.

33.

D The relationship cannot be determined from the given information.

Column A	Column B	
A 10 B B P C	$ \begin{array}{c} F & 10 \\ 9 \\ 9 \\ 9 \\ H \\ 12 \\ G \end{array} $	
The area of <i>ABCD</i>	The area of <i>EFGH</i>	
The perimeter of <i>ABCD</i>	The perimeter of <i>EFGH</i>	

LESSON

Standardized Test Practice

For use with pages 396–402

GA QCC: 38, 40, 41

GHSGT: 22

TEST TAKING STRATEGY Sketch graphs or figures in your test booklet to help you solve the problems. Even though you must keep your answer sheet neat, you can make any kind of mark you want in your test booklet.

- **1.** *Multiple Choice* Which of the statements below are true?
 - I. Rigid transformations are isometries.
 - II. Three types of transformations are reflections, rotations, and transcriptions.
 - III. Isometries preserve distances between points.
 - A I B I and II
 - C II and III D I and III
 - (E) None of these
- **2.** *Multiple Choice* Which of the following is *not* an isometry?

- (E) None of these
- **3**. *Multiple Choice* Name the preimage of \overline{MN} .

4. *Multiple Choice* Name the type of transformation and the coordinates corresponding to point *A* '.

- (A) reflection in line x = 1, (3, 4)
- **B** reflection in line x = 0, (3, 4)
- **C** rotation about (1, 0), (6, 4)
- **D** reflection in line x = 1, (6, 4)
- (E) translation in line x = 1, (6, 4)

Quantitative Comparison In Exercises 5 and 6, use the isometry of the kite to find the value of the variables. Choose the statement below that is true about the values.

- A The value in column A is greater.
- (B) The value in column B is greater.
- **C** The two values are equal.
- **D** The relationship cannot be determined from the given information.

Ζ.

45

w

5.

6.

GA OCC: 38, 40, 41, 46

Standardized Test Practice

For use with pages 404–410

GHSGT: 22

TEST TAKING STRATEGY Work as quickly as you can through the easier sections, but avoid making careless errors on easy questions.

1. *Multiple Choice* Which choice below is a reflection of the figure in line *h*?

- (E) None of these
- **2.** *Multiple Choice* If A(3, -2) is reflected in the line x = 3, then the coordinates of A' are $\underline{?}$.

(A) (0, -2) (B) (3, -2) (C) (3, 1)(D) (-3, 2) (E) (0, 1)

3. *Multiple Choice* If B(-2, -1) is reflected in the line y = 3, then the coordinates of B' are ?.

A	(4, 5)	B	(-2, 5)
C	(-2, -1)	D	(8, 5)
E	(-2, 7)		

4. *Multiple Choice* Use the diagram below to complete the statement: $\angle GHI \rightarrow _?_$.

5. *Multiple Choice* How many lines of symmetry does the polygon have?

6. *Multiple Choice* Given that A(2, -4) and B(6, -2), find point *C* on the *x*-axis so that AC + BC is a minimum.

(0, 4) (0, 5) (3, 0)

D (4,0) **E** (5,0)

7. *Multiple Choice* Given that the diagram shows a reflection in line *m*, find the values of *x* and *y*.

8. Multi-Step Problem

- **a.** Draw and label $\triangle A'B'C'$, which is the reflection of $\triangle ABC$ in the *x*-axis.
- **b.** Name the image of \overline{AB} .
- **c.** Draw and label $\triangle A''B''C''$, which is the reflection of $\triangle ABC$ in the *y*-axis.
- **d.** Draw the reflection of $\triangle ABC$ in the line x = 2.
- **e.** Find the midpoint of $\overline{AA'}$.

Geometry Georgia Standardized Test Practice Workbook

GA QCC: 1, 38, 40, 41, 46 **GHSGT:** 4, 22

For use with pages 412-420

TEST TAKING STRATEGY Make sure that you are familiar with the directions before taking a standardized test.

- **1**. *Multiple Choice* Use the figure below to determine which segment represents a 90° clockwise rotation of \overline{AB} about P.
 - (A) \overline{BC}
 - **(B)** \overline{CD} $\bigcirc \overline{\mathbf{C}} \overline{DE}$

(D) \overline{AH}

(E) \overline{HG}

- Π Ρ Н
- 2. *Multiple Choice* Which description of a rotation would map the figure below onto itself?
 - \bigcirc clockwise 45°
 - (\mathbf{B}) clockwise 90°
 - \bigcirc clockwise 180°
 - **D** counterclockwise 45°
 - (\mathbf{E}) none of these

Multiple Choice Use the figure below for Exercises 3 and 4. State the segment or triangle that represents the image.

3. A 90° clockwise rotation of \overline{HI} about Q.

A	\overline{LF}	₿	\overline{HL}	\bigcirc	\overline{KO}
D	\overline{BJ}	E	\overline{JD}		

4. A 90° counterclockwise rotation of \overline{OO} about *P*.

A	\overline{QN}	B	\overline{MQ}	C	\overline{LP}
D	\overline{OK}	E	\overline{LM}		

- Find the angle of rotation **5**. *Multiple Choice* that maps $\triangle ABC$ onto $\triangle A''B''C''$. 60° A m 30° 60 B
 - \bigcirc 120°
 - 180°
- (E) None of these
- **6.** *Multiple Choice* $\triangle ABC$ has vertices A(-2, 1), B(3, 2) and C(5, -1). What are the coordinates of the vertices of $\triangle A'B'C'$ after a rotation of 180° clockwise about the origin?
 - (A) A'(2, -1), B'(-3, -2), C'(-5, 1)
 - **B** A'(-2, -1), B'(-3, -2), C'(-5, -1)
 - **C** A'(-2, -1), B'(-3, -2), C'(-5, 1)
 - **D** A'(2, 1), B'(3, 2), C'(5, 1)
 - **E** A'(2, -1), B'(3, 2), C'(-5, 1)
- 7. *Quantitative Comparison* Use the diagram below to find the value of each variable in the rotation of the polygon about point *P*. Choose the statement below that is true about the values.
 - (A) The value in column A is greater.
 - **B** The value in column B is greater.
 - \bigcirc The two values are equal.
 - **D** The relationship cannot be determined from the given information.

y

For use with pages 421–428

TEST TAKING STRATEGY If you find yourself spending too much time on one test question and getting frustrated, move on to the next question. You can revisit a difficult problem later with a fresh perspective.

- **1.** *Multiple Choice* The translation "5 units to the left and 3 units up" in coordinate notation would be _?_.
 - (A) $(x, y) \rightarrow (x + 5, y + 3)$

LESSON

- **(C)** $(x, y) \rightarrow (x 5, y + 3)$
- **D** $(x, y) \rightarrow (x + 3, y 5)$
- (E) $(x, y) \rightarrow (x 3, y + 5)$
- **2.** *Multiple Choice* Choose the notation below that describes the translation.

- (\mathbf{C}) $(x, y) \rightarrow (x 4, y + 3)$
- $(x, y) \rightarrow (x 4, y 3)$
- (E) $(x, y) \rightarrow (x + 4, y + 3)$
- **3.** *Multiple Choice* Choose the correct name and component form of the vector shown.

4. *Multiple Choice* Name the vector that describes the translation.

E $\langle 6, -3 \rangle$

- **5.** *Multiple Choice* The coordinates of $\triangle JKL$ are J(-1, 2), K(-2, -1), and L(2, 1). The component form of \overline{MN} is $\langle 3, -4 \rangle$. What are the coordinates of $\triangle J'K'L'$ after the translation using \overline{MN} ?
 - (A) J'(-4, -2), K'(1, -3), L'(5, -5)
 - **B** J'(2, -2), K'(1, -3), L'(5, -3)
 - **C** J'(2, -2), K'(1, -3), L'(5, -5)
 - **D** J'(2, -2), K'(1, -5), L'(5, -3)
 - (E) J'(-4, -2), K'(1, -5), L'(5, -3)
- 6. Quantitative Comparison A translation of A and B is described by $\overline{NM} = \langle 7, 2 \rangle$. Solve for the indicated variable. Choose the statement below that is true about the value of the variable.
 - (A) The value in column A is greater.
 - **B** The value in column B is greater.
 - **C** The two values are equal.
 - **D** The relationship cannot be determined from the given information.

Column A	Column B	
A(-3, x), A'(4, 4)	<i>B</i> (<i>y</i> , 5), <i>B'</i> (10, 7)	

For use with pages 430–436

GA OCC: 38, 40, 41, 42, 46 **GHSGT:** 22

TEST TAKING STRATEGY One of the best ways to prepare for the SAT is to keep up with your regular studies and do your homework.

1. *Multiple Choice* Which two transformations were performed to obtain $\overline{A''B''}$ in the diagram?

- (A) Rotate about the origin, then reflect in x = y.
- **B** Reflect in the *x*-axis, then translate parallel to *x*-axis.
- **C** Reflect in the line x = 1, then translate parallel to x = 1.
- **D** Reflect in the line y = 1, then translate parallel to y = -1.
- (E) Translate parallel to x = 1, then reflect in line x = 1.
- 2. *Quantitative Comparison* Use the composition to locate points *A*" and *B*". Choose the statement below that is true about the given lengths.
 - A The value in column A is greater.
 - **B** The value in column B is greater.
 - **C** The two values are equal.
 - **D** The relationship cannot be determined from the given information.

Given: A(-4, 0), B(-2, -1)

- Translation 1: reflect in x = 1
- Translation 2: rotate 90° counterclockwise about (2, 1)

Column A	Column B
length of AA"	length of BB"

3. *Multiple Choice* Using the composition below, what are the coordinates of the endpoints of *A*"*B*"?

Given: A(1, 3), B(2, 5)

Rotation: 90° counterclockwise about (1, 2) Reflection: in y = x

- (A) A''(0, 0), B''(1, -2)
- **B** A''(-2, 1), B''(-4, 0)
- (\mathbf{C}) A''(2, 1), B''(-4, 0)
- **D** A''(2, 1), B''(4, 0)
- (E) A''(0, 0), B''(-1, 2)
- **4.** *Multiple Choice* Translation 1 maps *A* to *A*′. Translation 2 maps *A*′ to *A*″. What translation below maps *A* to *A*″?

Translation 1: $(x, y) \rightarrow (x - 2, y + 6)$ Translation 2: $(x, y) \rightarrow (x + 7, y - 6)$

- (A) $(x, y) \rightarrow (x 5, y + 6)$
- (\mathbf{B}) $(x, y) \rightarrow (x + 5, y)$
- **C** $(x, y) \rightarrow (x + 5, y + 12)$
- (E) $(x, y) \rightarrow (x 9, y)$
- **5.** *Multiple Choice* Using the composition below, what are the coordinates of the endpoints of $\overline{C''D''}$?

Given: C(-2, 3), D(3, 4)

Rotation: 90° clockwise about origin

Reflection: in x = 1

- (A) C''(5, -2), D''(6, 3)
- **B** *C*"(1, 2), *D*"(2, 3)
- **C** C''(-5, -2), D''(-6, 3)
- **D** C''(-1,2), D''(-2,3)
- (E) C''(-1, 2), D''(2, 3)

Chapter 7

GA OCC: 38, 40, 41, 42

7.6

Standardized Test Practice

For use with pages 437–444

GHSGT: 22

TEST TAKING STRATEGY Do not put added pressure on yourself to do well. If you are not satisfied with your SAT score, you can take it again.

- **1.** *Multiple Choice* A frieze pattern is a pattern that extends to the left and right in such a way that the pattern can be mapped onto itself by a
 - (A) vertical translation.
 - **B** vertical reflection.
 - **C** horizontal translation.
 - **D** horizontal reflection.
 - (E) horizontal glide reflection.

In Exercises 2–7, use these classifications.

- T translation
- R 180° rotation
- H horizontal reflection
- V vertical reflection
- G horizontal glide reflection
- **2**. *Multiple Choice* Name the isometries that map the frieze pattern onto itself.

Image: Constraint of the second s

3. *Multiple Choice* Name the isometries that map the frieze pattern onto itself.

5. *Multiple Choice* Which design below is a frieze pattern with a classification of TV?

6. *Multiple Choice* Which design below is a frieze pattern with a classification of TRVG?

7. *Multi-Step Problem* Use the pattern below to create a frieze pattern with the given classifications.

d. TRHVG

For use with pages 457-464

TEST TAKING STRATEGY Work as quickly as you can through the easier sections, but avoid making careless errors on easy questions.

- **1.** Multiple Choice Simplify $\frac{3 \text{ ft}}{18 \text{ in.}}$. **A** $\frac{1}{2}$ **B** 2 **C** $\frac{1}{6}$ **D** 6 **E** $\frac{15}{8}$
- **2.** *Multiple Choice* Simplify $\frac{5 \text{ m}}{125 \text{ cm}}$.
 - (A) 25
 (B) 0.04
 (C) 4
 (D) 0.25
 (E) 40
- **3.** *Multiple Choice* The perimeter of rectangle *ABCD* is 72. The ratio of the lengths of the sides is 1:2. What are the lengths of the sides?
 - A 12 and 18
 B 12 and 24
 C 4.5 and 9
 D 6 and 12
 E 9 and 18
- **4.** *Multiple Choice* The perimeter of $\triangle HIJ$ is 36. The extended ratio of the sides is 2:3:7. Find the lengths of the sides.
 - **A** 3, 4, 9 **B** 4, 6, 14
 - **C** 8, 12, 28 **D** 6, 9, 21
 - **E** 2, 3, 7

All rights reserved.

- 5. *Multiple Choice* Solve $\frac{5}{x+7} = \frac{3}{x+2}$. (A) 2 (B) 3 (C) $\frac{3}{2}$ (D) $\frac{5}{2}$ (E) $\frac{11}{2}$
- **6.** *Multiple Choice* Which ratio describes the simplified width to length ratio of *ABCD*?

7. *Multiple Choice* The ratio of side lengths of $\triangle ABC$ to $\triangle DEF$ is 3:1. Find the lengths of \overline{EF} and \overline{AC} .

- **D** EF = 6, AC = 21
- (E) $EF = 12, AC = 3\sqrt{17}$

Quantitative Comparison For Exercises 8 and 9, use the number line below to find the ratio of the distances. Choose the statement below that is true about the given values.

- (A) The value in column A is greater.
- **B** The value in column B is greater.
- \bigcirc The values are equal.
- **D** The relationship cannot be determined from the given information.

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D E F + + + + + + + + + + + + + + + + + + +
	Column A	Column B
8.	$rac{EF}{AB}$	$\frac{CD}{CE}$
9.	$\frac{AC}{BE}$	$\frac{DF}{BD}$

Chapter 8

GA QCC: 1, 2

GHSGT: 4, 9, 19, 36, 40

For use with pages 465-471

GA QCC: 1, 2

TEST TAKING STRATEGY Do not panic if you run out of time before answering all of the questions. You can still receive a high test score without answering every question.

