DEPARTMENT OF THE INTERIOR FRANKLIŃ K. LANE, Secretary

UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director

Bulletin 701

GEOTHERMAL DATA OF THE UNITED STATES

INCLUDING MANY ORIGINAL DETERMINATIONS OF UNDERGROUND TEMPERATURE

BY

N. H. DARTON

WASHINGTON GOVERNMENT PRINTING OFFICE 1920

CONTENTS.

	Page.
Introduction	7
Alabama	9
Temperatures	9
Summary	11
Geologic relations	12
Arizona	13
Source of information	13
Phoenix	13
Congress mine	14
Plateau region	15
San Simon Valley	15
Arkansas	17
Temperatures	17
Summary	18
Geologic relations	18
California	18
Southern California	18
San Luis Obispo	22
San Joaquin Valley	22
Indio Basin.	25
Oil region.	27
Grass Valley	27
Colorado	28
Arkansas Valley	28
San Luis Valley	29
Leadville	30
Trinidad	30
Denver Basin	30
Miscellaneous localities	31
Summary	31
Geologic relations	31
Florida	32
St. Augustine	32
Miscellaneous data	33
Summary	34
Geologic relations	34
Georgia	34
Temperatures	34
Summary	35
Geologic relations	35
Idaho	36
Boise	36
Snake River valley	36
Nez Perce County	37

~

	Page.
Illinois	37 .
Temperatures	37
Summary	39 1
Geologic relations	39
Indiana	40
Temperatures	40
Summary	40
Iowa	40
Temperatures	40
Summary	42
Geologic relations	43
Kansas	44
Temperatures	44
Summary	45
Geologic relations	45
Kentucky	46
Temperatures	46
Summary	46
Geologic relations	46
Louisiana	47
Belle Island	47
Miscellaneous data	47
Summary	47
Geologic relations	47
Maryland	47
Michigan	50
Sources of information	50
Northern peninsula	50
Central and southern Michigan	52
Minnesota	54
Mississippi	54
Temperatures	54
Summary	55
Geologic relations	55
Missouri	55
Temperatures	55
Summary	57
Geologic relations	58
Montana	58
Anaconda mine	58
Miles City	59
Little Bitterroot Valley	59
Nebraska	60 60
Temperatures	$\begin{array}{c} 60 \\ 62 \end{array}$
Summary	62 ·
Geologic relations Nevada	63
Comstock lode	63
Tonopah	63
New Jersey	64
Temperatures	64 64
Summary	65
Geologic relations	65

ł

CONTENTS.

	Page
New Mexico	6
North Carolina	6
North Dakota	6
Ohio.	6
Findlay	6
Miscellaneous wells	6
Oklahoma	68
Temperatures	68
Summary	69
Geologic relations	69
Pennsylvania	69
Anthracite region	69
West Elizabeth	72
McDonald	73
Pittsburgh	72
Homewood	72
South Carolina	73
Temperatures	73
Summary	75
Geologic relations.	7
South Dakota	- 74
Temperatures	74
-	
Summary	80
Geologic relations	81
Tennessee	82
Texas	82
Temperatures	82
Summary	88
Geologic relations	85
Utah	86
Virginia	87
Richmond coal field	87
Fort Monroe	88
Reedville	88
Washington	88
Yakima artesian basin	88
Walla Walla	89
Whitman County	89
West Virginia	89
Wheeling	90
Chelyan	91
Mannington	91
Spencer	-92
Volcano Junction	93
Grantsville	93
Shinnston	94
Lake well	94
Goff well	-94
Wisconsin	94
Temperatures	95
Summary	95
Geologic relations	96
Wyoming	97

1

}

CONTENTS.

ILLUSTRATIONS.

• • • • • • • • • • • • •	Page.
PLATE I. Map of eastern South Dakota and North Dakota showing configuration	
of bedrock floor under the artesian basin and rate of increase of	
underground temperature with increase of depth in deep wells.	80
FIGURE 1. Thermometer used in taking deep-well temperatures	9
2. Map of part of the San Bernardino Valley, Calif., showing location	
of wells and indicating geothermal gradient	20
3. Sections across eastern South Dakota	81

GEOTHERMAL DATA OF THE UNITED STATES

INCLUDING MANY ORIGINAL DETERMINATIONS OF UNDERGROUND TEMPERATURE.

By N. H. DARTON.

INTRODUCTION.

The purpose of this report is to present all available published data bearing on the rate of increase of underground temperature with increasing depth in the United States, together with several hundred original observations by myself and my associates. A canvass of the governmental, State, and serial publications has yielded many records of temperature of flowing wells and also a few observations made with thermometers in borings and deep mines. Additional data on temperature of flows have been given by correspondents. Some of the data, especially those relating to flows from wells, may not be reliable, and as a rule these could not be discriminated. Many records are omitted because no facts are available as to the source of flow.

During extended investigations of the geology of underground waters in many parts of the United States I and my assistants have had opportunity to observe the temperature of flows and to sink thermometers in deep borings. One very important contribution has come from an associate, J. E. Todd, who recorded the temperature of flows from a large number of wells in central-eastern South Dakota. Mr. C. E. Van Orstrand, of the U. S. Geological Survey, has taken observations in various exceptionally deep wells in Pennsylvania, West Virginia, Oklahoma, and Texas, with very accurate apparatus, but only a few of the data are published.

The principal feature brought out by the data here presented is the fact that the rate of increase in underground temperature with increase in depth varies widely from place to place, though probably subject to certain regional relations. There is also a local and possibly a general variation in rate at different depths, but few of the observations have afforded data on this matter. The fact that there are regional variations has been recognized for half a century and was brought out in considerable detail in Prestwich's compilation of data

up to 1886¹ and his later publication in 1895.² This observer and others later have grouped earth temperatures and attempted to show their relation to rocks and minerals of various kinds,³ petroleum,⁴ flowing water, etc. There are undoubtedly in the earth many factors that may influence the rate of temperature increase, such as variation in conductivity of rocks, underground tension, mineralization, volcanic influences, and movement of underground waters. Variation in radioactivity has been suggested as a factor, and the influence of bodies of cold water, such as Lake Superior, and the former presence of glacial ice are thought to be causes of local diminution of earth temperature. Positive evidence is lacking as to all these matters, however, and we must await the results of extended special investigations before the weight of the several factors can be evaluated.

In nearly all my calculations of the rate of increase in temperature with increase in depth mean annual air temperatures were used as a standard. These were obtained from publications of the Weather Bureau, United States Department of Agriculture, and nearly all of them represented averages up to and including 1916.⁵ In places for which no observations are on record temperatures were deduced from means of near-by stations, with due consideration of difference in latitude and altitude. It is realized that these means of air temperature may differ from the ground temperature a few yards below the surface to the amount of 2° or more, but they were the only data available for comparison.⁶ In a few places the temperatures at shallow depths were recorded, and the rate of increase could also be calculated from them.

The thermometers used by me and my assistants and supplied to certain correspondents were maximum self-registering instruments made to order by Henry Green, of Brooklyn, N. Y. The style is similar to that used by William Hallock, but certain modifications were found desirable. The modified form has been termed the Darton thermometer, but the difference hardly merits the title. The main features are shown in figure 1. A 10-inch outer tube of heavy glass, sealed, carries an 8-inch thermometer held by plugs of cork, C; S, stricture; r, rounded end of mercury column. The calibra-

¹ Prestwich, J., On underground temperatures: Roy. Soc. London Proc., vol. 41, pp. 1-116, 1886.

² Prestwich, J., On underground temperatures, in Collected papers on some controverted question in geology, pp. 166-279, published separately, London, 1895.

³ Königsberger, J., Normale und anormale Werte der geothermischen Tiefenstufe: Centralbl. Mineralogie, 1907, pp. 673-679.

⁴ Königsberger, J., and Mühlberg, Max, Uber Messungen der geothermischen Tiefenstufe deren Technik und Verwertung zur geologischen Prognose [etc.]: Neues Jahrb., Beilage Band 31, pp. 107-157, 1911.
⁵ Climatological data for the United States by sections, vol. 3, No. 13, Washington, 1917.

[•] Slichter found while investigating the underflow of Arkansas River in western Kansas in 1904 that

the temperature of the region. (See U. S. Geol. Survey Water-Supply Paper 153, p. 12, 1906.)

tion is in degrees Fahrenheit and is readable to half a degree with certainty.

Most of the instruments were verified at the Bureau of Standards. As a rule they were used singly, but in certain places two instruments were used either simultaneously or in succession. They are intended to be sunk bulb end up, for the mercury in the bulb end does not easily jar past the stricture. In warm weather care is taken to chill the instrument before lowering. It is wrapped in flannel, placed in a 14-inch piece of 1-inch lead pipe, and usually lowered by means of No. 18 wire, with care to avoid jars.

Generally the instrument was left down the hole overnight or at least four hours. In observing temperatures of flowing water I and my assistants used ordinary 6-inch thermometers readable to half degrees and tested as to accuracy. Nothing is known as to the kind of instruments used for most of the observations given in published reports or furnished by correspondents. They probably varied in character.

Throughout this report temperatures are given in degrees Fahrenheit, depths in feet, and yield of wells in gallons a minute. Although the geothermal gradient should strictly be stated in units of temperature per unit of depth, it is customary, in order to get larger and more readily comparable quantities, to use the reciprocal statement, units of depth per unit of temperature. The figures are here given in feet per degree Fahrenheit. A high gradient is of course represented by a small number of feet per degree, and vice versa.

ALABAMA.

TEMPERATURE OBSERVATIONS.

Many observations of the temperature of waters from flowing and other wells in Alabama have been recorded, most of them by the State geologist.¹ Unfortunately, in the greater part of these observations the source of the water is not stated, and there is uncertainty as to the accuracy of the thermometers used. The following selected data are believed to be of sufficient value to be considered.

FIGURE 1.—Thermometer used in taking deep-well 6 emperatures.

ŝ

ŝ

100

<u>0</u>

9

1 Smith, E. A., U. S. Geol. Survey Water-Supply Paper 102, pp. 277-331, 1904.

W						
Well.	Total depth (feet).	Depth of flow (feet).	Flow (gallons per minute).	Tempera- ture (°F.).	Mean annual air tem- perature (° F.).	Depth per degree of in- crease in tempera- ture (feet).
Barbour County: Eufaula, 1 mile south of Bullock County: Union Springs Dallas County: Cahaba:	350 848	b 843	6 Pumps 140	68 76	a 64.6 c 64.6	103 74
Great well d Courthouse d Bell's Hotel d. Huntersfield. Selma;	728 555 400 550		1,200 Many. Many. 70	77 <u>1</u> 75 73 1 69	e 64.8 e 64.8 e 64.8 e 64.8 e 64.8	57 55 45 131
Ferrill well d [*] Main and Water streets d Foundry d Escambia County: Browton	487 470 409 151–190		110 Many. 230 5	68 72 673 68	e 64.8 e 64.8 e 64.8 f 66.1	152 65 136
Greene County: Boligee. Do. Do. Boligee, 4 miles north of. Boligee, Canfield's d	500 415 250 142 522	300 (first).	40 2	70 68 68 66 70	g 63.7 g 63.7 g 63.7 g 63.7 g 63.7 g 63.7	80 96 58 62 83
Boligeo, Finch's Ferry <i>a</i> Do. Burton Hill, Dr. Perrins. Erie. Eutaw, 44 miles south of. Eutaw, 6 miles south of. Eutaw, 9 miles south of.	550 320 544 330 200 340	290 300 300		71 67 70 68 71 70	g 63.7 h 63.8 h 63.8 h 63.8 i 63.5 i 63.5	83 75 90 87 80 27 46
Eutaw 10 miles south of	495 450 456 440		2 1	71 71 72 72 71	i 63.5 i 63.5 i 63.5 i 63.5	66 60 50 59
Creswell No. 1. Creswell No. 2. Creswell No. 3. William Glover's d Morrison, 3 miles southwest of Steeles Bluff. Locality not given k. Do.	550 495 330 400 415	270 360	4½ 22	72 <u>1</u> 72 <u>1</u> 68 69 68	<i>i</i> 63.5 <i>i</i> 63.5 <i>j</i> 63.6 <i>j</i> 63.6 <i>j</i> 63.6 <i>j</i> 63.6	61 57 66 74 66
	525 544 320	300	11/2	70 - 72 67	<i>i</i> 63. 6 <i>i</i> 63. 6 <i>i</i> 63. 5	82 63 86
Cypress Switch. Evans, 14 miles west of. Evansville station. Evansville, several near. Evansville, 3 miles east of. Greenwood, 3 miles southwest of. Greenwood, 3 to 5 miles southwest of.	210 200 160-200 160 200 200	160 180 160 140 140 160	$24\\ 30\\ 3\frac{1}{2}-18\\ 18\\ 18\\ 65$	67 68 67 68 67 68 67	m 63. 8 m 63. 8 m 63. 8 m 63. 8 m 63. 8 n 64 61. 8	50 43 , 38 42 35 32
Greenwood, 3 miles southwest of Greenwood, 3 to 5 miles southwest of Do Greenwood, 1 mile east of. Laneville.	140 160 185 272	140 140 175 175,240 170	40 17 12 18	67 68 68 68	61.8 61.8 61.8	27 23 28
Lanevillo. Do. Mays station, 1 ¹ / ₂ miles south of. Millwood.	210 710 719 285 236		18 Many. 22 Many. 850	67 75 75 69 72	61.8 065 065 p61.8 q64	71 72 40 29
Do Sawyerville, 3 miles west of Do Stewart. Lock No. 4	230 360 440 360 363	300 440 300	$\begin{array}{c} 6\\17\\4\\2\end{array}$	70 70 69 67	9 64 9 64 9 64 9 64 r 63.8	50 73 72 94
Linden	280 1,200	200. 1,115	35 Pumps 20	66 \$73	61.8 t 65.2	5' 1. ,
Mobile County: Mobile. Do.	700 800	_,	400 1,000	76 78	u 66.1 u 66.1	71 67
a Averago for 33 years. b Cased to 843 feet. c Averago for 30 years. d Am. Assoc. Adv. Sci. Proc., vol. 10, p		m Gre n Ave	n of Greensboro ensboro avera grage for 38 ye iontown avera	oro and Tu ge minus (ars.	scaloosa. 0.2°.	

- Temperatures in wells in Alabama.

A voice of ab years.
A Am. Assoc. Adv. Sci. Proc., vol. 10, p. 95, 1856.
e Selma average for 27 years.
f Flomatom average for 25 years.
g Livingston average minus 0.1°.
Livingston average minus 0.3°.
f Livingston average minus 0.2°.
k Tuomey, Michael, Geology of South Carolina,
p. 247, 1848.

Junion town average for 31 years.
A verage at Lock No. 4 for 20 years.
G Greensboro average.
Greensboro average minus 0.2°.
Probably cooled by mingling of upper flows.
Uniontown average plus 0.2°.
A verage for 45 years.

ļ

1 .

> 1 ţ

Well,	Total depth (feet).	Depth of flow . (feet).	Flow (gallons per minute).	Tempera- ture (°F.).	Mean annual air tem- perature (° F.).	Depth per degree of in- crease in tempera- ture (feet).
Fickens County: Sherman, 2 miles west of Sherman, 1 mile south of Sherman, 3 miles west of Vienna, near Do Russell County:	602 600 725 380 350		30 6 ¹ / ₃ 3 3	72 72 71 67 66	a63. 3 a63. 3 a63. 3 b63. 3 b63. 3	69 69 94 103 130
Glenville. Pittsboro. Do. Rutherford. Sumter County:	175 219 185 165	· · · · · · · · · · · · · · · · · · ·	60 1 30 Several.	67 72 68 68	c64.6 c64.6 c64.6 c64.6	73 30 54 48
Epcs. Epcs. 3 miles southeast of. Epcs, 3 miles north of west of. Gainesville, near. Gainesville, 13 miles west of. Gainesville, 24 miles southeast of Gainesville, 4 miles southeast of Gainesville, 33 miles southeast of Gainesville, 6 miles south of. Gainesville, 6 miles north of.	750 930 700 630 700 600 550 660 500	800-900 700 630	1 28 1 5- 2 3 4 12 1	70 79 72 73 74 72 71 71 71	463.7 463.7 463.7 663.5 663.5 663.5 663.5 663.5 663.5 763.4	120 52 84 66 67 70 <u>1</u> 73 80 60
Gainesville, 4 miles southwest of Do. Warsaw, 4 mile west of. Warsaw, 7 miles southwest of Warsaw, 7 miles southwest of Warsaw, 1 mile west of Do.	700 560 400	430-300 700 560 460 702	1 1 1 2 3 3 4 5 1 1 2 1 1 3 5 7	71 71 68 70 71 69 68 69	63. 5 963. 8 963. 8 963. 8 963. 8 963. 8 963. 8 963. 8 963. 8 963. 8 963. 8	93 78 95 74 97 58 71 76
Tuscaloosa County: Hullstation. Hullstation, 1 mile southwest of Lock No. 5. Tuscaloosa, 9 miles southwest of	210 200 160 234	210 200 160	38 30 60 2½	67 66 67 66	b63.3 b63.3 b63.3 h63.1	57 74 43 81

Temperatures in wells in Alabama-Continued.

a Livingston average minus 0.5°. b Tuscaloosa average plus 0.2°. c Union Springs average.

c Union Springs average. d Livingston average minus 0.1°. c Livingston average minus 0.3°. f Livingston average minus 0.4°. g Livingston average. h Tuscaloosa average for 36 years.

Temperatures of flows from wells that derive part or all of their water from unknown depths are reported as follows: Boguechitto, Dallas County, 460 feet deep, 68°; Boligee, Green County, 468 feet, $66\frac{1}{2}^{\circ}$, and 420 feet, 66° ; Montgomery, 550 feet, 68° , with some water from 480 feet.

SUMMARY.

Probably several of the wells represented in the table have admixtures of water from different depths. The well at Union Springs, in Bulloch County, is pumped with an output of 150 gallons a minute, and as it is cased to a depth of 843 feet its water probably indicates the underground temperature with fair accuracy; the rate of increase indicated is 1° in 74 feet. The two deeper wells at Cahaba if cased to their bottoms indicate temperature increases of 1° in 57 and 55 feet, but the record of the shallower well at Bell's Hotel, with a rate of 1° in 45 feet, in some measure invalidates the data from the others. The 409 and 487 foot wells at Selma may have mixed flows. The exceptional temperature of 72° reported for

the 470-foot well may be a mistake. The Eutaw wells show rates of increase of 1° in 27 to 66 feet. The Steeles Bluff well is cased to a depth of 360 feet. Its recorded rate of increase of 1° in 74 feet is probably reliable if the thermometer reading is correct. This rate is subject to a small plus or minus correction due to uncertainty as to the mean annual temperature. The Hale County wells of which the depths to flowing water are recorded show considerable range in rate of increase, mostly 1° in 34 to 54 feet. The wells at Mobile indicate rates of 1° in 67 and 71 feet. The temperature of the water from the Pittsboro and Millwood wells, 72°, is remarkably high for wells only 219 and 236 feet deep and indicates rates of 1° in 30 and 79 feet, respectively. These figures might be modified slightly, however, if the exact mean annual temperature were known. The same is true of the 200-foot well 41 miles south of Eutaw, in Greene County. Hale County also shows some high rates of increase. The low rate of the 200-foot well at Linden, in Marengo County, is a notable exception in the region southwest of Tuscaloosa. The Epes 750-foot well, the Huntersfield well, and the Selma wells (except the 470-foot well) are others having lower rates than the many wells that show increases of 1° in 50 to 90 feet.

GEOLOGIC RELATIONS.

All the wells given in the list are in the southern or Coastal Plain part of the State and penetrate sands, marls, and clays of Cretaceous and Tertiary age. These strata form a succession of sheets which dip southward at a low angle and mostly thicken in that direction. They lie on a basement of older granite, schist, and other rocks, which is nearly reached by the deeper wells in the northern part of the Coastal Plain district, among them the deeper wells in Tuscaloosa County, the wells 500 to 550 feet deep in Greene County, the deeper wells in Pickens County, the 930-foot well 3 miles southeast of Epes, in Sumter County, and the 1,200-foot well at Linden, Marengo County. These wells appear to show a wide range in rate of increase of temperature, the rate in the well at Linden, the deepest well reported, being very low-1° in 143 feet, if the temperature of the flow is given correctly. The group of wells in Bullock, Russell, and Barbour counties, most of which draw from younger formations, show no special variations. The temperature recorded for the wells in Selma, which draw from the upper part of the Tuscaloosa formation, is about 68°, indicating a low rate of increase. The wells at Mobile draw from higher beds and show a rate of 1° in about 70 feet.

ARIZONA.

SOURCE OF INFORMATION.

Underground temperatures in Arizona have been determined by W. T. Lee, C. A. Fisher, and A. T. Schwennesen, of the United States Geological Survey. In 1904 Mr. Lee made for me a number of observations in wells and shafts at the Congress mine, near Phoenix, and in the Plateau region, and from 1913 to 1915 Mr. Schwennesen¹ obtained temperatures in the San Simon Valley.

PHOENIX.

Several moderately deep borings were made in Salt River Valley near Phoenix, most of them sunk to develop water supplies from the deep desert-valley fillings. In January, 1904, Mr. Lee² carefully determined temperatures in these holes by sinking Darton thermometers with the results set forth below. The mean annual air temperature at Phoenix for 21 years, 69.4°, is used in the calculations of gradient.

Well.	Depth (fect).	Temper- ature (°F.)	Depth per degree of increase in tem- perature (feet).	Remarks.
Murphy & McQueen ranch Consolidated Canal Co	$\begin{cases} 349 \\ 150 \\ 375 \\ 150 \\ 835 \end{cases}$	78. 1 77. 6 84. 6 81. 1 83	40 18 25 13 61	Well 1,305 feet deep but clogged at 349 feet. Well 705 feet deep but clogged at 375 feet. All water cased off; thermometer down 20 hours.
Sec. 30, T. 2 N., R. 4 E	$ \begin{array}{c} 800 \\ 700 \\ 600 \\ 500 \\ 400 \\ 300 \\ 200 \\ 324 \end{array} $	$\begin{array}{c} 82.1\\ 81.9\\ 81.1\\ 80.6\\ 80\\ 79.8\\ 79.1\\ 82.3 \end{array}$	63 56 51 45 38 29 21 25	Thermometer down 2 hours. Do. Do. Thermometer down 17 hours. Thermometer down 7 hours. Thermometer down 16 hours. Thermometer down 3 hours.
E. F. Kellner, sec. 6, T. 1 N., R. 1 E. Valley Grape Co., sec. 4, T. 1 S., R. 4 E.	324 319	82.3 74.4	25 64	

Temperature in wells near Phoenix, Ariz.

The increase is $3\frac{1}{2}^{\circ}$ from 150 to 375 feet in the well of the Consolidated Canal Co., though it is only half a degree from 150 to 349 feet in the well at the Murphy & McQueen ranch. Lee suggests that this difference may be due to freer circulation of the underflow at the latter place.

¹ Schwennesen, A. T., Ground water in San Simon Valley, Ariz. and N. Mex.: U. S. Geol. Survey Water-Supply Paper 425, pp. 1-35, 1917.

² Lee, W. T., Underground waters of Salt River valley, Ariz.: U. S. Geol. Survey Water-Supply Paper 136, 1905.

CONGRESS MINE.

The large Congress gold mine, south of Prescott, Ariz., which has been worked to a depth of 1.300 feet, was selected for a series of careful determinations of temperature. The tests were made in March, 1904, by W. T. L'ee, in shafts No. 6 and No. 3, which had not been worked for several months. A week in advance of the tests holes from 5 to 9 feet deep were drilled at various depths into the walls of side drifts 30 to 142 feet from these shafts but out of the main currents of ventilation. The thermometers were lightly covered and allowed to remain in the holes from 10 to 24 hours. The shafts are steep inclines, No. 6 being at an angle of about 45° and No. 3 at about 21°, and as they extend downward the land above The depths given below are taken from a surface rises considerably. profile in which the elevations were determined barometrically by Mr. Lee.

	Vertical depth (feet).	Thermom- eter re- mained in hole (hours).	Tempera- ture (°F.).	Depth per degree of increase in tempera- ture (feet).a
Shaft No. 3. Do. Do. Shaft No. 6. Do.	2056871,1251,2855601,158	$23 \\ 10\frac{1}{2} \\ 10\frac{1}{2} \\ 22\frac{1}{2} \\ 24 \\ 24 \\ 24$	$\begin{array}{r} 68.1\\71.4\\74.6\\82.1\\76.6\\84.2\end{array}$	156 167 89 63 70

Temperatures in shafts at Congress mine, near Prescott, Ariz.

a Based on mean annual temperature of 67.7°, the average for 1897 to 1904 at the mine. This is probably too high, as the mean at Wickenburg, about 1,000 feet lower in altitude, was 64.2° for 1916.

The rate of increase in shaft No. 6 is 1° in 78.7 feet between 560 and 1,158 feet. The rates in shaft No. 3 are 1° in 146 feet between 205 and 687 feet, 1° in 137 feet between 687 and 1,125 feet, 1° in 141 feet between 205 and 1,125 feet, and 1° in 21.3 feet between 1,125 and 1,285 feet. The rock is granite, mostly massive, but at the 1,285-foot level in shaft No. 3 the observation was made 8 feet below a 2-foot zone of crushed schistose material with slickensided surfaces indicating much movement. Probably this condition caused the much greater increase of temperature between 1,125 and 1,285 feet than in the intervals above and in shaft No. 6. Shaft No. 6 is all in massive granite down to the vein, which is cut at 1,158 feet. The temperature at 1,285 feet in shaft No. 3 was verified by a duplicate observation. ARIZONA.

PLATEAU REGION.

Several observations were made in borings along the Atchison, Topeka & Santa Fe Railway in Paleozoic rocks in the Platcau region of north-central Arizona, resulting as follows:

Temperatures in wells along Atchison, Topeka & Santa Fe Railway in north-central Arizona.

				1.1.1	
Well.	Depth (feet).	Tem- perature (° F.).	Mean annual air tem- perature (°F.).	Depth per degree of increase in tem- perature (feet).	Remarks.
Yucca		a90.5	Þ 67	45	Standing water below 346 feet. Test by W. T. Lee, September, 1903.
	L 455	80.6	67	34	No work for 3 months. Test by W. T. Lee, September, 1903.
Nelson	1,043	73.4	¢ 52. 3	50	553 feet of water in well. Test by W. T. Lee, September, 1903.
	l 200	61.2	52.3	23	No work for 4 months. Test by W. T. Lee, September, 1903.
Seligman	{ 700	84. 2 _.	52. 3	22	Thermometer down 2 hours. Well was being drilled all day and had been "shot" 8 hours before. Test by C. A. Fisher, June, 1902.
	1,216	77.9	52.3	47.5	Dry hole; tools in bottom (1,479 feet). No work for 24 hours. Test by W. T. Lee, September, 1903.
Do	227	69.5	52: 3	13	Old hole. Test by C. A. Fisher, June, 1902.

a Duplicate tests, closely accordant.
b Mean of Needles, Calif., and Kingman, Ariz.; may be somewhat lower or higher.
c Seligman average for 10 years.

In the Yucca well the rate of increase was 1° in 55.5 feet between 455 and 1,004 feet, and in the Nelson well it was 1° in 69.1 feet between 200 and 1,043 feet. Both holes are in nearly horizontal limestone of Carboniferous age and perhaps had reached the under-The Seligman well was tested at two levels, lying Cambrian shale. first at 700 feet and 14 months later at 1,216 feet, where the temperature was 6.3° cooler. At Seligman there is a mass of later Quaternary basalt several hundred feet thick which may retain some of its original heat and so cause the higher rate of increase near the surface. In another hole at this place 227 feet deep and entirely in the basalt the rate is still higher. Below the basalt the boring was in Carboniferous limestone in a shallow syncline.

SAN SIMON VALLEY.

San Simon Valley, in the southeast corner of Arizona, contains many flowing wells 200 to 1,230 feet deep, drawing their supply from the thick valley fill of sand and clay. Mr. Schwennesen made the following tests.

. . . .

16

i

•				<i>'</i>	
Location.	Depth (feet).	Flow (gallons per minute).	Tem- perature (° F.).	Depth per degree of increase in tem- perature (feet).a	Remarks.
T. 13 S., R. 29 E.: NW { sec. 18. NE, { sec. 24. T. 13 S. R. 30 E. NW { sec. 3. NE, { sec. 9. NW { sec. 1. NE, { sec. 18. NW { sec. 18. NW { sec. 18. NW { sec. 23. NE, { sec. 25. NE, { sec. 25. NE, { sec. 25. NW, { sec. 17. NW { sec. 19. NW, { sec. 20. SW, { sec. 19. NW, { sec. 20. NW, { sec. 20. NW, { sec. 20. NW, { sec. 20. NW, { sec. 20. SW, { sec. 20. SE, { sec. 20. SE, { sec. 20. SE, { sec. 21. NW, { sec. 28. NE, { sec. 28. NW, { sec. 29. SE, { sec. 20. SE, { sec. 30. SE, { sec. 30.	$\begin{array}{c} 800\\ 960\\ 9960\\ 9900\\ 9900\\ 9900\\ 9900\\ 8800\\ 8800\\ 880\\ 88$	minute). 26 10 8 4 11 9 3 1 14 9 1 14 9 1 14 9 1 10 2 3 12 24 64 11 12 12 12 12 12 12 12 12 12 12	83 105 109 93, 98 88 86 67 92 80 75 80 84 84 84 84 84 83 82 83 83 83 83 84 83 82 83 84 83 83 82 82 82 82 82 82 82 83 83 84 83 83 82 82 82 82 82 83 83 83 83 83 83 83 83 83 83 83 83 83	perature	Two tests. Do. Very small flow. Two tests. Do.
SE 4 sec. 33 SE 4 sec. 33 SE 4 sec. 33 SE 4 sec. 33	760 1,008 884 850 590 690 663	95 5 36 200 21 170	81 79 84 82 80 81 81	48. 4 73. 6 47. 3 51. 0 40. 0 44. 0 42. 0	
T. 14 S., R. 30 E.: SW. 1 sec. 1	920 1,040 880 743	2 45 1	81 82 78 72	58. 6 62. 3 69. 3 111. 0	
$\begin{array}{c} N.E. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{array}{c} 626\\ 704\\ 570\\ 900\\ 766\\ 800\\ 705\\ 603\\ 624\\ 433\\ 730\\ 440\\ 822\\ 730\\ 433\\ 730\\ 433\\ 730\\ 433\\ 730\\ 830\\ 1,140\\ 852\\ 715\\ 830\\ 1,140\\ 875\\ 730\\ 800\\ 620\\ 750\\ 750\\ 755\\ 750\\ 755\\ 750\\ 755\\ 750\\ 755\\ 750\\ 755\\ 750\\ 755\\ 750\\ 755\\ 750\\ 755\\ 750\\ 755\\ 750\\ 750$	$\begin{array}{c} 95\\ 166\\ 48\\ 19\\ 2\\ 45\\ 8\\ 46\\ 107\\ 222\\ 24\\ 260\\ 28\\ 1\\ 1\\ 3\\ 60\\ 206\\ 274\\ 125\\ 31\\ 18\\ 1\\ 1\\ 1\\ 34\\ 28\\ 40\\ 120\\ 250\\ \end{array}$	80 765 788 787 788 788 788 788 788 788 788 78	$\begin{array}{c} 42.\ 6\\ 72.\ 6\\ 53.\ 2\\ 60.\ 6\\ 70.\ 8\\ 65.\ 0\\ 62.\ 7\\ 54.\ 4\\ 73.\ 1\\ 41.\ 0\\ 71.\ 7\\ 51.\ 2\\ 40.\ 4\\ 109.\ 0\\ 33.\ 3\\ 49.\ 5\\ 49.\ 5\\ 74.\ 9\\ 39.\ 0\\ 55.\ 2\\ 45.\ 4\\ 242.\ 4\\ 242.\ 4\\ 39.\ 5\\ 74.\ 9\\ 39.\ 0\\ 40.\ 7\\ 48.\ 8\\ 38.\ 8\\ 1\\ 43.\ 5\\ 32.\ 3\\ 42.\ 4\\ \end{array}$	

Temperatures in wells in San Simon Valley, Ariz.

a Calculated from 65.3°, the average at San Simon for 9 years to 1907.

ARKANSAS.

Location.	Depth (feet).	Flow (gallons per minute).	Tem- perature (°F.).	Depth per degree of increase in tem- perature (feet).	Remarks.
T. 14 S., R. 31 E.:—Continued. SE. 1 soc. 23. SE. 2 soc. 23. NW, 1 soc. 23. NW, 1 soc. 23. NW, 2 soc. 23. NW, 2 soc. 25. SE. 1 soc. 25. NW, 2 soc. 26.	620 720 580 590 640 660 735	180 90 87 134 137 22	80 80 79 77 80 83 81	42. 2 49. 0 42. 3 50. 5 43. 5 37. 3 46. 7	
NW. 1 sec. 26. NW. 1 sec. 27. T. 14 S., R. 32 E.: NW. 2 sec. 19.	920 740	25 3 20	84 83 75	49. 2 41. 8 40. 1	
SW. ‡ sec. 19. SW. ‡ sec. 19. SW. ‡ sec. 29. NW. ‡ sec. 31.	441 207 350 430	300 254 34 20	80 73 70 78	30. 0 26. 9 74. 5 33. 8	
T. 15 S., Ř. 32 E.: NW. ‡ sec. 5	603		76	56.3	

Temperatures in wells in San Simon Valley, Ariz.-Continued.

ARKANSAS.

TEMPERATURES.

Very few temperature determinations from Arkansas are available The following are taken mostly from a report by Veatch:¹

Temperatures in wells in Arkansas.

Well.	Depth (leet).	Flow (gallons per minute).	Tempera- ture (°-F.).	Mean annual air tem- perature (° F.).	Depth per degree of increase in tem- perature (feet).	
Allbrook . Arkansas City Fordyce . Gurdon . Hot Springs Monticello	502 760	66 59 Flow. 110	$65 \\ 72 \\ 72 \\ 72 \\ 70 \\ 65 \\ 79$	a 64 b 64 c 63 d 62.5 e 62.1 f 63.2	$70 \\ 48+ \\ 30 \\ \\ 35+$	Water pumped 1 foot. Pumped 550 feet. Water from 460 to 502 feet. Water from 200 to 225 feet. Pumped. Water pumped 555 feet.
Pine Bluff Stamps	890 415	650 600	64 66	g 63 h 64	207+	Pumped. Pumped from 233 to 34 feet.
Texarkana Wilmar	937 194		67 65. 3	i 64.4 / 63.2	360 88	Water pumped from 184 to 194 fect.
Do	455	380	71.8	63. 2	462+	Water pumped from 400 t 455 feet.
White Cliff Chalk Co Do	450 540		64 65			

a Centerpoint average for 16 years. b Greenville, Miss., average minus 0.1°. c Camden average for 30 years minus 0.3°. d Amity average for 24 years. f Warren average for 34 years. f Warren average for 34 years. A camden average plus 0.7°. i Average for 21 years.

¹ Veatch, A. C., Geology and underground-water resources of northern Louisiana and southern Arkansas: U. S. Geol. Survey Prof. Paper 46, pp. 153-177, 1906.

137163°-20-Bull. 701-2

SUMMARY.

The data for Allbrook, Hot Springs, Pine Bluff, Stamps, and Texarkana apparently are not valid, probably because the true source of the flow is not given. The temperatures in other wells appear to be consistent. These wells are in the southern quarter of the State and reach water-bearing strata in the great Tertiary sedimentary series of the Mississippi embayment.

GEOLOGIC RELATIONS.

The Gurdon well draws from the Nacatoch sand in the Upper Cretaceous; the Arkansas City well, the shallow well at Wilmar, and the Fordyce well, all with high rates of increase in temperature, draw from Eocene beds at the horizon of the Yegua ("Cockfield") formation, about 1,500 feet higher; the Monticello well and the 455-foot well at Wilmar, both with high rates of increase, draw from coarser deposits of Eocene age not far below the Yegua horizon.

CALIFORNIA.

SOUTHERN CALIFORNIA.

W. C. Mendenhall,¹ in studying the hydrology of southern California, determined the temperature of water flowing from many artesian and other wells and from several hot springs. The following list sets forth the principal data obtained in San Bernardino Valley:

Well.	Depth (feet).	Tempera- ture (°F.).	Mean annual air tem- perature (° F.).	Depth per degree of increase in tem- perature (feet).
Riverside, Waterman Avenue	984	75.	·a 63·	82
¹ / ₂ mile northwest of	784	74	a 63	71
a mile west of	656	75	a 63	55
I mile west of	125	68	a 63	25
1 mile northwest of	582	74	a 63	53
å mile west of	534	74	a 63	49
1 mile northeast of	517	73	a 63	52
Do		70	a 63	72
2 miles north by east of		źŏ	a 63	67
h mile northwest of	482	74	a 63	44
inite northwest of		73	a 63	32
2 miles northwest of	83	68	b 62.7	16
1½ miles north of		70	ъ 62.7	27
\mathbf{D}_{0}		70	b 62.7	26
		70	b 62.7	
Do			b 62.7	19
13 miles north of		68.5		25
Do	141	67	b 62.7	33
Do		68	b 62.7	34
2 miles north of	472	70	b 62.7	65
Urbita, new well	740	78	c 62.5	48

Temperatures in wells in San Bernardino Valley, Calif.

b San Bernardino average for 25 years plus 0.2°.
 c San Bernardino average for 25 years.

1 Hydrology of San Bernardino Valley, Calif.: U. S. Geol. Survey Water-Supply Paper 142, 124 pp., 1905.

CALIFORNIA.

Woll.	Depth (feet).	Tempera- ture (°F.).	Mean annual air tem- perature (° F.).	Depth per degree ofincrease in tem- perature (fect).
San Bernardino: Payne well, 2 miles southeast of. City well on Antell tract, 2 miles east of. 1 mile east of. 2 miles northeast cf. 2 miles south of. Do. 2 miles north by east cf. Harlem Springs: 1 mile south of. 1 mile south of. Do. 2 miles north by east cf. Harlem Springs: 1 mile south of. 1 mile west cf. 1 mile west of. 1 mile west of. 2 miles as of. 2 miles as of. 2 miles as of. 2 miles east of. 2 miles east of. Do. Do.	$\begin{array}{c} 614\\ 544\\ 682\\ 460\\ 225\\ 121\\ 158\\ 169\\ 451\\ 231\\ 185\\ \end{array}$	112 69 68 68 72 71 98 85 76 90 72 80 68 115 86 73 73 71	$\begin{array}{c} a \ 62. \ 5\\ a \ 63\\ 63\end{array}$	13 94 99 129 48 27 3 7 7 13 13 17 24 11 11 27 6 3 3 9 9 8 8 8

Temperatures in wells in San Bernardino Valley, Calif.-Continued.

(San Bernardino average for 25 years.

The distribution, depths, and geothermal gradients of most of these wells are shown in figure 2.

The data in the table present variations that are difficult to Some of them are not reliable, because flows from understand. higher horizons may have ingress to the well, and in a few wells the outflow is small, but these two conditions cause diminished temperatures. The materials penetrated by the borings are a thick series of Quaternary sand, gravel, and clay lying horizontal and constituting a wide desert plain. The conditions are favorable for rapid circulation of water, so that the mean annual air temperature 62.5° should be expected to extend some distance below the surface. On the edge of the basin and at Harlem Springs there are thermal springs, and in a local crumple of the beds passing through Bunker Hill warm waters come very near the surface. The areas of high temperature are probably due to seepage of warm spring waters along or near recent faults. Admixture with the shallow underflow causes the great diversity of temperatures shown.

The 642-foot boring 2 miles southeast of San Bernardino, whose water has a temperature of 112° , appears to have tapped a particularly warm spot, although shallower borings a short distance southwest show nearly the same rate of temperature increase. The water of the Urbita Springs has a temperature of 102° to 105° . Several wells near the Bunker Hill anticlinal ridge show temperatures of 85° to 105° , and the shallow wells of the Riverside Water Co. along the north bank of Santa Ana River show temperatures of 71° to 73° . Deeper wells, 320 to 656 feet deep, near Loma Linda show temperatures of 70° to 75°, but the rate of increase is not so high in these wells as in the other wells just mentioned.

FIGURE 2.—Map of part of the San Bernardino Valley, Calif., showing location of wells and indicating geothermal gradient. Depths of wells are represented by gothic figures, and italic figures show the depth in feet per degree of increase in temperature. Data from Mendenhall's report.

