

UC Berkeley GeoSystems Engineering Program

FACULTY

Norm Abrahamson

Adda Athanasopoulos-Zekkos

Jonathan Bray

Steve Glaser

Rob Kayen

James Rector

Michael Riemer

Yoram Rubin

Nick Sitar

Kenichi Soga

Dimitrios Zekkos

UC Berkeley GeoSystems Engineering Program

GRADUATE STUDENTS

UC Berkeley GeoSystems Engineering Graduate Student Fellowships

CORPORATE SPONSORS

GOLD LEVEL

BLUE LEVEL

MS Degree

- MS is a 9-month course-focused program
 - to prepare students to enter professional practice and to pursue research as a PhD student
- Most students complete MS Plan II.
 - Plan II requires each student to submit <u>one</u> of the following:
 - A satisfactory, individually written, capstone report in CE 273 Advanced GeoSystems Testing and Design (most common).
 - A written report on at least 3 units of individual study or research (CE 299).
- Geosystems degree requirements may be found here: https://www.ce.berkeley.edu/programs/geo/graduate-requirements

MS Degree Requirements

Plan II

- 24 units
 - One course is typically 3 units. So 4 courses in Fall and 4 courses in Spring
 - 12 units in approved graduate courses (3 units of these 12 units can be CE 299 Individual study)
 - The remaining 12 units from approved upper-division and graduate courses (3 units of these 12 units can be CE 299 Individual study).
- Report
 - a satisfactory written capstone report in CE 273 Adv. Geo-Testing & Design, or
 - a satisfactory written report on at least 3 units of individual study or research

Plan I

- Thesis
- 20 units
 - 9 in approved graduate courses (3 of these can be CE 299)
 - The remaining 11 units from approved upper-division and graduate courses.
- You must be enrolled for a minimum of 12 units per semester to be considered a full-time student.

Fall Semester

- CE 173 Groundwater and Seepage
- CE 270 Advanced Geomechanics
- CE 281 Engineering Geology
- And ONE more 3-unit course, such as:
 - CE 275 Geotechnical Earthquake Engineering
 - CE 170 Infrastructure sensing and modeling
 - CE 178 Applied Geophysics
 - CE 193 Engineering Risk Analysis
 - CE 225 Dynamics of Structures
 - CE 231 Mechanics of Solids
 - CE 299 Independent Research

Spring Semester

- CE 272 Numerical Methods in Geomechanics
- CE 273 Advanced Geotechnical Engineering and Design
- CE 277 Advanced Foundation Engineering
- And ONE more 3-unit course, such as:
 - CE 171 Rock Mechanics
 - CE 176 Environmental Geotechnics
 - CE 202A Vadose Zone Hydrology
 - CE 222 Finite Element Methods
 - CE 276 Seismic Hazard Analysis and Design Ground Motions
 - CE 286 Digital Data Processing
 - CE 299 Independent Research

Other Information

- Geosystems Weekly Seminar: Wednesday 12-1 pm
 - CE298 (1 non-degree unit)
- GSIs are required to take CE301 (Workshop for Future Civil and Environmental Engineering Teachers) in the Fall.
- PhD/Post-doc Research Seminar
- Career Fairs (one in Fall and one in Spring)
- Distinguished Spring Lecture Series & Fall Research Symposium

PhD Requirements

Consists of selected courses and independent research culminating in a thesis:

- BS or MS degree is required. If only BS, earn MS while progressing towards PhD.
- Superior level of academic achievement in graduate studies & support of a faculty research adviser are required.
- Graduate adviser provides general academic guidance, and Research adviser supervises dissertation research. The research adviser and the student need to identify funding for at least 3 years prior to enrollment of the PhD program.
- A major field and two minors, one from outside CEE, with at least 30 units after earning the BS.
- Minimum GPA of 3.5 in the major field and 3.0 in the minor fields.
- Two examinations:
 - Written Preliminary Examination to test student's ability to apply fundamentals, perform research, synthesize information, and think creatively to solve complex Geosystems problems.
 - Three-hour Oral Qualifying Examination administrated by a committee of 4 faculty members, 2 of whom represent the minor fields. The thesis adviser may be a member of the committee but not the committee chair. Testing the student's mastery of the field is an essential part of the examination.

What are the funding sources?

- Financing Graduate Education in the Civil and Environmental Engineering department discussed here: https://www.ce.berkeley.edu/grad/finances
- Financial aid https://grad.berkeley.edu/financial/aid/

How do I find housing? What is the cost of living?