1. *Multiple Choice* Which choice below completes the sentence to make a true statement?

~ ...

If
$$\frac{-}{x} = \frac{-}{y}$$
, then $\underline{-} \frac{?}{2}$.
(A) $\frac{3}{x} = \frac{y}{7}$ (B) $\frac{3}{7} = \frac{y}{x}$ (C) $\frac{x}{3} = \frac{7}{y}$
(D) $\frac{3}{7} = \frac{x}{y}$ (E) none of these

2. *Multiple Choice* Which statement is false?

(A) If
$$\frac{5}{x} = \frac{y}{3}$$
, then $\frac{5+x}{x} = \frac{y+3}{3}$.
(B) If $\frac{17}{x+2} = \frac{8}{10}$, then $\frac{17}{8} = \frac{x+2}{10}$.
(C) If $\frac{15}{x} = \frac{17}{y}$, then $\frac{15+y}{x} = \frac{17+x}{y}$.
(D) If $\frac{6+7}{7} = \frac{5+n}{n}$, then $\frac{6}{7} = \frac{5}{n}$.

(E) If $\frac{9}{7} = \frac{x}{12}$, then $\frac{12}{x} = \frac{7}{9}$.

- **3.** *Multiple Choice* In the diagram, $\frac{AB}{BD} = \frac{AC}{CE}$. Find the length of \overline{AE} .
- **A** 7.5 **B** 15 **C** 17.5 В **(D)** $13\frac{1}{2}$ $28\frac{1}{2}$ (E) Ε 10 C **4.** *Multiple Choice* In the diagram, $\frac{UV}{UZ} = \frac{WX}{WY}$ Find the length of \overline{WX} .

- **5**. *Multiple Choice* The geometric mean of *x* and 5 is 15. Find the value of *x*.
 - **A** 3 **B** 10 **C** 15 \bigcirc 5 $\sqrt{3}$ **E** 45
- 6. *Multiple Choice* There are 36 students in a gym class. If $\frac{1}{4}$ of the students are freshmen and $\frac{2}{3}$ of the remaining students are seniors, how many seniors are in the class?

A	6	₿	12	\bigcirc	15
	18	Ē	24		

7. *Multiple Choice* The points (-3, 1), (3, 3),and (x, 5) are collinear. Find the value of x by setting up and solving a proportion.

A	1	ً₿	2	\bigcirc	9
\bigcirc	5	Ē	4		

8. *Multiple Choice* A model truck is 13.5 inches long and 7.5 inches wide. The original truck was 12 feet long. How wide was it?

(A)
$$6_3^2$$
 ft (B) 7.5 ft (C) 5_5^4 ft
(D) 8.4 ft (E) 21.6 ft

Quantitative Comparison In Exercises 9 and 10, choose the statement below that is true about the given value.

- (A) The value in column A is greater.
- **B** The value in column B is greater.
- **C** The two values are equal.
- **D** The relationship cannot be determined from the given information.

	Column A	Column B
9.	The geometric mean of 8 and 16	The geometric mean of 7 and 19
10.	The geometric mean of 5 and 12	The geometric mean of 6 and 10

For use with pages 473-479

GA QCC: 20, 21, 23

GHSGT: 22, 23, 24, 40

TEST TAKING STRATEGY Always look for shortcuts that will allow you to work through a problem more quickly.

1. *Multiple Choice* Heptagons *ABCDEF* and *MNOPQR* are similar. Which statement of proportionality is *not* true?

2. *Multiple Choice* The two trapezoids shown are similar. What are the values of *x* and *y*?

3. *Multiple Choice* Find the scale factor of *MNOP* to *QRST*, given that *MNOP* ~ *QRST*.

4. *Multiple Choice* The ratio of the perimeters of $\triangle ABC$ to $\triangle KLM$ is 3:5. Which ratio could *not* be a ratio of two corresponding sides?

(A) $\frac{1.5}{2.5}$ (B) $\frac{6}{10}$ (C) 9:15

D 3:5 **E** 6:15

Copyright © McDougal Littell Inc. All rights reserved. **5.** *Multiple Choice* ABCD ~ EFGH. The perimeter of ABCD is 18. What is the length of \overline{BC} ?

6. *Multiple Choice* The ratio of one side of *ABCD* to the corresponding side of *EFGH* is 1.5 to 4. The perimeter of *EFGH* is 38 inches. Find the perimeter of *ABCD*.

A	14.25 in.	B	28.5 in.	\bigcirc	$6\frac{1}{3}$ in.
D	$101\frac{1}{3}$ in.	E	$50\frac{2}{3}$ in.		

Quantitative Comparison In Exercises 7 and 8, use the diagram to choose the statement that is true given that *ABCDE* ~ *LMNOP*.

- (A) The value in column A is greater.
- **B** The value in column B is greater.
- **C** The two values are equal.
- **D** The relationship cannot be determined from the given information.

	Column A	Column B
7.	x	у
8.	AE + AB	LP

GA QCC: 20, 21, 23

Standardized Test Practice GHSGT

For use with pages 480–487

GHSGT: 22, 23, 24, 40

TEST TAKING STRATEGY When checking your work, try to use a method other than the one you originally used to get your answer. If you use the same method, you may make the same mistake twice.

1. *Multiple Choice* The triangles below are similar. Which choice below is the correct statement of proportionality?

LESSON

2. *Multiple Choice* Which angle is congruent to $\angle M$ in the similar triangles below?

 3. Multiple Choice The triangles are similar. Which of the following is *not* a correct statement?

4. *Multiple Choice* $\triangle ABC \sim \triangle DBE$. Find the values of *x* and *y*.

5. *Multiple Choice* What is the perimeter of trapezoid *BCDE*?

6. *Multi-Step Problem* Use the diagram to answer parts (a)–(e).

- **a.** Find the length of \overline{BC} .
- **b.** Find the length of \overline{BF} .
- **c.** What is the scale factor of $\triangle ABF$ to $\triangle ACE$?
- **d.** Find the perimeter of $\square BCDF$.
- **e.** *Critical Thinking* Explain how you could show that $\triangle ABF \sim \triangle FDE$.

For use with pages 488–496

GA OCC: 6, 20, 21, 23

GHSGT: 22, 23, 24, 40

TEST TAKING STRATEGY Sketch graphs or figures in your test booklet to help you solve the problems. Even though you must keep your answer sheet neat, you can make any kind of mark you want in your test booklet.

1. *Multiple Choice* Use the diagram below to determine which statement(s) are true.

- I. $\triangle ABC \sim \triangle DEF$
- II. $\triangle ABC \sim \triangle GHI$
- III. $\triangle DEF \sim \triangle GHI$

A I B II C III

- $\textcircled{D} I and III \qquad \textcircled{E} none of these$
- **2.** *Multiple Choice* What is the scale factor for the triangles below?

3. *Multiple Choice* Which similarity statement and postulate or theorem correctly identifies the triangles' relationship?

- (A) $\triangle ABD \sim \triangle ECD$ by SSS Similarity Thm.
- **B** $\triangle ABD \sim \triangle ECD$ by SAS Similarity Thm.

- **C** $\triangle ABD \sim \triangle DEC$ by SSS Similarity Thm.
- **D** $\triangle ABD \sim \triangle ECD$ by AA Similarity Post.
- (**E**) $\triangle ABD \sim \triangle DEC$ by AA Similarity Post.
- **4.** *Multiple Choice* Which similarity statement and postulate or theorem correctly identifies the triangles' relationship?

- (A) $\triangle ABD \sim \triangle CDE$ by SSS Similarity Thm.
- **B** $\triangle ABC \sim \triangle CDE$ by SAS Similarity Thm.
- **C** $\triangle ABC \sim \triangle EDC$ by SSS Similarity Thm.
- **D** $\triangle ABC \sim \triangle EDC$ by AA Similarity Post.
- (E) $\triangle ABC \sim \triangle EDC$ by SAS Similarity Thm.

5. *Multiple Choice* Find the distance labeled x in the diagram.

26 ft

8 ft

- **E** 43.5 ft
- **6**. *Multiple Choice* Solve for *x*.

GA QCC: 1, 15, 20, 21, 22 **GHSGT:** 4, 36

TEST TAKING STRATEGY It is important to remember that your SAT score will not solely determine your acceptance into a college or university. Do not put added pressure on yourself to do well. If you are not satisfied with your SAT score, remember that you can take it again.

3. *Multiple Choice* Find the value of *x*.

Quantitative Comparison In Exercises 6–8, use the diagram below to solve for the indicated values. Choose the statement that is true about the given values.

- (A) The value in column A is greater.
- **B** The value in column B is greater.
- \bigcirc The two values are equal.
- **D** The relationship cannot be determined from the given information.

	Column A	Column B
6.	BC	GH
7.	BD	EG
8.	AB + CD	FH

For use with pages 506-513

TEST TAKING STRATEGY Avoid spending too much time on one question. Skip questions that are too difficult for you, and spend no more than a few minutes on each question.

- **1.** *Multiple Choice* Which statements below are true?
 - I. A dilation with a scale factor of $\frac{3}{2}$ is an enlargement, 150% bigger.
 - II. A dilation with a scale factor of $\frac{2}{3}$ is an enlargement, 66% bigger.
 - III. A dilation with scale factor k is a reduction if -1 < k < 1.
 - A I B II C III
 - D I and II E II and III
- **2.** *Multiple Choice* Which choice below correctly identifies the dilation and scale factor?

- (A) reduction; $k = \frac{2}{5}$
- **B** reduction; $k = \frac{3}{5}$
- enlargement; $k = \frac{2}{5}$
- **D** enlargement; $k = \frac{3}{5}$
- (E) enlargement; $k = \frac{5}{2}$
- **3.** *Multiple Choice* Which choice below correctly identifies the dilation and scale factor?

- (A) reduction; $k = \frac{14}{36}$
- **B** reduction; $k = \frac{36}{12}$
- **C** reduction; $k = \frac{12}{36}$
- **D** enlargement; $k = \frac{36}{12}$
- (E) enlargement; $k = \frac{12}{36}$

4. Multiple Choice Find the values of x and y. (A) $x = \frac{2}{3}, y = 8$ (B) x = 6, y = 8(C) x = 6, y = 4(D) x = 6, y = 4(E) x = 24, y = 4

GA QCC: 1, 15, 20, 21, 39, 40, 41

GHSGT: 2, 4, 22, 23, 40

5. *Multiple Choice* The dilation has center *E*. Find the values of *x* and *y*.

- 6. Multi-Step Problem
 - **a.** On a coordinate plane, draw $\triangle ABC$ with vertices A(1, 5), B(3, 6), and C(3, 3).
 - **b.** Draw a dilation of $\triangle ABC$. Use the origin as center and a scale factor of 2 to draw $\triangle A'B'C'$.
 - **c.** Find the length of $\overline{B'C'}$.
 - **d.** Draw a dilation of $\triangle ABC$. Use the origin as center and a scale factor of $\frac{1}{2}$ to draw $\triangle A''B''C''$.
 - **e.** Find the length of $\overline{A''C''}$.
 - **f.** What scale factor could you use to go from $\triangle A''B''C''$ to $\triangle A'B'C'?$

GA OCC: 1, 20, 21, 23

Standardized Test Practice

For use with pages 527–534

TEST TAKING STRATEGY

LESSON

Read each test question carefully. Always look for shortcuts that will allow you to work through a problem more quickly.

1. *Multiple Choice* Use the diagram at the right to choose the correct similarity statement for the three triangles. A

- **B** $\triangle ABC \sim \triangle CBD \sim \triangle ADC$
- $\textcircled{C} \quad \triangle ABC \thicksim \triangle CBD \thicksim \triangle ACD$
- **D** $\triangle ABC \sim \triangle CDB \sim \triangle ADC$
- (E) $\triangle ABC \sim \triangle BCD \sim \triangle ADC$
- **2.** *Multiple Choice* Use the diagram in Exercise 1 to choose the proportion that is false.

A	$\frac{AB}{CB} =$	$=\frac{CB}{DB}$	B	$\frac{BD}{CD} =$	$=\frac{CD}{AD}$
C	$\frac{AB}{AC} =$	$=\frac{AC}{AD}$		$\frac{BD}{CB} =$	$=\frac{CD}{AB}$

- E none of these
- **3.** *Multiple Choice* Use the diagram below to identify the similar triangles and complete the proportion.

 $\frac{CA}{BA} = \frac{BA}{?}$ (A) AC (B) BD (C) DC (D) BC (E) DA BC

4. *Multiple Choice* Use the diagram below to find the value of *h*. Round to the nearest hundredth, if necessary.

5. *Multiple Choice* Find the value of *y*. Round to the nearest hundredth.

6. *Multiple Choice* Find the value of *x*. Round to the nearest hundredth.

 the nearest hundredth.

 (A)
 42.68
 (B)
 20.49

 (C)
 64.29
 (D)
 56.28

- 8. *Multi-Step Problem* You want to hang a tire swing from a tree in your backyard. The branch is horizontal to the ground. The diagram shows the vertical distance from your eye to the ground, and from you to the swing.
 - **a.** What is *HG*?
 - **b.** What is *TG*?
 - **c.** If the tire swing is to hang $2\frac{1}{2}$ feet from the ground, and the tire has a diameter of 3 feet, approximately how much rope is needed to hang the swing?
 - **d.** Write a similarity statement for the three triangles.

58

ft

GA QCC: 1, 24

GHSGT: 4, 32, 35

For use with pages 535-541

TEST TAKING STRATEGY When checking your work, try to use a method other than

the one you originally used to get your answer. If you use the same method, you may make the same mistake twice.

- 2. *Multiple Choice* Find the value of x. Round to the nearest tenth, if necessary.
 - **A** 25 in.
 - 26.4 in. B

D

16 in.

- **3**. *Multiple Choice* Find the value of *y*. Round to the nearest hundredth, if necessary.
 - **A** 10.25 cm
 - **B** 15.26 cm
 - \bigcirc 25 cm
 - **D** 21 cm
 - **E** 14.28 cm

4. Multiple Choice

8 cm Find

- the value of *x*. \bigcirc 5 B $2\sqrt{5}$ **C** $5\sqrt{2}$ 7
- **E** 7.5

10 ft

13 cm

- 5. *Multiple Choice* Find the area of the figure.
 - (A) 260 ft^2 B $130 \, ft^2$ 26 ft **C** $240 \, \text{ft}^2$ $120 \, \text{ft}^2$
 - **E** 140 ft^2
- Copyright © McDougal Littell Inc. All rights reserved.

6. *Multiple Choice* Find the area of the figure. Round to the nearest tenth, if necessary.