Mendenhall ¹ has recorded the temperatures in many wells in the Anaheim and Santa Ana districts of the eastern coastal-plain region of southern California, and, although most of them are too shallow to indicate the geothermal gradient, they present some interesting features. Most of the wells are from 80 to 200 feet deep, and the waters show unaccountable variations in temperature, mostly from 61° to 65° and a few to 70° . Of the few deeper wells covered by the

¹ Mendenhall, W. C., Development of the underground waters in the eastern coastal-plain region of southern California: U. S. Geol. Survey Water-Supply Paper 137, 1905.

CALIFORNIA.

records one flowing well 397 feet deep in the San Joaquin district showed a temperature of 79°, which indicates a rate of increase of about 1° in 23 feet. Another well near by, 165 feet deep, with a temperature of 81°, indicates a still higher rate. The temperature of water from a 386-foot well was 67°, a 390-foot well 70°, a 264-foot well 71°, a 360-foot well 71°, a 336-foot well 71°, a 400-foot well 68°, two 450-foot wells 66°, and a 118-foot well 71°. Some of the wells showing the higher temperatures are in groups or districts, but others appear to be irregularly distributed.

Temperatures in the Cucamonga and Pasadena region have been recorded by Mendenhall, as follows:

Location.	Depth (feet).	Flow (gallons per minute).	Tem- perature (°F.).	Mean annual air tem- perature (°F.).	Depth per degree of increase in tem- perature (feet).
Cucamonga quadrangle: a Do. San Jose Sec. 33, T. 1 N., R. 8 W Do. Sec. 3, T. 2 S., R. 13 W. San Angeles. Do. Do. <tr< td=""><td>$\begin{array}{c} 541\\ 479\\ 456-6\\ 638\\ 664\\ 640\\ 540\\ 649\\ 375\\ 126\\ 20\\ 300\\ 375\\ 126\\ 20\\ 300\\ 375\\ 126\\ 20\\ 300\\ 376\\ 20\\ 300\\ 376\\ 283\\ 276-280\\ 210\\ 205-226\\ 189\\ 210\\ 205-226\\ 189\\ 210\\ 205-226\\ 189\\ 210\\ 205-226\\ 189\\ 210\\ 205-226\\ 189\\ 210\\ 205-226\\ 189\\ 210\\ 205-226\\ 189\\ 205-226\\ 205-226\\ 189\\ 205-226\\ 189\\ 205-226\\ 205-226\\ 189\\ 205-226\\ 205-226\\ 189\\ 205-226\\$</td><td>280 56 33 45 850 850 850 850 225 500 340 245 500 228 280 </td><td>$\begin{array}{c} 71\\ 72\\ 72\\ 72\\ 72\\ 73\\ 64\\ 62\\ 62\\ 62\\ 62\\ 62\\ 62\\ 62\\ 62\\ 64\\ 67\\ 70\\ 68\\ 66\\ 68\\ 66\\ 68\\ 66\\ 68\\ 61\\ 65\\ 65\\ 67\\ 71\\ 71\\ 71\\ 71\\ 88\\ 64\\ \end{array}$</td><td>$\begin{array}{c} b & 62.5 \\ 62.5$</td><td>64 500 49 46 41 </td></tr<>	$\begin{array}{c} 541\\ 479\\ 456-6\\ 638\\ 664\\ 640\\ 540\\ 649\\ 375\\ 126\\ 20\\ 300\\ 375\\ 126\\ 20\\ 300\\ 375\\ 126\\ 20\\ 300\\ 376\\ 20\\ 300\\ 376\\ 283\\ 276-280\\ 210\\ 205-226\\ 189\\ 210\\ 205-226\\ 189\\ 210\\ 205-226\\ 189\\ 210\\ 205-226\\ 189\\ 210\\ 205-226\\ 189\\ 210\\ 205-226\\ 189\\ 210\\ 205-226\\ 189\\ 205-226\\ 205-226\\ 189\\ 205-226\\ 189\\ 205-226\\ 205-226\\ 189\\ 205-226\\ 205-226\\ 189\\ 205-226\\ $	280 56 33 45 850 850 850 850 225 500 340 245 500 228 280 	$\begin{array}{c} 71\\ 72\\ 72\\ 72\\ 72\\ 73\\ 64\\ 62\\ 62\\ 62\\ 62\\ 62\\ 62\\ 62\\ 62\\ 64\\ 67\\ 70\\ 68\\ 66\\ 68\\ 66\\ 68\\ 66\\ 68\\ 61\\ 65\\ 65\\ 67\\ 71\\ 71\\ 71\\ 71\\ 88\\ 64\\ \end{array}$	$\begin{array}{c} b & 62.5 \\ 62.5 $	64 500 49 46 41

Temperatures in wells in Cucamonga and Pasadena quadrangles, Calif.

a Mendenhall, W. C., Ground waters and irrigation enterprises in the foothill belt, southern California:
 U. S. Geol. Survey Water-Supply Paper 219. pp. 140-174, 1908.
 b Azusa average for 15 years.

ž

c Average for 40 years. d Pasadena average for 27 years.

In this region other wells from 113 to 300 feet deep show temperatures of 62°; wells 68 and 172 feet deep, 63°; 280 feet, 64°; 250 feet, 65°; 60 and 160 feet, 66°; 147, 160, and 300 feet, 67°; 139, 160, 180, 250, and 255 feet, 68°; and 140 and 220 feet, 69°. These figures indicate great irregularity in the rate of increase at slight depths.

GEOTHERMAL DATA OF THE UNITED STATES.

SAN LUIS OBISPO.

A flow of sulphur water from a 928-foot well at San Luis Obispo has a temperature of 103°. As the mean annual air temperature at this place is 57.2°, this indicates a rate of increase of 1° in 20 feet.

SAN JOAQUIN VALLEY.

Mendenhall and Dole¹ have given records of many observations of temperatures of wells in San Joaquin Valley. Most of the wells are shallow, but others are deep and flowing, so that their temperatures throw much light on the rate of increase. These wells are all in the filling of loam, clay, sand, and gravel, occupying a broad valley between mountain ranges of older rocks. These deposits are known to be more than 2,000 feet thick in places. It is believed that none of the wells here recorded have reached their base. The data which appear to be most useful are given in the following list:

Location.	Depth (feet).	Flow (gallons per minute).	Temper- ature (°F.).	Mean annual air tem- perature (°F.).	Depth per degree of increase in tem- peraturo (feet).
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 700\\ 640\\ 750\\ 800\\ 825\\ 700\\ 733\\ 750\\ 690\\ 1,200\\ 700\\ 1,500\\ 1,500\\ 1,500\\ 700\\ 1,500\\ 700\\ 700\\ 700\\ 700\\ \end{array}$	$\begin{array}{c} & 70 \\ & 80 \\ & 225 \\ 180 \\ 112 \\ & 22 \\ 125 \\ & 345 \\ & 90 \\ & \\ & 190 \\ 260 \\ & 168 \\ & 11 \\ & 80 \\ & 35 \\ & 225 \end{array}$	78 78 78 78 77 76 76 79 76 80 80 80 80 80 80 80 80 76 76	<i>a</i> 63. 2 63. 63. 2 63. 63. 2 63. 63. 63. 63. 63. 63. 63. 63. 63. 63.	$\begin{array}{c} 47\\ 43\\ 50\frac{1}{2}\\ 54\\ 58\\ 64\frac{1}{2}\\ 44\\ 57\\ 44\frac{1}{2}\\ 58\frac{1}{2}\\ 81\frac{1}{2}\\ 50\frac{1}{2}\\ 79\frac{1}{2}\\ 71\frac{1}{2}\\ 70\\ 39\\ 59\frac{1}{2}\end{array}$
$\begin{array}{c} \text{Kern Country} \\ \text{Sec. 20, T. 25 S., R. 24 E.} \\ \text{Sec. 36, T. 25 S., R. 24 E.} \\ \text{Sec. 3, T. 26 S., R. 24 E.} \\ \text{Sec. 3, T. 26 S., R. 24 E.} \\ \text{Sec. 11, T. 26 S., R. 24 E.} \\ \text{Sec. 11, T. 26 S., R. 24 E.} \\ \text{Sec. 11, T. 26 S., R. 24 E.} \\ \text{Sec. 11, T. 26 S., R. 24 E.} \\ \text{Sec. 11, T. 26 S., R. 24 E.} \\ \text{Sec. 34, T. 26 S., R. 24 E.} \\ \text{Sec. 34, T. 26 S., R. 24 E.} \\ \text{Sec. 34, T. 26 S., R. 24 E.} \\ \text{Sec. 34, T. 26 S., R. 24 E.} \\ \text{Sec. 34, T. 26 S., R. 23 E.} \\ \text{Sec. 34, T. 26 S., R. 23 E.} \\ \text{Sec. 6, T. 27 S., R. 23 E.} \\ \text{Sec. 6, T. 27 S., R. 23 E.} \\ \text{Sec. 5, T. 28 S., R. 23 E.} \\ \text{Sec. 24, T. 28 S., R. 23 E.} \\ \text{Sec. 25, T. 28 S., R. 23 E.} \\ \text{Sec. 25, T. 28 S., R. 23 E.} \\ \text{Sec. 25, T. 28 S., R. 23 E.} \\ \text{Sec. 25, T. 28 S., R. 23 E.} \\ \text{Sec. 25, T. 28 S., R. 23 E.} \\ \text{Sec. 26, T. 28 S., R. 23 E.} \\ \text{Sec. 26, T. 28 S., R. 23 E.} \\ \text{Sec. 36, T. 27 S., R. 23 E.} \\ \text{Sec. 26, T. 28 S., R. 23 E.} \\ \text{Sec. 37, T. 28 S., R. 23 E.} \\ \text{Sec. 36, T. 28 S., R. 23 E.} \\ \text{Sec. 36, T. 28 S., R. 23 E.} \\ \text{Sec. 36, T. 28 S., R. 23 E.} \\ \text{Sec. 37, T. 28 S., R. 23 E.} \\ \text{Sec. 37, T. 28 S., R. 23 E.} \\ \text{Sec. 37, T. 28 S., R. 23 E.} \\ \text{Sec. 37, T. 28 S., R. 23 E.} \\ \text{Sec. 37, T. 28 S., R. 23 E.} \\ \text{Sec. 37, T. 28 S., R. 23 E.} \\ \end{array}$	$\begin{array}{c} 800\\ 995\\ 647\\ 500\\ 1,000\\ 512\\ 480\\ 369\\ 2284\\ 320\\ 800\\ 423\\ 700\\ -600\\ 390\\ 450\end{array}$	$2,900 \\ 45 \\ 230 \\ 155 \\ 345 \\ 580 \\ 620 \\ 975 \\ 650 \\ 70 \\ 1,160 \\ 515 \\ 335 \\ 335 \\ 1,160 \\ 1,160 \\ 515 \\ 335 \\ 1,160 \\ 1,$	78 82 78 80 82 79 79 78 78 76 82 76 76 76 76 76 76 76	 b 62, 2 62, 2 	$\begin{array}{c} 50\frac{1}{2}\\ 50\\ 41\\ 28\\ 50\frac{1}{2}\\ 41\\ 30\frac{1}{3}\\ 23\frac{1}{2}\\ 18\\ 23\\ 40\frac{1}{2}\\ 55\\ 44\\ 40\frac{1}{2}\\ 28\\ 41\frac{1}{3}\end{array}$

Temperatures in wells in San Joaquin Valley, Calif.

^b Wasco mean annual average for 17 years.

¹ Mendenhall, W. C., Dole, R. B., and Stabler, Herman, Ground water in San Joaquin Valley, Calif.: U. S. Geol. Survey Water-Supply Paper 398, pp. 185-298, 1916.

Location.	Depth (feet).	Flow (gallons per minute).	Tomper- aturo (°F.).	Mean annual air tem- perature (°F.).	Depth per degree of increase in tem- perature (feet).
$\begin{array}{c} {\rm Kern\ County-Continued.}\\ {\rm Sec.\ 18,\ T.\ 29\ S.\ R.\ 23\ E}.\\ {\rm Sec.\ 30,\ T.\ 29\ S.\ R.\ 29\ E}.\\ {\rm Sec.\ 30,\ T.\ 29\ S.\ R.\ 29\ E}.\\ {\rm Sec.\ 5,\ T.\ 29\ S.\ R.\ 29\ E}.\\ {\rm Sec.\ 5,\ T.\ 29\ S.\ R.\ 29\ E}.\\ {\rm Sec.\ 4,\ T.\ 30\ S.\ R.\ 26\ E}.\\ {\rm Sec.\ 4,\ T.\ 30\ S.\ R.\ 26\ E}.\\ {\rm Sec.\ 12,\ T.\ 31\ S.\ R.\ 26\ E}.\\ {\rm Sec.\ 12,\ T.\ 31\ S.\ R.\ 26\ E}.\\ {\rm Sec.\ 12,\ T.\ 31\ S.\ R.\ 26\ E}.\\ {\rm Sec.\ 12,\ T.\ 31\ S.\ R.\ 26\ E}.\\ {\rm Sec.\ 32,\ T.\ 31\ S.\ R.\ 26\ E}.\\ {\rm Sec.\ 32,\ T.\ 31\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 32,\ T.\ 31\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 30,\ T.\ 31\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 30,\ T.\ 31\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 30,\ T.\ 31\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 30,\ T.\ 31\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 30,\ T.\ 31\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 30,\ T.\ 31\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 30,\ T.\ 31\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 30,\ T.\ 31\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 30,\ T.\ 31\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 30,\ T.\ 32\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 30,\ T.\ 32\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 30,\ T.\ 32\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 31,\ T.\ 32\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 31,\ T.\ 32\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 31,\ T.\ 32\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 31,\ T.\ 32\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 31,\ T.\ 32\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 31,\ T.\ 32\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 31,\ T.\ 32\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 31,\ T.\ 32\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 31,\ T.\ 32\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 31,\ T.\ 32\ S.\ R.\ 27\ E}.\\ {\rm Sec.\ 31,\ T.\ 32\ S.\ R.\ 27\ E}.\ {\rm Sec.\ 31,\ T.\ 32\ S.\ R.\ 27\ E}.\ {\rm Sec.\ 31,\ T.\ 32\ S.\ R.\ 27\ E}.\ {\rm Sec.\ 31,\ T.\ 32\ S.\ R.\ 27\ E}.\ {\rm Sec.\ 31,\ T.\ 32\ S.\ R.\ 27\ E}.\ {\rm Sec.\ 31,\ T.\ 32\ S.\ R.\ 27\ E}.\ {\rm Sec.\ 31,\ T.\ 32\ S.\ R.\ 27\ E}.\ {\rm Sec.\ 31,\ T.\ 32\ S.\ R.\ 27\ E}.\ {\rm Sec.\ 31,\ T.\ 32\ S.\ R.\ 27\ E}.\ {\rm Sec.\ 31\ S.\ 81\ S.\ 81$	$\begin{array}{c} 600\\ 800\\ 1,300\\ 450\\ 950\\ +500\\ 560\\ 500\\ 400\\ 650\\ 1,395\\ 416\\ 345\\ 645\\ 582\\ 507\\ 378\\ 648\\ 582\\ 507\\ 378\\ 648\\ 896\\ \end{array}$	22 340 550 22 34 45 250 45 200 200 180 200 200 200 200 200 200 33 33 80 33	67 67 87 92 68 72 69 72 69 74 67 74 74 78 78 78 78 74 74 74 74	$\begin{array}{c} 62. \ 2\\ a \ 65. \ 1\\ 6$	$\begin{array}{c} 125\\ 167\\ 59\\ 15\\ 155\\ 1374\\ 128\\ 114\\ 56\\ 202\\ 33\\ 30\\ 203\\ 202\\ 33\\ 30\\ 203\\ 203$
$\begin{array}{c} \text{Sec. 36, T. 20 S., R. 21 E.} \\ \text{Sec. 36, T. 20 S., R. 21 E.} \\ \text{Sec. 1, T. 21 S., R. 21 E.} \\ \text{Sec. 1, T. 21 S., R. 21 E.} \\ \text{Sec. 1, T. 21 S., R. 21 E.} \\ \text{Sec. 0, T. 21 S., R. 20 E.} \\ \text{Sec. 0, T. 21 S., R. 22 E.} \\ \text{Sec. 21, T. 21 S., R. 22 E.} \\ \text{Sec. 21, T. 21 S., R. 22 E.} \\ \text{Sec. 21, T. 21 S., R. 22 E.} \\ \text{Sec. 21, T. 21 S., R. 22 E.} \\ \text{Sec. 21, T. 21 S., R. 22 E.} \\ \text{Sec. 21, T. 21 S., R. 22 E.} \\ \text{Sec. 21, T. 21 S., R. 22 E.} \\ \text{Sec. 21, T. 21 S., R. 22 E.} \\ \text{Sec. 21, T. 21 S., R. 22 E.} \\ \text{Sec. 21, T. 21 S., R. 22 E.} \\ \text{Sec. 15, T. 22 S., R. 22 E.} \\ \text{Sec. 15, T. 22 S., R. 22 E.} \\ \text{Sec. 24, T. 22 S., R. 22 E.} \\ \text{Sec. 25, T. 22 S., R. 22 E.} \\ \text{Sec. 26, T. 22 S., R. 22 E.} \\ \end{array}$	$\begin{array}{c} 100\\ 700\\ 400\\ 1, 100\\ 820\\ 450\\ 1, 225\\ 1, 200\\ 1, 247\\ 1, 106\\ 928\\ 950\\ 1, 200\\ 1, 540\\ 1, 540\end{array}$	Few. 370 11 380 400 400 335 245 370 480 	77 73 73 78 78 77 74 74 74 72 72 72 72 72 72 72 72 72 72 72 72	b 62, 2 62, 2 6	27 65 37 80 101 55 38 104 102 127 113 105 97 76 67 34
$ \begin{array}{l} \text{Sec. 20, 17, 22 S, R. 22 E} \\ \text{Merced County:} \\ \text{Sec. 27, T. 6 S, R. 9 E} \\ \text{Sec. 27, T. 6 S, R. 9 E} \\ \text{Sec. 22, T. 7 S, R. 11 E} \\ \text{Sec. 23, T. 7 S, R. 11 E} \\ \text{Sec. 33, T. 7 S, R. 11 E} \\ \text{Sec. 31, T. 7 S, R. 10 E} \\ \text{Sec. 11, T. 7 S, R. 10 E} \\ \text{Sec. 11, T. 7 S, R. 10 E} \\ \text{Sec. 13, T. 7 S, R. 9 E} \\ \text{Sec. 30, T. 9 S, R. 9 E} \\ \text{Sec. 30, T. 9 S, R. 9 E} \\ \text{Sec. 30, T. 9 S, R. 9 E} \\ \text{Sec. 30, T. 9 S, R. 10 E} \\ \text{Sec. 30, T. 9 S, R. 10 E} \\ \text{Sec. 30, T. 9 S, R. 9 E} \\ \text{Sec. 30, T. 9 S, R. 9 E} \\ \text{Sec. 30, T. 9 S, R. 13 E} \\ \text{Sec. 26, T. 8 S, R. 13 E} \\ \text{Sec. 26, T. 8 S, R. 13 E} \\ \text{Sec. 27, T. 8 S, R. 13 E} \\ \text{Sec. 27, T. 8 S, R. 13 E} \\ \text{Sec. 21, T. 9 S, R. 13 E} \\ Sec. 21, $	$\begin{array}{c} 300\\ 300\\ 250\\ 338\\ 328\\ 328\\ 328\\ 330\\ 330\\ 330\\ 430\\ 402\\ 550\\ 550\\ 685\\ 750\\ 750\\ 685\\ 707\\ 750\\ 325\\ 698\\ 400\\ \end{array}$	45 35 100 80 100 22 70 Few. 225 Few. 35 80 	72 72 73 73 74 74 77 77 78 79 76 76 76 76 75 74 74 74 73	$\begin{smallmatrix} & 63.2 \\$	$\begin{array}{c} 35\\ 35\\ 28_{4}\\ 34_{4}\\ 33_{5}\\ 23\\ 30_{4}\\ 30_{4}\\ 42_{5}\\ 31\\ 47_{4}\\ 47_{4}\\ 47_{5}\\ 43\\ 53_{4}\\ 60_{5}\\ 60_{5}\\ 30\\ 71\\ 37\\ \end{array}$
San Joaquin County: Stockton Gas & Electric Co Do. Do. Stockton Insane Hospital. Do. Stockton Citizens Gas Co Do. Stockton Crown Mills. Stockton old well. Stockton ounty well. Stockton Glass Co Stockton Jackson Wells. Do.	1,800 1,498 2,500 1,990 1,750 2,078 1,786 1,080 1,003 2,100 1,850 1,700	60 170 115 1,450 1,450 125 Many. 168 560	97 89 101 94 96 94 90 75 77 77 88 85 { 85	<i>d</i> 60. 1 60. 1	$\begin{array}{c} 49\\ 52\\ 61\\ 63\\ 58\\ 53\\ 41\\ 72\\ 60\\ 75\\ 68\\ 74\\ \end{array}$

Temperatures in wells in San Joaquin Valley, Calif.-Continued.

a Bakersfield average for 28 years; wells 27 to 100 feet, 68° to 71° mostly. b Hanford average for 17 years. c Merced average for 47 years. d Stockton average for 46 years. c Well cased to bettom; flows also at 980 and 1,030 feet, which may mingle.

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Depth (feet). 1,045 1,128 1,165 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,350 430 430 430 430 450 430 430 462 505 1,128 1,045 1,28 1,28 1,28 1,28 1,28 1,28 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20	Flow (gallons per minute). Few. 22 100 	Temper- ature (°F.). 79 84 84 84 84 77 77 74 78 75 76	Mean annual air tem- perature (°F.). 60.1 60.1 60.1 60.1 60.1 60.1 60.1	Depth per degree of increase in tem- perature (feet). 55 47 46 59 - 74 86
Campo de los Franceses Do Sec. 10, T. 2 N., R. 6 E. Sec. 22, T. 1 S., R. 6 E.	$\begin{array}{c} 1,128\\ 1,165\\ 1,400\\ 1,250\\ 1,200\\ 420\\ 430\\ 470\\ 462\\ 505\\ 1,150\\ 430\\ 1,000\\ 500\\ 640\\ \end{array}$	22 100 90 11 90 60 	84 84 77 74 78 75 76	60. 1 60. 1 60. 1 60. 1 60. 1	47 46 59 - 74
Campo de los Franceses Do Sec. 10, T. 2 N., R. 6 E Sec. 22, T. 1 S., R. 6 E	$\begin{array}{c} 1,128\\ 1,165\\ 1,400\\ 1,250\\ 1,200\\ 420\\ 430\\ 470\\ 462\\ 505\\ 1,150\\ 430\\ 1,000\\ 500\\ 640\\ \end{array}$	22 100 90 11 90 60 	84 84 77 74 78 75 76	60. 1 60. 1 60. 1 60. 1 60. 1	47 46 59 - 74
$ \begin{array}{c} \dot{D}o\\ Sec. 10, T. 2 N., R. 6 E.\\ Sec. 22, T. 1 S., R. 6 E.\\ Sec. 25, T. 1 S., R. 6 E.\\ Sec. 25, T. 1 S., R. 6 E.\\ Sec. 25, T. 1 S., R. 6 E.\\ \hline\\ Tulare County:\\ Sec. 30, T 18 S., R. 24 E.\\ Sec. 29, T. 19 S., R. 24 E.\\ Sec. 31, T. 19 S., R. 24 E.\\ Sec. 31, T. 19 S., R. 24 E.\\ Sec. 10, T. 20 S., R. 24 E.\\ Sec. 10, T. 20 S., R. 24 E.\\ Sec. 11, T. 20 S., R. 24 E.\\ Sec. 11, T. 20 S., R. 23 E.\\ Sec. 30, T. 20 S., R. 24 E.\\ Sec. 30, T. 20 S., R. 24 E.\\ Sec. 30, T. 20 S., R. 24 E.\\ Sec. 30, T. 20 S., R. 23 E.\\ Sec. 30, T. 20 S., R. 23 E.\\ Sec. 30, T. 20 S., R. 24 E.\\ Sec. 30, T. 20 S., R. 24 E.\\ Sec. 30, T. 20 S., R. 23 E.\\ Sec. 30, T. 20 S., R. 24 E.\\ Sec. 32, T. 20 S., R. 23 E.\\ Sec. 35, T. 20 S., R. 23 E.\\ Sec. 32, T. 20 S., R. 24 E.\\ Sec. 32, T. 20 S., R. 24 E.\\ Sec. 35, T. 20 S., R. 23 E.\\ Sec. 35, T. 20 S., R. 24 E.\\ Sec. 32, T. 20 S., R. 23 E.\\ Sec. 35, T. 21 S.\\ Se$	$\begin{array}{c} 1,128\\ 1,165\\ 1,400\\ 1,250\\ 1,200\\ 420\\ 430\\ 470\\ 462\\ 505\\ 1,150\\ 430\\ 1,000\\ 500\\ 640\\ \end{array}$	100 90 11 90 60 	84 84 77 74 78 75 75	60. 1 60. 1 60. 1 60. 1 60. 1	47 46 59 - 74
$\begin{array}{l} \text{Sec. 10, 1.7, 2 N, R, 6 E} \\ \text{Sec. 22, T, 1 S, R, 6 E} \\ \text{Sec. 8, T, 1 S, R, 6 E} \\ \text{Tulare County:} \\ \text{Subset of the sec. 25, T, 1 S, R, 6 E} \\ \text{Tulare County:} \\ \text{Sec. 30, T, 18 S, R, 24 E} \\ \text{Sec. 30, T, 18 S, R, 24 E} \\ \text{Sec. 31, T, 19 S, R, 24 E} \\ \text{Sec. 31, T, 19 S, R, 24 E} \\ \text{Sec. 31, T, 19 S, R, 24 E} \\ \text{Sec. 31, T, 19 S, R, 24 E} \\ \text{Sec. 10, T, 20 S, R, 24 E} \\ \text{Sec. 10, T, 20 S, R, 23 E} \\ \text{Sec. 11, T, 20 S, R, 23 E} \\ \text{Sec. 31, T, 20 S, R, 24 E} \\ \text{Sec. 31, T, 20 S, R, 24 E} \\ \text{Sec. 10, T, 20 S, R, 23 E} \\ \text{Sec. 11, T, 20 S, R, 24 E} \\ \text{Sec. 32, T, 20 S, R, 24 E} \\ \text{Sec. 32, T, 20 S, R, 24 E} \\ \text{Sec. 35, T, 20 S, R, 23 E} \\ \text{Sec. 25, T, 20 S, R, 23 E} \\ \text{Sec. 25, T, 20 S, R, 23 E} \\ \text{Sec. 27, T, 20 S, R, 23 E} \\ \text{Sec. 28, T, 20 S, R, 23 E} \\ \text{Sec. 32, T, 20 S, R, 23 E} \\ \text{Sec. 35, T, 21 S, R, 23 E} \\ \text{Sec. 35, T, 21 S, R, 23 E} \\ \text{Sec. 35, T, 21 S, R, 23 E} \\ \text{Sec. 35, T, 21 S, R, 23 E} \\ \text{Sec. 35, T, 21 S, R, 23 E} \\ \text{Sec. 35, T, 21 S, R, 23 E} \\ \text{Sec. 35, T, 21 S, R, 23 E} \\ \text{Sec. 35, T, 21 S, R, 23 E} \\ \text{Sec. 35, T, 21 S, R, 23 E} \\ \text{Sec. 35, T, 21 S, R, 23 E} \\ \text{Sec. 35, T, 21 S, R, 23 E} \\ \text{Sec. 35, T, 21 S, R, 23 E} \\ \text{Sec. 35, T, 21 S, R, 23 E} \\ \text{Sec. 35, T, 21 S, R, 23 E} \\ \text{Sec. 35, T, 21 S, R, 23 E} \\ \text{Sec. 35, T, 21 S, R, 23 E} \\ \text{Sec. 35, T, 21 S, R, 23 E} \\ \text{Sec. 35, T, 21 S, R, 23 E} \\ \text{Sec. 35, T, 21 S, R, 23 E} \\ Sec. 3$	$1,400 \\ 1,250 \\ 1,200 \\ 800 \\ 420 \\ 430 \\ 470 \\ 462 \\ 505 \\ 1,150 \\ 430 \\ 1,000 \\ 500 \\ 640 \\ \end{bmatrix}$	90 11 90 60	84 77 74 78 75 76	$\begin{array}{c} 60.1 \\ 60.1 \\ 60.1 \end{array}$	- 59 - 74
$\begin{array}{c} \text{Sec. 8, T. 1 S., R. 1 E.} \\ \text{Sec. 25, T. 1 S., R. 6 E.} \\ \text{Tulare County:} \\ \text{Sec. 30, T. 18 S., R. 24 E.} \\ \text{Sec. 30, T. 19 S., R. 24 E.} \\ \text{Sec. 31, T. 19 S., R. 24 E.} \\ \text{Sec. 31, T. 19 S., R. 24 E.} \\ \text{Sec. 11, T. 20 S., R. 24 E.} \\ \text{Sec. 10, T. 20 S., R. 24 E.} \\ \text{Sec. 10, T. 20 S., R. 23 E.} \\ \text{Sec. 11, T. 20 S., R. 23 E.} \\ \text{Sec. 30, T. 20 S., R. 24 E.} \\ \text{Sec. 30, T. 20 S., R. 24 E.} \\ \text{Sec. 30, T. 20 S., R. 24 E.} \\ \text{Sec. 30, T. 20 S., R. 24 E.} \\ \text{Sec. 30, T. 20 S., R. 24 E.} \\ \text{Sec. 57, T. 20 S., R. 24 E.} \\ \text{Sec. 30, T. 20 S., R. 24 E.} \\ \text{Sec. 25, T. 20 S., R. 24 E.} \\ \text{Sec. 25, T. 20 S., R. 23 E.} \\ \text{Sec. 25, T. 20 S., R. 23 E.} \\ \text{Sec. 27, T. 20 S., R. 23 E.} \\ \text{Sec. 27, T. 20 S., R. 23 E.} \\ \text{Sec. 28, T. 20 S., R. 23 E.} \\ \text{Sec. 32, T. 20 S., R. 23 E.} \\ \text{Sec. 32, T. 20 S., R. 23 E.} \\ \text{Sec. 32, T. 20 S., R. 23 E.} \\ \text{Sec. 32, T. 20 S., R. 23 E.} \\ \text{Sec. 32, T. 20 S., R. 23 E.} \\ \text{Sec. 32, T. 20 S., R. 23 E.} \\ \text{Sec. 32, T. 20 S., R. 23 E.} \\ \text{Sec. 32, T. 20 S., R. 23 E.} \\ \text{Sec. 32, T. 20 S., R. 23 E.} \\ \text{Sec. 32, T. 20 S., R. 23 E.} \\ \text{Sec. 32, T. 20 S., R. 23 E.} \\ \text{Sec. 32, T. 20 S., R. 23 E.} \\ \text{Sec. 32, T. 20 S., R. 23 E.} \\ \text{Sec. 32, T. 20 S., R. 23 E.} \\ \text{Sec. 32, T. 20 S., R. 23 E.} \\ \text{Sec. 32, T. 20 S., R. 23 E.} \\ \text{Sec. 32, T. 20 S., R. 23 E.} \\ \text{Sec. 32, T. 20 S., R. 23 E.} \\ \text{Sec. 32, T. 20 S., R. 23 E.} \\ \text{Sec. 31, T. 21 S., R. 23 E.} \\ \text{Sec. 31, T. 21 S., R. 23 E.} \\ \text{Sec. 31, T. 21 S., R. 23 E.} \\ \text{Sec. 31, T. 21 S., R. 23 E.} \\ \text{Sec. 31, T. 21 S., R. 23 E.} \\ \end{array}$	$1,200\\800\\420\\430\\470\\462\\505\\1,150\\430\\1,000\\500\\640$	11 90 60 	77 74 78 75 76	60. 1 60. 1	- 74
$\begin{array}{c} & {\rm Sec.}\ 25,\ T.\ 1{\rm S.},\ R.\ 6{\rm E}, \\ & {\rm Tulare}\ {\rm country}; \\ & {\rm Sec.}\ 30,\ T.\ 18{\rm S.},\ R.\ 24{\rm E}, \\ & {\rm Sec.}\ 30,\ T.\ 18{\rm S.},\ R.\ 24{\rm E}, \\ & {\rm Sec.}\ 30,\ T.\ 19{\rm S.},\ R.\ 24{\rm E}, \\ & {\rm Sec.}\ 31,\ T.\ 19{\rm S.},\ R.\ 24{\rm E}, \\ & {\rm Sec.}\ 10,\ T.\ 20{\rm S.},\ R.\ 24{\rm E}, \\ & {\rm Sec.}\ 10,\ T.\ 20{\rm S.},\ R.\ 24{\rm E}, \\ & {\rm Sec.}\ 10,\ T.\ 20{\rm S.},\ R.\ 24{\rm E}, \\ & {\rm Sec.}\ 10,\ T.\ 20{\rm S.},\ R.\ 24{\rm E}, \\ & {\rm Sec.}\ 10,\ T.\ 20{\rm S.},\ R.\ 24{\rm E}, \\ & {\rm Sec.}\ 10,\ T.\ 20{\rm S.},\ R.\ 24{\rm E}, \\ & {\rm Sec.}\ 32,\ T.\ 20{\rm S.},\ R.\ 24{\rm E}, \\ & {\rm Sec.}\ 32,\ T.\ 20{\rm S.},\ R.\ 24{\rm E}, \\ & {\rm Sec.}\ 32,\ T.\ 20{\rm S.},\ R.\ 24{\rm E}, \\ & {\rm Sec.}\ 32,\ T.\ 20{\rm S.},\ R.\ 24{\rm E}, \\ & {\rm Sec.}\ 32,\ T.\ 20{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 32,\ T.\ 20{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 32,\ T.\ 20{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 32,\ T.\ 20{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 32,\ T.\ 20{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 32,\ T.\ 20{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 32,\ T.\ 20{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 32,\ T.\ 20{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 32,\ T.\ 20{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 32,\ T.\ 20{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 31,\ T.\ 21{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 3.\ T.\ 21{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 3.\ T.\ 21{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 3.\ T.\ 21{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 3.\ T.\ 21{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 3.\ T.\ 21{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 3.\ T.\ 21{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 3.\ T.\ 21{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 3.\ T.\ 21{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 3.\ T.\ 21{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 3.\ T.\ 21{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 3.\ T.\ 21{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 3.\ T.\ 21{\rm S.},\ R.\ 23{\rm E}, \\ & {\rm Sec.}\ 3.\ T.\ 21{\rm Sc.},\ R.\ 23{\rm E}, \ \\ & {\rm Sec.}\ 3.\ T.\ 21{\rm Sc.},\ R.\ 23{\rm E}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{r} 800\\ 420\\ 430\\ 470\\ 462\\ 505\\ 1,150\\ 430\\ 1,000\\ 500\\ 640\\ \end{array}$	11 90 60 	78 75 76		86
Hinke Control 19 Sec. 30, T. 18 S., R. 24 E. Sec. 30, T. 19 S., R. 24 E. Sec. 31, T. 19 S., R. 24 E. Sec. 31, T. 19 S., R. 24 E. Sec. 16, T. 20 S., R. 24 E. Sec. 10, T. 20 S., R. 24 E. Sec. 10, T. 20 S., R. 24 E. Sec. 11, T. 20 S., R. 23 E. Sec. 10, T. 20 S., R. 24 E. Sec. 32, T. 20 S., R. 24 E. Sec. 30, T. 20 S., R. 24 E. Sec. 30, T. 20 S., R. 24 E. Sec. 30, T. 20 S., R. 24 E. Sec. 30, T. 20 S., R. 24 E. Sec. 30, T. 20 S., R. 24 E. Sec. 30, T. 20 S., R. 24 E. Sec. 35, T. 20 S., R. 23 E. Sec. 35, T. 20 S., R. 23 E. Sec. 35, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 23 E. Sec. 31, T. 21 S., R. 23 E. Sec. 31, T. 21 S., R. 23 E. Sec. 31, T. 21 S., R. 23 E. Sec. 31, T. 21 S., R. 23 E.	$\begin{array}{r} 420\\ 430\\ 470\\ 462\\ 505\\ 1,150\\ 430\\ 1,000\\ 500\\ 640\\ \end{array}$	90 60 	75 76	a 61. 6	
$\begin{array}{l} {\rm Sec.}\ 29,\ T.\ 19\ S.\ R.\ 24\ E.\\ {\rm Sec.}\ 31,\ T.\ 19\ S.\ R.\ 24\ E.\\ {\rm Sec.}\ 7,\ T.\ 20\ S.\ R.\ 24\ E.\\ {\rm Sec.}\ 10,\ T.\ 20\ S.\ R.\ 24\ E.\\ {\rm Sec.}\ 10,\ T.\ 20\ S.\ R.\ 24\ E.\\ {\rm Sec.}\ 10,\ T.\ 20\ S.\ R.\ 23\ E.\\ {\rm Sec.}\ 10,\ T.\ 20\ S.\ R.\ 24\ E.\\ {\rm Sec.}\ 10,\ T.\ 20\ S.\ R.\ 24\ E.\\ {\rm Sec.}\ 10,\ T.\ 20\ S.\ R.\ 24\ E.\\ {\rm Sec.}\ 10,\ T.\ 20\ S.\ R.\ 24\ E.\\ {\rm Sec.}\ 10,\ T.\ 20\ S.\ R.\ 24\ E.\\ {\rm Sec.}\ 10,\ T.\ 20\ S.\ R.\ 24\ E.\\ {\rm Sec.}\ 10,\ T.\ 20\ S.\ R.\ 24\ E.\\ {\rm Sec.}\ 10,\ T.\ 20\ S.\ R.\ 24\ E.\\ {\rm Sec.}\ 10,\ T.\ 20\ S.\ R.\ 24\ E.\\ {\rm Sec.}\ 10,\ T.\ 20\ S.\ R.\ 24\ E.\\ {\rm Sec.}\ 10,\ T.\ 20\ S.\ R.\ 24\ E.\\ {\rm Sec.}\ 10,\ T.\ 20\ S.\ R.\ 24\ E.\\ {\rm Sec.}\ 10,\ T.\ 20\ S.\ R.\ 24\ E.\\ {\rm Sec.}\ 10,\ T.\ 20\ S.\ R.\ 23\ E.\\ {\rm Sec.}\ 10,\ T.\ 20\ S.\ R.\ 23\ E.\\ {\rm Sec.}\ 10,\ T.\ 20\ S.\ R.\ 23\ E.\\ {\rm Sec.}\ 32,\ T.\ 20\ S.\ R.\ 23\ E.\\ {\rm Sec.}\ 32,\ T.\ 20\ S.\ R.\ 23\ E.\\ {\rm Sec.}\ 32,\ T.\ 20\ S.\ R.\ 23\ E.\\ {\rm Sec.}\ 32,\ T.\ 20\ S.\ R.\ 23\ E.\\ {\rm Sec.}\ 32,\ T.\ 20\ S.\ R.\ 23\ E.\\ {\rm Sec.}\ 35\ T.\ 21\ S.\ R.\ 23\ E.\ {\rm Sec.}\ 35\ T.\ 20\ S.\ R.\ 23\ E.\ {\rm Sec.}\ 35\ T.\ 20\ S.\ R.\ 23\ E.\ {\rm Sec.}\ 35\ T.\ 20\ S.\ R.\ 23\ E.\ {\rm Sec.}\ 35\ T.\ 20\ S.\ R.\ 23\ E.\ {\rm Sec.}\ 35\ T.\ 20\ S.\ R.\ 23\ E.\ {\rm Sec.}\ 35\ T.\ 20\ S.\ R.\ 23\ E.\ {\rm Sec.}\ 35\ T.\ 20\ S.\ R.\ 23\ E.\ {\rm Sec.}\ 35\ T.\ 20\ S.\ R.\ 23\ E.\ {\rm Sec.}\ 35\ T.\ 20\ S.\ 10\ S.\ 10\$	$\begin{array}{r} 430\\ 470\\ 462\\ 505\\ 1,150\\ 430\\ 1,000\\ 500\\ 640\\ \end{array}$	60 	76		48
Sec. 31, T, 19 S, R, 24 E. Sec. 7, T 20 S, R, 24 E. Sec. 10, T 20 S, R, 24 E. Sec. 10, T 20 S, R, 23 E. Sec. 11, T, 20 S, R, 23 E. Sec. 32, T 20 S, R, 24 E. Sec. 32, T 20 S, R, 24 E. Sec. 30, T, 20 S, R, 24 E. Sec. 25, T, 20 S, R, 23 E. Sec. 25, T, 20 S, R, 23 E. Sec. 35, T, 20 S, R, 23 E. Sec. 25, T, 20 S, R, 23 E. Sec. 25, T, 20 S, R, 23 E. Sec. 25, T, 20 S, R, 23 E. Sec. 22, T, 20 S, R, 23 E. Sec. 32, T, 20 S, R, 23 E. Sec. 32	$\begin{array}{r} 470 \\ 462 \\ 505 \\ 1,150 \\ 430 \\ 1,000 \\ 500 \\ 640 \end{array}$	70	76	61.6	31
Sec. 16, T. 20 S, R. 24 E. Sec. 10, T. 20 S, R. 23 E. Sec. 11, T. 20 S, R. 23 E. Sec. 11, T. 20 S, R. 24 E. Sec. 32, T. 20 S, R. 24 E. Sec. 30, T. 20 S, R. 24 E. Sec. 30, T. 20 S, R. 24 E. Sec. 25, T. 20 S, R. 23 E. Sec. 32, T. 20 S, R. 23 E. Sec. 3, T. 21 S, R. 23 E. Sec. 3, T. 21 S, R. 23 E. Sec. 3, T. 21 S, R. 23 E.	$\begin{array}{r} 462\\ 505\\ 1,150\\ 430\\ 1,000\\ 500\\ 640 \end{array}$		74	61.6 b63.2	30 43}
Sec. 10, T. 20 S., R. 23 E. Sec. 11, T. 20 S., R. 24 E. Sec. 5, T. 20 S., R. 24 E. Sec. 30, T. 20 S., R. 24 E. Sec. 30, T. 20 S., R. 24 E. Sec. 25, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 23 E. Sec. 31, T. 21 S	$1,150 \\ 430 \\ 1,000 \\ 500 \\ 640$		74	63.2	43
Sec. 17, T 20 S, R. 24 E. Sec. 32, T 20 S, R. 24 E. Sec. 30, T 20 S, R. 24 E. Sec. 30, T 20 S, R. 24 E. Sec. 25, T 20 S, R. 23 E. Sec. 25, T 20 S, R. 23 E. Sec. 25, T 20 S, R. 23 E. Sec. 27, T 20 S, R. 23 E. Sec. 28, T 20 S, R. 23 E. Sec. 32, T 20 S, R. 23 E. Sec. 3, T 21 S, R. 23 E.	430 1,000 500 640	· 230	74 75	63.2 63.2	46 <u>1</u> 971
$\begin{array}{c} \text{Sec. } 32, \text{ T}. 20 \text{ S}. \text{ R}. 24 \text{ E}. \\ \text{Sec. } 30, \text{ T}. 20 \text{ S}. \text{ R}. 24 \text{ E}. \\ \text{Sec. } 25, \text{ T}. 20 \text{ S}. \text{ R}. 23 \text{ E}. \\ \text{Sec. } 25, \text{ T}. 20 \text{ S}. \text{ R}. 23 \text{ E}. \\ \text{Sec. } 25, \text{ T}. 20 \text{ S}. \text{ R}. 23 \text{ E}. \\ \text{Sec. } 25, \text{ T}. 20 \text{ S}. \text{ R}. 23 \text{ E}. \\ \text{Sec. } 22, \text{ T}. 20 \text{ S}. \text{ R}. 23 \text{ E}. \\ \text{Sec. } 23, \text{ T}. 20 \text{ S}. \text{ R}. 23 \text{ E}. \\ \text{Sec. } 32, \text{ T}. 20 \text{ S}. \text{ R}. 23 \text{ E}. \\ \text{Sec. } 32, \text{ T}. 20 \text{ S}. \text{ R}. 23 \text{ E}. \\ \text{Sec. } 32, \text{ T}. 20 \text{ S}. \text{ R}. 23 \text{ E}. \\ \text{Sec. } 32, \text{ T}. 20 \text{ S}. \text{ R}. 23 \text{ E}. \\ \text{Sec. } 32, \text{ T}. 20 \text{ S}. \text{ R}. 23 \text{ E}. \\ \text{Sec. } 32, \text{ T}. 20 \text{ S}. \text{ R}. 23 \text{ E}. \\ \text{Sec. } 3, \text{ T}. 21 \text{ S}. \text{ R}. 23 \text{ E}. \\ \text{Sec. } 3, \text{ T}. 21 \text{ S}. \text{ R}. 23 \text{ E}. \\ \text{Sec. } 3, \text{ T}. 21 \text{ S}. \text{ R}. 23 \text{ E}. \\ \text{Sec. } 3, \text{ T}. 21 \text{ S}. \text{ R}. 23 \text{ E}. \\ \end{array}$	1,000 500 640	270	73	63.2	44 44
Sec. 30, 1. 20 S., R. 24 E. Sec. 25, T. 20 S., R. 23 E. Sec. 25, T. 20 S., R. 23 E. Sec. 35, T. 20 S., R. 23 E. Sec. 22, T. 20 S., R. 23 E. Sec. 22, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 24 E. Sec. 32, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 23 E. Sec. 37, T. 21 S., R. 23 E.	640	11	74 75 73 72 75 74 74 73 74 73 74 73	61.3	114
Sec. 25, T. 20 S., R. 23 E. Sec. 35, T. 20 S., R. 23 E. Sec. 22, T. 20 S., R. 23 E. Sec. 22, T. 20 S., R. 23 E. Sec. 32, T. 21 S., R. 23 E. Sec. 3. T. 21 S., R. 23 E. Sec. 3. T. 21 S., R. 23 E.		45 45	75 74	$63.2 \\ 63.2$	42 60
Sec. 35, T. 20 S., R. 23 E. Sec. 22, T. 20 S., R. 23 E. Sec. 28, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 24 E. Sec. 32, T. 20 S., R. 23 E. Sec. 32, T. 20 S., R. 23 E. Sec. 3, T. 21 S., R. 23 E.	787	270	76	$\begin{array}{c} 63.2\\ 63.2\end{array}$	61
Sec. 22, 1, 20 S, R. 23 E. Sec. 32, T, 20 S, R. 24 E. Sec. 32, T, 20 S, R. 24 E. Sec. 32, T, 20 S, R. 23 E. Sec. 32, T, 20 S, R. 23 E. Sec. 8, T, 21 S, R. 23 E. Sec. 3, T, 21 S, R. 23 E. Sec. 3, T, 21 S, R. 23 E.	600 418	540 56	74	63.2 63.2	557
Sec. 32, T. 20 S, R. 24 E. Sec. 32, T. 20 S, R. 23 E. Sec. 32, T. 20 S, R. 23 E. Sec. 8, T. 21 S, R. 23 E. Sec. 3, T. 21 S, R. 23 E. Sec. 3, T. 21 S, R. 23 E.	521	· 80	74	63.2	43 48
Sec. 32, T. 20 S., R. 23 E. Sec. 8, T. 21 S., R. 23 E. Sec. 3, T. 21 S., R. 23 E. Sec. 3, T. 21 S., R. 23 E.	530	56	74	63.2	49
Sec. 8, T. 21 S., R. 23 E Sec. 3, T. 21 S. R. 23 E Sec. 3, T. 21 S. R. 23 E	800 868	325 270	75 76	63.2 63.2	68 68
Sec. 3, T. 21 S., R. 23 E Sec. 3, T. 21 S. R. 23 E	954	450	78 75	c 64.8	72
	900 750	475 270	75 74	64.8 64.8	. 88
Sec. 10, T. 21 S., R. 23 E.	800	225	74 74	64.8	81 <u>1</u> 87
Sec. 10, T. 21 S., R. 23 E.	778	425 22	74 74 75 72 72	64.8	87 72
Sec. 26, T. 21 S., R. 24 E Sec. 4 T 22 S R 24 E	600 600	$\frac{22}{134}$	72	64.8 64.8	83 83
Sec. 23, T. 21 S., R. 24 E.	500	56	70	64.8	96
Sec. 28, T. 21 S., R. 24 E.	400	80 100	70 72 72	64.8 64.8	55 1
Sec. 31, T. 21 S., R. 24 E.	500 630	56	72	64.8	70 1011
Sec. 17, T. 22 S., R. 23 E.	815	340	76	64.8	73
Sec. 17, T. 22 S., R. 23 E.	918 800	875 560	78 78	64.8 64.8	69} 60}
Sec. 30, T. 22 S., R. 23 E.	1,000	850	78 81	64.8	611
Sec. 30, T. 22 S., R. 23 E.	1,200	· 340	77	64.8	981
Sec. 29, T. 22 S., R. 23 E.	700 830	Few.	68 76	64.8 64.8	218 <u>1</u> 74
Sec. 8, T. 22 S., R. 24 E.	606	180	70 70	64.8	116}
Sec. 20, T. 22 S., R. 24 E. Sec. 10, T. 22 S. R. 24 E.	606 - 435	270	70 69	64.8 64.8	116 <u>1</u> 104
Sec. 10, T. 22 S., R. 24 E	480	150	69	64.8	114
Sec. 22, T. 22 S., R. 24 E	$600 \\ 1,400$	180 56	70	64.8 64.8	115
Sec. 22, T. 22 S., R. 24 E.	450	35	71 69	64.8	226 107
Sec. 24, T. 22 S., R. 24 E.	500	. 200	70	64.8	96
Sec. 23, T. 22 S., R. 24 E.	$1,100 \\ 1,043$	400 35	70 72	64.8 64.8	211 145
Sec. 3, T. 23 S., R. 25 E.	680		76	64.8	61
Sec. 7, T. 23 S., R. 25 E.	500 800	90 35	76 78 77	64.8 64.8	38 65
Sec. 8, T, 23 S., R. 25 E.	1,387	450	79	64.8	98
Sec. 18, T. 23 S., R. 25 E.	500	35	79 76	64.8	45
Sec. 11, T. 23 S., R. 24 E Sec. 11, T. 23 S., R. 24 E	$^{1,142}_{815}$	•••••	80 70	64.8 64.8	75 157
Sec. 11, T. 23 S., R. 24 E	1,000		78	64.8	76
Sec. 35, T. 22 S., R. 24 E.	900 582	125 205	70 75 74	64.8 64.8	173 57
Sec. 3, T. 23 S., R. 24 E.	582 600	205 360	73 74	64.8	65
Sec. 9, T. 23 S., R. 24 E.	1,000	850	18	64.8	76 72
Sec. 10, T. 23 S., R. 24 E.	1, 100	2,300 465	80		
$\begin{array}{c} \text{Sec. } 22, 1, 22 \text{ S}, \text{ R}, 24 \text{ E}, \\ \text{Sec. } 22, 7, 22 \text{ S}, \text{ R}, 24 \text{ E}, \\ \text{Sec. } 23, 7, 22 \text{ S}, \text{ R}, 24 \text{ E}, \\ \text{Sec. } 3, 7, 23 \text{ S}, \text{ R}, 25 \text{ E}, \\ \text{Sec. } 3, 7, 23 \text{ S}, \text{ R}, 25 \text{ E}, \\ \text{Sec. } 3, 7, 23 \text{ S}, \text{ R}, 25 \text{ E}, \\ \text{Sec. } 3, 7, 23 \text{ S}, \text{ R}, 25 \text{ E}, \\ \text{Sec. } 3, 7, 23 \text{ S}, \text{ R}, 25 \text{ E}, \\ \text{Sec. } 3, 7, 23 \text{ S}, \text{ R}, 25 \text{ E}, \\ \text{Sec. } 1, 7, 23 \text{ S}, \text{ R}, 25 \text{ E}, \\ \text{Sec. } 11, 7, 23 \text{ S}, \text{ R}, 25 \text{ E}, \\ \text{Sec. } 11, 7, 23 \text{ S}, \text{ R}, 24 \text{ E}, \\ \text{Sec. } 11, 7, 23 \text{ S}, \text{ R}, 24 \text{ E}, \\ \text{Sec. } 11, 7, 23 \text{ S}, \text{ R}, 24 \text{ E}, \\ \text{Sec. } 11, 7, 23 \text{ S}, \text{ R}, 24 \text{ E}, \\ \text{Sec. } 3, 7, 22 \text{ S}, \text{ R}, 24 \text{ E}, \\ \\ \text{Sec. } 3, 7, 23 \text{ S}, \text{ R}, 24 \text{ E}, \\ \\ \text{Sec. } 3, 7, 23 \text{ S}, \text{ R}, 24 \text{ E}, \\ \\ \text{Sec. } 3, 7, 23 \text{ S}, \text{ R}, 24 \text{ E}, \\ \\ \text{Sec. } 3, 7, 23 \text{ S}, \text{ R}, 24 \text{ E}, \\ \\ \text{Sec. } 3, 7, 23 \text{ S}, \text{ R}, 24 \text{ E}, \\ \\ \\ \text{Sec. } 3, 7, 23 \text{ S}, \text{ R}, 24 \text{ E}, \\ \\ \\ \text{Sec. } 3, 7, 23 \text{ S}, \text{ R}, 24 \text{ E}, \\ \\ \\ \\ \text{Sec. } 3, 7, 23 \text{ S}, \text{ R}, 24 \text{ E}, \\ \\ \\ \\ \\ \text{Sec. } 3, 7, 23 \text{ S}, \text{ R}, 23 \text{ E}, \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1 103		78	64.8 64.8	72 833
Sec. 33, T. 23 S., R. 25 E	1,103 1,025 1,300	215 245	80 78 78 75		$72 \\ 831 \\ 771 \\ 1271 \\ 1271 \\ 31 \\ 32 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\ 3$