- UC Berkeley housing resources for graduate students may be found http://www.housing.berkeley.edu/graduate
- The estimates of living expenses:
- http://financialaid.berkeley.edu/cost-attendance

COVID-19 Issue

- New decision due date May 15, 2020
- We may be forced to go for simultaneous on-line and in-class teaching for Fall 2020. For example,
 - Domestic students in-class (maybe on-line)
 - International students on-line
- International students are likely to have visa issue this summer and hence may need to go on-line or to defer.
- The deferral option to Fall 2021 is very likely to be available but the details are currently in discussion within the university. We will update you as soon as possible.

The top 5 results for reasons you chose Berkeley?

- 1) Program Prestige/Reputation (listed on 58% of responses)
- 2) Professors, Faculty, and their Lectures (46%)
- 3) Location (42%)
- 4) Length of Program (31%)
- 5-tie) Received Funding and Financial Aid (9%)
- 5-tie) Research Topics (9%)

Please have a look at the following website

https://ce.berkeley.edu/about/openhouse

•10:00 - 11:00a	Introduction to the GeoSystems Program (Prof. <u>Soga</u>) & meet the faculty (Profs. <u>Athanasopoulos-Zekkos</u> , <u>Bray</u> & <u>Rieme</u> r)
	https://berkeley.zoom.us/j/252266794
•11:00 - 12:00p	
	https://berkeley.zoom.us/j/5107102043
•12:00 - 1:00p	Masters student panel Q&A
•	https://berkeley.zoom.us/j/732798059
•1:00 - 2:00p	Office hours with Prof Soga
	https://berkeley.zoom.us/j/785472654
Geosystems wil	I run another virtual visit in the evening of Monday, April 6 :
•5:00 - 6:00p	Introduction to the GeoSystems Program (Prof. Soga)
	& meet the faculty (Profs. Kayen, Sitar and Zekkos)
	https://berkeley.zoom.us/j/709257503
•6:00 - 7:00p	
0.00 <i>1</i> .00p	Masters student panel Q&A
0.00 7.00β	Masters student panel Q&A https://berkeley.zoom.us/j/853287382
•7:00 - 8:00p	· ·
•	https://berkeley.zoom.us/j/853287382
•	https://berkeley.zoom.us/j/853287382 PhD student panel Q&A

If you want to talk to our faculty, please let me know.

Summary

1) Program Length – 9 months - course focused

2) Courses

- 4 courses (Fall) + 4 courses (Spring)
- Geosystem core courses (6) + others

3) Most students go for MS Plan II

- A satisfactory, individually written, capstone report
 - CE 273 Advanced GeoSystems Testing and Design (most common).
 - A written report on at least 3 units of individual study or research
- If you are interested in MS Plan I (thesis option), please let me know.

4) Research

- 10 Professors in Geosystems group
- Many post-docs and PhDs
- Diverse research topics from fundamentals to applied.

5) Funding Sources

- MSc GSI, Reader, Financial Aid
- PhD Fully funded

6) COVID-19

- Decision deadline extended to May 15
- Hybrid in-class and online teaching is likely for Fall 2020

Adda Athanasopoulos-Zekkos, Ph.D.

Assistant Professor, UC Berkeley

TEACHING

Advanced Geomechanics, Geotechnical Earthquake Engineering

RESEARCH

Assessment of Present & Future Infrastructure Systems

- Seismic Vulnerability of Levees-NSF
- Characterization of Liquefaction Assessment of Gravelly Soils NSF
- Seismic Response of Port Facilities -NSF
- UAV enabled health monitoring of levees

Soil-Structure Interaction and Risk Assessment

- Characterization of Pile-Driving Induced Vibrations-MDOT
- Risk Framework for Asset Management of Retaining Walls-MDOT
- Centrifuge Testing of Retaining Walls under Dynamic Loading-EUMEPS

New Materials

- Engineered Cementitious Composites in Slurry Walls-NSF
- EPS Geofoam for Seismic Earth Pressure Reduction in Retainir Systems-EUMEPS

More information at: http://addazekkos.geoengineer.org

Jonathan D. Bray, Ph.D., P.E., NAE

Faculty Chair in Earthquake Engineering Excellence, UC Berkeley

TEACHING

Geotechnical Earthquake Engineering & Advanced Foundation Engineering

RESEARCH

Liquefaction

- Seismic Performance of Facilities at Wellington Port NSF
- Evaluation of Liquefaction Ejecta Case Histories USGS
- Liquefaction Consequences of Stratified Deposits of Silty Soil NSF

youtu.be/rRVK5NJE2qE

Infrastructure

- Risk Assessment Tool for Gas Storage & Transmission System CEC
- Characterization & Evaluation of Mine Tailings UCB