7. *Multiple Choice* Find the area of the figure. Round to the nearest hundredth, if necessary.

- 8. Quantitative Comparison Use the diagram below to find the variables. Choose the statement below that is true about the given number.
 - A The value of column A is greater.
 - **B** The value of column B is greater.
 - **C** The two values are equal.
 - **D** The relationship cannot be determined from the given information.

y

Geometry Georgia Standardized Test Practice Workbook

х

GA QCC: 1, 24

G.3

Standardized Test Practice

For use with pages 543-549

TEST TAKING STRATEGY Avoid spending too much time on one question. Skip questions that are too difficult for you, and spend no more than a few minutes on each question.

III

1. *Multiple Choice* Let the numbers represent the lengths of the sides of a triangle. Which of the triangles are right triangles?

I.	4, 5, 6		II.	15, 20, 25	
III.	15, 36, 39		IV.	5, 13, 14	
A	Ι	₿	II	C	II and

- $\textcircled{D} \quad III and IV \quad \textcircled{E} \quad II and IV$
- **2.** *Multiple Choice* If two sides of a triangle are 8 and 10, what measurement could represent the third side if the triangle is a right triangle?
 - **A** 12 **B** $2\sqrt{41}$ **C** 6
- **3.** *Multiple Choice* Let the numbers represent the lengths of the sides of a triangle. Which of the triangles are acute triangles?
 - I. 10, 24, 26 II. 6, 8, 9.5
 - III. 12, 17, 22 IV. 45, 60, 75
 - (A) I and II (B) II (C) II and III
 - **D** III **E** III and IV
- **4.** *Multiple Choice* Which set of numbers can represent the side lengths of an obtuse triangle?

A	1, 2, 3	B	3, 5, $\sqrt{34}$
C	3, 7, 7.5		12, 15, $3\sqrt{41}$

- E none of these
- **5.** *Multiple Choice* Find the value of *x* that makes the triangle a right triangle.

7. *Multiple Choice* Given points P(-2, 4) and Q(2, 6) are two vertices in a right triangle, which point could represent the third vertex?

(**A**) (0,9) (**B**) (4,2) (**C**) (0,0)

 $\textcircled{D} \quad B \text{ and } C \quad \textcircled{E} \quad none \text{ of these}$

Quantitative Comparison In Exercises 8 and 9, choose the statement below that is true about the given value.

- A The value in column A is greater.
- (B) The value in column B is greater.
- \bigcirc The values are equal.
- **D** The relationship cannot be determined from the given information.

	Column A	Column B
8.	x	w when $\triangle EFG$ is acute
9.	x	w when $\triangle EFG$ is obtuse

Chapter 9

For use with pages 551-557

GHSGT: 4

GA QCC: 1, 24, 25

TEST TAKING STRATEGY Staying physically relaxed during the SAT is very important. If you find yourself tensing up, put your pencil down and take a couple of deep breaths. This will help you stay calm.

1. *Multiple Choice* Find the values of *x* and *y*.

(A) $x = 6, y = 6\sqrt{3}$ **B** $x = 3\sqrt{2}, y = 6\sqrt{2}$ **C** $x = 2\sqrt{3}, y = 4\sqrt{3}^{6}$ **D** $x = 6, y = 6\sqrt{2}$ (E) $x = 6\sqrt{2}, y = 6$

- **2**. *Multiple Choice* Find the values of *a* and *b*.
 - (A) $a = 9, b = 9\sqrt{2}$ **B** $a = 18, b = 9\sqrt{3}$ 9 **C** $a = 9\sqrt{3}, b = 18$ **D** $a = 3\sqrt{3}, b = 6\sqrt{3}$ (E) $a = 6\sqrt{3}, b = 3\sqrt{3}$
- **3**. *Multiple Choice* Find the values of *x* and *y*.

$$\begin{array}{cccc} \mathbf{A} & x = 3\sqrt{2}, y = 3 & y \\ \mathbf{B} & x = 3, y = 3\sqrt{2} \\ \mathbf{C} & x = \sqrt{2}, y = 3\sqrt{2} \\ \mathbf{D} & x = 3\sqrt{2}, y = \sqrt{2} \\ \mathbf{E} & x = \sqrt{2}, y = 3 \end{array}$$

4. *Multiple Choice* Find the values of *m* and *n*.

(A)
$$m = \frac{16\sqrt{3}}{3}, n = \frac{8\sqrt{3}}{3}$$

(B) $m = 16, n = 8\sqrt{3}$
(C) $m = \frac{8\sqrt{3}}{3}, n = \frac{16\sqrt{3}}{3}$
(D) $m = 16\sqrt{3}, n = 16$

(E) $m = 8\sqrt{3}, n = 16$

- **5.** *Multiple Choice* Find the value of *x*. (A) $\frac{5\sqrt{2}}{2}$ (B) $10\sqrt{2}$ **C** $5\sqrt{2}$ **D** 5 10 € <u>10</u>
- 6. *Multiple Choice* Find the 30° area of the figure. Round to the nearest tenth if necessary. 18 m **A** 68.2 m^2 **B** 93.5 m^2 **C** 70.1 m² **D** 140.3 m²
- **E** 187.0 m² 7. *Multiple Choice* The perimeter of a square
 - is 54 cm. Find the length of a diagonal, rounding to the nearest tenth. **A** 10.4 cm **B** 19.1 cm **C** 13.5 cm
 - $\bigcirc 22.4 \text{ cm}$ **(E)** 38.2 cm
- **8**. *Multiple Choice* The side of an equilateral triangle is 12 cm. Find the length of an altitude of the triangle.
 - \mathbf{A} $6\sqrt{3}$ cm \mathbf{B} $6\sqrt{2}$ cm \mathbf{C} 6 cm **D** $12\sqrt{3}$ cm **E** $12\sqrt{2}$ cm
- **9.** *Multi-Step Problem* $\triangle ABC$ is equilateral and *DEGF* is a square.
 - **a.** Find *DG*.
 - **b.** Find *DI*.
 - c. Find DJ.
 - **d**. Find *DB*.
 - e. Find BJ.
 - **f.** Find the area of trapezoid ADEG. Round to the nearest tenth.

GA QCC: 1, 26, 27

95

Standardized Test Practice

For use with pages 558–566

GHSGT: 4, 35

TEST TAKING STRATEGY If you find yourself spending too much time on one test question and getting frustrated, move on to the next question. You can revisit a difficult problem later with a fresh perspective.

26

R

1. *Multiple Choice* Use the triangle below. Choose the correct ratio to find tan *B*.

- 2. Multiple Choice Find the c sine of ∠A.
 (A) 0.3846 (B) 0.4167
 - © 0.9231 D 1.0833 ²⁴ © 2.4
- **3**. *Multiple Choice* Find the cosine of $\angle B$.
- A
 1.7321
 C 10
 B

 B
 0.8660
 5 $5\sqrt{3}$

 C
 2
 $5\sqrt{3}$ A

 D
 1.1547
 A

 E
 0.5774
 A
- **4.** *Multiple Choice* Use the diagram in Exercise 3 to find the tangent of $\angle B$.

5. *Multiple Choice* Find the value of x. **A** 16 sin 35°

E 16 tan 35°

62

Geometry

6. *Multiple Choice* Find the perimeter of the triangle. Round to the nearest tenth.

E 33.1 in.

Quantitative Comparison In Exercises 8 and 9, choose the statement below that is true about the given value.

- (A) The value in column A is greater.
- **B** The value in column B is greater.
- \bigcirc The two values are equal.
- **D** The relationship cannot be determined from the given information.

	Column A	Column B
8.	AD	BC
9.	BD + AB	AD + BC

Georgia Standardized Test Practice Workbook

GA QCC: 26, 27

Standardized Test Practice

For use with pages 567–572

The mathematical portion of the SAT is based on material TEST TAKING STRATEGY taught in your high school mathematics courses. One of the best ways to prepare for the SAT is to keep up with your regular studies and do your homework.

- **1.** *Multiple Choice* Which statements below are true?
 - I. You can solve a right triangle if you are given the lengths of two sides.
 - II. You can solve a right triangle if you are given the measure of the two acute angles.
 - III. You can solve a right triangle if you are given only one side and one acute angle.
 - \bigcirc I **B** II C) III
 - \bigcirc I and III (\mathbf{E}) all of these
- **2.** *Multiple Choice* Which is the approximate measure of acute $\angle A$ when $\tan A = 0.698$?
 - **A** 44.3° **B** 12.2° **C** 34.9° **D** 45.7° **E** 35.2°
- **3**. *Multiple Choice* In the diagram below, what is the measure of $\angle M$, rounded to the nearest tenth?
 - **A** 63.6°
 - NЛ B 63.4° \bigcirc 26.6° **D** 26.4° **E** 63.5°
- 4. *Multiple Choice* In the diagram below, find the measure of $\angle Z$. Round to the nearest tenth.

- 5. *Multiple Choice* In the diagram in Exercise 4, find the measure of \overline{XY} .
 - 6**B** 10 **C** 7
 - **D** 9 Œ 8
- Copyright © McDougal Littell Inc. All rights reserved.

6. *Multiple Choice* In the diagram below, what are the measures of \overline{AB} and \overline{CB} , rounded to the nearest tenth?

(A)
$$AB = 46.9, CB = 41.4$$

(B) $AB = 24.9, CB = 46.9$
(C) $AB = 46.9, CB = 24.9$
(D) $AB = 24.9, CB = 41.4$
(E) $AB = 41.4, CB = 46.9$
(C) 22

Quantitative Comparison In Exercises 7–9, use the diagram below to find the values. Choose the statement below which is true about the given value.

- A The value in column A is greater.
- **B** The value in column B is greater.
- \bigcirc The two values are equal.
- **D** The relationship cannot be determined from the given information.

	Column A	Column B	
7.	AD	AB	
8.	DB	BC	
9.	ED + BC	AD + BC	

Geometry Georgia Standardized Test Practice Workbook

GA QCC: 46

LESSON

Standardized Test Practice

For use with pages 573-580

GHSGT: 3

TEST TAKING STRATEGY Make sure that you are familiar with the directions before taking a standardized test.

- **1.** *Multiple Choice* Points M(7, -1) and N(2, -8) are the initial and terminal points of vector \overline{MN} . Which choice below is the component form of \overline{MN} ?
 - (\mathbf{A}) $\langle 5,7 \rangle$ \bigcirc $\langle 9, -9 \rangle$ **B** 12.7
 - \bigcirc $\langle -5, -7 \rangle$ \bigcirc $\langle 9, -7 \rangle$
- **2.** *Multiple Choice* Points Q(4, 1) and R(12, 4)are the initial and terminal points of vector \overline{OR} . What is the magnitude of vector \overline{OR} ?
 - **B** $\langle 8, 3 \rangle$ **C** $\langle -8, -3 \rangle$ **A** 8.5
 - **€** (16, 5) **D** 16.8
- **3.** *Multiple Choice* Points A(-3, 2) and B(-6, -8) are the initial and terminal points of vector \overrightarrow{BA} . What is its magnitude?
 - (\mathbf{A}) $\langle 3, 10 \rangle$ **B** $\langle -9, -6 \rangle$ **C** 10.4
 - **D** 10.6 **E** 10.8
- 4. *Multiple Choice* Use the diagram below to find the magnitude and direction of \overline{EF} .
 - **A** 11.3, 69.3° **B** 17.9. 12.9° **C** 17.9, 77.1° **D** 8.94, 26.5° Ε **(E)** 8.94, 63.5° 2 2

\mathbf{A} $\langle 10, 4 \rangle$	B	(20,	2)
--------------------------------------	---	------	----

- $(\mathbf{C} \langle -10, -4 \rangle \quad (\mathbf{D} \langle 10, 2 \rangle)$
- E $\langle 20, 4 \rangle$

- 6. *Multiple Choice* Let $\vec{P} = \langle 7, -2 \rangle$ and $\overrightarrow{Q} = \langle -5, 8 \rangle$. What is the component form and magnitude of $\vec{P} + \vec{Q}$, rounded to the nearest tenth?
 - **B** $\langle 2, -6 \rangle, 6.3$ (A) $\langle 2, 6 \rangle, 6.3$
 - **(C)** $\langle 12, -10 \rangle$, 15.6 **(D)** $\langle -2, 6 \rangle$, 6.3
 - (E) $\langle -12, 10 \rangle, 15.6$
- **7.** *Multiple Choice* Let $\vec{A} = \langle x, 4 \rangle$ and $\vec{B} = \langle 14, y \rangle$. If $\vec{A} + \vec{B} = \langle 12, 6 \rangle$, what are the values of *x* and *y*?
 - (A) x = -2, y = 10 (B) x = -2, y = 2
 - **(C)** x = 2, y = 10 **(D)** x = 2, y = -2
 - **(E)** x = -2, y = -10
- **8.** *Multiple Choice* Vector $\overrightarrow{XY} = \langle 5, 9 \rangle$. Which vector below has the same magnitude but a different direction?
 - (A) $\langle -3, 2 \rangle$ (B) $\langle -4, 10 \rangle$ (C) $\langle 10, 18 \rangle$ (**D**) $\langle 4, 10 \rangle$ (**E**) $\langle -5, 9 \rangle$
- 9. *Multi-Step Problem* A jet is flying from Cleveland to New York. A smaller plane takes off from the same airport and heads towards Detroit. They both encounter a strong wind blowing from the west at 80 miles per hour, represented by $\overline{w} = \langle 80, 0 \rangle$.
 - **a**. The jet's velocity vector is represented by $\vec{i} = \langle 450, 510 \rangle$. What is its speed and direction if there were no wind?
 - **b**. The plane's velocity vector is represented by $\vec{p} = \langle -300, 200 \rangle$. What is its speed and direction if there were no wind?
 - c. What is the jet's speed and direction after encountering the wind described by \vec{w} ?
 - **d**. What is the plane's speed and direction after encountering the wind described by $\overrightarrow{w}?$

For use with pages 595–602

TEST TAKING STRATEGY Sketch graphs or figures in your test booklet to help you solve the problems. Even though you must keep your answer sheet neat, you can make any kind of mark you want in your test booklet.

- **1**. *Multiple Choice* \overline{FB} is best described as a
 - A radius. B diameter.
 - C chord. D secant.
 - (E) tangent.

2. *Multiple Choice* \overrightarrow{AJ} is best described as a

- (A) diameter. **B** secant.
- C chord.
- **D** common external tangent.
- E common internal tangent.

3. *Multiple Choice* \overrightarrow{CD} is best described as a

- (A) diameter. (B) secant.
- C chord.
- **D** common external tangent.
- E common internal tangent.
- **4**. *Multiple Choice* \overline{CG} is best described as a
 - (A) diameter. (B) radius.
 - **C** secant. **D** tangent.
 - (E) chord.