Temperatures in wells in San Joaquin Valley, Calif .- Continued.

a Visalia average for 30 years. b Mean of Visalia and Porterville. c Porterville average for 28 years.

CALIFORNIA.

The water in many shallow wells in San Joaquin Valley has temperatures ranging from 65° to 72° , or considerably higher than the mean air temperature.

INDIO BASIN.

Mendenhall¹ has given the temperatures of flow from many of the artesian wells in the Indio Basin. They all draw from gravel and sand in the deep Quaternary valley fill, the bottom of which has not been reached by any of the borings.

Location.	Depth (feet).	Flow (gal- lons per minute).	Tempera ture (° F.).
lec. 23, T. 6 S., R. 8 E.	499	135	7
loc 23 T 6S B 8E	509	260	7
ec. 23, T. 6 S., R. 8 E	497	225	7
an 23 T 6S B 8E	512	225+	. 7
ec. 23, \underline{T} , 6 S., \underline{R} , 8 E ec. 23, \underline{T} , 6 S., \underline{R} , 8 E	526	58	7
bec. 25, T. 6 S., R. 8 E.	538		7
$\mathcal{C}_{\mathcal{C}}$ $\mathcal{L}_{\mathcal{C}}$ \mathcal{T} $\mathcal{C}_{\mathcal{C}}$ \mathcal{C}	487	170	7
iec. 25, T. 6 S., R. 8 E. iec. 26, T. 6 S., R. 8 E. iec. 26, T. 6 S., R. 8 E.	514	170	7
lec. 26, T. 6 S., R. 8 E.	601	90	7
iec. 23, T. 6 S., R. 8 E.	519	· 170	7
iec. 23, T. 6 S., R. 8 E.		1/0	
ec. 22, \underline{T} . 6 S., \underline{R} . 8 E ec. 22, \underline{T} . 6 S., \underline{R} . 8 E	506		7
Sec. 22, T. 6 S., R. 8 E.	498	280	7
ec. 16, T. 7 S., R. 9 E. ec. 18, T. 7 S., R. 9 E.	484	225	7
ec. 18, T. 7 S., R. 9 E.	525		7
$ \begin{array}{c} \text{He} : 6, 7, 7, 5, R, 9 \text{ E}, \\ \text{ec} : 8, T, 7 \text{ S}, R, 9 \text{ E}, \\ \text{ec} : 8, T, 7 \text{ S}, R, 9 \text{ E}, \\ \text{ec} : 12, T, 5 \text{ S}, R, 7 \text{ E}, \\ \text{ec} : 23, \underline{T}, 5 \text{ S}, R, 7 \text{ E}, \\ \text{ec} : 23, \underline{T}, 5 \text{ S}, R, 7 \text{ E}, \\ \end{array} $	547	125	2
ec. 8, T. 7 S., R. 9 E.	531	150	7
ec. 12, <u>T</u> . 5 S., <u>R</u> . 7 E	165		7
ec. 23, T. 5 S., R. 7 E	465	22	7.
ec. 13, T. 5 S., R. 7 E	600+		7
ec. 13, $\overline{\mathbf{T}}$, $\overline{5}$, $\overline{\mathbf{S}}$, $\overline{\mathbf{R}}$, $\overline{7}$ $\overline{\mathbf{E}}$.	480		7
iee 23. T 5 S R 7 E	652	45	7
ec. 34, T. 6 S., R. 8 E	510	415	7
	487	383	7
ec. 16. T. 7 S., R. 8 E.	400	280	8
lec. 18, T. 7 S., R. 9 E lec. 12, T. 7 S., R. 8 E	380	70	7
Sec. 12, T. 7 S., R. 8 E.	409	157	7
Sec. 12. T. 7. S. R. 8 E	480	280	7
bec. 17, T. 6 S., R. 8 E	558	80	7
Gec. 17, T. 6 S., R. 8 E Gec. 20, T. 6 S., R. 8 E	500	336	Ż
oec 20, T 6S, B 8E	518	112	7
ac 20 T 6 S B 8 E	500	. 68	777
Hec. 20, T. 6 S., R. 8 E. Hec. 20, T. 6 S., R. 8 E. Hec. 20, T. 6 S., R. 8 E.	520	180	- i
Sec. 30, T. 6 S., R. 8 E.	407	80	- i
	437	90	
a_{α} 20 T 6 S B F	474	257	
an 30 T 6S B 8E	430	201	
ac 30 T 6S, B 8E	446	22	- i
lec. 30, T. 6 S., R. 8 E. lec. 30, T. 6 S., R. 8 E. lec. 30, T. 6 S., R. 8 E.	440	125	
iec. 30, T. 6 S., R. 8 E iec. 24, T. 6 S., R. 7 E.	480	45	
50, 23, 1, 05, 0, 10, 7		40	7
ec. 14, T. 6 S., R. 7 E ec. 20, T. 7 S., R. 9 E	577 480	415	
400.20, 1.70., R.9 D			777
ec. 20, T. 7 S., R. 9 E. ec. 20, T. 7 S., R. 9 E.	640	370	
(ec. 20, 1, 75, R. 9 E.	565	335	7
ec. 8, T. 7 S., R. 9 E.	550	347	• 7
46C, 8, 1, 7, 5, , R , 9, E.	563	34	7
iec. 8, T. 7 S., R. 9 E. iec. 12, T. 7 S., R. 8 E. iec. 2, T. 7 S., R. 8 E.	464	390	2
ec. 2, T. 7 S., R. 8 E.	496		7
iec. 2, 1, 7, S., R. 8 E.	495		2
ec. 2, 7, 7, 8, R. 8 E.	499	526	
6c. 2, T. 7 S., R. 8 E 6c. 2, T. 7 S., R. 8 E 6c. 2, T. 7 S., R. 8 E	477	291	7
Bec. 2, T. 7 S., R. 8 E.	550	1	2
ec. 30, T. 0 S., K. 8 E	584	145	
$\begin{array}{c} 6c. 35, T. 6 S. R. 8 E \\ 6c. 35, T. 6 S. R. 8 E \\ 6c. 35, T. 6 S. R. 8 E \\ 6c. 35, T. 6 S. R. 8 E \\ 6c. 35, T. 6 S. R. 8 E \\ 6c. 35, T. 6 S. R. 8 E \\ 6c. 35, T. 6 S. R. 8 E \\ 6c. 35, T. 6 S. R. 8 E \\ 6c. 35, T. 6 S. R. 8 E \\ 6c. 35, T. 6 S. R. 8 E \\ 7c. 8 \\ 7c. 8$	497	335	
ес. 35, Т. 0 S., R. 8 E	495	291	
ec. 35, T. 6 S., K. 8 E.	504	620	
ec. 35, T. 6 S., R. 8 E. ec. 34, T. 7 S., R. 8 E.	- 515 - 780	370	

Temperatures in wells in Indio Basin, Calif.

¹ Mendenhall, W. C., Ground waters of the Indio region, Calif., with a sketch of the Colorado Desert: U. S. Geol. Survey Water-Supply Paper 225, 1909.

	1	minute).	(°F.).
Sec. 5, T. 6 S., R. 8 E	548	45	73
Sec. 6, T. 6 S., R. 8 E	557	22	73
Sec. 6, T. 6 S., R. 8 E		200	. 70
Sec. 5, T. 6 S., R. 8 E	550		73
Sec. 5, T. 6 S., R. 8 E Sec. 5, T. 6 S., R. 8 E	553	180	73
Sec. 5, T. 6 S., R. 8 E.		1.00	73
Sec. 5. T. 6 S. B. 8 F.	558	1	1 73
Sec. 5, T. 6 S., R. 8 E	547	} 340	1. 73
Son 8 T 6 S 12 8 F	1 5/5	\$ 450	j 73
Sec. 8, T. 6 S., R. 8 E	503	U .	1 73
Sec. 5, T. 6 S., K. 8 E.	541	45	73
Sec. 8, T. 6 S., R. 8 E.	510	225	73
Sec. 12, T. 6 S., R. 7 E. Sec. 12, T. 6 S., R. 7 E.	500. 500	130	72 72
Sec. 12, 1. 6 S., R. 7 E.	329	130	74
Sec. 26, T. 6 S., R. 7 E.	320	112	74
Sec. 25, T. 6 S., R. 7 E.	385	100	74
Sec. 36, T. 6 S., R. 7 E.	340	100	74
Sec. 1, T. 7 S., R. 7 E	385	170	74
Sec. 32, T. 6 S., R. 8 E	397	170	73
Sec. 32, T. 6 S., R. 8 E.	400	235	73.
Sec. 32, T. 6 S., R. 8 E. Sec. 32, T. 6 S., R. 8 E.	540	190.	7.4.
Sec. 32, T. 6 S., R. 8 E.	404	358 257	74
Sec. 32, T. 6 S., R. 8 E.	438	70	74
Sec. 4, T. 7 S., R. 8 E.	474	80	74
Sec. 4, T. 7, S., R. 8 E	440	258	74
Sec. 22, T. 6 S., R. 8 E	498	90	. 74
Sec. 22, T. 6 S., R. 8 E	375	157	74
Sec. 22, T. 6 S., R. 8 E.	580	280	74
Sec. 26, T. 6 S., R. 8 E Sec. 26, T. 6 S., B. 8 E	572 510	180 210	7.4
Sec. 26, T. 6 S., R. 8 E.	500	125	74
Sec. 26, T. 6 S., R. 8 E.		100.	. 74
Sec. 35, T. 6 S., R. 8 E.		292	74
Sec. 35. T. 6 S., R. 8 E.	500	215	74
Sec. 22, T. 6 S., R. 8 E	577	225	74-
Sec. 4, T. 6 S., R. 8 E	542	130	75
Sec. 5. T. 6 S., R. 8 E	574	130	74
Sec. 10, T. 6 S., R. 8 E.	526	90	75
Sec. 10, T. 6 S., R. 8 E. Sec. 10, T. 6 S., R. 8 E.	517	112 90	75
Sec 34 / 7 S R S E	220	390	91
Sec. 34 TT 7 S R 8 E	250	390	91
Sec. 14, T. 8 S., B. 8 E.	300	33	92
Sec. 24, T. 8 S., R. 8 E	315	390	94
Sec. 24, T. 8 S., R. 8 E	315	640	90:
Sec. 12, T. 7 S., R. 8 E	464		70:

Temperatures in wells in Indio Basin, Calif -- Continued.

The flows from most of these wells have remarkably low temperatures. Some are only a degree or two warmer than the mean annual air temperature of 73.9° (the average for 39 years at Indio), and several are colder. One well 400 feet deep in sec. 16, T. 7 S., R. 8 E., has water 8° warmer than that found in closely adjoining wells of similar depth. The 780-foot well in sec. 34 has a flow with a temperature of 90°, indicating a rate of increase of 1° in 48 feet, and two wells near by 220 and 250 feet deep have flows with a temperature of 91°, indicating rates of increase of 1° in 13 and 15 feet, respectively. About 3 and 4 miles to the south, along a prolongation of the same line, are wells yielding large flows with temperatures of 92°, 94°, and 90°. It is probable that these wells tap a supply from a fissure, possibly a fault, along which heated waters are rising from a deep-seated source. It is stated that a 500-foot hole was sunk in

CALIFORNIA.

the bottom of the Salton Basin before the inundation and obtained a flow of water with a temperature of 92°.

OIL REGION.

In investigating the chemistry of the waters of the oil fields in San Joaquin Valley Rogers¹ determined temperatures of flow from several deep wells in Fresno and Kern counties.

Location.	Depth of source of flow (feet).	Temper- ature (°F.).	Mean annual air tempera- ture (°F.).	Depth per degree of increase in tem- perature (feet).	Rømarks.
Fresno County: Sec. 12, T. 21 S., R. 14 E Sec. 2, T. 20 S., R. 14 E	2,077 1,104	118 86	a 61.5 61.5	37 45	Sulphur water 600 feet below oil sand.
Kern County: Sec. 9, T. 31 S., R. 22 E	3,860	131	b 65	58 <u>}</u>	Flow probably from 3,000+ feet below main oil sand.
Sec. 32, T. 12 N., R. 23 E.	2,505	115	65	50	Flow from below oil sand, about 100 feet above second oil sand.
Sec. 35, T. 31 S., R. 22 E.	1,495-1,727	120	65	27+	
Sec. 15, T. 32 S., R. 23 E.	1,765-1,820	102	65	48	Flow from about 150 feet below oil sand.
Sec. 25, T. 32 S., R. 23 E.	1,460	97	65	46	Flow from about 50 feet below oil sand.
Sec. 31, T. 32 S., R. 24 E.	1,334-1,609	109	65	30+	Do.
Sec. 31, T. 32 S., R. 24 E Sec. 26, T. 12 N., R. 24 W.	2,540-2,560	93	65	91	Flow from about 125 feet below oil sand.
Sec. 12, T. 11 N., R. 24 W.	3,550	104	65	91	Flow from about 2,550 feet below oil sand.
Sec. 35, T. 32 S., R. 23 E	1,090	84	65	58	Shale of Monterey group.
Sec. 35, T. 32 S., R. 23 E Sec. 28, T. 31 S., R. 23 E	3,000	125	65	50	Flow from a few feet below oil sand.

Temperatures in several deep wells in Fresno and Kern counties, Calif.

a Hanford average minus 7° for difference in altitude.
b Bakersfield average minus 1°.

It is reported that in a 5,390-foot hole at Rosemary station the oil at 3,000 feet had a temperature of 140° to 160°.

GRASS VALLEY.

Lindgren ² made observations of temperatures in the mines of gold-bearing quartz in the Grass Valley and Nevada City districts in 1894. Thermometers were left in holes with the following results: 30 feet below surface, $53\frac{1}{2}^{\circ}$; 1,513 feet below surface, 66° ; 1,513 feet below surface (dry hole in quartz), $67\frac{1}{4}^{\circ}$; 1,553 feet below surface, 66° . These observations indicate a rate of increase of 1° in 122 feet at 1,553 feet and of 1° in 105 feet at 1,513 feet.

¹ Rogers, G. S., Chemical relations of the oil-field waters in San Joaquin Valley, Calif.: U. S. Geol. Survey Bull. 653, 1917.

² Lindgren, Waldemar, The gold quartz veins of Nevada City and Grass Valley districts, Calif.: U.S. Geol. Survey Seventeenth Ann. Ropt., pt. 2, pp. 170-171, 1896.

COLORADO.

ARKANSAS VALLEY.

There are flowing wells at short intervals along the valley of Arkansas River from Canon City to Granada, Colo. The temperatures in some of them are as follows: .

			·			
Location.	Depth (feet).	Flow (gallons per min- ute).	Tem- pera- ture (° F.).	Mcan annual air tem- pera- ture (° F.).	Depth per degree of in- crease in tem- pera- ture (feet).	Romarks.
Canon City: Oil company, sec. 23a Sanitarium 3 miles north- east, sec. 26. Florence:	1,600 1,670	` 700 Many.	90 98½	b 52.9 52.9	31 36	Flcw probably from 1,150 fect. Water from 1,650 feet, test by owner.
Sec. 14 10 miles southeast of	800 1,085	1,000 750	86 92	52.9 52.9	35 28	Test by N.H. Darton. Test January, 1905, by Dick Rule with Darton thermometer.
SW. 4 sec. 26, T. 18 S., R. 69 W.¢	1,230	360	87	52, 9	36	
Pueblo: Grand Hotel	1,219	20	. 76	b 51.5	$49\frac{1}{2}$	Pressure 50 pounds. Test by N.H.Darton Nov. 7, 1898.
Sec. 12, T. 21 S., R. 65 W. Ferris Hotel	$1,260 \\ 1,400$	25 1	$\begin{array}{r} 80\frac{1}{2} \\ 77.2 \end{array}$	$51.5 \\ 51.5$	$43 \\ \cdot 54\frac{1}{2}$	Pressure 15 pounds. Pressure 61 pounds. Test by N.H.Darton Nov. 7, 1898.
Clarks	1,402	87	79.5	51.5	50	Flow through 8 feet of rubber hose. Test by N. H. Darton Nov. 7, 1898.
South of Baxter, 4½ miles north of	1,404 660	100	82 73. 2	$\begin{array}{c} 51.5\\51.5\end{array}$	39 30 <u>1</u>	Flow at 1,180 feet. Test by C. A. Fisher February, 1904. Down 3 hours, water
Boone, $2\frac{1}{2}$ miles north of	1,000	49	82.5	51.5	32	stands at 550 feet. Some gas. Test by C. A. Fisher, February, 1904; down 3 hours. Dry hole.
Manzanola Rocky Ford Rocky Ford, sec. 18 Rocky Ford Do	1,113 767 790 793 820	$42 \\ 130 \\ 68 \\ 68 \\ 38$	80 78 74 78 75	$d 51.5 \\ 51.5 $	39 29 35 30 35	Large flow. Do. Do. Do.
Rocky Ford, Wychoff Park. Do La Junta La Junta mill	845 1,003 412 420	115 17 8 45	72 75 68 70	51.5 51.5 ¢ 52 52	41 43 26 23	Do. Do. Do. Do.
La Junta, railroad Do Do	420 439 700		68 68 68	52 52 52	26 -27 <u>1</u> 44	Air pumped. Do. Water probably from higher level, at least in part.
La Junta. La Junta Home Co La Junta, near	640 766 740	$35 \\ 25 \\ 12$	68 68 75	$52 \\ 52 \\ 52 \\ 52$	40 48 32	Do. Do.

Temperatures	in	wells	in	Arkansas	Val	ley,	Colo.
--------------	----	-------	----	----------	-----	------	-------

a 51st Cong., 1st sess., S. Ex. Doc. 222, p. 214.
b Canon City average for 29 years.
c Fuller, M. L., and Sanford, Samuel, Record of deep-well drilling for 1905: U. S. Geol. Survey Bull.298, p. 193. Water from 1,210 to 1,223 feet; cased to 1,040 feet.
d Average for 28 years.
e Rocky Ford average plus 0.50.°

COLORADO.

SAN LUIS VALLEY.

Siebenthal ¹ has supplied many observations of well temperatures The following data are compiled from his in the San Luis Valley. report:

Temperatures in wells in or near Alamosa, Colo.

· · · · · · · · · · · · · · · · · · ·						
Location.	Depth (iect).	Depth of flow (feet).	Flow (gallons per min- ute).	Tem- per- ature (° F.).a	Depth per degree of increase in temper- ature. (feet). b	Remarks.
Northeast corner sec. 10	1,000	932	600	74.7	20	Smaller flow at 500 feet may
Northwest corner sec. 10	865 883		400	72 70	30	mingle. Cased to 852 feet.
Goodall well	883	876	Many.	70	32	Small flow at 261, 507, and 617 feet; larger ones at 776 and 883 feet.
North of Alamosa Mill	725 680	680	Few. Many.	66 69	26	Probably a higher flow mingles. Cased to bottom.
Electric-light plant	800+	800+	Many.	73	40±	Do.
11 miles south of Alamosa	810	810	350	72	28	Do.
1 mile southeast of Alamosa	800	800	Many.	72	28	Do.
4 miles north of Alamosa	840	840	130		29	Do.
Near Fountain	585		Many.	64	28	100:
La Jara	308		Many.	48	62	
Do	325		Many.	493	50	Cased to 300 feet.
Los Sauces, near			25	53-55	20-25	00.500 00 000 1000
Lockett, near	805	800	150	63	40	
Veteran, near	265	265	250	54	24	Cased to bottom.
Do	383	335	Many.	55	28	
Swede Corners.	156	147	Many.	61	8	
Do	220			584	14	
Swede Corners, 1½ miles northeast of.	189	189		58	12	
Swede Corners, 1 ¹ / ₂ miles north- east of.	126			45	83	
Moffat, near	640	616		61	34	
Do	· 300	300	8	51	37	
San Isabel, near	380		55	551	30	
Do	375		58	58	25	
Baca grant	481		10	62	25	
Mosca	500		50	66	22	
Do	600			69	23	
Do	385			60	23	Second flow.
Do	∫ 500	500]	63	25	Separate casing.
	Ŋ	340		62	18	Do.
Do	800		90.	71	29	
Mosca, 5 miles west of	712		120	63	36	O i to bottom
Hooper	740	740	70	69	28	Cased to bottom.
Do	300	300	1	53	30	Do.
Hooper, near Do	425		Many.	54 59	39	Flow from above 380 feet.
Do	550 630		70	60	36	Cased to 360 feet.
Kinney ranch	766		10	68	51	Considerable gas.
Jacobs ranch	500		25	58	33	Cased to 125 feet.
Do	404		20	57	29	Cased to 224 feet.
San Luis.	22-32	• • • • • • • • •		45-47	20	
Del Norte	450	450	2	54	41	
	100	100	1 1			
			·	'	·	· · · · · · · · · · · · · · · · · · ·

a Temperature about Alamosa observed by Prof. Carpenter. b Based on an approximate mean annual of 43° averaged from observations in adjoining regions.

It is suggested that the high rate about Swedes Corners is probably due to the presence of an old lava flow, a part of which crops out 1 mile west and 3 miles north from the Corners.

¹ Siebenthal, C. E., Geology and water resources of the San Luis Valley, Colo.: U. S. Geol. Survey Water-Supply Paper 240, pp. 57-98, 1910.

GEOTHERMAL DATA OF THE UNITED STATES.

The flow from a 405-foot well on Cotton Creek, in Saguache County, is reported to have a temperature of 58°, but as the mean annual air temperature at that locality is not known the rate of increase can not be calculated.

LEADVILLE.

It is reported ¹ that a 400-foot well in sec. 25 near Leadville yields a flow with a temperature of 58°. As the mean annual air temperature at Leadville is 35° (average for 18 years) this would indicate a rate of increase of about 1° in 17 feet.

TRINIDAD.

In June, 1905, W. T. Lee made temperature determinations at various depths in a 2,500-foot boring at Trinidad. The hole was found to be plugged at 770 feet, and a Darton thermometer left at that depth for several hours recorded 69.6°. A test at 370 feet gave 67.8°. As the mean annual temperature of Trinidad is 51.3° (average for 15 years) these readings indicate rates of increase of 1° in 42 feet and 22 feet, respectively. The difference between the two readings, however, indicates a rate of increase of 1° in 222 feet between depths of 370 and 770 feet.

DENVER BASIN.

Few data are available as to the temperatures in many wells in the vicinity of Denver that formerly flowed. The following figures² may possibly be significant:

Depth fect).	Flow (gallons per min- ute).	Tem- per- ature (° F.).	Depth per degree of increase of temper- ature (feet).a	· · · · ·	
350 340 407 239 445 410 563 635 352 620 480	3 30 Many. 50 20 10 140 325 300	56 58 62 55 62 58 62 58 66 62 52 52 52 52 52 55 55 57	56 41 33 46 50 35 52 160 38 67	Some flow from 240 feet perhaps. Same well. Littleton. Cased to 248 feet. Principal flows from 250 and 575 feet. Both same temperature. Cased to 350 feet.	

Temperatures in wells in and near Denver, Colo.

^a Calculated from mean annual temperature of 49.8°, average for 45 years. ^b Emmons, S. F., Cross, Whitman, and Eldridge, G. H., Geology of the Denver Basin in Colorado: U. S. Geol. Survey Mon. 27, pp. 456-459, 1896.

¹ Fifty-first Cong., 1st sess., S. Ex. Doc. 222, p. 329. ² Idem, pp. 188-208, 334, 336, 337.

COLORADO.

MISCELLANEOUS LOCALITIES.

Temperatures of wells in Montrose, Akron, and Loveland, Colo.

Locality.	Depth (feet).	Depth (feet). Temper ature (° F.).		Depth per degree of in- crease in temper- aturo (feet).	Remarks.			
Montrose	c 829	72	· 47.3	33¥	Flow tested by N. H. Darton Nov. 5, 1898.			
Akron	670	64	c 49	45	Thermometer sunk by C. A. Fisher, 1898; in well 34 hours.			
Loveland	2,465	58	a 46.7	¢ 121	Flow stated to be from 1,365 feet; tested by C. A. Fisher, 1898.			

a 30-gallon flow.

b Average for 21 years.
 c Approximated from Fort Morgan, 48.7° (20-year average).
 d Fort Collins average for 33 years.

e Calculated to 1,365 feet.

SUMMARY.

The rate of increase of temperature in wells in the Arkansas Valley varies considerably, but in most of them it is high. From Baxter to La Junta the average is near 1° in 34 feet and variations from the average are mostly less than 10 feet. The Pueblo wells show an average near 1° in 50 feet, but farther west the rate is higher. In San Luis Valley the rate is 1° in 33 to 42 feet so far as the few observations show. The Trinidad hole showed too much variation to be significant. The rate in the Denver wells was 1° in 33 to 56 feet, at Montrose 1° in 33½ feet, and at Akron 1° in 45 feet. The observation at the Loveland well is open to question as to the source of the flow.

GEOLOGIC RELATIONS.

Wells in the Arkansas Valley below the Pueblo draw from the Dakota and associated sandstones, which dip gently eastward. The well in T. 18 S., R. 69 W., also reaches the Dakota sandstone. The Florence wells penetrate much higher sandstones in a basin holding coal measures, and the Canon City holes are on the west rise of this The San Luis Valley wells are in Quaternary valley filling. basin. The Trinidad hole was in the Pierre shale at 770 feet. Wells in the Denver Basin penetrate the nearly horizontal younger Tertiary deposits. At Montrose the Dakota sandstone was probably reached, The precise relations and the Akron hole was in the Pierre shale. at the Leadville well are not known, but the region contains limestone cut by igneous rocks and greatly mineralized.

GEOTHERMAL DATA OF THE UNITED STATES.

FLORIDA.

Although many determinations of temperature of flows from artesian wells in Florida have been published, there are few reliable data to indicate the geothermal gradient. This is due largely to lack of information as to the depth from which the water is derived and as to whether or not higher flows mingle with the main flow.

ST. AUGUSTINE.

In the large well at the Ponce de Leon Hotel, St. Augustine, the main flow, from 1,340 to 1,390 feet, has a temperature of $86^{\circ.1}$ As the mean annual temperature of St. Augustine is 69.5° (65-year average), this would indicate a rate of increase of 1° in 81.2 feet, providing no water enters the casing above 1,340 feet. When the well was being bored the temperatures of water from the principal large flows brought rapidly to the surface in the sand pump from various depths were recorded as follows:²

Temperature at different depths in well at Ponce de Leon Howl, St. Augustine, Fla.

Depth (feet).	Tem- pera- ture (°F.).	Depth per degree of increase in tempera- ture (feet).		
170	74	38		
410	76	63		
520	79	55		
1,110	80	106		
1,225	85	79		
1,340-1,390	85	81		

The temperature at a depth of 35 feet was reported as 62° , or $7\frac{1}{2}^{\circ}$ less than the mean annual air temperature. The rate of increase from 170 to 1,340 feet is 1° in $87\frac{1}{2}$ feet.

¹ Am. Jour. Sci., 3d ser., vol. 34, p. 70, 1887. ² Florida Geol. Survey Third Rept., pp. 114-115, 151, 1910.

FLORIDA.

MISCELLANEOUS, DATA.