Particulate Media

Discrete Element Analysis of Sand Response - UCB

Robert Kayen

Current Research Areas:

- Shear wave velocity & seismic liquefaction triggering
- Surface wave methods in earthquake geotechnical engineering
- Terrestrial Laser Scanning (TLS),
 Structure-from-Motion (SfM),
 Marine acoustics, and UAV
 studies
- Permanent 3D seismic displacement modeling

Courses in 2020/2021:

- FALL, 2020:
 - CE281 Engineering Geology
- FALL, 2020:
 - CE170 Infrastructure Sensing and Modeling (w/ KS, DZ)
- Spring, 2021:
 - L&S70c Living on the Edge

Michael Riemer, Ph.D.

Adjunct Professor and Laboratory Manager, UC Berkeley

TEACHING

- Advanced GeoEngineering Testing and Design
- Training researchers on project-specific experimental methods

EQUIPMENT DEVELOPMENT

- Design & Development of Direct Simple Shear (DSS) Systems
- Incorporation of Vs measurements in large-scale Triaxial testing

RESEARCH AREAS

- Compressibility of deep, cohesive clays in SF Bay Area
- Characterizing Foundation materials for Transbay Transit Center
- Liquefaction susceptibility of mine tailings

Nicholas Sitar, Ph.D., P. Eng.

Edward G. and John R. Cahill Professor, UC Berkeley

TEACHING

Engineering Geology, Groundwater and Seepage, Environmental Geotechnics

RESEARCH

Natural Hazards and Earthquake Engineering

- Seismic Slope Stability
- Kinematics of Rock Failures
- DEM Modeling of Rock Mass Stability and Rock Avalanches
- Seismic Performance of Retaining Structures

Engineering Geology

- 3-D Xray Tomography and DEM Modeling of Granular Sediments
- Hydraulics of Rock Scour
- Modeling of Debris Flow Mechanics

Kenichi Soga

The Donald H. McLaughlin Chair of Mineral Engineering Chancellor's Professor, Bakar Fellow Faculty Scientist, Lawrence Berkeley National Laboratory

TEACHING

Numerical Methods in Geomechanics, (Advanced Geomechanics), Infrastructure Sensing and Modeling

RESEARCH

(i) Geomechanics

- Large deformation characterization and modeling (MPM) (Industry)
- Soil fracturing and localization (NSF)
- Sand production, erosion, water injection (USACE, Industry)
- Fluid-geomaterial interaction (LEM and LBM-DEM)
- Geothermal THM engineering (DOE, NSF)
- Methane hydrates (Industry)

(ii) Infrastructure Sensing

- Distributed fiber optic sensing (NSF, DOE, CEC, Caltrans, EBMUD, PG&E, USACE, Industry)
- In-ground wireless sensor network (NSF)
- Computer vision tunnel construction (Industry)
- The value of sensing for gas facilities (CEC)

(iii) Infrastructure Modeling

- Water pipeline network resilience (EBMUD)
- Traffic network after earthquake (PEER, Caltrans)
- Wildfire evacuation (ITS, CITRIS)
- Machine learning of tunnel excavation (Industry)

More information at: http://geomechanics.berkeley.edu/

Dimitrios Zekkos, Ph.D., P.E.

Associate Professor, UC Berkeley

TEACHING (AY 2020-2021)

Geosystems Engineering Design, Infrastructure Sensing and Monitoring (1/3), Geoenvironmental Engineering

RESEARCH

Natural Disasters

- Characterization of Landslides following natural disasters using
- drones and satellites- NASA & USGS
- 1D-2D-3D Regional Stability Assessment Frameworks- NASA
- Liquefaction Assessment of Gravelly Soils NSF
- Seismic Response of Port Facilities -NSF
- Physico-Chemical & Mechanical Characterization of rock masses & weathering zone NSF

Robotics and Informatics

- Surface and subsurface characterization using
- robot-enabled multi-sensing NSF
- Data analytics for post-disaster reconnaissance NASA

Sustainability

- Stationary and Mobile Sensing of Methane Emissions from Landfills NSF
- Bio-Chemico-Physical Characterization of Solid Waste Degradation for Energy Optimization - NSF

More information at: http://dimitrioszekkos.org