- 5. Multiple Choice HJ is best described as a secant.
 B chord.
 - C common external D common internal tangent.

GA QCC: 28, 29

GHSGT: 29

- $\textcircled{\mbox{\bf E}}$ diameter.
- **6.** *Multiple Choice* What is the diameter of $\odot C$?

7. *Multiple Choice* How many common tangents do the circles have?

8. *Multi-Step Problem* Use the diagram below to answer parts (a)–(d).

- **a**. What is the center and radius of $\bigcirc A$?
- **b.** What is the center and radius of $\odot B$?
- **c**. What is the intersection of the circles?
- **d.** Describe the common tangents to the circles. Are they internal, external, or both?

GA OCC: 28, 29

Standardized Test Practice

For use with pages 603–611

GHSGT: 29

. Test Taking Strategy

Do not panic if you run out of time before answering all of the questions. You can still receive a high test score without answering every question.

For Exercises 1–4, use the circle at the right.

- **1.** *Multiple Choice* Find \widehat{mBC} .
 - **A** 55° **B** 90° **C** 35°
 - **D** 110° **E** 125°
- 2. Multiple Choice Find mCD.
 A 55°
 B 90°
 C 35°
 D 110°
 E 125°
- **3.** *Multiple Choice* Find $m \widehat{CAE}$.
 - **(A)** 180° **(B)** 125° **(C)** 145°
 - **D** 215° **E** 300°
- **4.** *Multiple Choice* Which statement is *not* true?
 - (A) $m\widehat{AC} = m\widehat{CD}$ (B) $m\widehat{AB} = m\widehat{ED}$ (C) $m\widehat{AE} = m\widehat{BC} + m\widehat{CD}$
 - $\mathbf{C} \quad mAE = mBC + mCD$
 - **D** $m \widehat{CD} = m \widehat{AE}$ **E** $m \widehat{AD} = m \widehat{EB}$
- **5**. *Multiple Choice* Find the value of *x*.

- 6. *Multiple Choice* What is m EDB in Exercise 5?
 - A
 100°
 B
 150°
 C
 300°

 D
 330°
 E
 340°
- **7.** *Multiple Choice* Use the diagram to find the value of *x*. Round to the nearest hundredth, if necessary.

- **8.** *Multiple Choice* Use the diagram below to find the value of x.
 - (A) 10
 (B) 20
 (C) 22
 (D) 11
 (E) 44

Quantitative Comparison In Exercises 9 and 10, use the diagram that is true.

- (A) The value in column A is greater.
- **B** The value in column B is greater.
- \bigcirc The two values are equal.
- **D** The relationship cannot be determined from the given information.

For use with pages 613-620

GA OCC: 2, 28, 29

GHSGT: 29

Chapter 10

TEST TAKING STRATEGY If you find yourself spending too much time on one test question and getting frustrated, move on to the next question. You can revisit a difficult problem later with a fresh perspective.

1. *Multiple Choice* What is $m \widehat{AB}$?

▲ 10° ● 20°

C 30° **D** 40°

(E) 60°

- **2.** *Multiple Choice* If an inscribed angle has a measure of 100°, what is the measure of the intercepted arc?
 - ▲ 100°
 ▲ 200°
 ▲ 50°
 ▲ 50°
 ▲ 180°
- **3**. *Multiple Choice* Find the value of *x*.
 - A 178 B 356
 C 89 D 182
 - **E** 91

- **4.** *Multiple Choice* If $m LNM = 280^{\circ}$, find the value of *y*.
 - **A** 40 **B** 80
 - C 160 D 140

Copyright © McDougal Littell Inc.

All rights reserved.

E 280

5. *Multiple Choice* Find the values of *a* and *b*.

(A)
$$a = 50, b = 50$$

(B) $a = 25, b = 50$
(C) $a = 50, b = 25$
(D) $a = 25, b = 25$
(E) $a = 100, b = 25$

6. *Multiple Choice* Find the value of x. (A) 5 (B) 3 (12x + 10)° (C) 8 (D) 10 (7x - 5)° (7x - 5)°

- 7. *Multiple Choice* Find the values of *x* and *y*.
 - (A) x = 80, y = 75(B) x = 105, y = 100(C) x = 75, y = 80(D) x = 100, y = 105(E) x = 90, y = 115

8. *Multiple Choice* Find the values of *x* and *y*.

(A) x = 6, y = 84(B) x = 42, y = 48(C) x = 42, y = 42(D) x = 90, y = 84(E) x = 48, y = 42(D) x = 48, y = 42(D) x = 48, y = 42

Quantitative Comparison In Exercises 9 and 10, use the diagram to choose the statement below that is true.

- (A) The value in column A is greater.
- **B** The value in column B is greater.
- \bigcirc The two values are equal.
- **D** The relationship cannot be determined from the given information.

Georgia Standardized Test Practice Workbook

For use with pages 621–627

GHSGT: 29, 31

TEST TAKING STRATEGY

The mathematical portion of the SAT is based on material taught in your high school mathematics courses. One of the best ways to prepare for the SAT is to keep up with your regular studies and do your homework.

- Multiple Choice Find m∠1.
 A 170° B 85°
 - C 190° D 95°
 - **E** 340°

- **2.** *Multiple Choice* Find $m \widehat{AB}$.
 - ▲ 110° 70°
 - C 140° D 220°
 - **E** 35°

- 3. Multiple Choice Find m ABC.
 A 58° B 116°
 C 122° D 29°
 - **E** 244°

R

- **4.** *Multiple Choice* If $m \widehat{EGF} = (6x + 12)^\circ$, find the value of x.
 - A 22
 B 11
 C 16
 D 10
 E 20

 $G = \frac{11}{E}$

5. *Multiple Choice* If $m \widehat{LNM} = (8x + 12)^\circ$, find the value of x.

Quantitative Comparison In Exercises 9 and 10, choose the statement that is true.

- (A) The value in column A is greater.
- **B** The value in column B is greater.
- C The two values are equal.
- **D** The relationship cannot be determined from the given information.

GHSGT: 4, 29, 31

GA QCC: 1, 28, 29, 46

TEST TAKING STRATEGY

For use with pages 629-635

Make sure that you are familiar with the directions before taking a standardized test. This way, you do not need to worry about the directions during the test.

- **1.** Multiple Choice Find the value of *x*.
 - $\bigcirc 3$ **B** 4

- **E** 8
- 2. Multiple Choice Find the value of *y*. **B** 3
 - **A** 2 **(C)** 4 **D** 5
 - **E** 6

8

6

- **3**. Multiple Choice Find the value of *x*. 12 **A** 10 **B** 5 10 х **C** 9.6 **D** 12 **E** 14
- 4. Multiple Choice

Find the value of *y*. 8 **A** 3.2 **B** 12.8 5 **C** 4.9 **D** 7.8 **E** 1.8

5. *Multiple Choice* Find the value of *x*. Round to the nearest tenth, if necessary.

6. *Multiple Choice* You are standing 16 feet from a circular swimming pool. The distance from you to a point of tangency is 25 feet. What is the approximate diameter of the pool?

A 23 ft **B** 46 ft **(C)** 19 ft **D** 38 ft **E** 15 ft

7. *Multiple Choice* Find the values of *x* and *y*. Round to the nearest tenth, if necessary.

Quantitative Comparison In Exercises 8 and 9, use the diagram to choose the statement below that is true.

- A The value in column A is greater.
- **B** The value in column B is greater.
- **C** The two values are equal.
- The relationship cannot be determined from the given information.

	Column A	Column B
8.	x	у
9.	Z	HB

GA QCC: 42, 46

Standardized Test Practice

For use with pages 636-640

GHSGT: 29

Chapter 10

LESSON

TEST TAKING STRATEGY Work as quickly as you can through the easier sections, but avoid making careless errors on easy questions.

- **1**. *Multiple Choice* What is the standard form of the equation of a circle with center (3, -2)and radius 4?
 - (A) $(x-3)^2 + (y-2)^2 = 4$
 - **B** $(x-3)^2 + (y-2)^2 = 16$
 - (c) $(x-3)^2 + (y-2)^2 = 8$
 - **(D)** $(x + 3)^2 + (v + 2)^2 = 16$
 - (E) $(x-3)^2 + (y+2)^2 = 16$
- **2**. *Multiple Choice* What is the center of a circle with an equation of $(x + 5)^2 + (y - 1)^2 = 36?$
 - **(6, 0) B** (0, 6)
 - **C** (−5, 1) **D** (-5, -1)
 - **E** (5, 1)
- **3**. *Multiple Choice* What is the radius of a circle with an equation of

(x -	$(-\frac{4}{9})^2 + (y -$	$(\frac{9}{16})^2$	$=\frac{25}{36}?$		
A	$\frac{2}{3}$	₿	$\frac{4}{9}$	€	$\frac{3}{4}$
D	$\frac{5}{6}$	E	$\frac{25}{36}$		

4. *Multiple Choice* What is the center and radius of the circle in the diagram?

- **5.** *Multiple Choice* What is the equation of the circle in Exercise 4?
 - (A) $(x + 4)^2 + (y + 3)^2 = 2$

B
$$(x-3)^2 + (y-4)^2 = 2$$

(C) $(x + 4)^2 + (y + 3)^2 = 4$

D
$$(x-3)^2 + (y-4)^2 = 4$$

E
$$(x-1)^2 + (y-4)^2 = 4$$

70

- 6. *Multiple Choice* The center of a circle is (2, 4) and a point on the circle is (-1, 4). What is the equation of the circle?
 - (A) $(x + 4)^2 + (y + 2)^2 = 9$
 - **(B)** $(x-2)^2 + (y-4)^2 = 9$
 - **(C)** $(x + 2)^2 + (y + 4)^2 = 9$
 - **(D)** $(x + 2)^2 + (y + 4)^2 = 3$
 - (E) $(x-2)^2 + (y-4)^2 = 3$
- 7. *Multiple Choice* A diameter of a circle has endpoints of (-5, 6) and (-5, -2). What is the equation of the circle?
 - (A) $(x + 5)^2 + (y 2)^2 = 16$
 - **B** $(x-5)^2 + (y+2)^2 = 4$
 - (c) $(x + 5)^2 + (y 2)^2 = 4$
 - **D** $(x + 5)^2 + (y 2)^2 = 64$
 - **(E)** $(x + 5)^2 + (y 4)^2 = 4$
- **8**. *Multiple Choice* The center of a circle is (5, -3) and its radius is 4. Which point lies on the *exterior* of the circle?
 - (A) (4, -2)**B** (6, 0)
 - **(D)** (-1, -4) (\mathbf{C}) (4, -5)
 - (**E**) (1, -3)
- **9**. *Multi-Step Problem* The center of a circle is (x, 2) and its radius is 3. Assume x > -4.
 - **a.** If another point on the circle is (-4, 2), what is the value of *x*?
 - **b.** What is the equation of the circle in standard form?
 - **c.** Graph the equation from part (b).
 - **d**. Name a point *on* the circle, a point in the interior of the circle, and a point in the exterior of the circle.

Geometry Georgia Standardized Test Practice Workbook

GA OCC: 1, 3, 42, 46

GHSGT: 4, 29

For use with pages 642–648

TEST TAKING STRATEGY It is important to remember that your SAT score will not solely determine your acceptance into a college or university. Do not put added pressure on yourself to do well. If you are not satisfied with your SAT score, remember that you can take it again.

Standardized Test Practice

- **1.** *Multiple Choice* What is the locus of all points in the coordinate plane that are equidistant from points (3, 2) and (3, 16)?
 - (A) The line x = 9 (B) The line y = 9
 - **(C)** (3, 9) **(D)** The line x = 3
 - **(E)** (3, 14) and (3, 18)

LESSON

- **2.** *Multiple Choice* What is the locus of all points in the coordinate plane that are equidistant from points A(1, -2) and B(3, -2) and are $\sqrt{5}$ units from *B*.
 - (A) The line x = 2 (B) The line y = 2
 - **C** $(2, -3\sqrt{2}), (2, 2\sqrt{2})$
 - **D** $(2,\sqrt{2}), (2,-4\sqrt{2})$
 - **E** (2, 0), (2, 4)
- **3.** *Multiple Choice* What is the locus of all points that are equidistant from the lines $y = \frac{3}{5}x + 2$ and 3x 5y = -50.
 - **(0, 6)**
 - **B** The line $y = \frac{3}{5}x + 4$
 - **C** The line $y = \frac{3}{5}x + 6$
 - **D** (0, 6) and (-10, 0)
 - (E) The lines $y = \frac{3}{5}x + 12$ and $y = \frac{3}{5}x$
- **4.** *Multiple Choice* Point *D* is in the interior of $\angle ABC$. What is the number of possible locus points in the interior of $\angle ABC$ that are equidistance from $\angle ABC$ and 1 inch from point *D*?
 - **A** 0 points
 - **B** 1 point
 - C 2 points
 - **D** all points on the \perp bisector of $\angle ABC$
 - E cannot be determined

Copyright © McDougal Littell Inc. All rights reserved.

For Exercises 5–7, use the graph at the right.

5. *Multiple Choice* Find the locus of points in the coordinate plane that are equidistant from *H* and *I*.

- (A) The line $x = \frac{9}{2}$ (B) Th
- **C** The line $y = \frac{9}{2}$ **D** (5, 2) and (0, 2)
- **E** (5, 2)
- **6.** *Multiple Choice* Find the locus of points that are 4 units from *J*.
 - **(A)** (5, 2) and (5, 10)
 - **B** The circle $(x + 5)^2 + (y + 6)^2 = 16$
 - **(1**, 6) and (9, 6)
 - **D** The circle $(x 5)^2 + (y 6)^2 = 8$
 - (E) The circle $(x 5)^2 + (y 6)^2 = 16$
- **7.** *Multiple Choice* Find the locus of points that are 2 units from \overrightarrow{JH} .
 - (A) $y = \frac{4}{3}x + \frac{4}{3}$ (B) $y = -\frac{3}{4}x \frac{2}{3}$
 - **(C)** $y = \frac{4}{3}x \frac{8}{3}$ **(D)** A and C
 - (**E**) A and B
- **8**. *Multi-Step Problem* You are given seismograph readings from three locations.
 - At A(4, 6), the epicenter is 10 miles away.
 - At B(-2, -4), the epicenter is 6 miles away.
 - At C(10, -4), the epicenter is 6 miles away.
 - **a.** Graph points *A*, *B*, and *C* on a coordinate plane.
 - **b**. What is the locus of *A*, of *B*, and of *C*?
 - **c.** Find the epicenter.

Chapter 10

GA QCC: 13

Standardized Test Practice

For use with pages 661–668

GHSGT: 29, 30

TEST TAKING STRATEGY Staying physically relaxed during the SAT is very important. If you find yourself tensing up, put your pencil down and take a couple of deep breaths. This will help you stay calm.