Data for Florida, some of which may be reliable, are as follows:

Temperatures in wells in Florida.

Location.	Depth (feet).	Flow (gals.).	Tem- pera- ture (°F.).	Mean annual air tem- pera- ture (°F.).	Depth per de- gree of increase in tem- pera- ture (feet).			
Brevard County:								
Eau Gallie	230		78	a 72.6	43	Large flow; well 325 feet.		
Malabar	350		78	72.6	65	Large flow; first flow at 2		
Melbourne, 1 mile west of.	400?		77	72.6	90	Large flow; well 325 feet. Large flow; first flow at 2 feet, probably mingles. Large flow; possibly son from 318 feet.		
Micco	500?		78	72.6	93	Large flow; may be from 2 feet.		
Rockledge	350		80	b 72	44	Large flow; cased to bottom		
Titusville Clay County:	218		75	c 71.2	60	Large flow.		
Greencove Springs	500		80	d 68.3	424	300-gallon flow; well 815 fee		
Magnolia Springs	362		74	68.3	64	Large flow.		
Orange Park Duval County:	450		78	68.3	46 1	Do.		
Mandarin Jacksonville Electric Co.	550		77	e 68. 2	627	"Flow from 550 feet."		
Jacksonville Electric Co	· 1,020		81	68.2		Main flow probably from		
Jacksonville city well	984		77높	68.2		feet; another at 975 feet. Water probably also from 5 750, and 860 feet.		
Do	498		71	68.2				
Do Do				68.2		Mixed flows.		
Do			74	68.2 68.2		Do.		
Do	1.031		74	58.2		Do.		
Jacksonville, 3 mileseast of	800		75	68.2	118	Flow from bottom.		
Lee County:	496		00	1 73.1	72	Consid to better Terry C.		
Fort Myers Fort Myers 1 mile east of,	496		80 80	73.1	56	Cased to bottom. Large flo 150-gallon flow.		
Manatee County:						· · ·		
Braidentown	347	Many.	72	971.7		Flow from 347 feet.		
Ellentown Manatee	400 368	Many. 150	80 74	971.7 971.7	48	Flow mostly from 200 feet. Flow from 348 feet.		
Terra Ceia	378	Many.	75	\$ 71.9	116	Flow from 360 feet.		
Do	350	250	76	h 71.9	73	Flow from 300 feet.		
Marion County: Ocala Nassau County: Fernandina.	1,210	Many.	745	i 70.2	284	Pumped 74 feet.		
Nassau County: Fernandina.	700	810	74	68.2	121	Water from 140 feet.		
Osceola County: Kissimmee Putnam County:	309	Many.	75	\$ 72.3	52	water nom 140 leet.		
Crescent City	300	Many.	72	1 69.6	125	Water from 300 feet.		
Federal Point	160-250	200-600	72-75	\$ 69.6	1	Water from 155 to 200 feet.		
Do	250	500	72	69.6	83	Water from 200 feet.		
Do Palatka	225 206	600 Many.	75	\$ 69.6 \$ 69.9	31	Water from 168 feet. Water from 190 feet.		
Do	200	Many.	72	1 69.9	119	Water from 250 feet.		
San Mateo	280	Many.	78	1 69.9 1 70	35	Water from 280 feet.		
St. Lucie County:	}			1	1			
Orchid	368	Many.	78	m 72.6	66			
Orchid, ½ mile east of Sebastian	400 460	Many. Many.	78 75	m 72.6 n 72.7	74 200			
Do	350	Many.	75	n 72.7	152			
St. John County:			•					
Hastings Switzerland	155	120	75	o 69.6	29	Water from 155 feet.		
Switzerland	337	400	72	p 68.9	107	Water from 330 feet.		
Do Volusia County:	300	400	72	p 68.9	90	Water from 280 feet.		
	1	1	I	1 .	1	1		
	100-162	Manv	70-73	1 9 70				
Many wells	100-163 230 227	Many. Many. 115	70-73 70 78	9 70 70 70	28			

^a Malabar average for 25 years.
^b Orlando average minus 3°.
^c 21 years average.
^d Middleburg average.
^e Jacksonville average for 46 years.
^f Average for 48 years.
^g Average for 33 years.
^k Braidentown average plus 2°.
^f Average for 25 years.

137163°-20-Bull. 701--3

,

A verage for 18 years.
Federal Point average plus 0.3°.
Federal Point average plus 0.4°.
m Fort Pierce average minus 0.3°.
Fort Pierce average minus 0.2°.
St. Augustine average plus 0.1°.
P St. Augustine average minus 0.6°.
Q Deland average for 20 years.

.

SUMMARY.

Apparently the most important data on temperature here presented are those from St. Augustine, Fort Mver, Mandarin, and Rockledge. Some of the others may be reliable, but there is a possibility that in many of the wells higher flows mingle with the main flow. The source of the flows at Melbourne and Micco is not known, and most of the other wells in Brevard County are shallow. The flows at Jacksonville are known to be mixed, for although the main flow is derived from a depth of 555 feet other flows come in, notably in the deeper wells, which tap a flow at a depth of 975 feet, below a body of clay. Temperatures of flows in the 984-foot city well, which is cased only to 494 feet, are stated ¹ to be as follows: 524 to 727 feet, 76° to 77 $\frac{1}{2}$ °; 865 to 970 feet, 78° to 79°; flow at mouth, 77 $\frac{1}{2}$ °. The large flow from the 496-foot well at Fort Myer probably affords a true indication of underground temperature, although it shows a smaller rate of increase than is indicated by the well a mile east of Fort Myer.

GEOLOGIC RELATIONS.

The wells in Florida penetrate sands, clays, and limestones of Tertiary age, which lie nearly horizontal and are uniform in character over wide areas. Those at St. Augustine, Jacksonville, and Mandarin penetrate deeply into Oligocene limestones of the Vicksburg group, which are overlain by clays and sands of later Tertiary age. These limestones were also reached by the holes in Brevard and Clay counties and at Fort Myer. The variations in geothermal gradient have no obvious connection with geologic features.

GEORGIA.

TEMPERATURES.

Local observers have furnished records of the temperature of flows from several wells in Georgia which afford a few data as to the geothermal gradient. Other facts regarding the wells are given by McCallie² and by Stephenson and Veatch.³

¹ U. S. Geol. Survey Bull. 298, p. 196, 1906.

² McCallie, S. W., A preliminary report on the artesian-well system of Georgia: Georgia Geol. Survey Bull. 7, 214 pp., 1898; A preliminary report on the underground waters of Georgia: Georgia Geol. Survey Bull. 15, 370 pp., 1908.

⁸ Stephenson, L. W., and Veatch, J. O., Underground waters of the Coastal Plain of Georgia: U. S. Geol. Survey Water-Supply Paper 341, 539 pp., 1915.

GEORGIA.

Locality.	Depth (feet).	Flow (gal- lons per min- ute).	Tem- pera- ture (°F.).	Mean annual air tem- pera- ture (°F.).	Depth per de- gree of in- crease in tem- pera- ture (feet).	Remarks.
Chatham County: Savan- nah, 12 miles west of. Dougherty County: b	659	Many.	72	a 66. 6	122	
Albany city well	750	200	73]	¢ 66. 9	103	Cased to 660 feet, principa flow from 680 feet.
Albany, well No. 24 Evans County: Claxton e	1,320 546½	125 100	78 75	c 66. 9 f 65. 8	119 59	Cased to bottom. Cased to 459 feet, water begin: at 460 feet. Water pump ed to 80 feet.
Glynn County: Brunswick	465	600	70	g 67	155	Possibly some flow from 300 feet also.
McIntosh County: Valona	455	120	70	h 66. 1	116	Possibly some flow from 320 to 365 feet also.
Pierce County: Offerman	675}	250	76	€ 67. 2	73	Cased to 635 feet. Water 640 to 675} feet. Rises to with in 33 feet of surface.
Pulaski County: Hawkinsville Ware County: Way Cross, 2 wells.	490 691	Many. Many.	$71 \\ 72\frac{1}{2}$	f 62. 4 k 67. 2	57 127	Cased to bottom. Flows. Air-pumped, main supply 670 to 691 feet.
Wilcox County: Bowens mill.	673	Many.	74	1 66. 2	86	Source of water not given.

Temperatures in wells in Georgia.

Average for 67 years.
Georgia Geol. Survey Bull. 7, pp. 178–181, 1902.
Average for 30 years.
Georgia Geol. Survey Bull. 15, pp. 97–99, 1908.
U. S. Geol. Survey Bull. 298, pp. 201–202, 1900.
f Statesboro average for 17 years.

g Average of various distant stations.
b Savannah average + 0.5°.
t Waycross average for 28 years.
f Average for 28 years.
k Average for 28 years.

¹ Eastman average for 25 years.

SUMMARY.

The data given indicate considerable variation in the geothermal gradient in Georgia, but it is difficult to know which are reliable. The figures for the Claxton, Hawkinsville, and Offerman wells appear to be valid, and the source of flow in the wells at Albany and a well 12 miles west of Savannah, which show a low rate of increase, may be correctly reported. The Waycross water is probably cooled by The Georgia wells can not be grouped geographically by air lift. their rates of increase or by their depths.

GEOLOGIC RELATIONS.¹

The wells in the list are all in the Coastal Plain province, in which sheets of sand, gravel, and clay of Cretaceous and Tertiary age dip gently to the east and southeast. The older beds lie on a basement of pre-Cambrian crystalline rocks, which slopes to the southeast and is far beneath the surface along the coast and at the Florida State The Albany deeper wells draw from the Ripley formation, line. The water-bearing stratum at Hawkinsville high in the Cretaceous. and Bowens Mill is sand, probably at the top of the Cretaceous or the base of the Eocene. The Offerman, Claxton, and Waycross wells draw from beds in the Eocene at a considerably higher horizon, and

¹ For details regarding relations of wells see Stephenson, L. W., and Veatch, J. O., op. cit.

GEOTHERMAL DATA OF THE UNITED STATES.

the Savannah, Brunswick, and Valona wells may reach beds still higher. From these statements it will be seen that there is no apparent relation between the rates of increase in temperature and the water horizons.

IDAHO.

BOISE.

The water of the artesian wells at and near Boise is reported to have temperatures of 80° to 170° . As the depths of these wells are less than 500 feet, the higher temperatures, at least, indicate a very high geothermal gradient, which is due, doubtless, to local volcanic conditions.

SNAKE RIVER VALLEY.

Russell ¹ reports temperatures in a number of wells along the Oregon Short Line Railroad on the Snake River Plains as observed by Scott Turner. They all indicate high temperatures. The most notable are as follows:

Location.	Depth (ieet).	Depth of flow (feet).	Temper- ature . (°F.).	Mean an- nual air tempera- ture (°F.).	Depth per degree of increase in tem- perature (feet).
Bliss. Cleft. Owyhee Nampa.	483 450 600 114	430 530 40	70 73 70 61 ¹ / ₂	a50.3 b48.6 52 50	22 19 30

Temperature in wells along Oregon Short Line Railroad in southwestern Idaho.

a Approximated from averages at Boise and Garnet.

b Mountain Home average.

Russell ² has also given data of wells on the south side of Snake River valley in Owyhee County. The temperatures are high, and as there are numerous hot springs in the region it is believed that the wells draw in part from deep-seated thermal waters rising in fissures. The wells all flow from 20 to 120 gallons a minute and are sunk to sands in the Payette formation, of lower Tertiary age.

¹ Russell, I. C., Geology and water resources of the Snake River Plains of Idaho: U. S. Geol. Survey Bull. 199, p. 173, 1902.

² Russell, I. C., Preliminary report on artesian basins in southwestern Idaho and southwestern Oregon: U. S. Geol. Survey Water Supply Paper 78, p. 35, Washington, 1903.

ILLINOIS.

Locality.	Depth (feet).	Temper- ature (°F.).	Depth per degree of increase in tem- perature (feet).
iuffey		$ \begin{array}{c c} 76\frac{1}{2} \\ 100 \\ 98 \\ 106 \end{array} $	$22 \\ 21\frac{1}{2} \\ 20\frac{1}{2} \\ 19$
Do Enterprise. Do Jo	720 340 385	100 87 90 90	15 9½ 10 18½

Temperature in wells in Owyhee County, Idaho.

a Lindgren, Waldemar, and Drake, N. F., U. S. Geol. Survey Geol. Atlas, Silver City folio (No. 104), p. 8, 1904.

These rates are based on an assumption that the mean annual temperature is 52° F., a figure approximated from observations at distant stations.

Russell also states that the water in a 240-foot well near Hot Springs, in Bruneau Valley, Owyhee County, had a temperature of 109° F. The well flows 7 gallons a minute and is near a hot spring of the same temperature. There are many shallow wells on these lava plains of Snake River which yield warm water, but as the region is one of relatively recent volcanic activity the lava flows are doubtless the source of the heat.

NEZ PERCE COUNTY.

In his report on Nez Perce County, Russell ¹ gives a number of temperatures of deep wells and warm springs. A 220-foot well on the Dowd farm, 8 miles southeast of Lewiston, has a flow of 15 to 20 gallons a minute, which in December, 1900, John Adams found to have a temperature of $58\frac{2}{3}^{\circ}$. A copious spring near by had a temperature of 54°. Several wells about 100 feet deep, not far away, had flows with temperatures of 66° to 68°, according to the same observer. The mean annual temperature of the locality is estimated by Russell as 48° to 49°. Russell believed that the water must come from a depth of 540 to 1,000 feet in these wells in order to account for the high rate of increase indicated, but as the region is underlain by recent basalt it appears to me more likely that this rock at a moderate depth is the source of the heat.

ILLINOIS.

TEMPERATURES.

About fifty records of temperatures in deep wells in various parts of Illinois were obtained, and although in many of the wells the flows are mixed, in others the depth of flow is known and the rate of increase is indicated. At Streator and St. John Darton thermometers were sunk to the bottom of the wells.

¹ Russell, I. C., Geology and water resources of Nez Perce County, Idaho: U. S. Geol. Survey Water-Supply Paper 54, pp. 106-109, 1901.

Temperatures in wells in Illinois.

Location.	Depth (feet).	Tem- pera- ture (° F.).	Mean annual tempera- ture (° F.).	Depth per degree of in- crease in tempera- ture (feet).	Remarks.
Alexander County: Cairo: a Halliday Hotel	824	62	57.5	155	Water possibly all or mainly from 498 to 518 feet.
Halliday residence	811	62	57.5	155	60-gallon flow from 753 feet; no in-
Near mouth of Cache River Cook County:	806	62	57.5	163	crease below 700 feet. Water from 735 feet or higher.
Evanston		65	b 48.5	97	Source of flow not given. Probably higher waters mingle.
Oak Park	2,180 751	64 55	48.5 48.5		
Chicago ¢.	844	60	40.5 d 51.4	115 98	Source of flow not given
Hancock County: Warsaw Henry County: Kewanee, 3	1,500	65	e 49.4	90	Source of flow not given. Cased to 1,330 feet.
wells.	1,000	05	5 49.4	90	Caseu to 1,330 leet.
Knox County: Galesburg f	1,226	60	g 50	ħ 106	Cased to St. Peter sandstone at 1,060 feet. Pumped 160 feet; main supply from 1,100 to 1,215 feet.
Knoxville	1,360	68	50	i 66	Cased to St. Peter at 1,180 feet.
Knoxville La Salle County: Streator	2,496	j 76	k 50.4	97	Thermometer to bottom.
Mercer County: Aledo	3,115	68	1 50		Cased 1,705 to 1,805 feet. "Most of flow from bottom."
McDonough County: Macomb.	1,630	68	<i>m</i> 51	n 67	Cased to St. Peter sandstone at 1,135 feet.
Perry County: St. John Coal & Salt Co.	3,735	o 101	56.3	83.5	Thermometer down 24 hours.
Putnam County: Hennepin Peoria County: q	800	58	p 49.4	93	Cased nearly to bottom.
Peoria Asylum	1,600	78	1 49.9	56.9	Source of flow not known.
Pulsifer well.	900	65		59.6	Do.
Stockyards	850	65		56.3	Do.
Sulphur water house Rock Island County: n	800	62 ·		66.1	Do.
Carbon Cliff	950	60	\$ 49.4	90	Do.
East Moline	1,050	61.5	49.4	87	No casing.
Milan t Moline:	1,027	61.5	49.4	85	
Prospect Park	1,121	61	49.4	99	Flows may mingle.
Paper mills Rock Island:	1,375	63	49.4	101	Do.
Hubers Brewery	1,187	60.5	49.4	u 82	Cased to 912 feet.
Mitchell & Lynie	2,049	68	49.4	⁴ 83	Cased to 1,200 feet. "Probably main flow from 1,550 feet."
St. Clair County: Marissa	685	65	v 55.2	70	Pumps 30 gallons 200 feet.
Stark County: Bradford	2,054	68	w 49.4	110	Cased to 1,600 feet. Water pumped
Tazewell County: Pekin	950	70	x 49.9	42	175 feet. Sulphur water.
Whiteside County: Sterling	1,450	62	¥ 49.9		Sulphur water.
	-,		1 - 10.2		

1 ł ľ

a Glenn, L. C., Underground water of Tennessee and Kentucky west of Tennessee River and of an adjacent area in Illinois: U. S. Geol. Survey Water-Supply Paper 164, pp. 150-152, 1906.
b Chicago average for 42 years.
c Schott, C. A., On underground temperatures: Smithsonian Rept. for 1874, p. 250.
d Keokuk, Iowa, average for 46 years.
e Galva average for 24 years.
f Udden, J. A., Some deep borings in Illinois: Illinois Geol. Survey Bull. 24, p. 65, 1914.
a Approximated.
b Calculated to 1,180 feet.
j Taken by Prof. R. Williams with thermometer from U. S. Weather Bureau.
k Average for 21 years.
j Average for 61 years.
m Approximate mean annual.
m Calculated to 1,135 feet.

^m Approximate mean annual.
^a Calculated to 1,135 feet.
^o Observation by superintendent in 1899 with Darton thermometer down 24 hours. Dry hole. Limestone below 2,500 feet. Another 24-hour observation gave 95° and a short one gave 93°, all in the midst of working double shift.
^p La Salle average to 1908.
^q Udden, J. A., Artesian wells in Peoria and vicinity: Illinois Geol. Survey Bull. 8, p. 334, 1908.
^r All taken by Prof. J. A. Udden, 1898, with a Sargent thermometer reading 1° higher than instruments in U. S. Weather Bureau, Davenport, Iowa.
^e Davenport average for 45 years.
^e Upper flow cased off, but casing may be corroded through as suggested by diminished pressure.
^e Maccountab average for 26 years.

Datchated to 912 feet.
Maccoutah average for 26 years.
Henry average for 28 years.
Peoria average for 26 years.
Dixon average for 26 years.

ILLINOIS.

SUMMARY.

The most satisfactory observations of underground temperature in Illinois are those made at St. John and Streator, where thermometers were sunk to the bottoms of the holes. At St. John the instrument was left down 24 hours. When withdrawn it read 101°, indicating a rate of increase of 1° in 83.5 feet. The temperatures in wells in Rock Island County were accurately taken by Prof. Udden. The variation which some of them show is possibly due largely to mingling However, the observations were made just after vigorous of flows. drilling, and some heat of impact may be manifest. The wells at Peoria give results so closely accordant that presumably the flows are all from the bottom or near it. The Hennepin well, "cased nearly to the bottom," and the Knoxville, Chicago, Marissa, and Galesburg wells give close approximations of rate if the water is not cooled by pumping. The temperatures in the Cairo wells may not be accurately determined.

Flows from the deep well at Aledo may be mixed, and if so the rate of 1° in 168 feet is not valid. The Oak Park flow is undoubtedly mixed. The high temperature of water from the 950-foot well at Pekin probably indicates a source at the bottom of the well, and the rate of 1° in 42 feet is considerably higher than that of any other well in the State.

The rates of increase given in the list appear not to have any regional relations but vary from place to place. Galesburg and Knoxville, not far apart, apparently have rates of 1° in 106 feet and 66 feet, respectively. Pekin is not far south of Peoria, where the average rate is 1° in 60 feet.

GEOLOGIC RELATIONS.

The Illinois wells penetrate limestone, shale, and sandsfone of Carboniferous to Ordovician age, all lying nearly horizontal, without local disturbances of large amount and with no volcanic rocks. The Streator well is stated to be on a low anticline trending northwestward. The deep wells in the southern part of the State reach the oldest strata, most of them drawing from the St. Peter sandstone. At Peoria the shallower wells in the Niagara limestone show no material difference in rate of increase in temperature from the deeper ones, which draw from the St. Peter sandstone. A similar condition is presented by various wells of Rock Island County. The Cairo wells penetrate Cretaceous deposits to a depth of about 500 feet and then enter flint rock and sandstone of Mississippian age. If the flows are from about 500 feet, the base of the Cretaceous, the rate is 1° in about 110 feet.

INDIANA.

TEMPERATURES.

The few well temperatures on record for Indiana are not very significant, because no statement is furnished as to the depth from which the water comes. The following data may be of interest:

Location.	Depth (feet).	Tem- perature (feet).	Mean annual air tem- perature (° F.).	Depth per degree of increase in tem- perature (feet).	Remarks.
Brown County: Nashville Carroll County:	530	56	a 53	176	Flows 300 gallons a minute.
Delphi, several wells	898-928	62	a 50.7	80	Oil wells.
Flora	1,040	62	50.7	92	Do.
Cass County: Logansport b	447	54	¢ 50, 9		
Crawford County: English	887	60	a 56	222	300-gallon flow.
Decatur County: Sandusky Lake County:	830	60 _.	a 53	118	
Hammond, 2 wells	1,780	. 60	d 49	162	Water probably from shallow source or chilled by pumping.
Fort Wayne	2,635	51.5	f 50.1		rearrant of the state of the st
Wabash ¢	2,270	50.5			
Terre Haute Laporte County: Michigan	1,923	81	g 54.6	73	
City	. 833	57	h 49	104	Flows 300 gallons a minute.

Temperatures in wells in Indian	T_{0}	I	[em	per	atures	in	wells	in	Indiana
---------------------------------	---------	---	-----	-----	--------	----	-------	----	---------

a From U. S. Weather Bureau map. b Capps, S. R., Underground waters of north-central Indiana: U. S. Geol. Survey Water-Supply Paper 254, p. 93, 1910. c Average for 36 years. d Average for 29 years. e U. S. Geol. and Geog. Surveys W. 100th Mer. Rept., vol. 1, p. 209, 1889.

f Average for 20 years. g Average for 26 years. h Average at Laporte.

SUMMARY.

The rate in Indiana probably is not indicated accurately by these data except possibly by those for the Carroll County, Sandusky, Terre Haute, and Michigan City wells, which give figures that appear reasonably accordant.

IOWA.

TEMPERATURES.

A report of the State Geological Survey¹ and a report by Norton and others² give temperatures of flows from many deep wells in Iowa. Doubtless most of the figures are correct, but for most of the wells either the flows are known to be from various depths or no facts are given as to their source. Some of the wells are pumped, a condition which is unfavorable for accurate results, especially if the air lift is used. The 3,000-foot well at Des Moines is one in which many flows mingle and the water is pumped to the surface. Temperatures of flows from several of the deep wells at Davenport were taken for me by J. A. Udden in 1898, but unfortunately in most of the wells there are mingled flows. The well at Ames was tested by S. W. Beyer,³ who lowered a Miller-Casella thermometer and took readings every 100 feet.

³U. S. Geol. Survey Water-Supply Paper 293, p. 749, 1912.

¹ Iowa Geol. Survey Rept., vol. 6, pp. 294-299, 1897.

² Norton, W. H., and others, Underground water resources of Iowa: U. S. Geol. Survey Water-Supply Paper 293, 994 pp., 1912.

.IOWA.

Temperatures in wells in Iowa.

Location.	Total depth (feet).	Flow (gallons per min- ute).	Tem- pera- ture (°F.).	Mean annual air tem- pera- ture (°F.).	Depth per de- gree of increase in tem- pera- ture (fcet).	Remarks.
Allamakee County: New Albin Lansing Waukon, 3 miles north of.a Blackhawk County:	500 675,748 396	Pumps many.	51 50 52	45.7 45.7 047		Source of water not given. -Sandstone 347 to 396 feet, with water within 137 feet of surface.
Waterloo	1,360		56	46.8	• • • • • • • • • •	Source of water not given.
Cedar County: Tipton e d, e.	1,365 2,696 <u>2</u>	Pumps 225	54 57	46.8 f 48.3	118	Water pumped 65 feet. "No water below 1,200 feet"; prob- ably all from St. Peter sand- stone, 1,030 to 1,070 feet.
Clayton County: McGre- gor.c	520	Many.	52	45	g 74	Flows.
Clinton County: Clinton	1,605	500	72	4S. 6	69	Probably cased. Many other wells with mixed flows.
Henry County: Mount Pleasant Asylum. ^A Des Moines County: <i>i</i>	1, 125	165	62	¥ 50. 2	84	Water pumped 30 feet. Water from 990 feet.
Burlington Do Do	509 450 852	15 Many. 500	56 60 64. 5	\$ 50.5 50.5 50.5	93 47 61	Source of flow not given. Flow presumably from bottom. Some water also at 430, 700, and 800 feet.
Do Iowa County: Amana So- ciety. l	460 1,640	40 100	60 68	50.5 m 47.9	48 81	Flow probably from bottom. Cased to 400 feet. Main flow begins at 1,200 feet; gradual increase to 1,640 feet.
Lee County: Fort Madison: A tlee well n Paper company Do Atchison, Topeka	740 689 681 764	Many. 600 200+ Many.	64 62 65 60	051.9 51.9 51.9 51.9 51.9	57 62 43 77	Water pumped 85 feet. Water from about 680 feet. Water from 607 feet. Water probably from sandstone,
& Santa Fe Ry. n Keokuk: p						692 to 756 feet.
Brewery. Pottery company Y. M. C. A. Pickle company Carter Co	700 701 769 710 661	Many. 250 350 250 5	65 60 64 64 61	951.4 51.4 51.4 51.4 51.4 51.4	51.5 73 55.5 42 8	First sandstone 628 to 701 feet. Water mainly from 700 feet. Water from 530 feet. Water mainly from 648 to 661
Mooar 7	800	165	67	51.4	51	feet. Cased to 600 feet; water from 800 feet.
Polk County: Des Moines city park	2, 250		70.0	s 49. 3	109	Thermometer sunk by S. W. Beyer. t
Do Do Do Do Do	1 750		69.4 69.5 69.1 68.3	49.3 49.3 49.3 49.3	99 <u>1</u> 87 70 66	
Do	1,000		65.4	49.3	62	Rate 250 to 2,250 feet is 138 feet to 1°.
Do	750		60.5	49.3	67	Rate 250 to 1,000 fect is 75 feet to 1°.
_ Do	500		58.2	49.3	56	Rate 1,000 to 2,250 feet is 272 feet to 1°.
Do	250		55.5	49.3		

a U. S. Geol. Survey Water-Supply Paper 293, p. 252, 1912.

a U. S. Geol. Survey Water-Supply Paper 293, p. 252, 1912.
b Dubuque average minus 0.9°.
c lowa Geol. Survey Rept., vol. 6, pp. 185, 189, 200, 266-267, 1896.
d Mead, D. W., Hydrogeology of the Upper Mississippi Valley: Assoc. Eng. Soc. Jour., vol. 13, p. 368, 1894.
c U. S. Geol. Survey Water Supply Paper 293, p. 374, 1912.
f Cedar Rapids average plus 0.6°.
g Postville average.
A lowa Geol. Survey Rept., vol. 6, pp. 320-321, 1896; U. S. Geol. Survey-Water Supply Paper 293, p. 535, 119

h Iowa Geol. Survey Rept., vol. 6, pp. 320-321, 1896; U. S. Geol. Survey Water Supply Supply Supply 1912.
i Average for 36 years.
j U. S. Geol. Survey Water-Supply Paper 293, pp. 528-529, 1912.
k Average for 19 years.
i Iowa Geol. Survey Rept., vol. 6, pp. 286-287, 1896.
m Cedar Rapids average plus 0.2°.
m U. S. Geol. Survey Water-Supply Paper 293, p. 563, 1912.
o Kookuk average minus 0.4°.
p U. S. Geol. Survey Water-Supply Paper 293, pp. 564-566, 1912.
q Average for 46 years.
r U. S. Geol. Survey Water-Supply Paper 293, p. 568, 1912.
s Average for 38 years.
t U. S. Geol. Survey Water-Supply Paper 293, pp. 734-738, from Iowa College Water-Supply, Ames, 1897.

١ 3

Location.	Total depth (feet).	Flow (gallons per min- ute).	Tem- pera- ture (°F.).	Mean annual air tem- pera- ture (°F.).	Depth per de- gree of increase in tem- pera- ture (feet).	Remarks.
Pottawattamie County: Council Bluffs. ^a Scott County:	1, 280	105	62 、	b 50	83	Flow from 1,000 to 1,100 feet.
Davenport: c Glucose works, three	1,969	Many.	66.5	d 49.4	116	Flows probably mingle.
wells. Malting company. Do Witts Bottling Co Woolen mills Ice factory Kimball House	800 1,653 780 1,050 1,050 1,050	Many. Many. Many. Many. Many. Many.	60 64 59.5 60.5 60 59.5	d 49. 4 d 49. 4 d 49. 4 d 49. 4 d 49. 4 d 49. 4 d 49. 4	75 ¢95 77	Cased to bottom. First flow from1,385 to 1,585 feet. Flows probably mingle. Do. Do.
Story County: Ames	2, 100	•••••	63.4	f 46.8	127	Thermometer sunk by S. W. Bever.g
Do Do Do Do Nevada	1,500 1,000 500 200	200	$\begin{array}{c} 64.1 \\ 60.9 \\ 57.0 \\ 53.0 \\ 51.2 \\ 59 \end{array}$	f 46. 8 f 46. 8 f 46. 8 f 46. 8 f 46. 8 f 46. 8 f 46. 8	116 107 98 81 	Do. Do. Do. Bate from 200 to 2,100 feet is 156 feet to 1°. Cased 810 feet. Water at 940 feet pumped.
Wapello County: Ottumwa: h Water company Do	2, 047 2, 047	700 300	70 70	i 49.3 i 49.3		Water mostly from 1,015 feet. Cased to 1,200 feet and from 1,705
Morrell Co Iron works Y. M. C. A No. 3. Washington County: Wash- ington. <i>i</i>	1, 554 1, 150 800 1, 702 1, 611	1,000 Many. 33 1,500 95	64 62 65 67 72	i 49.3 i 49.3 i 49.3 i 49.3 k 49.4	74 82 77 71	to 2,047 feet. Water from 1,085 feet. Water from 1,040 feet. Source of flow not given. Cased to 1,360 feet. Air lift pumps water 54 feet. Water from various depths; much at 1,115 feet, main sup- ply at 1,600 feet.

Temperatures in wells in Iowa-Continued.

a U. S. Geol. Survey Water-Supply Paper 293, p. 951, 1912.

 b Omaha, Nebr., average for 46 years.
 c Taken by J. A. Udden, 1898, with a Sargent thermometer reading 1° higher than the one in the Weather Bureau at Davenport.

d Average for 45 years.
e Calculated to 1,385 feet.

 F Boone average of 14 years.
 J. S. Geol. Survey Water-Supply Paper 293, pp. 734-738, from Iowa College Water Supply, Ames, 1897.
 J. Dwa Geol. Survey Rept., vol. 6, pp. 317-320, 1897; U. S. Geol. Survey Water-Supply Paper 293, pp. 4000 (2000) 606-609, 1912.

i Mean of Keosauqua and Oskaloosa.

A verage for 35 years.
& U.S. Geol. Survey Water-Supply Paper 293, p. 613, 1912.

SUMMARY.

The data here given from the Iowa wells present considerable diversity in value. The Beyer determinations of temperature at 2,250 feet at Des Moines and at 2,100 feet at Ames are valuable They were taken with a Miller-Casella self-registering inrecords. strument at intervals of 250 feet in the Des Moines well and 100 feet The wells were full of water and had not been disturbed at Ames. The rates of increase in temperature, 1° in for a month or more. 109 feet and 127 feet, respectively, appear abnormally low and are considerably less than the rate in the 940-foot Nevada well, 9 miles east of Ames. As shown in the table there were some remarkable local variations at different depths. The rates indicated by many

records in the southeast corner of the State vary greatly. The deeper Ottumwa wells give 1° in 621, 771, 80, and 87 feet, and the 800-foot well at the Young Men's Christian Association Building indicates 1° in 53 feet or less. The Amana data appear to be not worth considering. Some of the Davenport data appear to be consistent and indicate a rate of 1° in 75 to 77 feet. The Keokuk, Fort Madison, and Burlington rates of 1° in 42 to 73 feet appear to be reliable, but the precise rate for each place is not deducible from the data given. The Mount Pleasant and Washington rates are reasonably consistent with the figures for the adjoining counties. The McGregor and Waukon wells, in the northeast corner of the State, although of moderate depth, appear to afford reliable data. The same is true of Council Bluffs, in the extreme western part of the State, where the rate of increase is the same as in the wells at Omaha, across Missouri River-1° in 83 feet.

GEOLOGIC RELATIONS.

The Iowa wells penetrate limestones, shales, and sandstones of Carboniferous to Cambrian age. They lie nearly horizontal, but most of the State is occupied by a broad, open syncline whose axis extends from east and northeast to southwest and passes near Muscatine, Oscaloosa, Indianola, Osceola, and Bedford. The Algonkian rocks are deeply buried, for they were not reached by the 2,6963-foot hole at Tipton, and no igneous rocks or marked local disturbances are known to be near the wells of which data were recorded. The deeper borings and those in the northeast corner of the State draw from the sandstones of Cambrian or Ordovician age, especially the St. Peter sandstone, which is the source of supply at Tipton and Washington and is about 1,300 feet below the surface at Ottumwa, 1,100 feet at Davenport, 950 feet at Burlington, and 900 feet at Keokuk. The Ames, Amana, Davenport, and Des Moines holes penetrate the Jordan sandstone; the Nevada well draws from much higher limestones of Silurian age. The shallow Burlington and Fort Madison wells draw from strata considerably above the Jordan sandstone. When these facts are considered in connection with the rates of increase given in the table there appears to be no connection between the geologic horizon and the rate, so far as is indicated by the data available.

The abrupt change of rate from 1° in 75 feet to 1° in 272 feet at a depth of about 1,000 feet in the Des Moines well occurs just below the base of the Devonian.

KANSAS.

TEMPERATURES.

Sixteen temperature determinations were obtained in Kansas, part of them by me and my assistants, who lowered thermometers to the bottom of the wells. Others are given in publications, notably in the report on mineral water.¹ The following are the data:

1 Flow (gallons per min ate). 0	- ture (°F.). 7 61 . 67.5 . 67	Mean annual air tem- pera- ture (°F.). c 56 56 56	Depth per de- gree of increase in tem- pera- ture (fect).	Remarks. Gassy water from below 626 feet. Good flow, begins at 510 feet.					
Many Pumps 0 3? 	. 67.5 67 75.2	56	 54	-					
0 Pumps 0 3? 0	. 67 75.2	56	54 	Good flow, begins at 510 feet					
3? 0		¢ 56.5							
	71.5		75	Cased to bottom.					
		e 56.4	601	Cased 300 feet. Water pumped from 100 feet.					
0	75 ·	g 56.3	52	Cased 376 feet. Water pumped from 150 feet.					
	. 89.7	h 51.6	40 <u>}</u>	In progress July, 1903. Ther- mometer sunk by N. H. Dar- ton.					
ю	d 65.5			Flows from depth not given.					
	. 70	≵ 55	49	Thermometer sunk by C. A. Fisher in 1900, 2½ hours.					
5	63.5	54	1 46	Thermometer sunk by W. D. Johnson, July, 1898.					
5	71.5	m 56.5	22	Thermometer sunk by W. D. Johnson in July, 1898. Water					
51	61.7	56.5	51	was within 42 feet of surface. Flows.					
0	. 69	n 57.7	54	Oil well not in use. Thermom- eter sunk by E. G. Woodruff.					
5	73	57.7	181	A bandoned boring. Thermom- eter sunk by E. G. Woodruff.					
06.8	62 66	p 57.8 r 56	57.	On well not in use. Internom- eter sunk by E. G. Woodruff. Abandoned boring, Thermom- eter sunk by E. G. Woodruff. Source of flow not given. Flows from 570 feet. In red beds 265 to 600 feet.					
0	. 55		•••••	Gassy water.					
0 250	65	t 54.3	70	Pressure 23 pounds. Brine from 743 feet. Flow also at					
3 240	65	54.3	69 <u>1</u>	430 feet cased off. Thermometer lowered by C. A. Fisher, 1900.					
 a Kansas Univ. Geol. Survey, vol. 7, p. 251, 1902. b Iciem, p. 265. c Average for 10 years. d Kansas Univ. Geol. Survey, vol. 7, p. 39, 1902. e Kansas Univ. Geol. Survey, vol. 7, p. 268, 1902. f Kansas Univ. Geol. Survey, vol. 7, p. 151, 1908. g Columbus average minus 0.2°. A Norton average for 18 years. f Average for 21 years. f Average for 10. Cochran, SW. 1 NW. 1 sec. 15; T. 15, R. 8. k Salina average minus 0.1°. i Average for 21 years. m Ashland average minus 0.1°. i Average for 18 years. g Senate Committee on Use and Reclamation of Arid Lands Rept., vol. 4, p. 60, 1890. r Ulysses average minus 1°. Kansas Univ. Geol. Survey, vol. 7, p. 158, 1902. i Marksville average minus 0.2°. 									
	J Survey, vol Survey, vol Survey, vol inus 0.2°. 3 years. ran, SW. 1 3 0.1°. 18 years. re minus 0.7 Survey, vol n Use and F us 1 ² .	Survey, vol. 7, p. 251 Survey, vol. 7, p. 265 Survey, vol. 7, p. 268 Survey, vol. 7, p. 268 Survey, vol. 7, p. 151 inus 0.2°. 3 years. an, SW. $\frac{1}{2}$ NW. $\frac{1}{2}$ se o.1°. 18 years. re minus 0.1°. Survey, vol. 7, p. 150 h Use and Reclamati us 1°.	Survey, vol. 7, p. 251, 1902. Survey, vol. 7, p. 268, 1902. Survey, vol. 7, p. 268, 1902. Survey, vol. 7, p. 151, 1908. inus 0.2°. 3 years. ran, SW. 1 NW. 1 sec. 15, T. 1 0.1°. 18 years. re minus 0.1°. Survey, vol. 7, p. 150, 1902. h Use and Reclamation of Ari us 1°.	Survey, vol. 7, p. 251, 1902. Survey, vol. 7, p. 268, 1902. Survey, vol. 7, p. 268, 1902. Survey, vol. 7, p. 268, 1902. Survey, vol. 7, p. 151, 1908. 3 years. ran, SW. $\frac{1}{2}$ NW. $\frac{1}{2}$ sec. 15; T. 15, R. 8. s 0.1°. 18 years. re minus 0.1°. Survey, vol. 7, p. 150, 1902. n Use and Reclamation of Arid Lands us 1°.					

Temperatures in wells in Kansas.

.44

¹ Bailey, E. H. S., Kansas Univ. Geol. Survey, vol. 7, 343 pp., 1902.

Location.	Total depth (feet).	Flow (gallons per min- ute).	Tem- pera- ture (°F.).	Mean annual air tem- pera- ture (°F.).	Depth per de- gree of increase in tem- pera- ture (fcet).	Remarks.
Rice County: Lyons Gas & Oil Co	950		71	a 54.4	56	Salt shaft. Thermometer low- ered by C. A. Fisher, 1900. Down three hours.
Lyons, salt mine	1,083		69	54.4	74	Saltshaft. Thermometer placed in bottom by C. A. Fisher.
Sterling, NE. 1 SW. 1 sec. 22.	946		711	54.4	56	Thermometer lower of by C. A. Fisher, 1900. Down 4 hours. Water is within 3 feet of sur- face. Rock salt and shale 710 to 946 feet.

Temperatures in wells in Kansas-Continued.

a Ellinwood average for 21 years.

SUMMARY.