- **1.** *Multiple Choice* What is the value of *x*? **A** 100 85 B 140 x \bigcirc 120 120 150 95° **E** 110 100 **2**. *Multiple Choice* What is the value of *y*? A 50 130 75°
- **3.** *Multiple Choice* The measure of each interior angle of a regular polygon is 144°. How many sides does the polygon have?
 - A
 8
 B
 9
 C
 10

 D
 12
 E
 14
- **4**. *Multiple Choice* Find the value of *x*.
- (A) 31.25 (B) 16.25 (2x + 20)° (2x + 20)° (x + 10)° (x + 10)° (x + 10)°
- **5.** *Multiple Choice* A convex heptagon has interior angles that measure 120°, 115°, 135°, 95°, 155°, and 125°. What is the measure of the seventh interior angle?

A	120°	₿	115°	€	135°
D	155°	Ð	95°		

- **6.** *Multiple Choice* What is the sum of the measures of the interior angles of a convex 16-gon?
- ▲
 1800°
 ■
 2340°
 C
 2520°

 ●
 2700°
 E
 2880°
- **7.** *Multiple Choice* What is the measure of an exterior angle if the regular polygon has 18 sides?

A	18°	₿	20°	22°
	24°	Œ	26°	

8. *Multiple Choice* A convex octagon has exterior angles that measure 35°, 41°, 25°, 55°, 62°, 17°, and 38°. What is the measure of the exterior angle of the eighth vertex?

A	267°	₿	45°	€	177°
	187°	Ð	87°		

Quantitative Comparison In Exercises 9 and 10, choose the statement that is true.

- (A) The value in column A is greater.
- (B) The value in column B is greater.
- \bigcirc The two values are equal.
- **D** The relationship cannot be determined from the given information.

	Column A	Column B
	The sum of the	The sum of the
9.	exterior angles of	interior angles of
	a 19-gon	a pentagon
	The number of sides	The number of sides
	of a regular polygon	of a regular polygon
10.	with an exterior	whose sum of the
	angle measuring 20°	interior angles
		measures 3240°

LESSON

GA OCC: 30, 32, 37

GHSGT: 26, 27, 29, 35

Standardized Test Practice For use with pages 669–675

LESSON

TEST TAKING STRATEGY Avoid spending too much time on one question. Skip questions that are too difficult for you, and spend no more than a few minutes on each question.

- **1.** *Multiple Choice* Find the area of the triangle. Round to the nearest hundredth, if necessary.
 - (A) 12 square units
 - **B** 31.18 square units
 - **C** 5.20 square units
 - \bigcirc 10.41 square units
 - (E) 15.59 square units

- **2.** *Multiple Choice* Find the area of the inscribed regular pentagon below. Round to the nearest tenth.
 - (A) 422.3 square units
 - **B** 344.4 square units
 - \bigcirc 211.1 square units
 - **D** 688.7 square units
 - (E) 452.2 square units
- **3.** *Multiple Choice* Find the measure of the central angles of a regular polygon with 18 sides.
 - **A** 10° **B** 20° **C** 25°
 - **D** 30° **E** 40°
- **4.** *Multiple Choice* Find the perimeter of the regular hexagon. Round to the nearest tenth, if necessary.
 - **A** 96 units
 - **B** 83.1 units
 - **C** 166.3 units
 - **D** 48 units
 - **E** 100.5 units

16

- **5.** *Multiple Choice* Find the area and perimeter of a square with a diagonal of 10 inches.
 - (A) A = 25.0 in.², P = 14.1 in.
 - **B** $A = 28.3 \text{ in.}^2, P = 50 \text{ in.}$
 - **C** $A = 50 \text{ in.}^2, P = 28.3 \text{ in.}$
 - **D** $A = 56.6 \text{ in.}^2, P = 100 \text{ in.}$
 - (E) A = 100 in.², P = 56.6 in.
- **6**. *Multiple Choice* Find the area of the shaded region. The octagon is regular. Round to the nearest tenth, if necessary.

Quantitative Comparison In Exercises 7 and 8, use the diagrams below to choose the statement that is true.

- (A) The value in column A is greater.
- **B** The value in column B is greater.
- **C** The two values are equal.
- **D** The relationship cannot be determined from the given information.

Copyright © McDougal Littell Inc. All rights reserved. 73

For use with pages 677–682

TEST TAKING STRATEGY When checking your work, try to use a method other than the one you originally used to get your answer. If you use the same method, you may make the same mistake twice.

 Multiple Choice A heptagon has one side length of 15 inches. Another similar heptagon has a corresponding side length of 12 inches. Find the ratio of the perimeters of the smaller to the larger heptagon.

A	16:25	B	4:5	€	15:12
D	25:16	E	5:4		

- **2.** *Multiple Choice* What is the ratio of the area of the larger heptagon to the area of the smaller heptagon in Exercise 1?
 - A 16:25
 B 4:5
 C 15:12
 D 25:16
 E 5:4
- **3.** *Multiple Choice* Find the ratio of the perimeters of the larger triangle to the smaller triangle.

4. *Multiple Choice* A regular hexagon has an area of 64 cm^2 . Find the scale factor of this hexagon to a similar hexagon with an area of 121 cm^2 .

A	64:121	B	8:11	C	121:64
D	11:8	Ē	None of	the abov	ve

5. *Multiple Choice* The ratio of the lengths of two equilateral triangles is 4:9. What is the ratio of their areas?

A 4:9 B 9:4 C	2:3
------------------------------------	-----

D 16:81 **E** 81:16

74

6. *Multiple Choice* A large gazebo is shaped like a regular octagon. It has sides of length 12 feet and an area of about 696 ft². Find the area of a similar gazebo that has a perimeter of 64 feet. Round to the nearest tenth, if necessary.

A	309.3 ft ²	B	130.5 ft ²

C 261 ft^2 **D** 116 ft^2

- (**E**) 1566 ft^2
- **7.** *Multiple Choice* A regular pentagon has a perimeter of 25 m and an area of 43.75 m^2 . Find the perimeter of a similar pentagon with an area of 175 m^2 .

A	100 m	B	75 m	C	25 m
D	45 m	E	50 m		

8. *Multi-Step Problem* Use the diagram of the rectangular swimming pool and deck area to answer parts (a)–(e). The rectangles are similar.

- **a**. What is the area of the pool?
- **b.** What is the area of the deck?
- **c.** What is the ratio of the area of the pool to the area of the deck?
- **d.** How many feet of fencing is needed to go around the deck?
- **e.** If you paid \$750 for 125 feet of fencing in your front yard, and you are using the same fencing for the pool area, how much should it cost?

LESSON

For use with pages 683-689

TEST TAKING STRATEGY Always look for shortcuts that will allow you to work through a problem more quickly.

- **1.** *Multiple Choice* Find the circumference of a circle with a diameter of 16 in. Round to the nearest hundredth.
 - **A** 25.13 in. **B** 50.27 in.
 - **C** 50.26 in. **D** 25.14 in.
 - **E** 201.06 in.
- **2.** *Multiple Choice* Find the radius of a circle with a circumference of 60 m. Round to the nearest hundredth.
 - **A** 9.55 m **B** 4.37 m
 - **C** 19.10 m **D** 19.09 m
 - € 9.54 m
- **3.** *Multiple Choice* Find the circumference of the circle. Round to the nearest hundredth.

3 cm

6

C € 125°

32.3

75

C

- **A** 9.43 cm
- **B** 9.42 cm
- **C** 28.26 cm
- **D** 18.85 cm
- **E** 28.27 cm
- **4.** *Multiple Choice* Find the length of \widehat{AB} . Round to the nearest tenth.
 - **A** 6.5
 - **B** 14.2
 - **C** 13.1
 - **D** 8.3
 - **E** 6.6
- **5.** *Multiple Choice* Find the radius of $\odot C$. Round to the nearest tenth.
 - **A** 24.7
 - **B** 49.4
 - **C** 12.3
 - **D** 53.1
 - **E** 26.5

Copyright © McDougal Littell Inc. All rights reserved.

- **6.** *Multiple Choice* Find the circumference of $\odot A$.
 - A 103.68
 B 25.92
 C 48.9
 D 50.4
 E 51.84

Chapter 1

7.2

7. *Multiple Choice* Find the values of *x* and *y*.

(A) $x = 21, y \approx 4.8$ (B) $x = 25, y \approx 1.4$ (C) $x = 25, y \approx 4.8$ (D) $x = 31, y \approx 4.8$

- $A (3y-5)\pi$ (220°) $C (5x-15)^{\circ} B$
- **8.** *Multiple Choice* Find the perimeter of the region bounded by the circular arcs and line segments. Round to the nearest hundredth, if necessary.
 - A 114.85
 3

 B 77.15
 124

 C 102.8
 124

 D 46.85
 3

 E 66.85
 8
- 9. *Quantitative Comparison* Consider the circumference of the two circles described below. Choose the statement that is true.
 - (A) The quantity in column A is greater.
 - **B** The quantity in column B is greater.
 - **C** The two quantities are equal.
 - **D** The relationship cannot be determined from the given information.

Column A	Column B
Circle with radius 4	Circle with diameter 4

Georgia Standardized Test Practice Workbook

GA OCC: 30, 31, 32, 37

GHSGT: 6, 7, 26, 27, 35

Standardized Test Practice

For use with pages 691–698

TEST TAKING STRATEGY Do not panic if you run out of time before answering all of the questions. You can still receive a high test score without answering every question.

- **1**. *Multiple Choice* Find the area of a circle with a diameter of 7 inches. Round to the nearest hundredth.
 - (A) 153.94 in.^2 (B) 11.0 in.^2
 - **(C)** 43.98 in.^2 **(D)** 19.24 in.^2
 - **(E)** 38.48 in.²
- 2. *Multiple Choice* Find the radius of a circle with an area of 66.5 cm². Round to the nearest tenth.
 - (A) 9.2 cm **B** 5.3 cm
 - **(C)** 2.3 cm **D** 4.6 cm
 - **(E)** 10.6 cm
- **3**. *Multiple Choice* Find the circumference of a circle whose area is 100 m². Round to the nearest tenth.
 - **A** 45.4 m **B** 35.4 m
 - **C** 15.9 m **D** 17.7 m
 - **E** 31.8 m
- **4**. *Multiple Choice* Find the area of the sector shown in the diagram. Round to the nearest tenth.
 - (A) 34.5 ft² **B** 36.1 ft² **C** 12.0 ft² 115° **D** 18.1 ft² **E** 28.6 ft²
- **5.** *Multiple Choice* A birthday cake is cut into 16 equal pieces. If the cake has a diameter of 14 inches, what is the area of one piece of cake? Round to the nearest hundredth.
 - (A) 38.48 in.^2 (B) 19.2 in.^2
 - (**C**) 5.5 in.^2 **(D)** 14.36 in.^2
 - **(E)** 9.62 in.²

76

Geometry

Georgia Standardized Test Practice Workbook

- **6.** *Multiple Choice* Find the radius of \odot *C*, if the area of the shaded region is 47.5 cm^2 .
 - **A** 7 cm 85° **B** 7.5 cm **C** 8 cm **D** 8.5 cm
 - **(E)** 9 cm
- 7. *Multiple Choice* Find the area of the shaded region. The three triangles are regular. Round to the nearest tenth.
 - (A) 67.7 cm²
 - **B** 35.2 cm^2
 - **(C)** 39.3 cm²
 - **(D)** 46.1 cm^2
 - **(E)** 56.9 cm²

Quantitative Comparison In Exercises 8 and 9, use the diagram below to choose the statement that is true.

- A The value in column A is greater.
- **B** The value in column B is greater.
- The two columns are equal. \bigcirc
- D The relationship cannot be determined from the given information.

Given: OB bisects $\angle AQC$.

	Column A	Column B
8.	The area outlined	The area outlined
	by <i>ABKJ</i>	by JQL
9.	The area of the circle	The area of the
	with radius JQ.	shaded region

LESSON

For use with pages 699–705

TEST TAKING STRATEGY Sketch graphs of figures in your test booklet to help you solve the problems.

In Exercises 1 and 2, use the diagram below.

- **1**. *Multiple Choice* Find the probability that a point chosen at random on \overline{AE} is on \overline{BD} .
 - **A** 20% B 25% **C** 30%
 - **D** 35% **E** 40%
- **2**. *Multiple Choice* Find the probability that a point chosen at random on \overline{BE} is on \overline{CD} . Round to the nearest hundredth.
 - **B** 0.18 **A** 0.15 **C** 0.25 **E** 0.45 **D** 0.27
- **3**. *Multiple Choice* Find the probability that a point chosen at random in the regular triangle lands in the shaded region.
 - **A** 25%
 - **B** 30%
 - **C** $33\frac{1}{3}\%$
 - **D** 40%
 - **E** 50%
- 3
- **4**. *Multiple Choice* Find the probability that a point chosen at random lands in the shaded region. Round to the nearest tenth, if necessary.

E 37.6%

GA QCC: 1, 30, 31, 32, 37

GHSGT: 2, 4, 7, 10, 26

6. *Multiple Choice* Find the probability that a point chosen at random in the hexagon lands in the shaded region. Round to the nearest hundredth.

A	5.35%	
B	21.36%	
C	10.68%	
D	38.28%	
E)	69.14%	

- 7. *Quantitative Comparison* Use the diagram of the game board below. A point randomly chosen on the circle is worth the number outside the sector. A point landing in the inner circle is worth double the outside value. Choose the statement below that is true about the given number.
 - A The value in column A is greater.
 - **B** The value in column B is greater.
 - **C** The two values are equal.

Δ

The relationship cannot be determined from the given information.

Column A	Column B
Probability of	Probability of
getting 4 points	getting 3 points

GA QCC: 3, 30, 33

Standardized Test Practice

Work as quickly as you can through the easier sections, but

avoid making careless errors on easy questions.