Most of the Kansas observations are in fairly close accord as to rates of increases in temperature. The principal exception is that of the Caney boring, which shows a temperature of only 73° at a depth of 2,775 feet. Possibly this is due to gas escape. This hole and those at Independence, Coffeyville, Fort Scott, Girard, Cherokee, and Columbus are all in the southeast corner of the State. The average rate exclusive of Caney is 1° in slightly less than 60 feet. The group of four holes in central Kansas have rates of 1° in 48.7 to 56.2 feet, but the rate decreases to 1° in 74.2 feet in the deep shaft at the Lyons salt mine. Four wells in the western part of the State have rates of 1° in 41, 47, 51, and 57 feet; the first and third represent careful measurements. There is a great difference in the rates of the two wells at Meade as determined by Johnson.

GEOLOGIC RELATIONS.

The wells in Kansas penetrate a variety of sedimentary formations, but the strata are nearly horizontal and no igneous rocks are known to exist near any of the holes in the list. The wells in the southeast corner of the State are in limestone, shale, and sandstone of Carboniferous age, some of the deeper ones penetrating the upper part of the Mississippian. The Ellsworth, Lynn, and Sterling wells are in the salt series of the Permian. The Richfield well is in the red beds of the Permian, Garden City, and Kanona in the Dakota sandstone (Upper Cretaceous). The Meade wells reach red beds under a thick mantle of sand and gravel of Tertiary age. The high rate of increase in the 325-foot well at Meade, 1° in 21.7 feet, may be related to a fault supposed to extend along one side of the artesian basin.

KENTUCKY.

TEMPERATURES.

Very few records of well temperatures have been reported from The most important one is that of the 2,086-foot well Kentucky. sunk in 1857-58 at Louisville, which indicates a rate of increase of 1° in 106 feet if the water comes from the bottom.

Temperatures of wells in Kentucky.

Depth Mean per degree Flow annual (gal-lons Temof inair Depth pera-Location. temcrease Remarks. (feet). per ture (°F.). perain tem• minture (°F.). pera-ture ute). (feet). a 761 c S21 77 b 56. 8 Jefferson County: Louisville. 2,086 106 264 56.8 d 56.1 81 23 485, Jessamine County: Harris-Flow of poor water. burg (on Kentucky River). Meade County: Fountain 428 64 f 56.2 57 Gas and brine. Farm.e

a Owen, D. D., Geological reconnaissance of Arkansas, p. 61, 1860. Another report gives a temperature of 864°, which indicates a rate of 1° in 71 fect.
b A verage for 44 years.
c Am. Jour. Sci., 2d scr., vol. 27, pp. 174-178, 1859.
d Richmond average for 22 years.
c Ponet on the convergence of petroleum network ges, and aephalt rock in western Kentucky head on

e Report on the occurrence of petroleum, natural gas, and asphalt rock in western Kentucky, based on examinations made in 1888 and 1889: Kentucky Geol. Survey, p. 179, 1891.

/ Irvington average for 19 years.

SUMMARY.

The old Louisville artesian well with a large flow should give a reliable indication of the rate of increase, but two widely different temperatures are reported. The result for the Harrisburg well is dubious. The Fountain Farm well is gassy, but the rate is reasonable.

GEOLOGIC RELATIONS.

The strata penetrated by the wells listed in the table are limestone and shale of Paleozoic age on the west slope of the Cincinnati arch, and the dips are very low. The Louisville hole penetrates Devonian, Silurian, and Ordovician strata. The Fountain Farm well penetrates Mississippian limestone to the Devonian black shale.

LOUISIANA.

BELLE ISLAND.

The most significant determination of underground temperature in Louisiana is one made for me by I. N. Knapp in February, 1909, during the sinking of a 3,171-foot boring at Belle Island, near Morgan City. A Darton thermometer was lowered to various depths with the following results.:

Temperatures	at	different	depths	in	hole at	Belle	Island, L	a.

Depth (feet).	Temper- ature (°F.).	Remarks.	
 427 764 975 1,625	75 79 82 82	In salt water. 24 hours after drilling ceased. Dry salt. Dry hole.	

At 427, 764, and 975 feet the instrument was down 36 hours. It was sent down again 24 hours later, obtaining closely accordant results. At 1,625 feet there was much gas, which caused a diminished temperature, so no observations were made at greater depths. The beds below 211 feet were salt or salt bearing. The rates of increase were as follows, as calculated from a mean annual temperature of 68.7° (Franklin average for 24 years plus 0.2°):

Depth per degree of increase in temperature in hole at Belle Island, La.

			Feet.
Surface to 427	feet 68	427 to 764	feet
Surface to 764	feet 74	427 to 975	feet
Surface to 975	feet 73	764 to 975	feet 70

MISCELLANEOUS DATA.

Although there are many flowing wells in Louisiana they afford but few reliable data as to the geothermal gradient. Harris ¹ gives results of his own observations for many wells, notably those in St. Tammany and Tangipahoa parishes, and Veatch ² gives records from various sources, but only in a few of the records is information given as to the source of the water. However, as the pressures are such as to indicate considerable depth, and as the materials are soft, it is probable that the wells are cased to or nearly to the bottom. If so, the temperature records are valuable as indicating approximately the rate of increase with depth.

¹ Veatch, A. C., U. S. Geol. Survey Prof. Paper 46, pp. 208-223, 1906.

¹ Harris, G. D., U. S. Geol. Survey Water-Supply Paper 101, pp. 33-60, 1904.

Depth Mean per Flow degree annual (gal-lons Temof inair Depth pera-ture (° F.) Location. temcrease Remarks. (feet). per perain temmin-'F.). ture (° F.). peraute). ture (feet). Caddo Parish: Shreveport... Calcasieu Parish: Welsh.... Catahoula Parish: Leland... a 65.1 b 67.4 c 66.8996 Many. 1,200 $84.0 \\
 71.5$ 53 Brine with gas. 190 46 78 1,550 10 86.5 Do. Orleans Parish: New Orleans. d 68.2 1,229 55 81.5 92 Do. New Orleans, 1 mile west e 900 68.2 of. 12 79 83 71 Ouachita Parish: Monroe.... De Soto Parish: Frierson.... Many 10 71 70 165.6 964.8 385 1,500 Flows at 241 to 281 and 998 to St. Tammany Parish: 1,275 feet; probably mingle. Covington: Dummet. 20 h 66.8 572 74 80 Dixon Academy.... Many 30 66.8 66.8 72.6 Claiborne..... Courthouse, 1901..... 73 101 630 73 66.8 . . . Courthouse, 1903.... John Dutch..... 72.4 74 72 66. 8 66. 8 600 20 83 H. Hallen . . 520 3Ŏ 66.8 100 98 Hernandez, 2 miles north 610 38 73 66.8 of. Hernandez..... Maison Blanche..... 72<u>1</u> 72<u>1</u> 73 610 40 66.8 111 16 54 27 66.8 66.8 480 87 88 Abita Springs..... 545 574 Do..... Do..... 73 66.8 93 526 217 73 87 56 74 66.8 Mandeville..... 28 69.5 71 i 67 247 Many. 62 Do..... 67 Many. 30 Chinchuba.. $\dot{72}$ 67 32565 Sabine Parish: Negreet..... Tangipahoa Parish: Ponchatoula..... 630 70 *i* 65.4 137 From 630 feet, but possibly higher flows mingle. 232 k 67 5871 3 Ponchatoula, 3 miles 10 67 70 170 69.5 north of. $\frac{272}{225}$ Hammond 20 70.5 67 67 67 67 80 $2\frac{1}{2}$ 70 71.5 71 71 75 73 Do..... Do..... 330 $2\overline{4}$ Do..... 265 7 66 Do..... 26528 67 66 67 67 Do..... 377 300 24 71 71 94 75 Do.... 25 Hammond Ice Co..... 340 72 68 Hammond: 67 11 miles south-south-212 8 69 106 west of. Do..... 1½ miles south of ½ miles outheast of 140 3 69 70 67 72 70.5 62 309 30 67 67 67 67 318 45 91 Do.... 1 mile south of 1 mile east of 70.5 70.6 24 302 86 1 380 106 15 235 69 67 12 miles south-south-298 $5\frac{1}{2}$ 703 67 80 east of. Vermillion Parish: Gueydan, 3 miles southwest of. Winn Parish: Drake Salt 190 73 m 68.3 40 8 n 1,011 18 75 o 66. 123 Brine from Cretaceous. Works.

Temperatures in wells in Louisiana.

^a Average for 45 years. ^b Lake Charles average.

b Lake Charles average.
c Natchez, Miss., average for 29 years.
d Average for 45 years at Station 1.
c Cased to bottom.
f Monroe average for 28 years.
g Grand Cane average for 22 years.
h Average for 24 years.
c Covington average plus 0.2°.
f Average at Nacodoches, Tex.
t Hammond average for 24 years.
t Water from 340 to 380 feet.

Water from 340 to 380 feet.
 M Abeville average.
 M Veatch, A. E., Louisiana Geol. Survey Rept. for 1902, pp. 51-64, 1903.
 Mean at Dodson, 1916.

MARYLAND.

Water from pumped wells 197 to 315 feet deep in Bossier Parish is reported to have temperatures from 64° to 66° ; from a 225-foot well at Belcher, in Caddo Parish, 66° ; from wells 137 to 280 feet deep at Shreveport, 66° to 68° ; and from several wells 115 to 368 feet deep in Webster Parish, 65° to 66° .¹ All these figures are so near the mean annual air temperature that they throw no light on the rate of increase.

SUMMARY.

3.

١

ł

None of the rates of the deeper wells given in the list are close approximations. In the Frierson and Negreet wells probably the mingling of flows gives a lower temperature than the water from the lower flow would show. The wells of Tangipahoa Parish are too shallow to be reliable within close limits, but they give an average rate of 1° in very nearly 80 feet.

GEOLOGIC RELATIONS.

All the wells in Louisiana are in the great Coastal Plain sedimentary series of the Mississippi embayment, but several horizons are tapped. The strata are sands, clavs, and limestones of Cretaceous and Tertiary age, dipping at low angles in various directions. In northern Louisiana there is a general dip to the east into a basin whose bottom is near Vicksburg, Miss., at a rate of generally from 7 to 10 feet to the mile, with few local variations, some of which are due to sharp local uplifts. This basin widens and deepens to the south and becomes a deep, wide trough containing a great thickness of Tertiary strata. The briny waters of the Shreveport well come from the Nacatoch sand in the Upper Cretaceous, and the brine at the Drake salt works is also from the Cretaceous. Brine from the Leland well is believed to be from the Eocene Yegua ("Cockfield") formation, 1,500 feet higher. The beds tapped by the shallow wells of Calcasieu, St. Tammany, and Tangipahoa parishes are high in the Tertiary.

MARYLAND.

Only one well temperature was obtained from Maryland—that of the 140-gallon flow of saline water from the deep well at Crisfield, Somerset County, on the eastern peninsula. The flow comes from a depth of 1,025 feet in the Potomac group, and the temperature, 79°, was determined by Mr. John Buxton with a reliable thermometer sent to him for the purpose. As the mean annual temperature at Pocomoke City, not far away, is 57.4°, this determination indicates a rate of increase of 1° in 47.4 feet.

¹ Veatch, A. C., U. S. Geol. Survey Prof. Paper 46, pp. 201-207, 217-223, 1906. 137163°-20-Bull. 701----4

MICHIGAN.

SOURCES OF INFORMATION.

Temperature observations that have been made in deep borings and deep mines in Michigan throw important light on the rate of increase in temperature underground. Some of these have been made by A. C. Lane,¹ in part with thermometers which I furnished. On account of the differences in the geology of the two areas it is best to present the results of observations made in southern and central Michigan separately from those of observations made in the area of older rocks in the northern peninsula. Lane has considered the probable mean annual temperature of the northern peninsula and also gives temperatures in shallow borings and in upper levels in certain copper mines.

NORTHERN PENINSULA.

Many determinations of underground temperature are available for the northern part of Michigan, mainly in connection with the deep mines.

. In 1895 Alexander Agassiz² reported the results of a series of observations made in copper mines of the Calumet & Hecla Co. on Keweenaw Point. This point, which extends 70 miles out into Lake Superior, consists of a series of old igneous and sedimentary rocks dipping 7°-55° and overlain by Cambrian sandstone. The mines are mostly in the older series. The temperatures were taken at intervals, but only those at 105 feet and 4,580 feet were published. Negretti and Zambra thermometers were used, placed in 10-foot holes, slightly inclined upward, and left from one to three months, the holes plugged with wood and clay. The results were 59° and 79°, a difference of only 20° for the 4,475 feet, or an increase of 1° in 223.7 feet. However, if the 59° observation is disregarded and the increase to 4,580 feet calculated from a mean annual air temperature of 43°³ the result is 1° in 127 feet, which is borne out by other observations. It is evident that the reading of 59° at 105 feet was defective, because it is 16° to 20° higher than the mean annual air temperature.

In a letter to J. D. Everett in 1896,⁴ Agassiz stated that further observations had shown that the rate was "different from what it was believed to be when the preliminary announcement was made."

¹ Lane, A. C., The Keweenaw series of Michigan: Michigan Geol. and Biol. Survey Pub. 6, vol. 2, pp. 757-773, 1911; Am. Jour. Sci., 4th ser., vol. 9, p. 435, 1900.

² Agassiz, Alexander, On underground temperatures at great depth: Am. Jour. Sci., 3d ser., vol. 50, pp. 503-504, 1895.

³ The mean annual air temperature at Calumet is 39.7° (29-year average), but shallow-water and mine workings indicate several degrees higher, according to Lane.

⁴ Underground temperatures: British Assoc. Adv. Sci., Report of 71st meeting, p. 65, 1901.

MICHIGAN.

In 1886 Wheeler ¹ presented to the St. Louis Academy of Sciences an account of temperature observations in copper mines of Keweenaw Point. Wheeler's results are given in the following table:

Mine.	Depth.	Temper- ature (°F.).	Depth per degree of increase in tem- perature (feet).	Temperature at certain depths.a
Atlantic. Central. Conglomerate (Delaware or Manitou) Quincy. Osceola. Tamarack.	1,931 996	51.66148.358.554.562	99 101 95 122 76 110 2	43.6° at 111 feet. 42.6° at 90 feet. 42.8° at 90 feet. 43° at 111 feet. 42.3° at 136 feet. 43° at 136 feet.

Temperature observations in copper mines on Keweenaw Point, Mich.

a The figures in this column were used in calculating the rates of increase.

Wheeler states that the most satisfactory results were obtained in the Atlantic mine, where observations at intermediate stations gave an accordant rate. The Conglomerate mine is 36 miles farther east. The rate in the Tamarack mine may be vitiated by the proximity of active mining. All the mines were nearly dry. Wheeler suggests that the low rate of increase in this district may be due to the proximity of Lake Superior, with its great volume of cool water (38.8°) .

Temperature observations in mines and holes in northern peninsula of Michigan. a

Locality.	Depth (feet).	Temper- ature (°F.).	Mean annual air tem- perature (°F.).	Depth per degree of increase in tem- perature (feet).	Remarks.
Freda well b Victoria mine b Champion mine b Do	950 ¢ 1,350 465 1,335	55.6 57 45.8 52	±44 44 44	84 104	Temperature 45½° at 100 feet. Eighteenth level. 9 to 250 feet west of shaft. Twenty-fourth level, 140 feet
Do Do	1,500 1,650	55 56. 5	44 44		west. End of twenty-sixth level. End of twenty-eighth level, 750 feet from fifth shaft.
Vulcan iron mine b Do Republic iron mine b Do	1,090 1,210 1,153 1,435	56 56 55 59	44 44 44 44	$83 \\ 94 \\ 105 \\ 95\frac{1}{2}$	Surface water 44°. In water.
Central copper mine Centennial mine Do	2,400 1,850 (?)	61 62 69	44	141 180 (?)	Foot of No. 2 shaft, thirtieth level. Foot of shaft. Slope 3,100 feet long on Osceola lode, 72° during previous sum-
Ojibway mine Franklin, jr., mine Old Franklin	680 1,600 3,200	50 61 62–63	44 44 44	113 94 169	mer. On 1,225-foot slope, 33° dip. Twenty-first level cross cut. Third level; G. Pope, observer.

a Geol. Survey Ann. Rept. for 1901, pp. 244-251, 1902. b Lane, A. C., The Keweenaw series of Michigan. Michigan Geol. and Biol. Survey, Pub. 6, vol. 1, pp. 757-773, 1911.

« Vertical depth not given.

¹ Wheeler, H. A., Temperature observations at the Lake Superior copper mines: Am. Jour. Sci., 3d ser., vol. 32, pp. 125-129, 1886.

Locality.	Depth (feet).	Temper- ature (°F.).	Mean annual air tem- perature (°F.).	Depth per degree of increase in tem- perature (feet).	Remarks.
Tamarack	4,400	84	44	110	D M Edwards showing
Do	5,223	85	44	110	R. M. Edwards, observer. Do.
Do	5,367	88-91.4	44	933	
D0	0,001	00-91.4		952	Bottom; observed by Lane in
Tamarack, No. 5	4,662	82	44	123	damp mud. W. E. Parnall.
Do	1 000	87	. 44	123	I Hull mine inspector
Quincy minea	1,080	57	44	83	J. Hull, mine inspector. Diamond-drill hole, 3 days.
Do	2,941	64.5	44	1431	Diamond-drill hole, 5 days.
Do	2,941	67.5	44	$121^{10}{}_{2}^{2}$	Breast of drift.
Do	3,090	68.5	44	126	Do.
Do	3,196	69	44	128	Do.
Dð	3,403	71	44	$\tilde{1}\tilde{2}\check{6}$	Do.
Do	3,620	75	44	117	Driveway between shafts.
Do	3,816	79,80	44	106	Breast of drift.
Do	3,875	76	44	121	Diamond-drill hole, 40 hours.
Calumet & Hecla stamp mill,	5 00	47.5	44	143	Two wells, 1,502 and 1,508 feet.
Lake Linden, Houghton					Flow 50 gallons. All in sand-
County, SW. 1 sec. 6, T. 55,					stones.
R. 32.					
Do	1,000	51.5	44	133	
Do	1,490	55.5	44	130	Rate indicated by difference be-
					tween figures for 500 and 1,490 feet is 10 in about 124 feet.
	\$				feet is 10 in about 124 feet.
Lake Superior mine, Ishpe-	900	50	44	150	Thermometer 20 minutes in 5-
ming.					foot hole in shalt.

Temperature observations in mines and holes in northern peninsula of Michigan.-Con.

^a The depths here given assume the surface to be 500 feet above Lake Superior, for in the original paper depths are given with the lake as the datum and the surface is irregular. Temperatures were all taken by S. Smillie, engineer.

The temperature of 57° at 1,080 feet in the Quincy mine appears anomalously high when compared with the record at greater depths. The rate of increase calculated from the difference between the temperature at 1,080 feet and 3,875 feet is 1° in 147 feet; from 2,941 to 3,875 feet it is 1° in 81 feet on the basis of a temperature of 64.5° in the bore hole, and 1° in 110 feet on the basis of an observation of 67.5° in the breast of a drift.

CENTRAL AND SOUTHERN MICHIGAN.

Temperatures in deep wells in central and southern Michigan.

Locality.	Depth (feet).	Flow (gal- lons per min- ute).	Tem- pera- ture (° F.).	Mean annual air tem- pera- ture (° F.).	Depth per degree of in- crease in tem- pera- ture (feet).	Remarks.
Alpena County: Alpena a	698-711	200	53	b 41. 8	62	Main supply from 698 to 711 feet; surely below 588 feet.
Bay County: Bay City c Do	3, 455 2, 934		$97 \\ 90.1 \\ 90.2$	d 46.5 46.5 46.5	68½ 67 66½	Thermometer 5688 down 8 hours. Thermometers 5688 and 5690 down half an hour.
Do Do	2, 282 1, 793		{ 77 77 71	46.5 46.5 46.5	75 75 73	Thermometers 5688 and 5690 down half an hour. Thermometer 4708 down 50
Do	1,304		65	46.5	70	minutes. Thermometer 4708 down 1 hour.

a Lane, A. C., Am. Jour. Sci., 4th ser., vol. 9, p. 435, 1900. ^b Average for 44 years. ^c Lane, A. C., op. eit., pp. 434-438. Test by C. A. Davis with Darton thermometers after drilling had ceased two months; bore full of heavy brine. The tests at 2,282 and 1,793 feet were regarded as too short in duration. d Average for 21 years.

Temperatures in deep wells in central and southern Michigan-Continued.

· · · · · · · · · · · · · · · · · · ·						
Location.	Depth (feet).	Flow (gal- lons per min- ute).	Tem- pera- ture (°F.).	Mean annual air tem- pera- ture (° F.).	Depth per degree of in- crease in tem- pera- ture (feet).	Remarks.
Benzie County: Frankfort a	2,200	280	58	b 44.9	¢ 61	Water from 800 feet; surely be-
		280	- 38	044.9	C 01	low 590 feet.
Dod	2,200 1,800		56 54	44.9 44.9	c 72 c 88	Do. Do.
Do Berrien County: Niles	1,438	15	60	44.9		
Cheboygan County: Cheboygan e	1,380		61.6	142.6	715	Near base of Salina formation.
Do g	2,700		73	42.6	89	The rate from 1,360 to 2,700 feet is 118 feet to 1°.
Cheboygan waterworks	408		h 51.8	42.6	44	18 118 leet to 1 ⁻ .
Burt Lake <i>i</i> Crawford County:	464	4(?)	51	42.6	55	
Gravling f	2,600		95.9	d 42.7	49	
Do Do	2,376		93.8 89	42.7 42.7	461	Thermometer 7815 down 1 hour
Do	2,150 900		58.4	42.7	46½ \$57	to 24 hours.
Do Emmet County: Petoskey	500	750	51.8	42.7	55	J
Genesee County: Flint m	$\frac{575}{376}$	150	$50 \\ 52$	143.3 n45.9	86 61	Water at 376 feet.
Grand Traverse: Traverse City. o	417		51	45.9	82	
Giatiot County:						
Alma <i>p</i>	2,863	Flows.	98	45.6	$54\frac{1}{2}$	Temperature of water brought
Alma, same well Ingham County:	900-		69.6	45.6	371	up in sand pump. Test by A. C. Lane, 1900.
Lansing q Mason o	1,400	1	58.5	46.7		Saline water; source not known.
Ionia County:	400		53	46.7		
Ionia •		Many.	55	r 46.8	44	Water from 362 feet.
Do	{ 340, 540	} <i>.</i>	52.3	46.8	• • • • • • • •	
Do Lenawee County:	320		53.8	46.8	46	
Britton 8	1,617		67.6	t 48	83	
Lenawce Mackinac County: St.Ignace u	945	Many.	$\frac{59}{51}$	48 40, 9	86 v 57	Flow at 575-681 feet; some also
						at 1,040 feet.
Macomb County: Mount Clemens.w	1, 265		56	x 47.8	79	Water from 700 feet.

a Michigan Geol. Survey, 1881-1893, p. 59.

a Michigan Geol. Survey, 1881-1893, p. 59.
b Average for 13 years.
c Calculated to 800 feet.
d Lane, A. C., Am. Jour. Sci., 4th ser., vol.9, p. 435, 1900.
e Taken by A. C. Lane (Geol. Soc. America Bull., vol. 13, 1903) with Darton thermometer 7812. Down
1 hour on bailer. Temperature 51.8° at 408 feet.
/ Average of 20 years to 1908.
ø Tested by F. P. Rust, contractor, who determined other temperatures with thermometer 9114 as follows: 100 feet, 53°; 400 feet, 51°; 700 feet, 51°; 7,000 feet, 55°; 1,300 feet, 60°; 1,400 feet, 60°; 1,700 feet, 63°;
1,800 feet, 65°; 2,300 feet, 68°.
* Taken by A. C. Lane with Darton thermometer 7536.
* Leverett, Frank, U. S. Geol. Survey Water-Supply Paper 182, p. 363, 1907. Other wells with flows 46° to 48°.

do to 48°.
J Lane, A. C., op. cit., and Michigan Geol. Survey Ann. Rept. for 1901, p. 250, 1902.
Rate of increase from 500 to 2,600 feet is 48 feet to 1°.

Rate of increase from 500 to 2,600 feet is 48 feet to 1°.
A verage for 27 years.
m Cooper, W. F., Op. cit., p. 496.
x Average for 28 years.
a Verage for 28 years.
b Verett, Frank, and others, U. S. Geol. Survey Water-Supply Paper 102, p. 492, 1904.
n Average for 28 years.
b Verett, Frank, and others, U. S. Geol. Survey Water-Supply Paper 183, pp. 16, 242, 324, 1907.
p Michigan Geol. Survey Rept., 1881-1893, pp. 45-46, 1895. This report is somewhat discredited by A. C. Lane in Am. Jour. Sci., 4th ser., vol. 9, p. 435, 1900, but accepted in Michigan Geol. Survey Rept. 167 1901, p. 249.
g Michigan Geol. Survey Rept., 1881-1893, p. 66, 1895.
c Grand Rapids average for 28 years minus 1.3°.
Lane, A. C., Michigan Geol. Survey Rept. for 1901, p. 249, by probable misprint gives deeper temperature (53°) but with data indicating that it is 67.6°.
t Hildsale average for 20 years plus 0.6°.
w Michigan Geol. Survey Rept. 1901, p. 248, 1902.
c Calculated to 575 feet.
w Cooper, W. F., op. cit., p. 496.
x Average for 17 years.

, i.,

Location.	Depth (feet).	Flow (gal- lons per min- ute).	Tem- pera- ture (°F.).	Mean annual air tem- pera- ture (°F.).	Depth per degree of in- crease in tem- pera- ture (feet).	Remarks.
Midland County: Midland a Ingersoll c Muskegon County: Muskegon, Ryerson well Do Do St. Clair County: č St. Clair. St. Clair, Oakland well Port Huron Do Saginaw County: Saginaw, salt well Do	625 1,150 650 240 1,635 1,200+ 300 838 617 531	Flow.	62.5 52 67.2 58.7 53.2 71.2 69 54.2 55.3 57.5 54 51 50	 b 46. 1 46. 7 46. 7 46. 7 46. 7 46. 7 45. 3 45. 3 45. 3 45. 3 45. 3 46. 3 46. 3 	73 <u>4</u> 105 56 54 37 63 56+ 60 69 80 113 80	 Plugged at 1,200 feet; full of water; flows from base of drift at 240 feet are 53° to 533°. Rate of increase from 240 to 1,150 feet is 1° in 65 feet. Salt well; idle for months. Rate of increase from 300 to 838 feet is 1° in 163 feet. Rate of increase from 293 to 617 feet is 1° in 81 feet.

Temperatures in deep wells in central and southern Michigan-Continued.

a Lane, A. D., Am. Jour. Sci., vol. 9, p. 434, 1900.
b Average of Bay City minus 0.4°.
c Leverett, Frank, and others, U. S. Geol. Survey Water-Supply Paper 183, pp. 16, 242, 324, 1907.
d Average for 20 years.
e Michigan Geol. Survey Rept. 1901, p. 248, 1902.
f Port Huron average for 42 years.
d Average for 22 years.

g Average for 22 years.

MINNESOTA.

Few temperatures of flows from wells in Minnesota have been reported and the source of the flows is uncertain. The large flow from a 467-foot well at Winona is stated to have a temperature of 54°, which may indicate a rate of increase of 1° in 47 feet if the water is from the bottom. This well penetrates sandstones of Cambrian age which lie on granite at a depth of about 500 feet. The beds are nearly horizontal. The 600-gallon flow from a 707foot well at Henderson, in Sibley County, is stated to have a temperature of 50°, but doubtless part of the water is from beds some distance above the bottom.

MISSISSIPPI.

TEMPERATURES.

Temperatures of several flowing wells in Mississippi have been recorded by G. D. Harris¹ and others, and as most of the wells flow in large volume and appear to be cased to the bottom the temperatures indicate approximate rates of increase. The Biloxi well, with readings at 500 and 900 feet, is of particular interest.

¹ U. S. Geol. Survey Water-Supply Paper 101, p. 31, 1904.

MISSOURI.

Temperatures in wells in Mississippi.

. *						
Locality.	Depth (feet).	Flow (gal- lons per min- ute).	Tem- pera- ture (°F.).	Mean annual air tem- pera- ture (° F.).	Depth per degree of in- crease in tem- pera- ture (feet to 1°).	Remarks.
Hancock County: Bay St. Louis	400 1,021	Many. 100 Many. 50 25 Many. 170 Few. 14	78 79.5 82.5 71 74 70 74 70 70 70	a 57.4 b 68 68 c 68 d 63.4 d 64.7 f 64.8 g 64.8	66 43 62 129 60 109 211 113	Flow. First flow. May be mixed flow, 400 and 700 feet. "Cased to bottom." Sandstone 300 to 325 feet. Saline water, Wilcox group.

a Pearlington average for 29 years.

 A verage for 26 years.
 Biloxi average.
 A verage for 29 years.
 U. S. Geol. Survey Prof. Paper 46, pp. 226-227, 1906. A verage for 46 years.

Yazoo City average for 23 years.

SUMMARY.

The rates of increase deduced in Mississippi show considerable variation, but this may be due, in part at least, to lack of information as to source of water, notably in the wells at Canton, Vicksburg, and Sartartia. If, as stated, the Scranton well draws from the bottom, a low rate is indicated.

GEOLOGIC RELATIONS.

The Bay St. Louis, Biloxi, Pass Christian, and Scranton wells are in the higher Tertiary strata of the southern part of the State. All these strata dip gently to south or west. The Vicksburg, Sartartia, and Canton wells are deep in the Tertiary. The Columbia well is in the Cretaceous.

MISSOURI.

TEMPERATURES.

About 50 well temperatures have been obtained for Missouri, some of them taken by Schweitzer¹ and Shepard,² who were competent observers, and others by various persons who may or may not have obtained reliable figures. The depth from which the flows may

¹ Schweitzer, Paul, A report on the mineral waters of Missouri: Missouri Geol. Survey, vol. 3, 256 pp., map, 33 pls., 1892.

² Shepard, E. M., Underground waters of Missouri; their geology and utilization: U. S. Geol. Survey Water-Supply Paper 195, 224 pp., 6 pls., 1907.

GEOTHERMAL DATA OF THE UNITED STATES.

come is not indicated for some of the wells, and other wells are pumped. The following is a list of the more reliable data:

						·
Location.	Depth (feet).	Flow (gal- lons per min- ute).	Tem- pera- ture (°F.).	Mean annual air tem- pera- ture (° F.).	Tera- pera- ture in- crease (feet to 1°).	Remarks.
Audrain County: Mexico Do. Buchanan County: St. Joseph brewery.	1, 125 1, 100 1, 805	Many. Many.	66 66 82	a 53.8 53.8 b 52.2	92 90 60. 5	Pumped 80 feet. Do. Mineral water.
Camden County: ¢ Gunters Hahatonka Clay County: ¢	780 864	Many. Many.	59 63	d 56.6 56.6	131	Source of water not given. Flow from 840 to 864 feet.
Excelsior Springs, 1 mile	1,460	Many.	67	e 54	112	Pumped 150 feet. Source of wa- ter not given.
Do Dunklin County: Campbell f. Franklin County: Sullivan c.	$1,327 \\ 910 \\ 1,550$	Many. 7 8	a 64.4 78 63.5	54 g 60.5 h 55.9	127 52 204	Pumped 60 feet. Flow from 910 feet. Six-inch casing to bottom where main flow was found.
Greene County: Springfield	720		60	i 54.8	138	Temperature at "bottom of well."
Henry County: Clinton k Howard County:	913	400	64	1 56.6	175	"Cased to bottom." m
Fayette ⁿ Boonslick Jasper County: Joplin ^p	1,002 908	Many. 20 16	61.5 62 65	0 53.9 53.9 9 56.2	113 103	Saline water from 860 feet. Cased to bottom; pumped 119½ feet.
Lewis County: Canton r La Grange Do t	900 850 850	72 60	60 61 60	\$ 52.5 52.5 52.5	116 94	Flow from 870 to 900 feet. Flow from 800 to 850 feet.
Livingston County: Utica k Marion County: Hannibal k Montgomery County: Mont-	421 950 600	Few. 208 40	59 60 58	u 52.4 53.1 v 54	64 138 150	Cased 400 feet. Flow is from considerable depth. No data.
gomery. Pike County: Louisianaw	1,275	Many.	x 64.2	¥ 53.1	115	Cased 910 feet. Source of water not given.
Randolph County: Moberly	.508	100	60	z 53.5	78	Pumps; water probably from bottom.
Randolph Springs aa Ralls County: Rensselaer station, 5 miles south of.	969 330	120 7	у 59 57	53.5 bb 53.1	176 77	Flows; source of water not given. Flows from 300 to 330 feet.

(

ļ

Temperatures in wells in Missouri.

station, 5 miles south of.

station, 5 miles south of.
a Average for 28 years.
b Oregon average plus 0.5°.
c U. S. Geol. Survey Water-Supply Paper 195, p. 156, 1907. Schweitzer, Paul, Missouri Geol. Survey, vol. 3, p. 99, 1892.
d Warsaw average for 13 years.
e Liberty average for 27 years.
f U. S. Geol. Survey Water-Supply Paper 102, p. 392, 1904.
g New Madrid average.
h Oakfield average for 25 years.
f J. S. Geol. Survey Water-Supply Paper 195, p. 132, 1907.
k Missouri Geol. Survey, vol. 3, pp. 120-121, 1892.
i Warsaw average.
f Warsaw average.
m U. S. Geol. Survey Water-Supply Paper 195, p. 118, 1907.
n Missouri Geol. Survey, vol. 3, pp. 141-143, 1892.
o Average for 31 years.
g I dem, p. 138.
g Mount Vernon average.
r U. S. Geol. Survey Water-Supply Paper 195, p. 45, 1907.
k Kokuk average plus 0.1°.
t U. S. Geol. Survey Water-Supply Paper 195, p. 46, 1907.
w Every Water-Supply Paper 195, p. 46, 1907.
w Every Water-Supply Paper 195, p. 46, 1907.
w Every Stater-Supply Paper 195, p. 46, 1907.
w Kidder average.
v Fulton average.
v Fulton average.
w Fulton average.
w Fulton average.
w Missouri Geol Survey Nater-Supply Paper 195, p. 46, 1907.
w Kidder average.
w Fulton average.
w Fulton average.
w Fulton average.
w Kidsuri Geol Survey Nater-Supply Paper 195, p. 46, 1907.

u Kilder average.
Fulton average.
Fulton average.
Missouri Geol. Survey, vol. 3, pp. 94-95, 1892.
x 63,5° on July 15, 1903 (U. S. Geol. Survey Water-Supply Paper 195, p. 52, 1907).
y Average for 23 years.
z Brunswick average for 28 years.
aa Missouri Geol. Survey, vol. 3, p. 73, 1892.
bb Hannibal average for 25 years.

56

Location.	Depth (feet).	Flow (gal- lons per min- ute).	Tem- pera- ture (°F.).	Mean annual air tem- pera- ture (°F.).	Tem- pera- ture in- crease (feet to 1°).	Remarks.
St. Louis County: St. Louis:						
Asylum Belcher well c	3, 843½ 2, 200	75	a105 73. 4	b 55.8 d 55.8	78.1 ¢ 85.3	Granite, etc., 3,558 to 3,843 feet. Water from 1,515 feet; much H ₂ S; water-bearing sandstone from 1,502 to 1,640 feet.
Do.f Union Power Co North St. Louis	1,590 1,470 735	Many. Many. 60	69 70 62	55.8 55.8 55.8	102 103 118	Water pumped 45 feet. Source of water not given.
Vernon County: ø Nevada, near Nevada Richards	800 869 1,001 650	120 {Many. Few.	63 67 62	ћ 55 55 55	100 72 <u>1</u> 93	Flow from below 785 feet. {Flow from below 785 feet; pump- ed 78 feet. Gassy.

Temperature in wells in Missouri-Continued.

a Broadhead, G. C. (St. Louis Acad. Sci. Trans., vol. 3, p. 216, 1878), who used a registering thermom eter and gave temperatures of 106° at 3,127 feet; 107° at 3,129 feet; 106° at 3,264 feet; 105° at 3,604 feet; 104° at 3,614 feet; 105° at 3,728 feet; and 105° at 3,800 feet, observed with thermometer rending to one-fifth of 1°. b Average for 44 years. c Litten, A., Belcher & Bros. artesian well (St. Louis Acad. Sci. Trans., vol. 1, pp. 80-86, 1856-1860). Another authority gives 2,199 feet (U. S. Geol. Survey Water-Supply Paper 195, p. 159, 1907). d Litten gives 55.22° as deduced from observations by Engleman for 22 years, indicating a gradient of 1° to 83.3 feet. c Calculated to a depth of 1,502 feet. f Am. Jour. Sci., 2d ser., vol. 15, p. 460, 1853. g U. S. Geol. Survey Water-Supply Paper 195, p. 104, 1907. b Average for 22 years.

1

SUMMARY.

The data from the Missouri wells listed above appear to indicate considerable diversity in gradient, but doubtless some of this diversity is due to error, especially as to source of water. The tests by Broadhead and Litten in the deep wells of St. Louis are most valuable, giving mean rates of increase of 1° in about 78 and 85 feet. The apparent decrease of 2° from 3,127 to 3,843 feet and some other inconsistent variations are difficult to explain. Some of the shallower wells appear to indicate a diminishing rate toward the surface, but uncertainty as to source of flow and influence of pumping may The Clinton well, which is said to be cased affect the observations. to the bottom, indicates the surprisingly low rate of 1° in 175 feet, and the Sullivan well shows a rate of 1° in 153 feet. The rates indicated for the Springfield well, 1° in 138 feet; the Canton well, 1° in 132 feet; the Hahatonka well, 1° in 131 feet; and the Fayette well, 1° in 113 feet, are valid if, as is reported, all these wells are cased to or nearly to the bottom. The data from Mexico, Excelsior Springs, Hannibal, Louisiana, Montgomery, Moberly, and Randolph Springs may be defective. The relatively high rates of 1° in 52 feet indicated by the Campbell well and 1° in 53 feet by the Utica well are exceptional but almost surely correct. The rate indicated by the St. Joseph brewery well, 1° in $60\frac{1}{2}$ feet, is also regarded as reliable, although the source of the water is not given precisely.

GEOLOGIC RELATIONS.

The southeastern third of Missouri consists of a low dome in the center of which the pre-Cambrian granites and other rocks are exposed in the Iron Mountain region. West of this dome the strata dip west, and north of it they slope gently to the north and north-At Kansas City and northward the pre-Cambrian rocks are west. far below the surface. The wells included in the above list penetrate a great variety of strata, all on the north or west slopes of the dome. The 3,843-foot hole at St. Louis is the only one that reached the granite, but its water supply is derived from sandstones of Ordovician age. The wells at Moberly, Hannibal, Canton, Lagrange, Louisiana, Rensselaer, Gunters, Hahatonka, Fayette, Sullivan, Montgomery, Springfield, Nevada, and Richards all draw from sandstones in the Ordovician or Cambrian. The deep well near St. Joseph entered Mississippian limestones at 1,250 feet and possibly reached the St. Peter sandstone. The deep borings of Excelsior Springs are believed to draw their mineralized waters from the "Jefferson City limestone and base of the Pennsylvanian."¹ The well at Campbell, in the southeast corner of the State, penetrates a thick deposit of clay of the Lagrange formation (Tertiary) and draws from the sand of the upper part of the Ripley formation (Cretaceous). The well at Utica draws water from the base of the Cherokee shale (Pennsylvanian).

ł

1

There is no evidence that the variations in rate of increase in temperature are related to the horizons from which the waters are derived, to structural features, or to proximity to the pre-Cambrian rocks, with the possible exception of the high rate at the Campbell well, which is in the Tertiary and Cretaceous. The St. Joseph and Utica wells which show high rates are higher in the Paleozoic succession than the wells farther east and south.

MONTANA.

ANACONDA MINE.

In 1899 H. V. Winchell made a series of observations in the Anaconda mine, near Butte. He placed Darton thermometers in drill holes at various depths and left them for several days. The following results were obtained:

¹ Shepard, E. M., op. cit., p. 58.

	Altitude (feet).	Temper- ature (°F.).	Depth per degree of increase in tem- perature (feet).a
200-foot level. 400-foot level. 600-foot level. 800-foot level. 1,000-foot level. 1,600-foot level.	5,673 5,471 5,271 5,081	45. 8 49. 5 51. 4 69. 8 62. 0 74. 3	53.0 53.0 63.8 28.8 50.0 49.2

Temperature at different depths in the Anaconda mine, near Butte, Mont.

a Based on mean annual air temperature of 42°, average for 21 years at Butte.