For use with pages 719–726

GHSGT: 20, 26

1. *Multiple Choice* Which of the figures shown **5**. *Multiple Choice* Use Euler's Theorem to is not a polyhedron? find the number of faces when a polyhedron has 8 vertices and 12 edges. III. I. II. **A** 4 **B** 6 **C** 8 **D** 10 **(E)** 12 6. *Multiple Choice* Which is the best description of the cross section of the (A) I only **B** II only figure shown? 8 **C** III only \bigcirc I and II (\mathbf{A}) circle (E) II and III **B** square **C** rectangle **2.** *Multiple Choice* The polyhedron below has how many faces (F) and edges (E)? **D** oval **E** pentagon (A) F = 6, E = 187. *Multiple Choice* The name of the regular **B** F = 6, E = 24polyhedron shown is **(C)** F = 8, E = 18(A) tetrahedron. **(D)** F = 8, E = 24B octahedron. (E) F = 8, E = 30 \bigcirc cube. dodecahedron. **3**. *Multiple Choice* The polyhedron below has iscosahedron. how many vertices? (E) **A** 14 **B** 15 8. *Quantitative Comparison* Choose the state-**C** 16 **D** 17 ment below that is true. **E** 18 A The value in column A is greater. **B** The value in column B is greater. **4**. *Multiple Choice* The solid below is best **C** The two values are equal. described as a The relationship cannot be determined (\mathbf{A}) convex, from the given information. regular polyhedron. Column A Column B **B** convex, nonregular The number of The number of polyhedron. vertices on a solid vertices on a solid **C** nonconvex, with 15 faces, with 22 faces, regular polyhedron. having 9 hexagons having 16 squares **D** nonconvex, nonregular polyhedron. and 6 squares and 6 triangles (\mathbf{E}) none of these

78

TEST TAKING STRATEGY

GA QCC: 3, 30, 33, 37

GHSGT: 9, 20, 26, 35

For use with pages 728–734

TEST TAKING STRATEGY Make sure that you are familiar with the directions before taking a standardized test. This way, you do not need to worry about the directions during the test.

- 1. *Multiple Choice* The best mathematical name of the solid is
 - A right prism.
 - **B** right rectangular prism.
 - C cube.
 - **D** right pentagonal prism.
 - **E** right hexagonal prism.
- **2.** *Multiple Choice* How many lateral edges does the figure in Exercise 1 have?
 - **A** 4 **B** 5 **C** 7
 - **D** 15 **E** 10
- **3.** *Multiple Choice* Find the lateral area of the right prism shown.

- **4.** *Multiple Choice* Find the surface area of the regular right prism.
 - (A) 215 in.^2
 - **B** 160 in.^2
 - (**C**) 105 in.^2
 - **D** 187.5 in.^2

(E) 270 in.^2

8 in.

4 in.

- **5.** *Multiple Choice* Find the surface area of a right rectangular prism with a height of 6 inches, a length of 2 inches, and a width of 8 inches.
 - (A) 96 in.^2 (B) 120 in.^2
 - **(C** 152 in.^2 **(D** 128 in.^2 **(E** 56 in.^2

6. *Multiple Choice* Find the surface area of the right cylinder. Round to the nearest hundredth.

7. *Multiple Choice* Use the diagram to solve for the value of x given that the surface area of the figure is 286 in.².

Quantitative Comparison In Exercises 8 and 9, use the solids to choose the statement below that is true.

- A The value in column A is greater.
- (B) The value in column B is greater.
- C The two values are equal.
- **D** The relationship cannot be determined from the given information.

	Column A	Column B	
	10		
8.	Lateral area	Lateral area	
9.	Surface area	Surface area	

79

GA QCC:	3, 30, 33, 37
---------	---------------

For use with pages 735–742

TEST TAKING STRATEGY If you are not satisfied with your SAT score, remember that you can take it again.

For Exercises 1–3, use the diagram below.

- **1**. *Multiple Choice* Find the slant height of the pyramid.
 - (A) 4.5 cm (B) 5.5 cm
 - **€** 6.5 cm **●** 6 cm
 - **E** 7.8 cm

LESSON

- **2.** *Multiple Choice* Find the lateral area of the pyramid.
 - A 57.5 cm²
 B 65 cm²
 C 32.5 cm²
 D 78 cm²
 - E 90 cm²
- **3.** *Multiple Choice* Find the surface area of the pyramid.
 - (A) 57.5 cm^2 (B) 65 cm^2
 - **C** 32.5 cm^2 **D** 78 cm^2
 - (**E**) 90 cm^2
- **4.** *Multiple Choice* Find the slant height of the cone. Round to the nearest tenth.

5. *Multiple Choice* Find the surface area of the cone. Round to the nearest tenth.

6. *Multiple Choice* Use the diagram to solve for x and y when the surface area is 138.23 m^2 .

- Multiple Choice Find the surface area of the solid. The cylinder and cones are right. Round to the nearest tenth.
- **A** 716.3 m²
- **B** 867.1 m²
- **C** 1168.7 m²
- **D** 1055.6 m^2
- **(E)** 942.5 m^2

- **8.** *Multi-Step Problem* A regular pyramid has a triangular base with a base edge of 6 inches, a height of 10 inches, and a slant height of 10.33 inches.
 - **a**. Sketch the solid.
 - **b**. Find the lateral area.
 - **c.** Find the surface area.
 - **d.** Double the lengths of the base edge, height, and slant height. What is the ratio of the surface area of the smaller pyramid to the larger pyramid?

For use with pages 743–749

GA QCC: 1, 3, 30, 33, 37 **GHSGT:** 2, 4, 9, 20, 26, 35

TEST TAKING STRATEGY If you find yourself spending too much time on one test question and getting frustrated, move on to the next question. You can revisit a difficult problem later with a fresh perspective.

6 m

12.3 ft

- **1.** *Multiple Choice* What is the volume of a prism with a rectangular base, with sides of 5 feet and 6 feet, and a height of 4 feet?
 - (A) 60 ft^3 (B) 240 ft^3
 - **C** 120 ft^3 **D** 180 ft^3
 - **E** 480 ft³
- **2.** *Multiple Choice* Find the value of x if the right prism has a volume of 24 m³.

▲ 1 m ■ 2 m

- **C** 3 m **D** 4 m
- **E** 5 m
- **3.** *Multiple Choice* Find the volume of the right cylinder. Round the answer to the nearest hundredth.
 - **A** 324.59 ft³
 - **B** 216.97 ft³
 - **C** 1996.22 ft³
 - **D** 681.64 ft³
 - **E** 2726.55 ft³
- 4. *Multiple Choice* Find the volume of a prism that has a height of 10.5 m and has a right triangle for a base. The legs of the triangle are 5 m and 7 m. Round answer to nearest hundredth.
 - **A** 183.75 m³ **B** 225.80 m³
 - **C** 367.5 m^3 **D** 316.14 m^3
 - **E** 180.04 m³
- **5.** *Multiple Choice* A cylinder has a radius of 24.6 in. and a volume of 29,468 in.³. Find its height.
 - A 14.5 in.
 B 15.5 in.
 C 15 in.
 D 16 in.
 E 16.5 in.

- 6. Multiple Choice oblique prism.
 A 156 cm³
 B 144 cm³ 8 cm
 C 180 cm³
 D 62.4 cm³
 E 124.8 cm³
- **7.** *Multiple Choice* Find the value of x if the volume of the prism is 105 cm³.

8. *Multiple Choice* Find the value of x, if the volume of the cylinder is 301.6 in.³.

- **9.** *Multi-Step Problem* You have two containers. One is a cylinder with a height of 15 inches and a diameter of 10 inches. The other side is a cube with sides of 12 inches.
 - **a**. Sketch the containers.
 - **b**. Find the volume of the cylinder.
 - **c.** Find the volume of the cube.
 - **d.** How many gallons of water are needed to fill the cylinder? (*Hint:* 1 gallon of water is 0.1337 ft³.)

81

Copyright © McDougal Littell Inc. All rights reserved.

TEST TAKING STRATEGY

The mathematical portion of the SAT is based on material taught in your high school mathematics courses. One of the best ways to prepare for the SAT is to keep up with your regular studies and do your homework.

1. *Multiple Choice* Find the area of the base of the pyramid. The base is a regular hexagon. Round to the nearest tenth.

- 2. *Multiple Choice* Find the volume of the cone. Round to the nearest tenth.
 - (A) 1470.3 in.^3 **B** 545.3 in.³
 - (**C**) 1960.4 in.³

 - **D** 490.1 in.³

Œ

- 13 in 5881.1 in.³ 12 in.
- **3**. *Multiple Choice* Find the volume of the pyramid. Round to the nearest tenth.
 - **A** 33.3 cm³
 - **(B)** 141.4 cm^3
 - **(C)** 100 cm^3
 - **(D)** 47.1 cm^3
 - **(E)** 37.5 cm^3
- 8 cm 5 cm 5 cm

9 cm

4. *Multiple Choice* Find the value of *x* if the volume is 113.1 m³. Round to the nearest tenth.

Quantitative Comparison In Exercises 5 and 6, use the diagram of the solids to choose the statement below that is true about the given values.

- A The value in column A is greater.
- **B** The value in column B is greater.
- The two values are equal. \bigcirc
- The relationship cannot be determined from the given information.

7 in.

For use with pages 759–765

GA QCC: 3, 30, 33, 37

GHSGT: 9, 20, 26, 35

TEST TAKING STRATEGY Staying physically relaxed during the SAT is very important. If you find yourself tensing up, put your pencil down and take a couple of deep breaths. This will help you stay calm.

- **1**. *Multiple Choice* If a plane contains the center of a sphere, then the intersection is called a
 - **A** hemisphere. **B** diameter.
 - **C** semi-circle. **D** great circle.
 - **E** half-circle.
- 2. *Multiple Choice* Find the surface area of the sphere. Round to the nearest tenth.
 - **A** 175.9 in.²
 - **B** 615.6 in.²
 - **C** 307.8 in.²

- **3**. *Multiple Choice* Find the volume of the sphere. Round to the nearest tenth.
 - **A** 44,602.2 m³
 - **B** 1520.5 m³
 - **C** 1393.8 m³

- **4**. *Multiple Choice* What is the radius of a sphere with surface area of 1963.5 cm²?
 - (A) 11 cm **B** 12.5 cm
 - **(C)** 11.5 cm **D** 12 cm
 - **(E)** 13 cm
- **5**. *Multiple Choice* Find the circumference of the great circle if the volume of the sphere is 179.6 m³. Round to the nearest tenth.

A	22 m	(B	23.8 m
_				

- **C** 11 m **D** 11.9 m
- **E** 26.6 m

All rights reserved.

6. *Multiple Choice* Find the surface area of the hemisphere. Round to the nearest tenth.

Quantitative Comparison In Exercises 7 and 8, use the diagrams to choose the statement that is true about the given values.

- (A) The value in column A is greater.
- **B** The value in column B is greater.
- **C** The two values are equal.
- **D** The relationship cannot be determined from the given information.

LESSON	
12.7	Standardized Test Practice
	For use with pages 766–772

GA QCC: 3, 30, 33

GHSGT: 20, 26, 35

TEST TAKING STRATEGY

When checking your work, try to use a method other than the one you originally used to get your answer. If you use the same method, you may make the same mistake twice.

In Exercises 1–3, use the similar figures below.

Figure B

1. *Multiple Choice* Find the scale factor for solid A to solid B.

A	1:2	B	1:3	C	1:4
D	2:3	Ē	2:5		

2. *Multiple Choice* Find the ratio of the surface areas for A to B.

A	4:9	₿	1:9	4:25
D	1:4	Œ	1:16	

3. *Multiple Choice* Find the ratio of the volumes for A to B.

A	1:27	₿	1:8	€	8:27
D	8:125	Œ	1:64		

4. *Multiple Choice* Two prisms are similar with a scale factor of 1:4. Find the volume of the first given that the volume of the second is 2400 ft³.

A	600 ft^3	B	37.5 f	t ³
A	600 ft^3	B	37.5 f	

- (C) 150 ft³ **D** 75 ft^3
- **(E)** 300 ft³
- **5.** *Multiple Choice* Two pyramids are similar with a ratio of surface areas of 25:64. Find the volume of the second pyramid given that the first has a volume of 250 m^3 .

- **(C)** 1024 m^3 **D** 97.7 m^3
- (E) 4194 m³

84

6. *Multiple Choice* Which solids below are similar?

- (\mathbf{A}) I and II **B** I and III
- \bigcirc II and III **D** I, II, and III
- (\mathbf{E}) none of these
- 7. Multi-Step Problem Use the similar solids shown below.

- **a**. What is the scale factor of prism A to prism B?
- **b.** What is the height of prism B?
- **c.** What is the volume of prism B if the volume of prism A is 367.5 in.³?
- **d**. What is the surface area of a third prism that is similar to A and B, and has a volume of 45.94 in.³?

Georgia Standardized Test Practice Workbook

For use after Chapters 1–12

- **1.** *Multiple Choice* Find the length of \overline{AC} if *AB* is 8, *BC* is 13, and *B* is between *A* and *C*.
 - **A** 5 **B** 8 **C** 13
 - **D** 18 **E** 21
- **2**. *Multiple Choice* Find the measure of $\angle 1$.
- **3.** *Multiple Choice* Which property of equality matches the conditional statement "If WX = XY and XY = YZ, then WX = YZ?"
 - Addition property
 - **B** Symmetric property
 - **C** Reflexive property
 - **D** Substitution property
 - (E) Transitive property
- **4.** *Multiple Choice* Find the values of x and y when $a \parallel b$.
 - (A) x = 27.3, y = 22(3x + 4)° a (3x + 4)° b (3x
 - y = 43.5
 - **D** x = 30, y = 43.5
 - (E) x = 30, y = 21
- **5.** *Multiple Choice* Find the measures of $\angle 1$ and $\angle 2$.

(A) $m \angle 1 = 80^{\circ}, \\ m \angle 2 = 130^{\circ}$ (B) $m \angle 1 = 50^{\circ}, \\ m \angle 2 = 100^{\circ}$ (2)

- **C** $m \angle 1 = 65^{\circ}, m \angle 2 = 115^{\circ}$
- **D** $m \angle 1 = 65^\circ, m \angle 2 = 100^\circ$
- (E) $m \angle 1 = 50^\circ, m \angle 2 = 115^\circ$

- **6**. *Multiple Choice* What is the value of *x*?
- A 5
 B 4.5

 C 4
 D 1

 E 8
 6x 3

 5x + 2 5x + 2
- **7.** *Multiple Choice* \overrightarrow{XY} is the perpendicular bisector of \overrightarrow{AB} . Find *AO* and *AY*.

8. *Multiple Choice* In the diagram, the angle bisectors of $\triangle ABC$ meet at point *D*. Find *DG*.

- 9. *Quantitative Comparison* Choose the statement below that is true.
 - A The value in column A is greater.
 - **B** The value in column B is greater.
 - **C** The two values are equal.
 - **D** The relationship cannot be determined from the given information.

For use after Chapters 1–12

- **10.** *Multiple Choice* Name the type of transformation and the coordinates corresponding to point *A*'.
 - (A) rotation about (0, 1); (-1, -5)
 - **B** rotation about (1, -1); (3, -5)
 - **C** reflection in line y = -1; (-1, -5)
 - **D** reflection in line y = 2; (2, -5)
 - (E) translation in line y = -1; (2, -5)

- **11.** *Multiple Choice* Given points A(1, 2) and B(5, 6), find point *C* on the *x*-axis so that AC + BC is a minimum.
 - **(A)** $\left(\frac{5}{2}, 0\right)$ **(B)** (2, 0) **(C)** (3, 0)
 - **D** (0,3) **E** (0,2)
- **12.** *Multiple Choice* The coordinates of $\triangle ABC$ are A(3, 2), B(-1, 6), and C(-2, -3). The component form of \overrightarrow{HJ} is $\langle 2, -6 \rangle$. What are the coordinates of $\triangle A'B'C'$ after the translation using \overrightarrow{HJ} ?
 - (A) A'(5, -4), B'(1, -12), C'(4, -9)
 - **B** A'(5, 4), B'(1, 0), C'(0, -9)
 - **C** A'(5, 8), B'(1, -12), C'(-4, 3)
 - **D** A'(5, -4), B'(1, 0), C'(0, -9)
 - (E) A'(6, -12), B'(-2, -36), C'(-4, 18)
- **13.** *Multiple Choice* Translation 1 maps *A* to *A'*. Translation 2 maps *A'* to *A''*. What translation maps *A* to *A''*?

Translation 1: $(x, y) \rightarrow (x - 2, y + 6)$ Translation 2: $(x, y) \rightarrow (x - 1, y - 2)$

- $(\mathbf{A}) \quad (x, y) \to (x 1, y + 4)$
- $(\mathbf{B}) \quad (x, y) \to (x 3, y + 4)$
- $\textcircled{C} (x, y) \rightarrow (x + 2, y 12)$

(E)
$$(x, y) \rightarrow (x - 3, y - 8)$$

14. Multiple Choice Solve $\frac{6}{x+5} = \frac{3}{x-1}$. (A) 5 (B) 7 (C) $\frac{8}{3}$ (D) 6 (E) 5.3 15. Multiple Choice In the diagram, $\frac{AB}{BD} = \frac{AC}{EC}$ Find the length of \overline{AE} .

16. *Multiple Choice* ABCD ~ EFGH. The perimeter of ABCD is 16. What is the length of \overline{BC} ?

17. *Multiple Choice* Find the length of *x* in the diagram.

18. *Multiple Choice* Find the value of *x*. Round to the nearest tenth if necessary.

Geometry Georgia Standardized Test Practice Workbook

For use after Chapters 1–12

2

- **19.** *Multiple Choice* Find the value of *y*. Round to the nearest tenth if necessary. 16
 - **A** 5.7 **B** 8.0
 - **C** 12.6 **D** 13.9
 - **E** 11.5
- **20.** *Multiple Choice* Find the value of *x* that makes the triangle obtuse.

21. *Multiple Choice* The side of an equilateral triangle is 11 cm. Find the length of an altitude of the triangle.

A $\frac{11}{2}$ **B** 8.3 **C** 7.8 **D** $\frac{11}{2}\sqrt{2}$ **E** $\frac{11}{2}\sqrt{3}$

- **22**. *Multiple Choice* Find the area of the triangle. Round to the nearest tenth.
 - (A) 77.6 cm^2
 - **B** 47.3 cm^2
 - (C) 94.6 cm^2 (D) 155.1 cm^2

15

Κ

- **E** 82.5 cm²
- **23.** *Multiple Choice* Find $m \angle A$. Round to the nearest tenth. $A \supseteq B$

24. Multiple Choice If \overrightarrow{LK} is tangent to $\odot J$, find JL. (A) 7 (B) 8 (J) (C) 9 (D) 10 (J) **25**. *Multiple Choice* Find the value of *x*.

- (A) 25 (B) 20 (C) 10 (D) 15 (E) 45 (3x + 15)°
- **26.** *Multiple Choice* Find $m \angle 1$.

27. *Multiple Choice* Find the values of *x* and *y*. Round to the nearest tenth.

- **28.** *Multi-Step Problem* The center of a circle is (h, -2) and its radius is 4.
 - **a.** If another point on the circle is (3, 2), what is the value of *h*?
 - **b.** What is the equation of the circle in standard form?
 - **c.** Graph the equation.
- **29**. *Multiple Choice* What is the sum of the measures of the interior angles of a convex 17-gon?
 - (A) 2340°
 (B) 2520°
 (C) 2700°
 (D) 2880°
 (E) 3060°
- **30.** *Multiple Choice* Find the area of the regular pentagon. Round to the nearest tenth.

11

Œ

For use after Chapters 1–12

- **31.** *Multiple Choice* A regular octagon has an area of 81 ft². Find the scale factor of this octagon to a similar octagon with an area of 625 ft².
 - **A** 3:5 **B** 9:25 **C** 27:125
 - **D** 8:625 **E** 64:390,625
- **32.** *Multiple Choice* Find the area of $\odot C$. Round to the nearest tenth.
 - (A) 89.8 cm^2
 - **B** 44.9 cm^2
 - (C) 80.1 cm^2 (D) 134.7 cm^2

- **(E)** 160.2 cm^2
- **33.** *Multiple Choice* Find the diameter of $\bigcirc B$, if the area of the shaded region is 32.07 in.².
 - **A** 3.5 in. **B** 7 in.
 - **C** 14 in. **D** 49 in.
 - **E** 24.5 in.

12 in.

34. *Multiple Choice* Find the probability that a point chosen at random in the circle lands in the shaded region. Round to the nearest tenth. All shaded regions have a central angle equal to 15° .

- **35.** *Multiple Choice* Find the surface area of the sphere. Round to the nearest tenth.
 - **A** 301.6 in.²
 - **B** 7238.2 in.²
 - (**C**) 603.2 in.^2
 - **D** 1809.6 in.²
 - **E** 3619.1 in.²

88

A	301.6 in. ³	B	7238.2 in. ³
€	603.2 in. ³		1809.6 in. ³
E	3619.1 in. ³		

Quantitative Comparison In Exercises 37–39, use the diagrams below to choose the statement that is true about the given value.

- A The value in column A is greater.
- **B** The value in column B is greater.
- **C** The two values are equal.
- **D** The relationship cannot be determined from the given information.

ANSWERS

Chapter 1

Section 1.1

1. C **2**. B **3**. C **4**. D **5**. B **6**. C

7. a. row 5: 1, 4, 6, 4, 1; row 6: 1, 5, 10, 10, 5, 1
b. The first and last number in each row is 1.
Every other number in each row is formed by adding the two numbers immediately above the number.
c. Each row has one more entry than the previous row.

Section 1.2

1. D **2**. E **3**. B **4**. E **5**. E **6**. B **7**. B **8**. B

9. a.

d. rectangular prism

Section 1.3

1. E 2. B 3. D 4. B 5. A 6. C 7. C 8. A 9. C 10. D 11. A 12. A 13. D Section 1.4

Section 1.4

1. C **2**. A **3**. D **4**. C **5**. B **6**. B **7**. A **8**. C

Section 1.5

1. C **2**. B **3**. D **4**. A **5**. B **6**. B **7**. C **8**. E **9**. C **10**. B

Section 1.6

1. D **2**. D **3**. D **4**. C **5**. C **6**. B **7**. B **8**. C **9**. C **10**. C

Section 1.7

C 2. B 3. D 4. C 5. E 6. E 7. C
 B D 9. C 10. A
 a. 2000 in.² b. 180 in.
 c. 2279 in.²; 192 in.; about 14.0%

Chapter 2 Section 2.1

1. C 2. B 3. A 4. D 5. E 6. B

7. a. If there are three noncollinear points, then there is exactly one plane containing those points.

b. If there is exactly one plane containing three points, then they are noncollinear points.

c. If there are not three noncollinear points, then there is not exactly one plane containing them.

d. If there is not exactly one plane containing three points, then the three points are not non-collinear. **e.** yes

Section 2.2

1. E **2.** B **3.** D **4.** A **5.** D **6.** B **7.** D

Section 2.3

1. C **2.** A **3.** E **4.** C **5.** D **6.** C

7. a. If you get caught exceeding the speed limit, then you will get a speeding ticket.

b. If you get a speeding ticket, then you will pay higher insurance rates. **c.** If you do not get a speeding ticket, then you do not get caught exceeding the speed limit; $\sim q \rightarrow \sim p$

d. If you get caught exceeding the speed limit, then you will pay higher insurance rates; statement p must be true for q and r to be true.

Section 2.4

1. E **2**. B **3**. C **4**. B **5**. A **6**. D

- 7. a. Angle addition postulate b. given
- **c.** Substitution property **d.** given
- e. Substitution property f. Distributive property

\$			b. Statements	Reasons	
ver	g. Given that $m \angle ABE = m$	$\angle EBC$ and	1. $a \perp n$	1 . Proven in part (a).	
NSU	$m \angle EBD = m \angle DBC$, it can	be shown that	2. ∠3 ≅ ∠4	2. Alt. int. 🖄	
A	$m \angle ABE = 2(m \angle EBD)$ usir	ng the angle addition		Theorem	
	postulate, substitution prope property of equality.	erty, and distribution	3. $\angle 4$ is a right angle.	3. Transitive Prop. of \cong	
	Section 25		4. $b \perp n$	4. Def. of perp. lines	
			Section 3.6		
	1. E Z. D 3. C 4. B	5. E 6. C 7. B			
	8. B		1. B 2. D 3. C 4. C	5. E 6. A 7. A	
	Section 2.6		8. B 9. B		
	1. D 2. E 3. D 4. C	5. A 6. B 7. D	Section 3.7		
	8. B 9. C 10. A		1. B 2. E 3. C 4. A	5. A 6. C 7. E	
			8. a. 🗛	b. $y = \frac{1}{3}x + \frac{1}{3}$	
	Chapter 3		<i>B</i> (5, 2)	c. $y = -3x + 7$	
	Section 3.1			d. $y = -3x + 17$	
	1. E 2. E 3. B 4. D	5. C 6. C 7. E	$\begin{array}{c c} A(2,1) \\ \hline \\ 1 \\ \hline \\ x \end{array}$	e. $m = \frac{1}{2}$	
	8. A			5	
	9. a. \overrightarrow{EH} , \overrightarrow{FG} , \overrightarrow{BC} b.	\overrightarrow{DC} , \overrightarrow{AB} , \overrightarrow{AE} , \overrightarrow{DH}	Chapter 4		
	c. \overrightarrow{AB} , \overrightarrow{EE} , \overrightarrow{BC} , \overrightarrow{EG} d. a	ll of parts (a) and (c)	Section 4.1		
	• • • • • • • • • • • • • •	(ii) of pulls (ii) und (ii)	1 . E 2 . C 3 . D 4 . C	5. D 6. D 7. B	
	Section 3.2		8. E 9. B		
	1 . B 2 . D 3 . C 4 . E	5. C 6. C 7. B	Section 12		
	8. A				
	Section 3.3		1. C Z. D 3. B 4. A	5. D 6. E 7. A	
	1. E 2. C 3. B 4. B	5. C 6. C 7. A	8 . B		
	8. C		Section 4.3		
	Continue 2.4		1. E 2. C 3. A 4. A	5. C 6. E 7. A	
	Section 3.4		8. B 9. D 10. C 11.	D	
	1. B 2. D 3. E 4. B	5. D 6. A	12. Sample answers:		
	Section 3.5		a. Statements	Reasons	
	1. C 2. A 3. E 4. A	5. E 6. D	1. $\overline{AB} \cong \overline{AF}, \overline{BD} \cong \overline{FD}$	1 . Given	
	7. Sample answers:		2. $\overline{AD} \cong \overline{AD}$	2 . Reflexive Prop.	
	a. Statements	Reasons		of Congruence	
	1. $a \parallel b, m \parallel n,$	1 . Given	3. $\triangle ADF \cong \triangle ADB$	3. SSS Congruence	
	$a \perp m$			Postulate	
	2. $\angle 1$ is a right angle.	2. Def. of perp. lines			
	3. $\angle 3 \cong \angle 1$	3. Corresp. 🖄 Post.			
	4. $\angle 3$ is a right	4. Transitive Prop.			
	angle. 5 $a \perp n$	01 = 5 Def of part lines			
	5. $u \perp n$	5. Det. of perp. filles			