The reading at a depth of 800 feet is abnormally high, probably on account of some local condition. The rates of increase indicated between various depths are as follows: 200 to 1,600 feet, 1° in 49.8 feet; 400 to 1,000 feet, 1° in 48.2 feet; 400 to 1,600 feet, 1° in 48.5 feet; 600 to 1,600 feet, 1° in 43.6 feet; 1,000 to 1,600 feet, 1° in 48.8 feet. S. F. Emmons made an additional observation in the Gagnon mine 1,550 feet below the surface. The Darton thermometer was placed in a 3-foot drill hole and read 79° after 48 hours and $79\frac{1}{4}°$ after 7 days. As the mean annual temperature here is 42° the rate indicated is 1° in 41.7 feet. This mine is the nearest one to the latest rhyolite eruption.

MILES CITY.

The flow from a 456-foot well in Miles City, Custer County, is reported ¹ to have a temperature of 57°. Its volume is 5 gallons a minute and its pressure 7 pounds. Flows were also found at 300 and 390 feet, but presumably they are cased off. The mean annual air temperature at this place is 44.1° (average for 39 years), or 12.9° less than the temperature of the flow, a difference indicating a rate of increase of 1° in 35.3 feet.

LITTLE BITTERROOT VALLEY.

Meinzer² has given some data on temperature in artesian wells in Little Bitterroot Valley.

Į

¹ Nettleton, E. S., Final report on artesian and underflow investigations, pt. 2: 52d Cong., 1st sess., S. Ex. Doc. 41, pt. 2.

² Meinzer, O. E., Artesian water for irrigation in Little Bitterroot Valley, Mont.: U. S. Geol. Survey. Water-Supply Paper 400, pp. 9-37, map, 1916.

Temperatures in artesian wells in Little Bitterroot Valley, T. 22 N., R. 23 W., Mont.

Location.	Depth (feet).	Flow (gallons per minute).	Tempera- ture (°F.).	Depth per degree of increase in tem- perature (feet). a
NW. 1 sec. 18. SE. 1 sec. 20. SE. 1 sec. 20. NW. 1 sec. 29. SW. 1 sec. 29. SW. 1 sec. 29.	232 232 244	14 365 400 245 85 25	91 71½ 78 5 120 99 92½	5.6 8.3 6.7 3.2 4.7 5.6

a Calculated from average of mean annual air temperature at Plains and Kalispell, 43.4° plus 0.2°. b Reported to have been 126° three years before; the volume of flow has also diminished.

The temperatures of flow from wells 52, 82, and 90 feet deep were $57\frac{1}{2}^{\circ}$, 53° , and $59\frac{1}{2}^{\circ}$, respectively, and flows from two of the deeper wells had low temperatures. Water in a 94-foot dug well at Lone Pine post office had a temperature of $52\frac{1}{2}^{\circ}$. The water occurs in a bed of sand and gravel underlying a thick mass of silt supposed to have been deposited by a lake. Meinzer suggests that the variations in temperature in these wells, which are all near together, probably indicates that the warmer water comes in part from some deeper source. The Camas Hot Springs are in the northwest corner of sec. 3, T. 21 N., R. 24 W.

NEBRASKA.

TEMPERATURES.

The well temperatures in Nebraska listed below, except the observations at Lincoln and Omaha, were obtained by G. E. Condra in a reconnaissance of the counties in the northeast corner of the State.¹ These data are not only very important in themselves but they extend the area of close observation in eastern South Dakota described in subsequent pages.

¹ Condra, G. E., Geology and water resources of a portion of the Missouri River valley in northeastern Nebraska: U. S. Geol. Survey Water-Supply Paper 215, 1908.

NEBRASKA.

Temperatures in wells in Nebraska.

.

۲

?

١

}

1

ì

Location.	Depth	Flow			Depth	
	(feet).	(gal- lons per min- ute).	Tem- pera- ture (°F.).	Mean annual air tem- pera- ture (° F.).	per degree of in- crease in tem- pera- ture (feet).	Remarks.
Boyd County: Lynch	797	465	79}	47.9	23.1	Flow 761 to 797 feet.
Lynch, new well	923 500	Many. Many.	90 [~] 59	47.9 a 46.5	20.8	Third flow from 875 feet. Flow probably in part from 400
Sec. 17, T. 33, N. 1 W Sec. 17, T. 33, N. 1 W Sec. 16, T. 33, N. 1 W Sec. 16, T. 33, N. 1 W Sec. 16, T. 33, N. 1 W Sec. 10, T. 33, N. 1 W Sec. 12, T. 33, N. 1 W Sec. 12, T. 33, N. 1 W Sec. 17, T. 33, N. 1 E Sec. 24, T. 33, N. 2 E Sec. 10, T. 32, N. 2 E Sec. 11, T. 32, N. 2 E Sec. 14, T. 32, N. 2 E Sec. 15, T. 32, N. 3 E Sec. 15, T. 32, N. 3 E Sec. 16, T. 32, N. 3 E Sec. 17, T. 32, N. 3 E Sec. 15, T. 32, N. 3 E Sec. 16, T. 32, N	365	26	591	46.5	28.0	feet. Flow at 337 feet.
Sec. 16, T. 33, N. 1 W Sec. 16, T. 33, N. 1 W	400 400	Many.	591 60	46.5 46.5	30.8	
Sec. 16, T. 33, N. 1 W	400 400	7	58 1 581	46.5 46.5	29.6 33.3 33.3	
Sec. 10, T. 33, N. 1 W	400	15	59	46.5	32.0	
Sec. 12, T. 33, N. 1 W Sec. 12, T. 33, N. 1 W	400 380	7 44	$\frac{59\frac{1}{2}}{60}$	46.5 46.5	30.8 28.1	
Sec. 8, T. 33, N. 1 E Sec. 17, T. 33, N. 1 E	360 420	52	59 1 59	46.5 46.5	27.7 18.7	
Sec. 16, T. 33, N. 1 E	360 454	$5\frac{1}{2}$	58 58 1	46.5 46.5	31.2 37.8	
Sec. 22, T. 33, N. 1 E	500	15-20	62	46.5	32.2 25.9	
Sec. 30, T. 33, N. 1 E	350 530 280	30	60 63	46.5 46.5	32.1	
Sec. 34, T. 33, N. 2 E Sec. 28, T. 33, N. 2 E	280 420		60 603	46.5 46.5	20.7 30.0	
Sec. 5, T. 32, N. 2 E Sec. 10, T. 32, N. 2 E.	500	4	61 60}	46.5 46.5	34.4	
Sec. 8, T. 32, N. 2 E	530 241	2	601 60	46.5 46.5	37.8 17.9	
Sec. 10, T. 32, N. 2 E	400		60	46.5	29.6	
Sec. 10, T. 32, N. 2 E Sec. 12, T. 32, N. 2 E	360 300	11	59 59	46.5 46.5	28.8 24.0	
Sec. 14, T. 32, N. 2 E Sec. 15, T. 32, N. 2 E	400 320	1	60 59	46.5	29.5 25.6	
Sec. 11, T. 32, N. 2 E	417 300		58 58 1	46.5 46.5	36.2 25.0 32.0	
Sec. 13, T. 32, N. 2 E	400		59	46.5	32.0 24.0	
Sec. 24, T. 32, N. 2 E Sec. 25, T. 32, N. 2 E	300 340	21 2	59 58	46.5	29.6 32.5	
Sec. 14, T. 32, N. 2 E Sec. 7, T. 32, N. 3 E	520 400		$62\frac{1}{2}$ 61	46.5 46.5	27.6	
Sec. 8, T. 32, N. 3 E Sec. 8, T. 32, N. 3 E	400 300	 11	60 1 581	46.5	28.5 25	
Sec. 9, T. 32, N. 3 E	280 365	7	59 [°] 57	46.5 46.5	25 22.4 34.8	
Sec. 15, T. 32, R. 3 E	310	Several.	60	46.5	22. 9 20. 9	
Sec. 15, T. 32, R. 3 E Sec. 16, T. 32, R. 3 E	240 270	3	58 581	46. 5 46. 5	22.5	
Sec. 12, T. 32, R. 3 E Sec. 21, T. 32, R. 3 E	310	83	591 591	46.5 46.5	23.8	
Sec. 21, T. 32, R. 3 E Sec. 16 T. 32, R. 3 E.	340 400	15	59 591	46.5	27.2	
Sec. 15, T. 32, N. 3 E Sec. 15, T. 32, R. 3 E Sec. 15, T. 32, R. 3 E Sec. 16, T. 32, R. 3 E Sec. 16, T. 32, R. 3 E Sec. 12, T. 32, R. 3 E Sec. 21, T. 32, R. 3 E Sec. 24, T. 32, R. 3	300 327		59 551	46.5 46.5	24 36.3	
Sec. 21, T. 32, R. 3 E	310	3	55.	46.5	36. 5 21. 2	
Sec. 14, T. 32, R. 3 E Sec. 12, T. 32, R. 3 E	270 250	20 8	59 1 57	46.5	23.8	
Sec. 23, T. 32, R. 3 E Sec. 11, T. 32, R. 3 E	530	12 11	59 571	46. 5 46. 5	42. 4 22. 3	
Sec. 24, T. 32, R. 3 E Sec. 24, T. 32, R. 3 E	. 280		59 631	46.5	22.4	
Sec. 24, T. 32, R. 3 E	. 340	2	60	46.5	25.2	
Sec. 19, T. 32, R. 4 E	. 300	2	61	0 48.3	23.6	
Sec. 29, T. 32, R. 4 E Sec. 29, T. 32, R. 4 E	. 300 280	· 2 1	61 61	48.3	22.0	
Sec. 29, T. 32, R. 4 E Sec. 28, T. 32, R. 4 E	280 290		60 1 601	48.3 48.3	24.1	
Sec. 28, T. 32, R. 4 E Sec. 28, T. 32, R. 4 E	: 177		60 1 59	48.3	16.5	
Sec. 34, T. 32, R. 4 E Sec. 28, T. 32, R. 5 F	300 265	1	58 61	48.3 48.3	30.9	
$\begin{array}{l} {\rm Sec.}\ 24, {\rm T.}\ 32, {\rm R.}\ 3 {\rm E}\\ {\rm Dixon\ County:}\\ {\rm Sec.}\ 19, {\rm T.}\ 32, {\rm R.}\ 4 {\rm E}\\ {\rm Sec.}\ 19, {\rm T.}\ 32, {\rm R.}\ 4 {\rm E}\\ {\rm Sec.}\ 29, {\rm T.}\ 32, {\rm R.}\ 4 {\rm E}\\ {\rm Sec.}\ 29, {\rm T.}\ 32, {\rm R.}\ 4 {\rm E}\\ {\rm Sec.}\ 28, {\rm T.}\ 32, {\rm R.}\ 4 {\rm E}\\ {\rm Sec.}\ 28, {\rm T.}\ 32, {\rm R.}\ 4 {\rm E}\\ {\rm Sec.}\ 28, {\rm T.}\ 32, {\rm R.}\ 4 {\rm E}\\ {\rm Sec.}\ 28, {\rm T.}\ 32, {\rm R.}\ 4 {\rm E}\\ {\rm Sec.}\ 28, {\rm T.}\ 32, {\rm R.}\ 4 {\rm E}\\ {\rm Sec.}\ 28, {\rm T.}\ 32, {\rm R.}\ 4 {\rm E}\\ {\rm Sec.}\ 32, {\rm T.}\ 32, {\rm R.}\ 4 {\rm E}\\ {\rm Sec.}\ 32, {\rm T.}\ 32, {\rm R.}\ 4 {\rm E}\\ {\rm Sec.}\ 32, {\rm T.}\ 32, {\rm R.}\ 4 {\rm E}\\ {\rm Sec.}\ 32, {\rm T.}\ 32, {\rm R.}\ 5 {\rm E}\\ {\rm Sec.}\ 32, {\rm R.}\ 5 {\rm R.}\ 5 {\rm R.}\\ 5 {$	265	3	55	48.3	39.6	

a Yankton, S. Dak., average for 43 years. b Vermilion, S. Dak., average for 16 years.

Location.	Depth (feet).	Flow (gai- lons per min- ute).	Tem- pera- ture (°F.).	Mean annual air tem- pera- ture (°F.).	Depth per degree of in- crease in tem- pera- ture (feet).	Remarks.
Pouglas County: Omaha. Do efferson County: Sec. 4, T. 2 N., R. 2 E.	650-800 664 500	Many. Many. Several.	58-62 58 70	a 50 50 b 51.9	83 27.7	Many wells; large flows.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\left \begin{array}{c} 770\\656\\600\\548\\740\\400\\400\\504\\550\\650\\400\\400\\400\\403\end{array}\right $	Several. 14 1,900 280 240 900 8 Few. 2 10 30 25 Few. 11 14 14 Many.	70 74 $\frac{1}{2}$ 68 66 64 62 61 63 $\frac{1}{2}$ 62 62 62 59 $\frac{1}{2}$ 62 59 $\frac{1}{2}$ 61 70 70 70 70 70 70 70 70 70 70 70 70 70	c 48. 1 48. 1 48. 1 c 48. 1 48. 1 6 50. 1 c 50. 1	33. 8 29. 2 32. 9 33. 5 32. 4 37. 5 28. 8 31. 0 35. 7 46. 8 27. 8 43. 2 28. 8 35. 4 35. 4 35. 4 35. 4 35. 4 35. 9 5 7	Third flow at 740 feet. Main flow at 520 feet. Water at 600 feet. Flow probably from near 400 feet. Main flow from 600 feet. Saline

Temperatures in wells in Nebraska-Continued.

a Average for 46 years.
b Fairbury average for 21 years.
c Santee Agency average.

d Calculated to 600 feet. Average for 33 years. I Calculated to 600 feet.

SUMMARY.

The rates of increase indicated at Lincoln and Omaha are moderate and apparently are fairly close approximations. The many records of flowing wells in the lowlands along Missouri River in Boyd, Cedar, Dixon, and Knox counties all show high rates and in general are closely accordant. From these records lines in Plate I, showing relations to the South Dakota area, have been drawn. Most of the records show rates of increase of 1° in 22 to 30 feet, and there is a notably warm spot in the area southwest of Vermilion. Possibly some higher temperatures in some of the shallower wells are due to waters rising from lower beds, and it may be that all the high temperatures are due to this cause, if this area is a zone of permeable strata in which such a rise would be possible.

GEOLOGIC RELATIONS.

The many artesian wells in Cedar, Knox, Dixon, and Boyd counties draw their water from the Dakota sandstone, which underlies shales of Benton age and lies on Paleozoic limestone and possibly in part also in pre-Cambrian rocks. The beds are nearly horizontal

NEVADA.

and apparently have no local disturbances or notable stratigraphic differences, so that no suggestions can be offered to account for the variations of gradient in relation to the geology. The Omaha wells penetrate deeply into Paleozoic limestone that lie nearly horizontal. The deep boring at Lincoln passed through very slightly tilted Paleozoic limestones and sandstones and reached quartzite that is supposed to be of pre-Cambrian age.

NEVADA.

COMSTOCK LODE.

The high temperatures in the deep workings of the Comstock lode near Virginia City are well known through the extended investigations of G. F.[/]Becker.¹ The temperature at a depth of 3,100 feet was found to be 170°, indicating a rate of increase of 1° in 28 feet, and an elaborate series of temperature determinations in drill holes at various depths gave an average rate of 1° in 33 feet. The rate decreases horizontally away from the lode. It is believed that the high rate in the Comstock lode indicates the presence of hot volcanic material a few miles underground, and that ascending water is the mportant factor in the transportation of the heat. As a large number of data are presented, the reader interested in details should consult the monograph cited, also a critical review by Locke.²

TONOPAH.

Leon Dominian made measurements of underground temperatures in the Mizpah Extension, Ohio Tonopah, and Montana Tonopah shafts at Tonopah.³ These shafts had very limited side workings and no complete ventilation. The thermometers were placed in shallow drill holes. The following results were obtained:

Depth (feet).	Mizpah exten- sion.	Ohio Tono- pah.	Montana Tono- pah.	Depth (feet).	Mizpah exten- sion.	Ohio Tono- pah.	Montana Tono- pah.
100 200 300 317 400 460		60 61 62} 		500 600 700 766 780	69 70½ 72 73½	66 <u>1</u> 69 74 78	701

Temperatures (° F.) in mines at Tonopah, Nev.

The rate of increase from 100 to 780 feet in the Mizpah extension is 1° in 51.3 feet; from 100 to 760 feet in the Ohio Tonopah, 1° in 37 feet; from 317 to 600 feet in the Montana Tonopah 1° in 43.5 feet.

¹ Geology of the Comstock lode and the Washoe district: U. S. Geol. Survey Mon. 3, pp. 228-265, 1892. ² Locke, Augustus, The abnormal temperatures on the Comstock lode: Econ. Geology, vol. 7, pp. 583-587, 1912.

Ì

³ Spurr, J. E., Geology of the Tonopah mining district, Nev.: U. S. Geol. Survey Prof. P.,per 42, pp. 263-265, 1905.

From 400 to 780 feet in the Mizpah it is 1° in 54.3 feet, and from 400 to 766 feet in the Ohio it is 1° in 26.1 feet. Spurr in comparing the Tonopah and Comstock data points out the fact that the temperature at 766 feet in the Ohio Tonopah was found in the Comstock at 900 feet, and he suggests that the increased rate toward the bottom may be due to proximity to a "local heat focus, such as a hot spring." The lack of a record of mean annual air temperature at Tonopah makes it difficult to compute the gradient. The average given by the Weather Bureau for 1916 is 48.9°. The temperature of 60° at a depth of 100 feet therefore shows a rapid increase in the upper part of the mine.

NEW JERSEY.

TEMPERATURES.

Records have been made of temperatures of flows of some of the many artesian wells along the seashore in southern New Jersey. The more useful ones are given in the following table:

Location.	Total depth (feet).	Flow (gallons per min- ute).	Tem- pera- ture (° F.).	Mcan annual air tem- pera- ture (° F.).	Depth per de- gree of increase in tem- ture (feet).	Remarks.
Asbury Park a Atlantic City a Longport Ocean Grove Seven Islands Sea Girt Wildwood f Do f	813	20 105 180 40 50 300 10	60 66 60 60 65 63 67	b 51.9 c 52.4 c 52.4 d 51.9 52.1 e 52 g 53.6 g 53.6	55 59 52 52 51 58 69 h 88	Water also at 570 and 694 feet; probably cased off. Small flows at 625, 750, and 843 feet and salt water at 1,185 feet; probably some mixing of flows.

Temperature in wells on coast of southern New Jersey.

a New Jersey Geol. Survey Ann. Rept. for 1895, pp. 72-74, 1896.
b Average for 27 years.
c Average for 43 years.
d Asbury Park average.
c Asbury Park average plus 0.1°.
f New Jersey Geol. Survey Ann. Rept. for 1894, pp. 155-170, 1895.
g Cape May 32-year average minus 0.1°.
b Calculated to 1,185 feet.

All but the deep well at Wildwood are believed to get their flow from the bottom, so that they give a reliable indication of the rate of increase if the temperatures are correct.

Water from a 615-foot pumped well at Newark, yielding 50 gallons a minute, is reported to have a temperature of 55¹/₂°, ¹ but the temperature may be modified by pumping. Mudge ² mentions a 394-foot well at New Brunswick in which the rate of increase was found to be 1° in 72 feet.

64

NEW MEXICO.

SUMMARY.

The wells on the coast of New Jersey from Asbury Park to Wildwood show rates of increase that seem closely accordant when the possible plus and minus is considered. In general there is an increase to the south from 1° in 55.3 and 52 feet at Asbury Park and Ocean Grove to 1° in 59 feet at Atlantic City and Longport and 1° in 69 feet in the 655-foot well at Wildwood.

GEOLOGIC RELATIONS.

All these wells draw their water from sands in the Coastal Plain sedimentary series,¹ which dips gently to the east and lies on a platform of pre-Cambrian crystalline rocks. The Asbury Park, Ocean City, and Sea Girt wells draw from sands in the Miocene. It would appear from these facts that there may be a lower rate in the higher beds, but the data are not sufficiently numerous or reliable to prove it.

NEW MEXICO.

Temperature determinations were made by W. T. Lee in September, 1905, in the well at Sandia siding, on the Atchison, Topeka & Santa Fe Railway, 11½ miles southwest of Isleta. A deep-well thermometer was used, with precautions to obtain accurate data. The water stood at a depth of 445 feet in the boring, which was 843 feet deep and penetrated Cretaceous shale and sandstone, overlain by sand of the Tertiary Santa Fe formation at the edge of the sheet of recent lava which covers the plateau to the north and east. The following results were obtained:

Temperatures at different depths in well at Sandia siding, N. Mex.

	° F.		° F.
843 feet	78.1	543 feet	72.1
743 feet	76.7	443 feet	71.7
643 feet			

If 54.5°, the mean annual air temperature at Los Lunas (average for 27 years), which is at about the same latitude, although 400 feet lower, is taken as a standard, the rates of increase indicated by these results are as follows:

Depth per degree of increase in temperature in well at Sandia siding, N. Mex.

Feet.	
Surface to 843 feet 351	Surface to 443 feet 251
	443 to 843 feet $62\frac{1}{2}$
Surface to 643 feet 301	643 to 843 feet 80
Surface to 543 feet 31	443 to 643 feet 51

The variability, especially in the amount of change from depth to depth as taken, may be due to convection, but the rate at the bottom is doubtless near the true one.

¹ Darton, N. H., Artesian prospects in the Atlantic Coastal Plain region: U. S. Geol. Survey Bull. 138, pl. 3, 1896.

137163°—20—Bull. 701—5

NORTH CAROLINA.

No significant well temperatures have been reported from North Carolina. The water flowing from the 985-foot well at Wilmington has a temperature of 70°, or about 7° higher than the mean annual air temperature, but the flows mingle from depths of 379, 496, 578, 608, 734, and 985 feet.

NORTH DAKOTA.

Nettleton¹ has given temperatures of flows of several wells in North Dakota. The determinations were probably made with care, and as the flows come from the bottoms of the wells and most of them are of large volume the data give a close approximation of the rate of increase.

•	Depth (feet).	Flow (gallons per min- ute).	Tem- pera- ture (° F.).		Depth per de- gree of increase in tem- pera- ture (feet).	Remarks.
Devils Lake Ellendale Grafton Hamilton Jamestown Oakes	$1,431-1,520$ $1,042-1,087$ 390 $1,242\frac{1}{2}$ $1,458-1,476$ 937	82 700 700 Few. 460 817	$\begin{array}{r} 62 \\ 69 \\ 46 \\ 41\frac{1}{2} \\ 76 \\ 62 \end{array}$	a 36. 4 b 40. 4 c 37 d 35. 2 c 39. 6 e 40. 9	56 36 ¹ / ₂ 43 199 40 44 ¹ / ₂	Source of flow not given. Small flows at 790, 845, and 870 feet.
Tower City Buffalo, 2½ miles northwest of. Buffalo, 6 miles northeast of.	716 600 514	25 12 25	57 52 51]	f 39.6 39.6 39.6	41 48 43	

Temperatures in deep wells in North Dakota.

a Average for 12 years.
b Fullerton average for 19 years plus 0.4°.
c Average for 25 years.

d Pembina average for 37 years. Average at Forman for 25 years. Average at Jamestown for 25 years.

s.

These borings are in Cretaceous shale and obtain water from the Dakota sandstone, which lies on or not far above the pre-Cambrian basement. The data from the Hamilton well are doubtless inaccurate as to the depth from which the water comes, or there is a chilling of the small flow near the surface.

оню.

FINDLAY.

The most important data on underground temperature in Ohio are the measurements in the 2,980-foot hole at Findlay by John Johnson.² The hole, which was a test for oil or gas, began in the Niagara limestone and continued through older Silurian, Ordovician, and Cam-

² Johnson, John, Note on the temperature in the deep boring at Findlay, Ohio: Am. Jour. Sci., 4th ser., vol. 36, pp. 131-144, 1913; Econ. Geology, vol. 11, pp. 745-748, 1916.

¹ Nettleton, E. S., Final report on artesian and underflow investigations, pt. 2: 52d Cong., 1st sess., S. Ex. Doc. 41, pt. 2, 1892.

OHIO.

brian shale, limestone, and sandstone to pre-Cambrian granite, which was penetrated 210 feet.¹ The strata have a very low dip. Johnson used six thermometers, accurately calibrated and sunk in groups of three in a special cage to prevent jarring. The principal results were as follows (averages):

Temperatures at different depths in hole at Findlay, Ohio.

	°F.		°F.
550 feet	55.6	2,650 feet	77.9
770 feet	58.1	2,800 feet.	79.7
1,165 feet	67.0	3,000 feet	82. 1
1,900 feet			

Some gas coming from beds at a depth of 770 feet probably vitiated the readings in that vicinity. Readings after 18 hours continuously at 100 feet gave 51.8°, which is 1.4° higher than the mean average air temperature from 27 years' observations by the United States Weather Bureau. The figures given by Johnson indicate rates of increase as follows:

Depth per degree of increase in temperature in hole at Findlay, Ohio.

	feet.		Feet.
100 to 3,000 feet	95	1,165 to 3,000 feet	121
550 to 3,000 feet	92	1,900 to 3,000 feet	1145

MISCELLANEOUS WELLS.

Several other wells in Ohio give the following data as to rate of increase:

Temperatures in wells in Ohio.

Location.	Depth (feet).	Tempera- ture (°F.).	Mean annual air tem- perature (°F.).	Depth per degree of increase in tem- perature (feet).	
Cuyahoga County: Cleveland Franklin County: Columbus Do.d	535 b 2, 775 <u>1</u> 2, 575	54 91 88	a 49.3 c 52.1 52.1	114 71 . 71 ¹ 2	With Walferdin thermometer down 25 hours.
Hamilton County: Cincinnati ø Do Do Do Richland County: Plymouth ø	$\left\{\begin{array}{c}1,360\\1,475\\1,960\\2,408\\\\3,020\\2,800\\1,400\end{array}\right.$	60 61 63 62 92. 8 90. 6 71. 2	54.3 54.3 54.3 / 49.4	87 88 69½ 68 64	No flow. Cased to 916 feet. Temperature taken by Dr. R. D. Sykcs.

Average for 46 years. Geology of Onio, vol. 1, p. 113; Am. Jour. Sci., 2d ser., vol. 27, p. 276, 1859.

Geology of Onio, vol. 1, p. 110, Ani, soni, soni

Record given by Condit, D. D., Deep wells at Findlay, Ohio: Am. Jour. Sci., 4th ser., vol. 36, pp. 123-130, 1913.

The Cleveland well is pumped and the water in whole or part may come from higher beds. Temperatures were taken in the bottom of the old Columbus well and at 3,020, 2,800, and 1,400 feet in the Plymouth well. In the Plymouth well the rate of increase from 1,400 to 2,800 feet is 1° in 76.2 feet, and from 1,400 to 3,020 feet 1° in 70.5 feet. The strata in all these holes are limestones, sandstones. and shales dipping at low angles. The Columbus and Plymouth wells penetrated to a horizon low in the Ordovician. The Cleveland hole was sunk for water in sandstone of Devonian age.

OKLAHOMA.

TEMPERATURES.

A series of careful observations in wells and borings at several points in Oklahoma were made in 1906 by E. G. Woodruff, who used maximum thermometers lent by the Weather Bureau and lowered them to the depths given in the table. The following are the results:

					·········
Location.	Depth (feet).	Tempera- ture (° F.).	Mean annual air tem- perature (° F.).	Depth per degree of increase in tem- perature (feet).	
Cleveland County: Norman Do	407 240	65. 0 62. 5	60. 5 60. 5	90 ¹ / ₂ 120	Old well, plugged. Pumping well.
Kay County: Newkirk, 9 miles southeast of.	760	76.0	58.7	44	Gas well, 970 feet deep. Salt water.
Lincoln County: Fallis Logan County: Meridian	525 2,200	63. 0 82. 0	a 60.4 b 60.3	202 101½	Old hole, full of water. Boring in progress.
Muskogee County:	1 000	84.0	c 60, 4	49	Old oil well.
Muskogee Do	. 1,020	84.0 67.0	60.4	$43 \\ 62$	Do.
Noble County: Perry, 1 mile east of.	500	68.0	a 59.0	5512	Old boring.
Pawnee County:					
Cleveland		107	¢ 59. 2	34½	
Do	1,625	107	59.2	34	Well shot the day before.
Ralston, 1 mile west of Payne County: Yale	2, 350 2, 500	128 124	f 59.2	34 38.5	In progress. Well abandoned.
Pittsburg County: McAlester, 2	2,500 540	124 73	59.1 g 63	38.0 54	In coal, diamond drill, stopped
miles northwest of. Tulsa County:	010	10	8 00	P.	17 hours before test.
Red Fork, 2 miles north- east of, sec. 14.	705	78	ħ 60.3	40	Abandoned hole full of salt water; some gas.
Red Fork, sec. 15	1,170	98	60.3	31 [.]	In shale. Drilling suspended only for test.
Wagoner County: Wagoner	1,010	78	€ 60.3	57	Small salty flow. Temperature
Washington County:			•		
Bartlesville	1,100	86 .	j 59.2	41	Oil well; some gas.
Owen, 2 miles northeast of.	1,275	84	k 50	51	Oil well; tubing just with
Ramona, 5 miles west of	1, 700	103	59.4	39	drawn. Do.

Temperatures in deep wells in Oklahoma.

a Guthrie average for 24 years plus 0.1°.

b Guthrie average.

c Average for 18 years. d Average for 10 years.

e Average for 14 years. f. Stillwater average for 24 years.

A verage for 12 years.
Tulsa average for 13 years.
A verage for 20 years.

Pawhuska average plus 0.1°.
Pawhuska average minus 0.1°.

¹ Pawhuska average plus 0.3°.

68

PENNSYLVANIA.

SUMMARY.

All the borings tested are in the northeastern part of the State except the one at McAlester, which is considerably south of the others. The results show a considerable range in the geothermal gradient, but exclusive of the pumping well at Norman, the old hole at Fallis, and the deep boring at Meridian the rate of increase is 1° in 34 to 62 feet. The boring at Meridian was in progress and may have been chilled by the pumping of cool surface water to remove the drillings. All the conditions in the Fallis well are not known, but they appeared to be favorable for a reliable test. For many of the localities there is some uncertainty as to the mean annual air temperature, which had to be approximated from stations at some distance. The holes in Pawnee and Tulsa counties and at Yale and Ramona, which show rates of 1° in 30 to 40 feet, appear to be consistent in indicating a high rate of increase for at least a portion of the central-northeastern part of the State.

GEOLOGIC RELATIONS.

The borings all penetrate limestone and shale of Carboniferous age, which dip at a low angle to the west and southwest. There are no notable local disturbances and no igneous rocks, and the pre-Cambrian rocks lie far below the surface.

PENNSYLVANIA.

ANTHRACITE REGION.

In 1909 to 1911 I made a series of careful determinations of underground temperatures in the anthracite coal fields. Thermometers were sunk in bore holes and in several places buried for a while in holes in remote chambers in coal mines. The following results were obtained:

Depth (feet).	Tempera- ture (°F.).		Depth per degree of increase in tem- perature (feet).	Remarks.
960	59.5	a 49.3	94	Bore hole 670 feet deep in mine, 290 feet below surface. Water flows. Boring suspended 18 hours.
540 776	$\begin{array}{c} 53.5\\60.0\end{array}$	49.3 49.3	$129 \\ 72\frac{1}{2}$	Drilling finished 24 hours. Old boring 405 feet deep in mine 371 feet below ground.
580	64.5	49.3	38	In new chamber in a 6-foot hole bored in coal the day before.
1,200	61.0	b 49.8	107	6-foot hole in coal; no ventila- tion.
1,300	64.0	49.8	91 <u>}</u>	6-foot hole in coal; some ventila- tion.
	(feêt). 960 540 776 580 1,200	Depth (feet). ture (*F.). 960 59.5 540 53.5 776 60.0 580 64.5 1,200 61.0	Depth (feet). Tempera- ture (° F.). annual tempera- ture (° F.). 960 59.5 a 49.3 540 53.5 49.3 580 64.5 49.3 1,200 61.0 b 49.8	Depth (feet). Tempera- ture (°F.). Mean annual tempera- ture (°F.). Mean annual tempera- ture (°F.). degree of increase (°F.). 960 59.5 a 49.3 94 540 53.5 49.3 129 776 60.0 49.3 72½ 580 64.5 49.3 38 1,200 61.0 b 49.8 107

Temperatures in coal mines in anthracite region of Pennsylvania.

a Average for 16 years.

ł

^b Scranton average plus 0.50°.

Temperature in coal mines in the anthracite region of Pennsylvania—Continued.

<u></u>					
Location.	Depth (feet).	Tempera- ture (° F.).	Mean annual tempera- ture (°F.).	Depth per degree of increase in tem- perature (feet).	Remarks.
Dorrance mine	479	63.5	49.8	35	360-foot hole in old Baltimore workings, 119 feet below
Auchincloss mine, foot of No. 3 slope, No. 1 shaft. Lackawanna & Western Coal Co., southwest of Wilkes-	1,283	64.2	a 49.9	90	ground. Old 115-foot hole from Ross bed to Red Ash bed.
Barre: Bore hole 172 Bore hole Bore hole, Colliery 21	880 843 1,030	$56.5 \\ 56.0 \\ 61.5$	b 50 50 50	135½ 140½ 89⅓	Full of water. Do. Do.
Glen Lyon drill hole near.	1,598	61.5 61.8	50 ¢ 48, 3	130	Full of water. Thermometer down on Jan. 12, 1911, for 24 hours. Old hole. Shatt full of water.
Pottsville, Pottsville shaft, 2 miles north of.	,				
Newkirk, 2 mile north of Minersville, near, Lehigh Val- ley Co.	$1,090 \\ 620$	59.5 54.0	48.3 48.3	90 109	Old drill hole in coal measures. Old bore hole with flow of water at temperature 51° F.
Do Mount Carmel, east of	630 1,125	54.0 56.3	48.3 48.3	110 141	Old bore hole containing water. Boring in progress; stopped 12 hours.
Mount Carmel Mount Carmel, flowing well	1, 125 1, 125	56.5 d 54	48.3 48.3	137 197	Same hole; another thermome- ter. Main flow from 1, 125 lect. Some at 650 feet (end of cas- ing). Air lift to depth of 300 feet but not working at time of test.
Mount Carmel, 2 miles east of	· 1,300	55.0	48.3	194	Old hole, 2,060 feet deep but
Lofty, ½ mile east of	680	d 51	e 47.0	170	blocked at 1,300 feet. 1,100-foot boring blocked at 680
East Brookside	1,850	60.5	f, 49.3	165	feet. 3-foot hole in coal in mine
Tower City	415	53.0	49.3	113	1,850 feet below ground. Old drill hole, full of water.

a Scranton average plus 0.60°.
b Scranton average plus 0.7°.
c Gordon average for 13 years.
d By two thermometers.

Approximate altitude is 1,500 feet. Mean annual may be much lower than 47°. / Gordon average plus 0.1°.

An 1,800-foot diamond-drill hole bored horizontally in the coal measures by the Philadelphia & Reading Coal & Iron Co. in the Huntet tunnel, near Ashland, in Schuylkill County, found a 150-gallon flow of water with a temperature of 54°, or about 4° above the mean annual air temperature. A similar hole on Potts Run near Mahanoy City, in the same county, found a 200-gallon flow with a temperature of 51°, but the depth below the surface is not stated.

Except those in the holes in coal in the Dorrance and Sloan mines the rates of increase are remarkably low. The reasons for the differences in the others, however, are not apparent. In the holes near Scranton and Wilkes-Barre the strata are in a wide syncline with gentle dips and with a few local crenulations. In the Auchincloss mine the beds are highly tilted and faulted. The test in this mine was made in a 115-foot hole in one of the lower chambers, through which passes a ventilating current. The Glen Lyon hole and the Lehigh & Wilkes-Barre Co. bore holes are in steeply tilted strata.

PENNSYLVANIA.

The Pottsville shaft was an abandoned shaft at a mine that had been full of water for several years. This and the remaining observations in the table were made in the southern anthracite basin, where the strata lie in a deep syncline with rather steep dips on the sides.

WEST ELIZABETH.

A well 5,386 feet deep has been put down on Peters Creek about $2\frac{1}{2}$ miles west of West Elizabeth and about 12 miles south-southeast of Pittsburgh. The rocks are nearly horizontal and comprise strata from those not far below the Pittsburgh coal bed to those near the base of the Devonian. Temperatures in this well were taken by William Hallock¹ in 1897, by lowering four thermometers to a depth of 5,000 feet and leaving them suspended for 16 hours. The reading was 120.9°, an increase of 68.2° over the mean annual air temperature at Pittsburgh for 46 years (52.7°), which indicates a rate of 1° to 73.3 feet. A reading at 2,350 feet gave about 78°, indicating a somewhat higher rate, but this observation was not considered satisfactory.

McDONALD.

ľ

Some preliminary information regarding a 6,975-foot hole 4 miles northwest of McDonald, 15 miles southwest of Pittsburgh, has been given by I. C. White and C. E. Van Orstrand.² Until recently this was the deepest hole in the United States. Precise determinations of temperature have been made by C. E. Van Orstrand, some of which are as follows:

100 feet	57.0	4,600 feet 110. 5
350 feet	59. 2	5,100 feet 121. 1
1,100 feet	64.4	5,600 feet 133. 3
		6,000 feet 140. 0
		6,600 feet
3,100 feet	88. 2	6,775 feet 145. 8
3,600 feet	96.8	6,975 feet 144. 9
4,100 feet	104. 4	

The rates of increase indicated by some of these figures are as follows:

Feet per degree F.		Feet per degree F.	
100 to 6,775 feet	75.2	3,100 to 6,775 feet	63. 8
100 to 6,600 feet	75.8	4,100 to 6,775 feet	64.6
		5,100 to 6,775 feet	
1,100 to 6,775 feet			

¹ Hallock, William, Subterranean temperatures at Wheeling, W. Va., and Pittsburgh, Pa.: School of Mines Quart., vol. 18, pp. 151-153, 1897.

² White, I. C., Discussion of the records of some very deep wells in the Appalachian oil fields of Pennsylvania, Ohio, and West Virginia; West Virginia: Geol. Survey, Barbour and Upshur counties, pp. xxv-lxv, 5 pls. (incl. maps), 1918. GEOTHERMAL DATA OF THE UNITED STATES.

White¹ has given five readings in this well accredited to Dr. Hallock:

Temperatures at different depths in hole near McDonald, Pa.

	°F.		°F.
525 feet	57	5,010 feet	120
2,252 feet	64	5,380 feet	127
2,397 feet	78		

The rate indicated by the temperature at 5,380 feet is 1° in $72\frac{1}{2}$ feet, calculated from the mean annual air temperature at Pittsburgh, 52.7°; the difference from 525 to 5,380 feet is 1° in about 69 feet.

Mr. C. E. Van Orstrand² found that the temperature was 142° at a depth of 6,100 feet. With a temperature of about 55° at 100 feet the rate of increase is 1° in about 70 feet.

PITTSBURGH.

An 1,826-foot hole at the American Iron & Steel Works in the 24th ward in Pittsburgh found a strong flow of water at 1,535 to 1,606 feet with a temperature of 68° ,³ which indicates a rate of 1° in about 100 feet. The water was somewhat gassy.

HOMEWOOD.

In the Dillworth well at Homewood a series of six tests was made with the following results:⁴

Depth (feet).	Tempera- ture (°F.).	Depth per degree of increase in tem- perature (feet).
$\begin{array}{r} 3,600\\ 3,710\\ 3,920\\ 4,002\\ 4,215\\ 4,295 \end{array}$	96 89 102 108 111 114	83 79½ 72½ 72 72 72 70

Temperatures in Dillworth well, Homewood, Pa.

The tests were of only five to ten minutes duration, but exclusive of the reading at 3,710 feet, where the temperature was probably lowered by gas, the rate appears to be reasonable. The increasing rate downward is a peculiar feature.

72

¹ White, I. C., Petroleum and natural gas, etc.: West Virginia Geol. Survey Repts., vol. 1A, pp. 104-107, 1904.

² U. S. Geol. Survey Press Bull. 420, August, 1919.

³ Pennsylvania Geol. Survey Ann. Rept. for 1886, pt. 2, pp. 733-736, 1887.

⁴ British Assoc. Adv. Sci. Rept. 59th meeting, 1889, pp. 39-40.

GEOTHERMAL DATA OF THE UNITED STATES.

SOUTH CAROLINA.

TEMPERATURES.