b.	Statements	Reasons				
	1. $\angle DAB \cong \angle DAF$	1. Corresp. parts of \cong triangles are \cong .				
	2. $\overline{BC} \cong \overline{FE}$	2 . Given				
	3. $AF + FE = AE$; AB + BC = AC	3. Segment Add. Postulate				
	4. AF + BC = AC	4. Substitution property of equality				
	5. AF + FE = AC	5. Substitution property of equality				
	$6. \ AE = AC$	6. Transitive property of equality				
	7. $\triangle ACD \cong \triangle AED$	7. SAS Congruence Postulate				
c.	Statements	Reasons				
	1. $\overline{CD} \cong \overline{ED}$	1. Corresp. parts of \cong triangles are \cong .				
	2. $\triangle BCD \cong \triangle FED$	2. SSS Congruence Postulate				
Se	oction A A	'				
00						
1	C 2 D 3 B 4					
1 8	. C 2 . D 3 . B 4 Sample answers:	H. D 5. A 6. D 7. C				
1 8 a.	. C 2. D 3. B 4 . Sample answers: Statements	I. D 5. A 6. D 7. C				
1 8 a.	. C 2. D 3. B 4 . Sample answers: Statements 1 $\overline{AB \parallel \overline{CD}}$	Reasons				
1 8 a.	. C 2. D 3. B 4 . Sample answers: <u>Statements</u> 1. $\overline{AB} \parallel \overline{CD},$ $\overline{CB} \parallel \overline{DE}$	 I. D 5. A 6. D 7. C Reasons 1. Given 				
1 8 a.	. C 2. D 3. B 4 . Sample answers: <u>Statements</u> 1. $\overline{AB} \parallel \overline{CD},$ $\overline{CB} \parallel \overline{DE},$ $\overline{AB} \approx \overline{CD}$	 I. D 5. A 6. D 7. C Reasons 1. Given 				
1 8 a.	. C 2. D 3. B 4 . Sample answers: <u>Statements</u> 1. $\overline{AB} \parallel \overline{CD},$ $\overline{CB} \parallel \overline{DE},$ $\overline{AB} \cong \overline{CD}$ 2. $\angle ABC \cong \angle BCD.$	 I. D 5. A 6. D 7. C Reasons 1. Given 2. Alt. int. Angles 				
1 8 a.	. C 2. D 3. B 4 . Sample answers: <u>Statements</u> 1. $\overline{AB} \parallel \overline{CD},$ $\overline{CB} \parallel \overline{DE},$ $\overline{AB} \cong \overline{CD}$ 2. $\angle ABC \cong \angle BCD,$ $\angle BCD \cong \angle CDE$	 A 6. D 7. C Reasons 1. Given 2. Alt. int. Angles Theorem 				
1 8 a.	. C 2. D 3. B 4 . Sample answers: Statements 1. $\overline{AB} \parallel \overline{CD}$, $\overline{CB} \parallel \overline{DE}$, $\overline{AB} \cong \overline{CD}$ 2. $\angle ABC \cong \angle BCD$, $\angle BCD \cong \angle CDE$ 3. $\angle ABC \cong \angle CDE$	 A 6. D 7. C Reasons 1. Given 2. Alt. int. Angles Theorem 3. Transitive prop. of equality 				
1 8 a.	. C 2. D 3. B 4 . Sample answers: <u>Statements</u> 1. $\overline{AB} \parallel \overline{CD}$, $\overline{CB} \parallel \overline{DE}$, $\overline{AB} \cong \overline{CD}$ 2. $\angle ABC \cong \angle BCD$, $\angle BCD \cong \angle CDE$ 3. $\angle ABC \cong \angle CDE$ 4. $\angle BAC \cong \angle DCE$	 A. B. S. A. 6. D. 7. C. Reasons 1. Given 2. Alt. int. Angles Theorem 3. Transitive prop. of equality 4. Corresp. <u>/s</u> 				
1 8 a.	. C 2. D 3. B 4 . Sample answers: <u>Statements</u> 1. $\overline{AB} \parallel \overline{CD}$, $\overline{CB} \parallel \overline{DE}$, $\overline{AB} \cong \overline{CD}$ 2. $\angle ABC \cong \angle BCD$, $\angle BCD \cong \angle CDE$ 3. $\angle ABC \cong \angle CDE$ 4. $\angle BAC \cong \angle DCE$ 5. $\triangle ABC \cong \triangle CDE$	 A. B. S. A. 6. D. 7. C. Reasons 1. Given 2. Alt. int. Angles Theorem 3. Transitive prop. of equality 4. Corresp. 4 5. ASA Congruence Postulate 				
1 8 a. b.	. C 2. D 3. B 4 . Sample answers: Statements 1. $\overline{AB} \parallel \overline{CD}$, $\overline{CB} \parallel \overline{DE}$, $\overline{AB} \cong \overline{CD}$ 2. $\angle ABC \cong \angle BCD$, $\angle BCD \cong \angle CDE$ 3. $\angle ABC \cong \angle CDE$ 4. $\angle BAC \cong \angle DCE$ 5. $\triangle ABC \cong \triangle CDE$ Statements	 k. D 5. A 6. D 7. C Reasons 1. Given 2. Alt. int. Angles Theorem 3. Transitive prop. of equality 4. Corresp. ∠s 5. ASA Congruence Postulate Reasons 				
1 8 a. b.	. C 2. D 3. B 4 . Sample answers: Statements 1. $\overline{AB} \parallel \overline{CD}$, $\overline{CB} \parallel \overline{DE}$, $\overline{AB} \cong \overline{CD}$ 2. $\angle ABC \cong \angle BCD$, $\angle BCD \cong \angle CDE$ 3. $\angle ABC \cong \angle CDE$ 4. $\angle BAC \cong \angle DCE$ 5. $\triangle ABC \cong \triangle CDE$ 5. $\triangle ABC \cong \triangle CDE$ 5. $\triangle ABC \cong \Box CE$	 I. D 5. A 6. D 7. C Reasons 1. Given 2. Alt. int. Angles Theorem 3. Transitive prop. of equality 4. Corresp. ▲ 5. ASA Congruence Postulate Reasons 1. Corresp. parts of ≅ triangles are ≅. 				
1 8 a. b.	. C 2. D 3. B 4 . Sample answers: Statements 1. $\overline{AB} \parallel \overline{CD}$, $\overline{CB} \parallel \overline{DE}$, $\overline{AB} \cong \overline{CD}$ 2. $\angle ABC \cong \angle BCD$, $\angle BCD \cong \angle CDE$ 3. $\angle ABC \cong \angle CDE$ 4. $\angle BAC \cong \angle DCE$ 5. $\triangle ABC \cong \triangle CDE$ 5. $\triangle ABC \cong \triangle CDE$ 5. $\triangle ABC \cong \overline{CE}$ 1. $\overline{AC} \cong \overline{CE}$ 2. $AC = CE$	 A. D. 5. A 6. D 7. C Reasons 1. Given 2. Alt. int. Angles Theorem 3. Transitive prop. of equality 4. Corresp. ▲ 5. ASA Congruence Postulate Reasons 1. Corresp. parts of ≅ triangles are ≅. 2. Def. of ≅ 				
1 8 a.	. C 2. D 3. B 4 . Sample answers: Statements 1. $\overline{AB} \parallel \overline{CD}$, $\overline{CB} \parallel \overline{DE}$, $\overline{AB} \cong \overline{CD}$ 2. $\angle ABC \cong \angle BCD$, $\angle BCD \cong \angle CDE$ 3. $\angle ABC \cong \angle CDE$ 4. $\angle BAC \cong \angle DCE$ 5. $\triangle ABC \cong \triangle CDE$ 5. $\triangle ABC \cong \triangle CDE$ 5. $\triangle ABC \cong \overline{CE}$ 1. $\overline{AC} \cong \overline{CE}$ 2. $AC = CE$ 3. C is midpoint of \overline{AE} .	 A. D. 5. A 6. D 7. C Reasons 1. Given 2. Alt. int. Angles Theorem 3. Transitive prop. of equality 4. Corresp. ≰ 5. ASA Congruence Postulate Reasons 1. Corresp. parts of ≅ triangles are ≅. 2. Def. of ≅ 3. Def. of midpoint 				

1 . D	2 . C	3 . C	4. C 5	. D 6.	A 7. B	3
8. C	9 . A	10 . E	11 . E	12 . B	13 . C	

\cong triangles are \cong .	2. $\overline{AG} \cong \overline{AG}$	2. Reflexive
2. Given		Congruence
3. Segment Add. Postulate	3. $\triangle AGC \cong \triangle AG$	E 3. AAS Congruence
4 . Substitution	h Statements	Reasons
property of equality	D. <u>Statements</u> 1 $/2 \simeq /A$	1 Given
5. Substitution	$1. \ \angle Z = \angle 4$ $2 \ / BCC \simeq / ECE$	2 Vert Angles Thm
6 Transitive property	2. $\angle BOC = \angle FOE$ 3. $\overline{CC} \simeq \overline{CF}$	2. Vert. Angles Thin. 3. Corresp. parts of
of equality	$\mathbf{J} \cdot \mathbf{U} \mathbf{C} = \mathbf{U} \mathbf{L}$	\cong triangles are \cong .
7. SAS Congruence Postulate	4. $\triangle BEG = FEG$	4. ASA Congruence Postulate
Reasons	c. Statements	Reasons
1. Corresp. parts of \cong triangles are \cong .	1. $\overline{GD} \cong \overline{GD}$	1. Reflexive Prop. of Congruence
2. SSS Congruence	2. $\angle AGC \cong \angle AGE$,	2. Corresp. parts
Postulate	$\overline{GC} \cong \overline{GE}$	\cong triangles are \cong .
	3. $m \angle AGC = m \angle AC$	<i>EE</i> 3. Def. of
. D 5. A 6. D 7. C		congruence
	4. $m \angle AGC + m \angle CC$	GD 4. Def. of linear
Reasons	$= 180^{\circ},$	pair
I. Given	$m \angle AGE + m \angle EC = 180^{\circ}$	
	5. $m \angle AGC + m \angle EC$	5. Substitution
2. Alt. int. Angles	$= 180^{\circ}$ 6 / FGD \simeq / CGD	6 2 /s supp to
Theorem	0. <i>LL</i> 0 <i>D</i> – <i>L</i> 00 <i>D</i>	same \angle are \cong .
3. Transitive prop. of	7. $\triangle CDG \cong \angle EDG$	7. SAS Congruence
4. Corresp /s		Postulate
5. ASA Congruence	Section 4.6	
Postulate	1 B 2 D 3 E 4	B 5 A 6 D 7 C
Reasons	8. D 9. A	
1. Corresp. parts of \cong triangles are \cong .	Section 4.7	
2. Def. of \cong	1. D 2. B 3. C 4.	D 5. B 6. E 7. A
3. Def. of midpoint	8. C	
	Chapter 5	
. C 5. D 6. A 7. B		
11. E 12. B 13. C	I. E Z. C 3. B 4.	A J. A D. A

14. a. Statements

1. $\angle 1 \cong \angle 3$,

 $\angle 2 \cong \angle 4$

Reasons

1. Given

A3

A4

Cumulative Review Chapters 1–6 1. B 2. C 3. C 4. D 5. A 6. B

7. A 8. C 9. a. If you stay up late, then you are tired. **b.** If you are tired, then you are cranky. c. $\sim q \rightarrow \sim p$; if you are not tired, then you did not stay up late. **d.** If you stay up late, then you are cranky. **10.** C **11.** E **12.** D **13**. B **14**. C **15**. A **16**. B **17**. D **18**. C 19. A 20. D 21. B 22. B 23. E 24. D 25. E 26. C 27. C 28. D 29. A 30. D **31.** B **32.** B **33.** B **Chapter 7** Section 7.1 **1**. D **2**. C **3**. B **4**. D **5**. B **6**. A Section 7.2 **1**. D **2**. B **3**. E **4**. C **5**. B **6**. E **7**. A 8. a. A'(1, -4). **b**. $\overline{A'B'}$ B'(5, -6), C'(3, -1)A'

c. A''(-1, 4),B''(-5, 6), C''(-3, 1)

	B	"	у				
		\int	\vdash		_		
					7	<i>A''</i>	''
			\setminus	/	/		
		-1-		C''	,		
-		,	, 1	l			x

B'''(-1, 6), C'''(1, 1)

d. A^{'''}(3, 4),

e. (1, 0)

Section 7.3

1. B **2**. C **3**. D **4**. E **5**. C **6**. A **7**. A

Section 7.4

1. C 2. D 3. B 4. E 5. D 6. B

Section 7.5

1. C **2.** A **3.** A **4.** B **5.** D

Section 7.6 **1**. C **2**. B **3**. E **4**. E **5**. B **6**. A **7.** Sample answers: a. b. C. d. **Chapter 8** Section 8.1 **1**. B **2**. C **3**. B **4**. D **5**. E **6**. E **7**. C 8. C 9. A Section 8.2 1. D 2. C 3. C 4. D 5. E 6. D 7. C 8. A 9. B 10. C Section 8.3 1. C 2. B 3. D 4. E 5. D 6. A 7. C 8. C Section 8.4 **1.** C **2.** B **3.** D **4.** A **5.** E **6.** a. 6.4 **b.** 3.75 **c.** $\frac{5}{13}$ **d.** 20.3 **e.** Sample answer: Show that the ratio of all sides = 0.625. Section 8.5 1. A 2. C 3. D 4. E 5. B 6. C Section 8.6 1. D 2. E 3. B 4. A 5. C 6. B 7. A 8. A Section 8.7

1. A **2.** E **3.** C **4.** B **5.** D

A5

Section 9.5 1. A 2. C 3. B 4. E 5. D 6. B 7. C 8. B 9. B Section 9.6 1. D 2. C 3. C 4. B 5. E 6. A 7. B 8. A 9. B Section 9.7 1. D 2. A 3. C 4. E 5. B 6. A 7. B **8**. E **9. a.** about 680 mi/h: 48.6° NE from horizontal **b.** about 361 mi/h; 33.8° NW from horizontal c. 735 mi/h; 43.9° NE from horizontal d. 297 mi/h; 42.2° NW from horizontal Chapter 10 Section 10.1 1. B 2. D 3. B 4. E 5. D 6. A 7. E **8.** a. (2, 3), 3 b. (5, 0), 3 c. (2, 0), (5, 3) **d.** two external tangents; y = -x + 10, y = -x + 1Section 10.2 1. C 2. B 3. D 4. D 5. B 6. C 7. E 8. C 9. A 10. C Section 10.3 1. D 2. B 3. C 4. A 5. C 6. D 7. B 8. E 9. C 10. B Section 10.4 1. B 2. C 3. E 4. A 5. D 6. C 7. B 8. D 9. A 10. B Section 10.5 1. A 2. B 3. E 4. D 5. D 6. A 7. C 8. B 9. A Section 10.6 1. E 2. C 3. D 4. C 5. D 6. B 7. A 8. D

A6

Section 10.7

1. B **2**. E **3**. C **4**. E **5**. A **6**. E **7**. D

b.
$$A: (x - 4)^2 + (y - 6)^2 = 100$$

 $B: (x + 2)^2 + (y + 4)^2 = 36$
 $C: (x - 10)^2 + (y + 4)^2 = 36$
c. $(4, -4)$

Chapter 11
Section 11.1
1. B 2. A 3. C 4. D 5. D 6. C 7. B
8. E 9. B 10. B
Section 11.2

1. E **2.** B **3.** B **4.** A **5.** C **6.** C **7.** B **8.** B

Section 11.3

 B 2. D 3. C 4. B 5. D 6. A 7. E
 a. 1200 ft² b. 1500 ft² c. 4:5 d. 240 ft e. \$1440

Section 11.4

1. B
 2. A
 3. D
 4. C
 5. A
 6. E
 7. D

 8. D
 9. A

Section 11.5

1. E 2. D 3. B 4. B 5. E 6. C 7. D 8. B 9. B

Section 11.6

1. D 2. D 3. A 4. B 5. E 6. C 7. A

Chapter 12 Section 12.1 1. E 2. C 3. C 4. B 5. B 6. C 7. E 8. A Section 12.2 1. D 2. B 3. B 4. A 5. C 6. D 7. E 8. A 9. A Section 12.3 1. C 2. B 3. E 4. D 5. A 6. E 7. E 8. a. **b.** 92.97 in.² 10.33 **c.** 108.57 in.^2 **d.** 1:4 Section 12.4 1. C 2. B 3. D 4. A 5. B 6. E 7. B 8. E 9. a. - 5 12 15 12 **b.** 1178.1 in.^3 **c.** 1728.0 in.^3 **d.** about 5.1 gallons Section 12.5 1. C 2. D 3. A 4. B 5. A 6. A Section 12.6 1. D 2. B 3. D 4. B 5. A 6. C 7. B 8. A Section 12.7 1. D 2. A 3. C 4. B 5. C 6. A **7. a.** $1:\frac{4}{3}$ **b.** 20 in. **c.** 871.1 in.³ **d.** 101.8 in.^2

Georgia End-of-Course Practice Test

 1. E
 2. D
 3. E
 4. B
 5. C
 6. A
 7. E

 8. D
 9. A
 10. C
 11. B
 12. D
 13. B

 14. B
 15. E
 16. A
 17. C
 18. D
 19. D

20. C 21. E 22. A 23. B 24. B 25. D 26. B 27. A 28. a. 3 b. $(x - 3)^2 + (y + 2)^2 = 16$
C.
29. C 30. E 31. B 32. E 33. C 34. C
35. D 36. B 37. B 38. A 39. A

Answers