Among the few records of temperatures of flows from deep wells in South Carolina the following appear to be reliable:

	-					
	Depth (feet).	Flow (gallons per min- ute).	Tem- per- ature (°F.).	Mean annual tem- per- ature (°F.).	Depth pcr degree of in- crease in tem- per- ature (feet).	
Charleston Čounty: Charleston: No. 1 No. 2 No. 3 Electric Co c Old well e Fort Moultrie f. Do Johns Island Colleton County: Greenpond	1, 308 1, 920 500 503	105 167 695 452 425 10 150 11 11	a 99. 5 99 99 99. 75 87 89 98 70 70	b 65. 6 65. 6	58 58 58 61 \$57 ¹ / ₂ 58 ¹ / ₂ 56 \$56 \$56 \$114 91 ¹ / ₂	Cased to bottom. Do. Do. Do. Cased to 1,869 fect. Cased to 1,820 feet. Cased to 1,900 feet. Source of flow not given. Do.
Jacksonboro Hampton County: Peeples	420 850	4 100	72 76	64. 5 64. 5	56 74	Do. Do.

Temperatures in wells in South Carolina.

a South Carolina resources, etc., State Board of Agriculture, p. 674, 1883.

a South Carolina resources, etc., State Duard of Agriculture, p. 014, 1000.
b Average for 46 years.
c Stephenson, L. W., A deep well at Charleston, S. C.: U. S. Geol. Survey Prof. Paper 90, p. 70, 1914.
Temperature by I. N. Knapp, engineer.
d Calculated to 1,971 feet.
e Am. Jour. Sci., 2d ser., vol. 47, p. 357, 1869.
f U. S. Geol. Survey Bull. 298, p. 265, 1906.
a Calculated to 1,820 feet.
e Yamassaa avaraa for 23 years.

· Yemassee average for 23 years.

SUMMARY.

As the Charleston wells are cased to or nearly to the bottom, presumably the others are also. The temperatures are probably reliable, especially those of the Charleston wells. The new well at the electric-light plant is cased to a depth of 1,869 feet, and the flow comes from a bed extending from 1,971 to 1,999 feet. The results of the Charleston and Fort Moultrie wells are fairly accordant and give an average rate of 1° in about 60 feet. It is possible that the lower rates indicated by the wells at Greenpond and Johns Island are due to ingress of water above the bottoms of the borings.

GEOLOGIC RELATIONS.

These wells all penetrate clays, sands, and gravels of the thick wedge of Tertiary and Cretaceous strata constituting the Coastal Plain. These strata dip very gently eastward and lie on an eastward sloping floor of old crystalline rocks. The Charleston wells reach the basal beds of the Black Creek formation, which is low in the Upper Cretaceous; the other holes in the list reach sands of Eocene age.

SOUTH DAKOTA.

TEMPERATURES.

In the course of detailed investigations of the geology and water resources of parts of South Dakota I and my associates have observed many underground temperatures, mainly of the flow of artesian Some carefully determined temperatures of representative wells. wells have been recorded by Sheppard,¹ and several tests were made by Nettleton.² Records of wells at Belle Fourche, Chevenne Agency, and Edgemont were obtained from correspondents. A large number of data were obtained by J. E. Todd ³ in field work for geologic folios and reports on the artesian area in Beadle, Brown, Edmunds, Faulk, Hand, and Spink counties, in the eastern part of the State. His observations were made with instruments that had been verified in Washington. No flow was tested unless it was believed to be of sufficient volume to give a closely approximate indication of the temperature at the bottom.

Location.	Depth of main flow (feet).	Flow (gallons per minute).	Temper- ature (° F.).	Mean annual temper- ature (°F.).	Depth per degree of in- crease in temper- ature (feet).
Aurora County:					
Plankington White Lake	740 850	225 150	a 62 a 64	b 45.5 b 45.5	44. 8 45. 9
Beadle County: Huron	960	2,250	70	¢ 43. 3	35. 9
Do Wolsey	836 858-878	360 330	65 a 76	43. 3 43. 3	38. 5 26. 2
SE. 4 sec. 8, T. 113, R. 65	950 971		d 70.6 d 71.5	e 43 43.3	34. 4 34. 1
SE, ‡ sec. 11, T. 113, R. 65. NE, ‡ sec. 1, T. 113, R. 65. SW, ‡ sec. 14, T. 113, R. 65.	950 955		d 71.5 d 72.5	43.3 43.3	33. 3 32. 4
SW. ½ sec. 30, T. 113, R. 64 SW. ½ sec. 28, T. 113, R. 64	980 880	20	d 71.5 d 75	43.3 43.3	34.4 27.5
NE. ‡ sec. 11, T. 113, R. 64 NE. ‡ sec. 21, T. 113, R. 63	925+	200	d 71.5 d 66	43.3 43.3	32.5 34.8
T. 113, R. 63. NE. ½ sec. 23, T. 113, R. 63	988	30	d 67.5 d 67.7	43.3	40.3 34.8
SW. 4 sec. 31, T. 113, R. 62. NE. 4 sec. 19, T. 113, R. 61.	815	120 50	d 64.4 d 48	43.3 43.3	38.1 29.6
SE, 4 sec. 5, T. 113, R. 61. SW. 4 sec. 9, T. 113, R. 60.	766	25	d 62.5 d 63.3	43.3 43.3	29.0 39.3 40
T. 112, R. 65. NE. 4 sec. 14, T. 112, R. 63.	1.005	40	d 77.2	43.3	29.6
NW. $\frac{1}{2}$ sec. 7, T . 112, R . 62.	793		d 58.3 d 66.7	43. 3 43. 3	40 33
a Nettleton observer			1.		

Temperatures in wells in South Dakota.

a Nettleton, observer. • Mitchell average for 23 years. • Average from 1882 to 1908. It is 42.1° from 1882 to 1915 or 0.4° colder than Redfield, 35 miles farther south. d J. E. Todd, observer. e Redfield average plus 0.1°.

¹ Sheppard, J. H., South Dakota Agr. College Bull. 41, 35 pp., 1894.

² Nettleton, E. S., Artesian and underflow investigations: 52d Cong., 1st sess., S. Ex. Doc. 41, pt. 4, 1893. ³ U. S. Geol. Survey Geol. Atlas, folios 96, 97, 99, 113, 114, 156, 165; Geology and water resources of part of the lower James River valley: U. S. Geol. Survey Water-Supply Paper 90, 47 pp., 23 pls., 1904.

Location.	Depth of main flow (feet).	Flow (gallons per minute).	Temper- ature (° F.).	Mean annual temper- ature (° F.).	Depth per degree of in- crease in temper- ature (feet).
Beadle County—Continued. SW. 1 soc. 2, T. 112, R. 62. Centor soc. 13, T. 112, R. 63. SW. 1 soc. 7, T. 112, R. 61. NE. 4 soc. 7, T. 112, R. 61. Hitchcock D0 Bonhomme County:	774 825 704 764 950 953	40 	a 65 a 66. 7 a 63. 8 a 62. 8 b 71. 5 70. 1		35.6 35.2 34.3 39.1 33.6 31.8
Tyndall. Do	015	700 700 3,290	b 62.6 d 62 d 65 d 60 d 61 d 62 d 62 d 62 d 62 d 62	c 47.3 e 47.3 47	53.3 55.4 29.4
Brown County: Frederick	1,045-1,1391,000927-964 $840-942$	135 940 150 400 120 25 105 105 105 105 105 105 105 105 105 10	2 9 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	$ \begin{array}{c} f \ 41 \\ o \ 41. \ 5 \\ h \ 41. \ 6 \\ 42 \\ f \ 41. \ 9 \\ 41. \ 9 \\ 41. \ 9 \\ 41. \ 9 \\ 41. \ 9 \\ 41. \ 9 \\ 41. \ 9 \\ 41. \ 9 \\ 41. \ 9 \\ 41. \ 9 \\ 41. \ 9 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ 42 \\ $	$\begin{array}{c} 37.3\\ 40.5\\ 43.3\\ 40.0\\ 43.1\\ 44.7\\ 43.3\\ 45.2\\ 42.4\\ 43.3\\ 45.2\\ 44.4\\ 43.3\\ 44.2\\ 44.4\\ 48.6\\ 542.3\\ 36\\ 28.7\\ 30.\\ 41.4\\ 42.9\\ 40.7\\ 42\\ 936.9\\ 33.8\\ \end{array}$
Chamberlain. Do Kimball Chamberlain, 25 miles southeast of. NW. ½ sec. 30, T. 101, R. 68. Buffalo County:	585-600 785 988-1,068 851-937 800,900	4,000 530 185 1,000 80	6 71.6 74 66.9 6 70 80	45 45 44 n 45. 5 45. 5	22 27 43. 2 34. 7 23. 2
Crow Creek	760-780	Many.	72	45	28.1
Belle Fourche Do Orman	515 323 1,417	100 Many, 600	o 54 o 48 P 94	44 45. 5 45. 5	51, 5 80, 6 28 3
 a J. E. Todd, observer. b J. H. Sheppard, observe. c Average for 20 years. d E. S. Nettleton, observe. e Yankton average plus 0. f Aberdeen average minus k Aberdeen average minus k Aberdeen average minus k Aberdeen average plus 0. f Mean for 27 years. k Aberdeen average plus 0. f Doubtful. m Aberdeen average plus 0. k Aperdeen average plus 0. g Constrainted. f. A. Durst, observer. g U. S. Geol. Survey Wate 	r. 5°. years minus (8 0.4°. 5 0.3°.).1°. .1°. .1°.		۰ 7 , 1909.		

Location.	Depth of main flow (feet).	Flow (gallons per minute).	Temper- ature (° F.).	Mean annual temper- ature (° F.).	Depth per degree of in- crease in temper- ature (feet).
Charles Mix County: Greenwood Lake Andes Do Sec. 17, T. 98, R. 66 Sec. 33, T. 99; R. 66 Custer County: Buffalo Gan	725-773 802 860 840	3,000 1,500 Many. Many. 20	70 70 70 70 70	48.9 46 46 a 45 45	30. 9 30. 2 33. 4 34. 4 33. 6
Buffalo Gap. Davison County: Mitchell. Sec. 3, T. 101, R. 62. Sec. 35, T. 104, R. 60. Day County: Andover. Dewey County: Cheyenne Agency.		No flow. 600 40 300	b.65½ d 56 f 56 56 h 71.6	c 45 e 45.5 g 45.5 e 45.5 e 45.5 a 42 b	37 50, 5 54, 8 48, 3 39, 3
Armour	696-757	500 1,500	79 ħ 68.3 65	i 43. 8 i 46. 4 46. 4	35. 1 31. 8 37. 8
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 1,265\\ 1,195\\ 1,125\\ 1,125\\ 1,135\\ 1,140-1,160\\ 1,135\\ 1,140-1,160\\ 1,073\\ 1,073\\ 1,07-1,000\\ 1,050-1,000\\ 1,050-1,060\\ 1,030\\ 1,025-1,070\\ 1,080\\ 1,025-1,070\\ 1,080\\ 1,030-1,060\\ 1,030\\ 1,030\\ 1,030\\ 1,030\\ 1,030\\ 1,030\\ 1,007-1,045\\ 1,050\\ 1,060\\ 1,030\\ 1,000\\ 1,000\\ 1,000\\ 1,000\\ 1,000\\ 1,000\\ 1,000\\ 1,000\\ 1,000\\ 2,920-2,965\end{array}$	Many. 97	h 71. 6 73 f 70.5 f 63 f 69 f 69 f 69 f 69 f 69 f 69 f 69 f 69	$\begin{array}{c} k \\ 422 \\ 422 \\ 422 \\ 422 \\ 2$	$\begin{smallmatrix} & 42.7 \\ & 39.8 \\ & 54.8 \\ & 54.8 \\ & 44.2 \\ & 41.6 \\ & 44.4 \\ & 41.8 \\ & 46.2 \\ & 38.5 \\ & 46.2 \\ & 38.5 \\ & 43.5 \\ & 44.5 \\ & 53.8 \\ & 45.5 \\ & 43.7 \\ & 45.1 \\ & 41.9 \\ & 42.9 \\ & 45.8 \\ & 50.2 \\ & 43.7 \\ & 45.1 \\ & 41.4 \\ & 44.4 \\ & 39 \\ \end{smallmatrix}$
Faulk County: SE. 4 sec. 13, T. 120, R. 63. NE. 4 sec. 19, T. 120, R. 67. SE. 4 sec. 21, T. 120, R. 67. SW. 4 sec. 17, T. 120, R. 67. SE. 5 sec. 24, T. 120, R. 67. NW. 4 sec. 24, T. 120, R. 67. NW. 4 sec. 24, T. 120, R. 66. SW. 4 sec. 27, T. 120, R. 66. NW. 4 sec. 27, T. 120, R. 66. NE. 4 sec. 26, T. 120, R. 66. NE. 4 sec. 26, T. 120, R. 66.	$1, 125 \\ 1, 140 \\ 1, 040 \pm \\ 1, 085-1, 120 \\ 1, 050 \\ 1, 038 \\ 1, 066 \\ 1, 001 \\ 965 \\ 965$	25 Many. Many. Many. 35 100 65 Many.	$ \begin{array}{c} f \ 66 \\ f \ 68 \\ f \ 67 \\ f \ 66 \\ f \ 69.5 \\ f \ 67+ \\ f \ 67.5 \\ f \ 66.3 \\ f \ 65.5 \end{array} $	q 42.7 q 42.7	48. 2 45 42. 8 46. 5 39. 1 42. 7 42. 9 42. 4 42. 3
 ^a Approximated. ^b N. H. Darton, observer, with dee ^c Oelrichs average for 25 years min ^d E. S. Nettleton, observer. ^e Average for 23 years. ^f J. E. Todd, observer. ^g Mitchell average plus 6.2°. ^k J. H. Sheppard, observer. ⁱ Pierre average for 26 years minus ^f Average for 22 years. ^k Bowdle average for 14 years minu 	ep-well therm us 0.2°. 1.7°.	ometer.			

A Verage for 22 years.
& Bowdle average for 14 years minus 0.2°.
I Flow from 1,195 feet.
m Bowdle average.
m Bowdle average minus 0.2°
o Taken by engineer with Darton thermometer; varied from 121° to 122°.
P Oelrichs average, minus 0.2°.
g Faulkton average for 22 years minus 0.2°.

		·			
Location.	Depth of main flow (feet).	Flow (gallons per mirute).	Temper- ature (°F.).	Mean annual temper- ature (° F.).	Depth per degree of in- crease in temper- ature (feet).
Faulk County—Continued. SW + sec. 1, T. 119, R. 67. SW + sec. 1, T. 119, R. 67. SW + sec. 13, T. 119, R. 67. SW + sec. 17, T. 119, R. 67. SW + sec. 17, T. 119, R. 67. SW + sec. 17, T. 119, R. 67. SW + sec. 21, T. 119, R. 67. SW + sec. 21, T. 119, R. 67. SW + sec. 21, T. 119, R. 67. SW + sec. 25, T. 119, R. 67. SW + sec. 25, T. 119, R. 67. SW + sec. 26, T. 119, R. 67. SW + sec. 30, T. 119, R. 67. NE + sec. 30, T. 119, R. 66. NW + sec. 20, T. 119, R. 66. NW + sec. 23, T. 119, R. 66. NW + sec. 20, T. 119, R. 66. SE + sec. 24, T. 118, R. 66. SE + sec. 23, T. 118, R. 67. NW + sec. 20, T. 118, R. 67. NW + sec. 26, T. 118, R. 67. NW + sec. 27, T. 118, R. 67. SW + sec. 13, T. 118, R. 67. SW + sec. 15, T. 118, R. 67. SW + sec. 15, T. 118, R. 67. SW + sec. 31, T. 117, T. 68. Miranda. Center of sec. 31, T. 117, R. 67. SW + sec. 31, T. 117, R. 66. SW + sec. 31, T. 117, R. 66. SW + sec. 31, T. 117, R. 66. </td <td>1,095 1,030 1,010 913 1,085 1,215 1,215</td> <td>Many. Many. Many. Many. 20 50± 50 50 50 50 50 50 50 50 50 50 50 50 50</td> <td>$\begin{array}{c} a \ 69 \\ a \ 69 \ 5 \\ a \ 68 \\ a \ 71 \\ a \ 66 \\ a \ 69 \\ a \ 67 \\ a \ 66 \\ a \ 67 \\ a \ 66 \\ a \ 67 \\ a \ 66 \\ a \ 66 \\ a \ 67 \\ a \ 68 \\ a \ 69 \\ a \ 69 \\ a \ 69 \\ a \ 68 \\ a$</td> <td>$\begin{array}{c} b \ 42.8 \\ c \ 43.8 \\ c \$</td> <td>$\begin{array}{c} 37. 4\\ 39. 3\\ 42. 1\\ 44. 5\\ 42. 7\\ 47. 3\\ 44. 3\\ 39. 3\\ 31\\ 31\\ 30. 3\\ 41\\ 30. 3\\ 41\\ 30. 2\\ 42. 4\\ 33. 41\\ 32. 6\\ 42. 4\\ 33. 41\\ 42. 4\\ 33. 7\\ 338. 42. 4\\ 43. 3\\ 40. 1\\ 38. 3\\ 42. 4\\ 38. 7\\ 38. 3\\ 40. 1\\ 38. 3\\ 42. 4\\ 38. 7\\ 38. 3\\ 42. 4\\ 38. 3\\ 38. 5\\$</td>	1,095 1,030 1,010 913 1,085 1,215 1,215	Many. Many. Many. Many. 20 50± 50 50 50 50 50 50 50 50 50 50 50 50 50	$\begin{array}{c} a \ 69 \\ a \ 69 \ 5 \\ a \ 68 \\ a \ 71 \\ a \ 66 \\ a \ 69 \\ a \ 67 \\ a \ 66 \\ a \ 67 \\ a \ 66 \\ a \ 67 \\ a \ 66 \\ a \ 66 \\ a \ 67 \\ a \ 68 \\ a \ 69 \\ a \ 69 \\ a \ 69 \\ a \ 68 \\ a$	$\begin{array}{c} b \ 42.8 \\ c \ 43.8 \\ c \ $	$\begin{array}{c} 37. 4\\ 39. 3\\ 42. 1\\ 44. 5\\ 42. 7\\ 47. 3\\ 44. 3\\ 39. 3\\ 31\\ 31\\ 30. 3\\ 41\\ 30. 3\\ 41\\ 30. 2\\ 42. 4\\ 33. 41\\ 32. 6\\ 42. 4\\ 33. 41\\ 42. 4\\ 33. 7\\ 338. 42. 4\\ 43. 3\\ 40. 1\\ 38. 3\\ 42. 4\\ 38. 7\\ 38. 3\\ 40. 1\\ 38. 3\\ 42. 4\\ 38. 7\\ 38. 3\\ 42. 4\\ 38. 3\\ 38. 5\\ $
Gregory County: Fort Randall Hand County: Miller Do Do NE, ± sec. 10, T. 116, R. 66 NE, ± sec. 22, T. 115, R. 68. SE, ± sec. 22, T. 115, R. 68. SE, ± sec. 22, T. 114, R. 66 NE, ± sec. 22, T. 113, R. 66 SE, ± sec. 3, T. 113, R. 66 SE, ± sec. 3, T. 113, R. 66 NW, ± sec. 22, T. 113, R. 66 NW, ± sec. 22, T. 113, R. 67 NW, ± sec. 31, T. 113, R. 67 SE, ± sec. 5, T. 112, R. 67 SE, ± sec. 4, T. 112, R. 67 SE, ± sec. 4, T. 112, R. 67 NW, ± sec. 4, T. 112, R. 67 NE, ± sec. 4, T. 112, R. 67 SE, ± sec. 4, T. 112, R. 67 NE, ± sec. 4, T. 112, R. 67 SE, ± sec. 4, T. 112, R. 67 SE, ± sec. 4, T. 112, R. 67 NE, ± sec. 4, T. 112, R. 67 NE, ± sec. 4, T. 112, R. 67 SE, ± sec. 4, T. 112, R. 67 NE, ± sec. 4, T. 112, R. 67 NE, ± sec. 4, T. 112, R. 67 SE, ± sec. 4, T. 112, R. 67 NE, ± sec. 4, t. 112,	$\begin{array}{c} 1, 115-1, 139\\ 1, 105\\ 1, 100\\ 1, 100\\ 951\\ 1, 165\\ 955\\ 880\\ 1, 040\\ 1, 085\\ 1, 008\\ 1, 105\\ 1, 109-1, 129\\ 967\\ 1, 099-1, 133\\ 1, 105\\ 1, 165\\ .\\ 892\\ \end{array}$	300	c79.8-f78 a 76 a 78.9 a 78.5 a 78.5 a 74.5 a 74.5 a 74.5 a 74.5 a 78.9 a 71.5 a 78.5 a 78.5 a 78.5 a 78.5 a 78.5 a 78.5 a 78.5 a 78.9 a 76.6 a 75.7 a 89 c 91.8 c 94.9	g 44.0 g 44.0 g 44.0 g 44.0 g 44.0 h 43.1 h 43.1 h 43.3 j 43.8 j 43.8 j 43.8 j 43.8 j 43.8 k 43.8 h 44.0 h 44.0 h 44.0 h 44.5 5 45.5	31.2 34.6 31.5 31.9 33.8 31.8 33.9 34.2 34.2 34.2 34.4 36.4 31.7 31.6 31.7 31.6 31.7 31.6 31.7 28.4 27.9 28.4
 J. E. Todd, observer. Faulkton average for 22 years minus 0.1°. J. H. Sheppard, observer. A verage for 22 years. Faulkton average plus 0.1°. J. E. S. Nettleton, observer. Highmore average for 26 years minus 0.6°. 	h Howe Howe Howe Howe Other	lavaraga	plus 0.4°. plus 0.7°. 0 and 1,185		a g a s.

1

Ś

-					
Location.	Depth of main flow (feet).	Flow (gallons per minute).	Temper- ature (° F.).	Mean annual temper- ature (° F.).	Depth per degree of in- crease in temper- ature (feet).
Hutchinson County: Tripp	824	700	63	a 46	48.5
Hyde County: Highmore	$\left\{ \begin{array}{c} 1,537-\\ 1,552 \end{array} \right.$	} 14	72	b 44.6	56
Jerauld County: Alpena City well	749, 785	500	75.0 de 71.4	c 42.3	22.9 29.2
Jerauld County: Alpena City well Kingsbury County: Iroquois Lyman County: Kennebec	855 1,301	1,000	96±	f 42.1 g 45.5	25.8
Marshall County: Britton	$\begin{cases} 967-1,000 \end{cases}$	600	ħ 64	\$41.4	43.2
Sanborn County: Letcher	577	80	h 58	144.6	43.1
Woonsocket, mill.	∫ 684—	$\{1, 150\}$	a 61.5	k 44.4	40
	$\left. \begin{array}{c} 725\\ 689- \end{array} \right.$	{ 1,100			
Woonsocket, Hines	1 742	} 185	h 65	44.4	34.3 31.7
SE. 1 sec. 33, T. 105, R. 60 Spink County:	425	165	58	j 44.6	
South center of sec. 6, T. 120, R. 65 NE. $\frac{1}{5}$ sec. 7, T. 120, R. 64. North center of sec. 29, T. 120, R. 64. SW. $\frac{1}{5}$ sec. 30, T. 120, R. 63. SW. $\frac{1}{5}$ sec. 30, T. 120, R. 63.	990 948	278 100	165.5 165.7	m 43.4 43.4	44.8
North center of sec. 29, T. 120, R. 64	912	84	164.5	43.4	43.2
SW. 4 Sec. 30, T. 120, R. 63 SW. 4 sec. 32, T. 120, R. 63	908 920	180	$n 70 \\ n 65.5$	43.4	34.1 41.6
NW. 4 Sec. 32, 1 120, R. 63. NW. 4 Sec. 27, T. 120, R. 63. NW. 4 Sec. 27, T. 120, R. 63. NW. 4 Sec. 3, T. 120, R. 63. SE. 4 Sec. 1, T. 120, R. 63. SW. 4 Sec. 13, T. 120, R. 63.	960		n 67	43.4	40.7
NW. 1 sec. 3, T. 120, R. 63.	·913 904		$n 66 \\ n 64$	43.4 43.4	40.4 43.9
SE. 1 sec. 1, T. 120, R. 63.	842		n 65	43.4	39
SW. 1 sec. 13, T. 120, R. 63 Sec. 13, T. 120, B. 63	920 900		$n 67 \\ n 64$	43.4 43.4	38.9 43.7
SW. 1 sec. 14, T. 120, R. 62	925		n 67.5	43.4	38.4
SE. 1 Sec. 14, T. 120, R. 62.	914 914		$n 68 \\ n 68$	43.4 43.4	37.1 37.1
NE. 4 sec. 9, T. 120, R. 61	900	40	n 68.2	43.4	36.3
SW. 1 sec. 15, T. 120, R. 61	880 884		n 66.5 n 66	43.4 43.4	38.1 39.1
$\begin{array}{l} & \text{SW} \ \frac{1}{2} \ \sec (13, \ T, 120, \ R, 63, \\ & \text{Sec. 13, } T, 120, \ R, 63, \\ & \text{SW} \ \frac{1}{2} \ \sec (14, \ T, 120, \ R, 62, \\ & \text{SW} \ \frac{1}{2} \ \sec (14, \ T, 120, \ R, 62, \\ & \text{SW} \ \frac{1}{2} \ \sec (13, \ T, 120, \ R, 62, \\ & \text{SW} \ \frac{1}{2} \ \sec (15, \ T, 120, \ R, 61, \\ & \text{SW} \ \frac{1}{2} \ \sec (23, \ T, 120, \ R, 61, \\ & \text{SW} \ \frac{1}{2} \ \sec (23, \ T, 120, \ R, 61, \\ & \text{NE} \ \frac{1}{2} \ \sec (23, \ T, 120, \ R, 61, \\ & \text{NE} \ \frac{1}{2} \ \sec (23, \ T, 120, \ R, 61, \\ & \text{NE} \ \frac{1}{2} \ \sec (23, \ T, 120, \ R, 61, \\ & \text{NE} \ \frac{1}{2} \ \sec (23, \ T, 120, \ R, 61, \\ & \text{NW} \ \frac{1}{2} \ \sec (23, \ T, 120, \ R, 61, \\ & \text{NW} \ \frac{1}{2} \ \sec (23, \ T, 120, \ R, 61, \\ & \text{NW} \ \frac{1}{2} \ \sec (23, \ T, 120, \ R, 61, \\ & \text{NW} \ \frac{1}{2} \ \sec (23, \ T, 120, \ R, 61, \\ & \text{NW} \ \frac{1}{2} \ \sec (23, \ T, 120, \ R, 61, \\ & \text{NW} \ \frac{1}{2} \ \sec (23, \ T, 120, \ R, 60, \\ & \text{NW} \ \frac{1}{2} \ \sec (25, \ T, 119, \ R, 62, \\ & \text{SW} \ \frac{1}{2} \ \sec (25, \ T, 119, \ R, 63, \\ & \text{NE} \ \frac{1}{2} \ \sec (25, \ T, 119, \ R, 63, \\ & \text{NE} \ \frac{1}{2} \ \e (25, \ T, 119, \ R, 63, \\ & \text{NE} \ \frac{1}{2} \ \e (25, \ T, 119, \ R, 63, \\ & \text{NE} \ \frac{1}{2} \ \e (25, \ T, 119, \ R, 63, \\ & \text{NE} \ \frac{1}{2} \ \e (25, \ T, 119, \ R, 63, \\ & \text{NE} \ \frac{1}{2} \ \e (25, \ T, 119, \ R, 63, \\ & \text{NE} \ \frac{1}{2} \ \e (25, \ T, 119, \ R, 63, \\ & \text{NE} \ \frac{1}{2} \ \e (25, \ T, 119, \ R, 63, \\ & \text{NE} \ \\frac{1}{2} \ \e (25, \ T, 119, \ R, 63, \\ & \text{NE} \ \\frac{1}{2} \ \1$	980		n 68	43.4	39.1
NE. 1 sec. 34, T. 120, R. 61	900		n 65	43.4	41.6
N W. $\frac{1}{2}$ sec. 28, T. 120, R. 60	1,000 912	Many. 40	$n 69 \\ n 66$	43.4 43.4	39 40.3
SW. 4 sec. 25, T. 119, R. 62	907		n 66	43.4	40.1
NE 4 sec. 15, T. 119, R. 63. SE, 4 sec. 28, T. 119, R. 63. NW, 4 sec. 32, T. 119, R. 64. SE, 4 sec. 3, T. 119, R. 64.	948 925	45	n 67.5 n 65	43.4 43.4	39.3 42.8
NW. 1 sec. 32, T. 119, R. 64.	842		n 64	43.4	46
SE. 1 sec. 3, T. 119, R. 60	1,000	Many.	n 68	43.4	40.6
Mellette Brown well	920 925	1,320	e 65 e 65	o 43.4 43.4	42.6 42.8
Baker well	920		e 65	43.4	42.6
Day well	915 930	····	e 65 e 65	43.4 43.4	42.3 43
NE. ¹ / ₄ sec. 31, T. 119, R. 61	964	60	n 67.5	43.4	40
SE. 4 sec. 29, T. 119, R. 61	896 1,000		n 68.0 n 68.5	43.4 43.4	36.4 40
SW. 1 sec. 30, T. 118, R. 65	939		n 64.0	43.4	40
Day well. Bird well. NE <u>4</u> sec. 31, T. 119, R. 61. SE <u>4</u> sec. 29, T. 119, R. 61. SE <u>4</u> sec. 29, T. 119, R. 61. SW <u>4</u> sec. 3, T. 119, R. 65. SW <u>4</u> sec. 18, T. 118, R. 65. SW <u>4</u> sec. 3, T. 118, R. 65. SW <u>5</u> sec. 10, T. 118, R. 65.	940	80	n 67.5	43.4	39
SW. 1 sec. 10, T. 118, R. 65.	$927 \\ 1,032$		n 63.0 n 67	43.4 43.4	47.2 43.7
NE. 4 sec. 32, T. 118, R. 64	960	160	n 64.4	43.4	45.7
SW. 4 sec. 10, T. 118, R. 63	895 930		n 62.5 n 65.0	43.4 43.4	46.8 43
NE 1 sec. 10, 1, 118, R. 64. SW 1 sec. 10, T. 118, R. 65. SE 1 sec. 11, T. 118, R. 65. NE 4 sec. 11, T. 118, R. 65.	893		n 62	43.4	48
Norroville	980 954	1,900	d 66.1 n 64	43.4 43.4	43.1
SW. 2 sec. 24, T. 118, R. 63 NE. 2 sec. 30, T. 118, R. 63	954 976	200	n 69	43.4	46.3 38.1
Center of sec. 2, T. 118, R. 62	920	25	n 67	43.4	39
Turton	850 943	1,300 25	$n 67 \\ n 68$	43.4 43.4	36 38.3
NW. 1 sec. 10, T. 118, R. 60.	986	35	n 64.5	43.4	46.7
SW. 3 sec. 35, T. 117, R. 65	985 967	65	n 68.5 n 67.7	43. 4 43. 4	39. 2 39. 8
NW. 1 sec. 15, T. 118, R. 60. NW. 1 sec. 10, T. 118, R. 60. NE. 2 sec. 26, T. 118, R. 60. SW. 3 sec. 35, T. 117, R. 65. SW. 4 sec. 20, T. 117, R. 64. NE. 4 sec. 29, T. 117, R. 64.	955		n 66.7	43.4	41
NE. 2 Sec. 29, T. 117, R. 64	951	 	n 66.7		40.8
a Menno average for 26 years minus 0.5°. ^b Average for 26 years; flow small.		Aberdeen a Forestburg	verage mi	nus 0.5°. lus 0.2°	
c Huron average plus 0.2°.	k	Forestburg Forestburg Other flows	average lo	or 25 years.	
c Huron average plus 0.2°. d J. H. Sheppard, observer. e E. S. Nettleton gives 72.0°.	1	Other flows	51,140 and	1,185 feet;	much gas.
f Huron average.	7	Mellette a J. E. Todd	observer.	3 00101	

78

J. E. Todd, observer.
Average for 22 years.

f Huron average. g Average for 16 years. h E. S. Nettleton, observer.

Location.	Depth of main flow (feet).	Flow (gallons per minute).	Temper- ature (° F.).	Mean annual temper- ature (°F.).	Depth per degree of in- crease in temper- ature (feet).
SW. ½ sec. 31, T. 117, R. 63 East center of sec. 7, T. 117, R. 63 NW. ½ sec. 32, T. 117, R. 61 Doland NW. ½ sec. 33, T. 116, R. 62 SE, ½ sec. 27, T. 117, R. 61 Doland NW. ½ sec. 33, T. 116, R. 65 SE, ½ sec. 33, T. 116, R. 65 Redfield Redfield, south end Redfield, south end Redfield NW. ½ sec. 31, T. 116, R. 64 NW. ½ sec. 37, T. 116, R. 64 NW. ½ sec. 37, T. 116, R. 64 SE ½ sec. 9, T. 116, R. 64 SW. ½ sec. 4, T. 116, R. 64 SW. ½ sec. 4, T. 116, R. 64 SW. ½ sec. 4, T. 116, R. 64 SW. ½ sec. 10, T. 115, R. 64 SW. ½ sec. 37, T. 115, R. 64 SW. ½ sec. 37, T. 115, R. 61 NW. ½ sec. 29, T. 115, R. 61 NW. ½ sec. 27, T. 115, R. 61 NW. ½ sec. 27, T. 115, R. 61 NW. ½ sec. 37, T. 115, R. 60 SW. ½ sec. 9, T. 115, R. 60 SW. ½ sec. 20, T. 114, R. 61 NW. ½ sec. 20, T. 114, R. 61 NW. ½ sec. 20, T. 114, R. 61 SW. ½ sec. 27, T. 114, R. 61 SW. ½ sec. 27, T. 114, R. 61	949 912 851 900 880 915 915 942 930 935 867 935 867 938 936	45 300 110 370 120 1,260 	a 66.7 a 68.74 a 66.72 a 662.2 a 662.2 a 662.2 a 666.71 a 662.2 a 667.1 a 70.174 a 666.72 a 662.22 a 662.2	$\begin{array}{c} b \ 42. \ 9 \\ 42. \$	$\begin{array}{c} 36.4\\ 37.3\\ 37.7\\ 46.6\\ 34.2\\ 37.4\\ 35.4\\ 33.8\\ 32.8\\ 32.8\\ 44.1\\ 33.8\\ 32.8\\ 44.1\\ 42.3\\ 44.5\\ 40.5\\ 40.5\\ 46.7\\ 41.7\\ 41.5\\ 38.5\\ 51.2\\ 43.3\\ 45.6\\ 33.6\\$
east of <i>J</i>	2,500	No.	$153\frac{1}{2}$	g 46. 9	23.5
Yankton County: <i>k</i> Yankton Do Yankton Asylum. Yankton cement works. Sec. 12, T. 93, R. 56. Sec. 11, T. 93, R. 56. Sec. 19, T. 93, R. 56.	489-595 432-455 610-615 600-672 450-500 375 380 400	$1,450 \\ 330 \\ 880 \\ 165 \\ 1,300 \\ 8 \\ 12 \\ 25$	i 62 i 60 i 62 i 64 i 64 a 60 a 60 a 60 a 60		31. 5 32 39. 3 34. 3 24. 3 27. 8 28. 2 29. 6

a J. E. Todd, observer.
b Redñeld average for 19 years.
c J. H. Sheppard, observer. Nettleton gives 64° for flows from both wells.
d Redñeld average plus 0.1°.
e Redñeld average.
f Darton thermometer sunk to bottom.
f Average at Cutimeat for 23 years.
h 51st Cong., 1st sess., S. Ex. Doc. 222, p. 115, 1890; Artesian and underflow investigation: 52d Cong., 1st sess., S. Ex. Doc. 41, pt. 2, p. 65, 1892.
i E. S. Nettleton, observer.

SUMMARY.

Of the 281 wells given in the above list all but 8 are in the region east of the Missouri. A large proportion of these are in Beadle, Brown, Faulk, Edmunds, Hand, and Spink counties, where many are close together. Records from representative wells in Aurora. Bon Homme, Buffalo, Charles Mix, Davison, Dav, Douglas, Gregory, Hughes, Hutchinson, Hyde, Jerauld, Kingsbury, Marshall, Sanborn, and Yankton counties indicate the geothermal gradient in an area of wide extent. The deep artesian wells at Cheyenne Agency, with a rate of increase of 1° in about 35 feet; at the head of Oak Creek, northeast of Rosebud, with a rate of 1° in 23½ feet; and at Kennebec, with a rate of 1° in nearly 26 feet, extend the area. The flow from the Highmore well is too small to give a reliable indication of the temperature of the water at the source of the flow. In Plate I are shown the principal data for the eastern part of the State. The figures indicate feet to the degree of increase in representative wells. The lines connect wells of the same rates for 20, 25, 30, 35, 40, 45, and 50 feet to the degree and delimit the zones of intermediate rates. They are not isogeotherms, but if the well temperatures were calculated to some uniform depth, such as 500 to 1,000 feet, and these connected by isogeothermal lines, these lines would be parallel to the rate lines on the map.

In general, it will be seen from Plate I that the rate is nearly uniform in groups of wells, but it varies from place to place with most remarkable regularity. In the James River valley from Ashton to Aberdeen it is 1° in 40 to 45 feet. To the west and to the south through Redfield and in the east-central part of Beadle County it is 1° in less than 35 to 40 feet. At Wolsey and Alpena it is 1° in about 23 feet, and at Pierre, Crow Creek, and Chamberlain it is 1° in This zone of high rates extends down the Missouri less than 30 feet. Valley through Springfield and Yankton counties, S. Dak., and the northern part of Boyd, Knox, Cedar, and Dixon counties, Nebr. At Fort Randall the rate reaches a maximum of 1° in 17¹/₂ feet. The rate decreases rapidly to the north and east, as shown by scattered wells in Brule, Aurora, Davison, Douglas, Hutchinson, Sanborn, and Bon Homme counties. The rapid change from Springfield to Tyndall and the regular but less rapid diminution from Alpena to Mitchell are notable features in the "cooler" area.

The records in the western part of the State are diverse. The flow from a 515-foot well near Belle Fourche had a temperature of 54° , indicating a rate of 1° in $51\frac{1}{2}$ feet, but a flow at 323 feet gave a less rate. The flow from the Orman well, 1,417 feet deep, with a temperature of 94° , indicated a rate of 1° in 28.3 feet, and the large flow from the 2,985-foot well at Edgemont indicated a rate of 1° in

BULLETIN 701 PLATE I

Showing relation of configuration of bedrock floor under the artesian basin to rates of increase of underground temperature in deep wells.

EXPLANATION

Underground contours (Under artesian basin) Contour interval 100 ft., broken line approximate

Temperature curves Figures show depth in feet per degree of increase in temperature as indicated by flows of representative deep wells. 39 feet, or nearly the same as the rate indicated by the record of a thermometer I sunk in an old 725-foot hole at Buffalo Gap, 30 miles. northeast of Edgemont

EOLOGIC RELATIONS.

J

Except the Edgewells. which mont draw from Cambrian sandstone, the many wells given on the list draw from the Dakota and associated sandstones. In the western part of the State these sandstones overlie South Dakota. 1, Section from west to east; "Red Beds" and Я. thick succession of Paleozoic limestones and sandstones, but east of the Missouri they lie directly on pre-Cambrian granite or quartzite. They are overlain by shale of Upper Cretaceous age, which is 1,000 feet or more thick to the 2, section from north to south north but less to the south and along Missouri River from Chamberlain to Yank-The strata are ton. not flexed and present a gentle down slope to the west over a wide area. The sections in figure 3 show the relations.

On Plate I are shown the principal features sition is well known

of configuration of the granite and quartzite bedrock floor on which the water-bearing beds lie. This floor has been reached by numerous holes, so that its poat many localities. A more detailed 137163°-20-Bull, 701-6

81

representation of it and the data used in constructing the map are set forth in my report on the geology of South Dakota.¹

TENNESSEE.

Only two well temperatures that appear to throw light on the geothermal gradient have been reported from Tennessee. One is at Covington, where, according to Glenn,² the railroad well, 533 feet deep, has water within 31 feet of the surface, with a temperature of 66°. As the mean annual air temperature at this place is 60.1°, a rate of increase of 1° in 90 feet is indicated. The water is in coarse sand under clay in the young deposits of the Mississippi embayment.

r

TEXAS.

TEMPERATURES.

No special determinations of underground temperature have been made in deep holes in Texas, but there are numerous records of the temperature of waters from artesian wells. Some of these records are reliable, and a few of them indicate the depth from which the flow is derived. The data are given in the following They are derived partly from published reports and partly list. from replies to circulars. Some late observations have been made by Mr. C. E. Van Orstrand, but the results are not yet published.

Location.	Depth of main flow (feet).	Volume of flow (gallons per min- ute).	Tem- pera- ture (°F.).	Mean annual tem- pera- ture (°F.).	Depth per de- gree of increase in tem- pera- ture (feet).	Remarks.
Bell County: Temple, 1	1, 850	Many.	91	b 65.8	73 <u>1</u>	"Water from bottom."
mile west of.a Bexar County: San An- tonio, 2 miles south of.c	1,900	500	106	d 68.0	50	Sulphur water. Small flows at intervals below 1,535 feet, possibly not cased off.
Bosque County: Clifton, 3 miles north of.e	66 2 -	220	84	67.1	39	Water also at 182 and 610 feet, probably cased off.
Brazoria County: Surfside f	(?)	1	a 104	1		

Temperatures in deep wells in Texas.

a Hill, R. T., Geography and geology of the Black and Grand prairies, Tex.: U. S. Geol. Survey Twenty-first Ann. Rept., pt. 7, pp. 529-530, 1901.
b Average for 27 years.
c Hill, R. T., and Vaughan, T. W., Geology of the Edwards Plateau and Rio Grande Plain adjacent to Austin and San Antonio, Tex.: U. S. Geol. Survey Eighteenth Ann. Rept., pt. 22, pp. 294-297, 1897.
c Hill, R. T., op. cit., p. 490.
f Fenneman, N. M., Oil fields of Texas-Louisiana Gulf Coastal Plain: U. S. Geol. Survey Bull. 232, pp. 49 56, 1906.

49, 56, 1906. g Idem, p. 87.

¹ Darton, N. H., U. S. Geol. Survey Water-Supply Paper 227, pl. 10, pp. 33-40, 1909.

² Glenn, L. C., Underground waters of Tennessee and Kentucky west of Tennessee River and of adjacent area in Illinois: U. S. Geol. Survey Water-Supply Paper 164, p. 117, 1906.

82

Temperatures in deep wells in Texa	s-Continued.
------------------------------------	--------------

		-				· · · · · · · · · · · · · · · · · · ·
Location.	Depth of main flow (feet).	Volume of flow (gallons por min- ute).	Tem- pera- ture (°F.).	Mean annual tem- pera- ture (°F.)	Depth per de- gree of increase in tem- pera- ture (feet).	Rømarks.
Burleson County: Myers Bryan, 12 miles from Do Whittaker, 31 miles southeast of. b Denton County: Denton c El Paso County: Fort Bliss.	835 { 635 550 850	30 35 22 20 50	90 85 76 76 77 72	a 67.9 a 67.9 a 67.9 a 67.9 a 67.9 a 67.9 a 67.9	38 49 78 63 88 70	Gas escapes also.
El Paso County: Fort Bliss. Falls County:	403	Many.	76	d 62.9	31	Water rises within 130 feet of surface.
Marlin		150	147	f 67.2	415	Water sand at 3,310 to 3,330 feet.
Many other wells in county. Galveston County:	1,750-1,850	150-300	103	67.2	50	
Alta Loma, 30 wells Fairwood A High Island 4 Hitchcock 4	575	310 50 Many. 70	75-78 78.5 100+ 77	<i>g</i> 69.4 69.4 	101 63 	Water from 740 to 868 feet. Water from 575 feet. Strong brine; 7 wells. Water sand from 678 to 726
Hitchcock, 11 miles	710	100	77	69.4	93	feet. 16 pounds; water from 710
northwest of. Hitchcock, near Galveston, 28th and Church streets.k	768 810	· 45	78 83	69.4 69.4	89 60	feet. Water from 810 feet; brackish.
Galveston, 36th and Church streets. ^k	1,365	243	84			Water from 810 (probably) and 1.365 feet.
Galveston, 10 miles southwest of.k Do	827	37	80 83	70±	83 58	Two wélls; water from 827 feet.
Grimes County: Navasota 1.			80	m 68.1	70	Water also at 250 feet, probably cased off.
Hardin County: Batson ⁿ	1, 200	Many.	125	o 69.1	21냙	Oil well. Salt water from 1,200 feet.
Batson, Higgins No. 4	1,159	Many.	101	69.1	34	Water 970-985 feet. Salt water from sands 1,080 to 1,130 feet.
Saratoga, 3 miles west	958		100+	69.1	30	From 938 to 950 feet.
Sourlake	880+	Many.	100 ·	69.1	$27\frac{1}{2}$	Flow from 850 to 880 feet in a well drilling for oil.
Sourlake Harris County:	· 985		101	69.1	31	Saline flow at 985 feet from a well drilling for oil.
Cedar Bayou <i>q</i> Cedar Bayou, 3 miles northwest of.	727 410	5 30	76 76	r 68.9 68.9	101 86	•
Cedar Bayou		14	73	68.9	128	Water at 525 feet; also at 320 feet.
Harrisburg, 1 mile east of.	640 000	Flow.	72	68.9		Flow from?
Houston, Commerce and Fannin streets. Houston, Y. M. C. A	900 500	25 200	≉82 75	68.9 68.9	69 82	Water also at about 480 feet. Pumped. Water about 500 feet.
	1	J		J	1	Pumped.

Ð

a Average at College Station for 27 years.
b Taylor, T. U., Underground waters of Coastal Plain of Texas: U. S. Geol. Survey Water-Supply Paper 190, p. 60, 1907.
c Fifty-first Cong., 1st sess., S. Ex. Doc. 222, p. 264, 1890.
d El Paso average for 29 years.
e Hill, R. T., op. cit., p. 645.
f Mean annual temperature of Waco for 28 years plus 0.1°.
g Galveston average for 49 years.
a Deutssen, Alexander, Geology and underground waters of the southeastern part of the Texas Coastal Plain: U. S. Geol. Survey Water-Supply Paper 335, pp. 139-141, 1914.
f See Singley, J. A., Report on artesian wells of Gulf coastal slope, p. 102, Austin, June, 1893.
k Deutssen, Alexander, Geology and underground waters of the Southeastern part of the Texas Coastal Plain: U. S. Geol. Survey Water-Supply Paper 335, pp. 139-141, 1914.
f See Singley, J. A., Report on artesian wells of Gulf coastal slope, p. 102, Austin, June, 1893.
k Deutssen, Alexander, On eology and underground waters of the southeastern part of the Texas Coastal Plain: U. S. Geol. Survey Water-Supply Paper 335, pp. 139-141, 1914.
f See Singley, J. A., Report on artesian wells of Gulf coastal slope, p. 102, Austin, June, 1893.
k Deutssen, Alexander, On eit., pp. 157, 160, 164.
i Fifty-first Cong., 1st sess., S, Ex. Doc. 222, p. 341, 1890.
m College Station average for 16 years.
p Hayes, C. W., and Kennedy, William, Oil fields of Texas-Louisiana Gulf Coastal Plain: U. S. Geol. Survey Bull. 282, pp. 59-60, 1903. Also in Fenneman, N. M., op. cit., p. 47.
g Average for 16 years.
r Houston average for 27 years.
w Houston average for 27 years.
w Laye, G. Survey Water-Supply Paper 335, p. 230, 1914.

Location.	Depth of main flow (feet).	Volume of flow (gallons per min- ute).	Tem- pera- ture (°F.).	Mean annual tem- pera- ture (°F.).	Depth per de- gree of increase in tem- pera- ture (feet).	Remarks.
Hays County: San Marcos .	1,490	100	73	67.5	271	Small flow at 1,345 feet, probably cased off.
Jefferson County: Beaumont, 1 mile west	1,034	8	a 4	b 69.1	204	Flow from 1,000 feet;
of. Port Arthur	1,400±	Many.	a 80	69.1	128±	higher flows may mingle. Flows mineral water.
La Salle County: Cotulla c.	1,008	Many.	86	d 71	67	Source not known. Flow supposed to be from
Matagorda County: Big	722	Many.	99.6	e 70	$23\frac{1}{2}$	1,008 feet. Flow from 700–730 feet.
Hill. McLennan County: Bruceville	1, 565	150	95	f 67.1	56	Water at 500 feet probably cased off.
China Springs, 12 miles northwest of Waco.	1,380	Many.	102	67.1	37	Flows at 500, 600, 800, and 1,100 feet, probably cased off.
Hermosa, near Waco	1,730	150	103	67.1	48	Flows at 670 and 1,400 feet. (Hill.)
McGregor g	1,030	Many.	82 ,	67.1	69	Water also at 502 feet. (Hill.)
McGregor Waco:	991	350	82	67.1	$66\frac{1}{2}$	()
5 miles west of Moore's well h	1,470 1,852	350 Many.	90 103	67.1 67.1	64 51 1	Cased to 735 feet. First water at 1,000 feet. (Hill.)
11 wells of Water Co. <i>i</i>	1,828-1,860	Many.	103	67.1	51	Flows at 700-800 and 1,100 feet also.
	$1,607 \\ 1,812 \\ 1,820 \\ 1,860$	Many. Many. Many. Many.	97 100 102½ 103	$\begin{array}{c} 67.1 \\ 67.1 \\ 67.1 \\ 67.1 \\ 67.1 \end{array}$	53 1 55 51 52	Do. Do. Do. Flow from 1,800 to 1,815
	1,776 1,866	Many. Many.	103 103 1	67.1 67.1	491 51	feet. (Hill.) Sandstone, 1,760–1,861 feet.
Nacogdoches County: Na- cogdoches.	500	500	k 74	165.4	39 <u>1</u>	(Hill.) <i>j</i> Flow from 340–500 feet.
Navarro County: Corsicana No. 1 Corsicana No. 2	2, 483 2, 515	200 200	126 126	m 66 66	41 40	Flow at bottom. Water sand, 2,400 to 2,460 feet. ⁿ
Corsicana No. 3 Tarrant County:	2, 500	200	126	66	41 1	1000.0
Fort Worth	3, 250	Many.	o 126	p 65	18 <u>1</u>	Cased to main flow at 1,127 feet.
Marine, ½ mile northeast Travis County:	1, 200	54 5	78	65	74	Water from 960-1,000 feet.q
Austin Natatorium r	1,875	300	100	* 67. 4	t 51	Cased to 1,100 feet. Small flow at 1,215 feet; not cased off. Mainflow 1,875 feet from sandstone (1,675 to 1,875 feet).
Manor u	2,560	700	93	67.4	v 48 1	Water-bearing rock 1,250 to 1,400 feet.
Waller County: Hempstead Williamson County: Roundrock,	1,131 1,400	100 Many.	80 95	w 68.6 x 67.4	$\frac{97\frac{1}{2}}{51}$	Flow from 1,110 feet. Pumped.
Zavalla County: Carrizo Springs, 22 miles north.	910	Several.	v 90	z 72	40	Cased 720 feet to main flow.

Temperatures in deep wells in Texas-Continued.

a U. S. Geol. Survey Water-Supply Paper 335, p. 265, 1914. b Average for 16 years. c Rept. Special Comm. on Irrigation and Recla-mation of Arid Lands, U. S. Senate, vol. 4, p. 62, 1890. d Eagle Pass average for 40 years. c Galveston average plus 0.6°. f Waco average for 28 years. g Rossler, A. R., Report on preliminary investi-gation to determine proper location of artesian wells within the area of the 97th meridian and east of the foothills of the Rocky Mountains: 51st Cong., S. Ex. Doc. 222, p. 257, 1890. h 51st Cong., Ist sess., S. Ex. Doc. 222, p. 340, 1890. f Hill, R. T., op. cit., p. 108. f Idem, p. 542. k Average for 28 years. k Average for 18 years.

m Hill, R. T., op. cit., p. 311.
 n Hill, R. T., op. cit., p. 641.
 o Idem, p. 576.
 p Average for 22 years.
 q Hill, R. T., op. cit., p. 577.
 r U. S. Geol. Survey Eighteenth Ann. Rept., pt.

٦

C

r U. S. Geol. Survey Eighteenth Ann. Rept., pt. 2, p. 284.
s Average for 61 years.
t Calculated to 1,675 feet.
u U. S. Geol. Survey Eighteenth Ann. Rept., pt. 2, pp. 284-286, 1898; Twenty-first Ann. Rept., pt. 7, pp. 511-514, 1901; Water-Supply Paper 335, p. 355, 1914.
v Calculated to 1,250 feet.
w Houston average minus 0.3°.
x Anstin average.

x Austin average.
y Eagle Pass average plus 0.1°.
z U. S. Geol. Survey Bull. 298, p. 286, 1906.

SUMMARY.

It is difficult to judge the relative values of the Texas temperature Some may not be correct, and others may not represent records. the temperature at the depth stated owing to the mingling of flows. The flow from the deep well at Marlin is supposed to come from a depth of 3,350 feet, and if so it indicates a rate of 1° in 42 feet. The several wells at Waco, not far southeast of Marlin, give rates of 1° in 493 to 53 feet. Other wells in the same county (McLennan) indicate 1° in 48, 64, 66¹/₂, 69, and 56 feet, but the apparent lower rate is possibly due to the ingress of higher waters. The warm flow from a depth of 1,380 feet at China Springs, 12 miles northwest of Waco, indicates the exceptionally high rate of 1° in nearly 37 feet. A similar rate is indicated by the Clifton well in Bosque County, about 25 miles northwest of China Springs. The three deep wells at Corsicana, still farther north, give a rate of 1° in 40 to $41\frac{1}{2}$ feet. Fort Worth has a rate of 1° in $18\frac{1}{2}$ feet if all the flow is derived from a depth of 1,127 feet, as stated. The rate at Nacogdoches may be as high as 1° in 39¹/₃ feet if the flow comes from a depth of 340 feet. The Austin wells indicate rates of 1° in 48¹/₂ and 51 feet, but the true rate here may be considerably less if the flow is from a deeper source. than the depth used in the calculations. The Round Rock figure is uncertain, but the rates for Hempstead and Navasota appear to be valid. The data for Harris County, Port Arthur, and Beaumont are not satisfactory, and the wells 2 miles south of San Antonio and at Cotulla and Temple may not give reliable data. The temperature given for the San Marcos well is doubtless unreliable. The five wells in Hardin County appear to have rates of 1° in 211, 271, 30, 31, and 34 feet, without likelihood of much error. The Big Hill 722-foot well has a similar rate, and the High Island well evidently indicates a steep rate. The rate indicated by the Galveston County wells varies, but the figures 60 and 63 feet to the degree appear the most accurate, there being uncertainty as to the source of the water in the others. As the water at Fort Bliss is pumped the temperature given may not be as high as that in the bottom of the well, but the figure given (76°) indicates that the rate is 1° in at least 31 feet.

GEOLOGIC RELATIONS.

The wells in the above list penetrate a great variety of formations, which are mostly, however, of Cretaceous and Tertiary age. In most parts of the area the shales are tilted at low angles and in places traversed by faults. No igneous rocks are reported near any of the wells listed, and the granites or other old bedrocks are far beneath the surface. The wells in the southeastern part of the State and along the coast draw from sands of Tertiary age. In the oil fields of Hardin County there are sharp local uplifts or domes. The Nacogdoches well draws from lower beds in the Eocene.

GEOTHERMAL DATA OF THE UNITED STATES.

The group of wells extending from north to south across the center of the State draw their waters from sands in the Trinity group, which is low in the Cretaceous. The deep boring at Fort Worth passed through the base of these sands and penetrated the Paleozoic rocks for more than 2,000 feet. At Marlin, in Falls County, where the lowest sand lies deep, it was necessary to sink 3,330 feet to reach it. The Corsicana wells draw from the Woodbine sand, in the Upper Cretaceous, considerably above the highest beds of the Trinity. The 1,900-foot well 2 miles south of San Antonio is believed to have not quite reached the base of the Edwards limestone.¹ The San Marcos and San Antonio wells are situated near a great fault. The Fort Bliss well draws from the Quaternary valley fill.

١

UTAH.

A few well temperatures in the Milford-Beaver region, in southwestern Utah, have been reported by Lee.²

Location.	Depth (feet).	Flow (gallons per minute).	Tem- perature (°F.).	Depth per degree of increase in tem- perature (feet). ^a	Remarks.
Milford. Do. Do. Do. Milford, railroad well. Sec. 28, T. 29 S. R. 7 W. Sec. 36, T. 29 S., R. 8 W. Sec. 28, T. 29 S., R. 8 W. Sec. 5, T. 28 S., R. 10 W. Greenville School. Neels.	425 750 381 280 310 213 314 385 286 244 1,998	25 37 13 7 30 7 7 8 11	72 80 65 68 71 54 74 53 71 68 Hot.	18 24 23 14 14 36? 12 77? 12 12	Pumped. Flows at 200 and 314 feet. Flows also at 180 feet. Hot water 1,205 feet and below. • Reached granite.

Temperatures in wells in Utah.

^aCalculated from Milford mean for 1916, 48.2°. Water in wells 60 to 66 feet deep is stated to have a temperature of 51° to 55°.

The waters are decidedly thermal considering the slight depths of the wells. The cause of the heat is not apparent. Probably the two wells in the list showing temperatures of 53° and 54° are cooled by pumping or by the ingress of shallow water.

All these wells are in the Quaternary clay, sand, and gravel deposits of the Lake Bonneville basin. The boring at Neels reached granite.

86

¹ Hill, R. T., and Vaughan, T. W., Geology of the Edwards Plateau and Rio Grande Plain: U. S. Geol. Survey Eighteenth Ann. Rept., pt. 2, p. 295, 1898.

² Lee, W. T., Water resources of Beaver Valley, Utah: U. S. Geol. Survey Water-Supply Paper 217, pp. 24-33, 1908.

VIRGINIA.

RICHMOND COAL FIELD.

In 1836 to 1842 Rogers ¹ determined temperatures in the coal mines in the Newark group west of Richmond, Va., the results of which he discussed at considerable length. The coal measures consist mostly of sandstone lying in a basin underlain by granitic rocks; the coal is in the basal beds. The strata have steep dips and are greatly broken, and owing to this condition a large amount of water penetrates into the mines. The following results were obtained:

Location.	Depth (feet).	Tempera- ture (°F.).	Depth per de- gree of in- crease in tempera- ture (feet).ª	Remarks.
Greenhole pit.	100	58.0		In pool of water in bottom.
Mills & Reed's pit Do	$318 \\ 375$	59.5 61.0	125	In large flow of water from galleries.
Do		63.0	84	Do.
Black Heth engine pit	412	63.0	83	Pool of water in gallery not work- ing, also in floor.
Wills & Michael's pit Black Heth pit	386	62.0	96	
Black Heth pit	570	65.5	76	Pool in lowest level.
Black Heth new shaft	380	61.5	•••••	Crevice in rock in bottom cooled by drippings from above.
Midlothian 1842 shaft	330	61,75	88	
Do	600	66.25	74	Small streams at bottom some distance above coal.
Midlothian 1839 shaft	780	68.75	72	Water mixed with some drippings from higher up.

Temperatures in coal mines near Midlothian, Va.

a Calculated from mean annual air temperature at Richmond, 58.5° (37-year average to 1916) minus 0.5° for difference in the altitude and latitude. Rogers used 56.75° .

The first observation was made in a mine in operation and the last four in shafts just completed or in progress. Exclusive of the three first and one in the new Black Heth shaft, the average rate indicated by the others is 1° in 82 feet.

The figures indicate a less rate in the old workings than in the new shafts, a difference which may be due to the cooling by seepage and ventilation. Rogers made the following comments on the results:

Comparing the three last observations, the two former of which were made in the same shaft and the last in one only a few hundred feet removed, there is ground for inferring that the rate at which the temperature increases grows less as the depth augments. In descending from 330 feet to 600—that is, through 270 feet—the rise of temperature is 4.5°; while in descending from 600 to 780, or through 280 feet, the rise is only 2.5°. This difference would, I think, have been less could I have obtained the temperature at 780 feet free from the cooling influence of the copious drippings from above. Yet even with the most liberal allowance, there would still remain evidence of a diminishing rate of increase with the depth.

¹ Rogers, W. B., Observations of subterranean temperature in the coal mines of astern Virginia: Assoc. AL. Geologists and Naturalists Trans., 1840-1842, pp. 532-538, 1843; Reprint of annual reports and other papers on the geology of the Virginias, pp. 567-574, New York, 1884.

Rogers considered the observations at 330 and 600 feet in the Midlothian shaft the most reliable, and these give a rate of 1° in 88 and 74 feet, respectively; the difference between them is 1° in 60 feet. The rate for the 780-foot reading (1° in 72 feet) is accordant, although, as suggested by Rogers, the water may be cooled slightly by drippings from above.

FORT MONROE.

In 1902 a 2,130-foot boring was made at Fort Monroe, and Capt. C. P. Townsley kindly lowered a Darton thermometer in it. After two hours the instrument recorded 92.5°. As the mean annual air temperature at Newport News is about 59.4°, a rate of 1° in 64 feet is indicated. The boring passed through Tertiary and Cretaceous formations of the Coastal Plain to the basement of pre-Cambrian granite. The hole was full of salty water.

REEDVILLE.

At Reedville, in Northumberland County, the 85-gallon flow from a 680-foot well is reported to have a temperature of 78°. As calculated from the mean annual air temperature at Warsaw, 56.4°, a rate of 1° in $31\frac{1}{2}$ feet is indicated.

WASHINGTON.

YAKIMA ARTESIAN BASIN.

There are numerous flowing wells in the vicinity of Yakima which afford data as to underground temperature. In most of them, however, several flows are intermixed, so that the observations do not indicate the temperature at any definite depth. There are three wells which reach the upper flow only and three others in which the casing is so set that only one flow can enter. They are in an area about $1\frac{1}{2}$ miles long and within 120 feet elevation. The data for these six wells, as given by Geo. Otis Smith,¹ are as follows:

Temperature at different depths in six wells in Yakima artesian basin, Wash

Depth of flow (feet).	Flow (gal- lons per minute).	Tempera- ture (° F.).	Depth per degree of increase in tempera- ture (feet).a
515 637 835 625 752 820	Many. 120 60 Many. 300 360	70. 7 72. 2 73. 2 73. 2 72. 2 72. 2 72. 7	25. 0 28. 9 36. 1 27. 0 34. 0 36. 2

a Calculated on basis of mean annual air tomperature of 50.1°, mean of 17 years given by United States Weather Bureau.

¹ Smith, G. O., Geology and water resources of a portion of Yakima County, Wash.: U.S. Geol. Survey Water-Supply Paper 55, pp. 49-62, 1901. It was noted by Smith that the rate of increase is highest in the shallower wells.

Waring ¹ has reported that a large flow from a well on the Yakima Indian Reservation, in sec. 34, T. 11 N., R. 18 E., has a temperature of 68° . The main flow is from a depth of 507-512 feet, possibly with a small admixture of water from 492 feet. The rate indicated by this observation is 1° in about 28 feet.

Russell ² has given temperatures of flows from several wells in the Yakima Valley, but the flows are small and the source of the water is not definitely located. One of these wells, in sec. 31, T. 13 N., R. 20 E., has a 2-gallon flow with a temperature of 73° from a depth of 886 feet; another, in sec. 3, T. 12 N., R. 20 E., only 314 feet deep, has a flow with a temperature of 75°.

WALLA WALLA.

In 1909 I noted the temperature of the large flows from several wells on the Blalock ranch west of Walla Walla. The flow from one well, 611 feet deep, had a temperature of 66.5° ; that from another of similar depth, 67.25° ; and that from a 563-foot well, 67° . It is stated that the casings extend to a depth of 540 feet to a 20-foot sheet of basalt under which is the water-bearing sand. As the mean annual air temperature of Walla Walla is 53.4° (23-year average) a rate of 1° in 41.4 feet is indicated, if the flow comes from a depth of 563 feet.

WHITMAN COUNTY.

It is reported that the flow from a 110-foot well at Pullman has a temperature of 60° , and that from a 176-foot well at Tekoa a temperature of 76° , but these figures may not be reliable. As the mean annual air temperature at Colfax is 47.8° and at Rosalia 46.5° , they indicate a very high rate. Doubtless heat from old lava flows is the cause.

WEST VIRGINIA.

There are many deep borings in West Virginia, and temperatures in a number of them have been determined by the late William Hallock,³ by Johnson and Adams,⁴ and by Van Orstrand.⁵

¹ U. S. Geol. Survey Water-Supply Paper 316, p. 31-32, 1913.

² U. S. Geol. Survey Bull. 108, pp. 56-59, 1893.

⁸ Hallock, William, U. S. Geol. Survey Thirteenth Ann. Rept., pt. 1, pp. 95-96, 1892; U. S. Geol. Survey Fourteenth Ann. Rept., pt. 1, pp. 159-160, 1893; Preliminary report of observations at the deep well, Wheeling, W. Va.: Am. Jour. Sci., 3d ser., vol. 43, pp. 234-236, 1892; Notes on further observations of temperatures in the deep well at Wheeling, W. Va.: Am. Assoc. Adv. Sci. Proc., vol. 40, p. 258, 1891; Subterranean temperatures at Wheeling, W. Va., and Pittsburgh, Pa.: School of Mines Quart., vol. 18, pp. 148-153, 1897; British Assoc. Adv. Sci., Rept., 62d meeting, pp. 129-131, 1910.

⁴ Johnson, John, and Adams, L. H., On the measurement of temperatures in bore holes: Econ. Geology, vol. 11, pp. 741-762, 1916.

⁶ U. S. Geol. Survey Press Bulletin 420, 1919. White, I. C., Discussion of the records of some very deep wells in the Appalachian oil fields of Pennsylvania and West Virginia, with temperature measurements by C. E. Van Orstrand [Morgantown, W. Va., 1918].

WHEELING.

The well tested by Hallock was on Boggs Run, 4 miles southeast of Wheeling. It was 4,771 feet deep, and although water was found at moderate depths it was cased off by 1,570 feet of $4\frac{7}{4}$ -inch casing, so that the hole was dry when finished. The strata penetrated are nearly horizontal and begin high in the Carboniferous coal measures. Ordinary United States Signal Service self-registering thermometers were used. The following figures were obtained. Observations made two years later in water gave very closely accordant results. (See below.)

Temperatures at different depths in deep boring near Wheeling, W. Va.

					-
°F.	[°F.	1	°F.	
96. 10			2,625 feet		1,350 feet
97.55	3,730 feet	83.65	2,740 feet	70.25	1,592 feet
0. 05	3,875 feet	85.45	2,875 feet	71.70	1,745 feet
)1.75	3,980 feet	86.60	2,990 feet	72.80	1,835 feet
)4.10	4,125 feet	88.40	3,125 feet	76.25	2,125 feet
)5.55	4,200 feet	89.75	3,232 feet	77.40	2,236 feet
)8.40	4,375 feet	92.10	3,375 feet	79.20	2,375 feet
			3,482 feet		
)0. 05)1. 75)4. 10)5. 55)8. 40	3,875 feet. 3,980 feet. 4,125 feet. 4,200 feet. 4,375 feet.	 85. 45 86. 60 88. 40 89. 75 92. 10 	2,875 feet 2,990 feet 3,125 feet 3,232 feet 3,375 feet	71.70 72.80 76.25 77.40 79.20	1,745 feet. 1,835 feet. 2,125 feet. 2,236 feet. 2,375 feet.

According to the Weather Bureau observations for 39 years the mean annual air temperature at Wheeling is 56.3° , but Hallock used 51.3° , the temperature found at a depth of 110 feet in a near-by coal mine. I believe 51.3° is too low, for temperatures taken in mine galleries are misleading. Two years later water at a depth of 103 feet in the deep well was found to have a temperature of 52.5° . The rate calculated to a depth of 4,462 feet from a mean annual air temperature of 56° is close to 1° in 83 feet; the rate from 1,350 to 4,462 feet is 1° in 75.2 feet; from 2,990 to 4,462 feet, 1° in 62.5 feet.

After taking temperatures in the deep hole near Wheeling when it was dry, Hallock¹ had opportunity to make an additional series two years later, when water stood within 40 feet of the top.

Comparison of temperatures in air and in water in deep well near Wheeling, W. Va.

Depth (feet).	Tempera- ture in water, 1893 (°F.).	Tempera- ture in air, 1891, inter- polated (°F.).	Water tem- perature minus air tempera- ture (°F.).
$1,586 \\ 1,921 \\ 2,055 \\ 2,276 \\ 2,396 \\ 2,539 \\ 2,669 \\ 2,793 \\ 2,937 \\ 3,057 \\ 3,196 \\ 1,921 \\ 2,937 \\ 3,057 \\ 3,196 \\ 1,921 \\ 3,196 \\ 1,921 \\ 3,196 \\ 1,921 \\ 3,196 \\ 1,921 \\ 3,196 \\ 1,921 \\ 3,196 \\ 1,921 \\ 3,196 \\ 1,921 \\ 3,196 \\ 1,921 \\ 3,196 \\ 1,921 \\ 3,196 \\ 1,921 \\ 3,196 \\ 1,921 \\ 1,92$	70. 12 73. 95 75. 28 78. 13 79. 54 81. 21 a 83. 39 84. 56 86. 12 87. 42 89. 27	$\begin{array}{c} 70.\ 12\\ 73.\ 82\\ 75.\ 42\\ 77.\ 93\\ 79.\ 45\\ 81.\ 15\\ 82.\ 75\\ 84.\ 41\\ 86.\ 07\\ 87.\ 50\\ 89.\ 30\\ \end{array}$	$\begin{array}{r} -0.03 \\ +.13 \\14 \\ +.20 \\ +.09 \\ +.06 \\ +.64 \\ +.15 \\ +.05 \\08 \\03 \end{array}$
	a Doub	otful.	

¹ Hallock, William, Subterranean temperatures at Wheeling, W. Va., and Pittsburgh, Pa.: School of Mines Quart., vol. 18, pp. 148-153, 1897.

WEST VIRGINIA.

These determinations show that there is no important difference between the air and water temperatures in a hole.

Hallock made a few observations at a deep boring at Radsford, W. Va., but as the hole was wet he did not complete the determinations.

CHELYAN.

Johnson and Adams made many tests in the lower part of the 5,236foot hole at Chelyan, near Charleston. The results appear to indicate a temperature of about 129° in the bottom. With a mean annual of 57.6°, average of 14 years at Charleston, this indicates a rate of 1° in 73.3 feet.

3

MANNINGTON.

The temperature determinations in the Hibbs No. 4 hole near Mannington were made with an electric resistance thermometer by Johnson and Adams and later with a mercury thermometer by Van Orstrand. The results were as follows, with rates of increase calculated from the 250-foot reading subtracted from those at lower depths, all as indicated by the electric measurement.

Depth (feet).	Electric thermom- eter (°F.).	Mercury thermom- eter (°F.).	Depth per degree of increase in tempera- ture (feet).
$100 \\ 250 \\ 500 \\ 750 \\ 1,000 \\ 1,250 \\ 1,500 \\ 1,750 \\ 2,000 \\ 2,250 \\ 2,50$	$\begin{array}{c} 56.\ 0\\ 54.\ 9\\ 57.\ 5\\ 60.\ 7\\ 63.\ 9\\ 66.\ 5\\ 68.\ 6\\ 70.\ 7\\ 73.\ 1\\ 75.\ 6\\ 78.\ 9\end{array}$	53. 6 54. 1 56. 7 60. 1 63. 5 66. 2 68. 5 70. 7 73. 2 75. 4 78. 8	96 86 83 86 91 95 96 97 94

Temperatures in Hibbs No. 4 hole near Mannington, W. Va.

. If calculated from the mean annual air temperature the temperature of 78.9° in the bottom of the well indicates a gradient of 1° in 93 feet.

Observations by Mr. Van Orstrand in a group of wells of the South Penn Oil Co. gave the following results:

Temperature measurements in borings of South Penn Oil Co., near Mannington, W. Va.

Depths (feet).	Well 14, mean of 3 tests (° F.).	Well 6, mean of 3 tests (° F.).	Well 2 (° F.).	Well 4 (° F.).	Well 7 (° F.).	Well 9 (° F.).
100 250	60.1	55. 4 56. 7	53. 8 55. 2	53. 6 54. 1	54.18	52. 23
500	62.4	60.1	58.8	56.7	57.72	57.31
750		63.5	62.4	60.1	a. aa	
1,000	67.5	66.6	65.8	63.5	64.62	63.82
1,250 1,500	72.0	69.3 71.6	68. 0 70. 0	66.2 68.5	70.23	70.30
1,500	12.0	73.4	70.0	70.7	10.23	70.30
1,980		71.6	12.5	. 10.1		
2,000	75.4	11.0	75.2	73.2	75.00	75.22
2,250			78.3	a75.4		
2,500	b77.9		80.6	78.8	80.13	77.95
2,650			82.6		81.18	
2,750 2,888	81.1			81.9		
2,888	d86, 4			b81.3	¢83. 19	
3,000 3,134	₩80. 4			85.3		
3,225				88.3		

Ľ

a Some gas

b Gas at 2,560 feet.
c Some gas at 2,875d Gas at 2,940 feet. -2.888 feet.

The rates of increase indicated by these observations are as follows: Well 14, 250 to 3,000 feet, 1° in 104 feet; well 6, 100 to 1,980 feet, 1° in 116 feet; well 2, 100 to 2,650 feet, 1° in 90 feet; well 4, 100 to 3,225 feet, 1° in 90 feet; well 7, 100 to 2,888 feet; 1° in 96 feet; well 9, 100 to 2,500 feet, 1° in 93 feet.

SPENCER.

The 3,403-foot hole bored by the Hope Gas Co. 22 miles east of Spencer, Clark County, was tested at 100-foot intervals to 3,250 feet by Mr. Van Orstrand with the following results:

Temperature measurements in well 22 miles east of Spencer, W. Va.

	°F.	°F.	1	°F.
100 feet	54.1	1,000 feet 65.	1 1,900 feet	74. 9
200 feet	55. 0	1,100 feet 66.	0 2,000 feet	76.2
300 feet	56. 3	1,200 feet 67.	0 2,100 feet	77.5
400 feet	57.8	1,300 feet 68.	5 2,200 feet	79.0
500 feet	59.4	1,400 feet 69.	9 2,200 feet	80. 3
600 feet	60. 7	1,500 feet 70.	9 2,400 feet	81.4
700 feet	61.7	1,600 feet 72.	6 2,500 feet	82.6
800 feet	62.7	1,700 feet 73.	5 2,600 feet	83.4
900 feet	3.66	1,800 feet 5. 4'	7 3,250 feet	91. 9

The rates of increase indicated by these observations are as follows: 100 to 3,250 feet, 1° in 83.3 feet; 1,000 to 3,250 feet, 1° in 84 feet.

92

 \bigcirc

WEST VIRGINIA.

VOLCANO JUNCTION.

The 4,527-foot well at Sandhill, 4 miles north of Volcano Junction, Wood County, W. Va., was tested at different depths by Mr. Van Orstrand with a mercury thermometer for some tests and electrical resistance coil for others. The results were as follows:

Temperature measurements in well 4 miles north of Volcano Junction, W. Va.

۰E	· .	°F.	F.
100 feet ¹ 54.	. 2 1,500 feet	°F. 68. 0 3,250 feet	5. 0
500 feet 57.	2, 1,750 feet ¹	¹ 70.9 3,500 feet ¹ 99	9. O
700 feet 58	. 6 2,000 feet	74. 8 3,750 feet ¹ 108	3. 7
800 feet 59	. 6 2,250 feet ¹	¹ 79.1 4,000 feet ¹ 108	8.8
900 feet 61.	. 1 2,500 feet	82. 7 4,100 feet ¹ 110	0.7
1,000 feet 62	8 2,750 feet ¹	¹ 86. 2 4,250 feet ¹ 113	3. 1
1,250 feet 65.	2 3,000 feet	91. 1	

)

The rates of increase indicated by these observations are as follows: 100 to 4,250 feet, 1° in 70½ feet; 1,000 to 4,250 feet, 1° in 64.6 feet.

GRANTVILLE.

A 4,610-foot hole on the Poling farm, 5 miles southeast of Grantsville, W. Va., was tested by Mr. Van Orstrand with the following results:

Temperature measurements in well 5 miles southeast of Grantsville, W. Va.

°F.	° F .	°F.
100 feet55. 3	1, 200 feet67. 2	2, 400 feet
200 feet55. 8	1, 300 feet68. 3	2, 500 feet81.8
300 feet56.8	1, 400 feet69. 5	2, 600 feet82. 9
400 feet57.9	1, 500 feet70.3	2,700 feet84.2
500 feet59. 2	1,600 feet71.7	2, 800 feet85. 4
600 feet60. 4	1, 700 feet72. 5	2, 900 feet86. 8
700 feet61. 6	1, 800 feet73. 2	3,000 feet88.1
800 feet62.9	2,000 feet75.4	3, 500 feet95. 2
900 feet64. 1	2, 100 feet76. 9	4,000 feet101.8
1,000 feet65.2	2, 200 feet	4, 500 feet110. 8
1, 100 feet	2, 300 feet79. 4	

Some of the rates of increase indicated by these figures are as follows: 100-4,500 feet, 1° in 80 feet; 100-2,800 feet, 1° in 90 feet; 1,000-4,500 feet, 1° in 76.7 feet; 2,000-4,500 feet, 1° in 70.3 feet; 3,000-4,500 feet, 1° in 66 feet.

¹ Taken with mercury thermometer.

SHINNSTON.

The 4,920-foot hole bored by the Hope Gas Co. on the farm of **E**. Robinson-at Wyatt, 5 miles northwest of Shinnston, was tested at every hundred feet to a depth of 2,000 feet by Mr. Van Orstrand with the following results:

Temperature measurements in a 4,290-foot hole at Wyatt, W. Va.

° F.	°F.	° F.
100 feet54. 5	° F. 800 feet62.0	1, 500 feet68. 4
200 feet55.5	900 feet62. 9	1, 600 feet ¹ 68. 0
	1,000 feet64. 2	
400 feet57.5	1, 100 feet65. 0	1, 800 feet71. 9
500 feet	1, 200 feet65. 6	1, 900 feet72. 9
	1, 300 feet66. 5	
	1, 400 feet67. 7	

٢

The rate of increase indicated by the difference in temperature between 100 and 2,000 feet is close to 1° in 96 feet; from 1,000 to 2,000 feet the rate is 1° in 101 feet.

LAKE WELL.

This well reached a depth of 7,579 feet when drilling ceased in 1919. It is about 8 miles south of Fairmont, W. Va. Van Orstrand found the temperature at 7,500 feet to be 168.6° , indicating an average rate of temperature increase of 1° in 66 feet.

Mr. Van Orstrand has also given a series of measurements from 100 to 5,400 feet as follows:

Temperature measurements in well on Lake Farm, 4 miles northeast of Valley Falls, W. Va.

	•	
°F.		. ° F .
100 feet53.7	1,300 feet	3,250 feet93.6
200 feet	1,400 feet	3,500 feet95. 4
300 feet	1,500 feet71.8	3,750 feet100.9
400 feet	1,600 feet73.1	4,000 feet104.5
500 feet	1,700 feet74.3	4,250 feet106.0
600 feet61. (1,800 feet75.3	4,500 feet111. 4
700 feet62. 5	2 1,900 feet76.7	4,750 feet116.2
	2,000 feet	
900 feet	2,250 feet	5,250 feet126.1
1,000 feet65. 6	2,500 feet	5,400 feet129.2
1,100 feet	2,750 feet	
1,200 feet	3,000 feet90. 5	

The rate of increase from 100 to 5,400 feet is 1° in 70 feet.

GOFF WELL.

The well on the Goff farm is about 8 miles northeast of Clarksburg in the northern part of West Virginia. Its depth is 7,386 feet.

¹ A small discharge of gas occurs of 1,610 feet.

WISCONSIN.

Tests were made by Mr. Van Orstrand at various depths in the well with the following results:

Temperature measurements in Goff well 4 miles northeast of Bridgeport, W. Va.

°E	° F .	° F .
100 feet	1,300 feet66.5	2,500 feet81.0
200 feet	1,400 feet67.2	3,000 feet87.6
300 feet	1,500 feet	3,500 feet93.8
400 feet	1,600 feet	4,000 feet100.0
500 feet	1,700 feet67.8	4,500 feet107.2
600 feet61. 6	1,800 feet70.8	5,000 feet
700 feet62. 5	1,900 feet73. 6	5,500 feet122.3
800 feet63. 8	2,000 feet	6,000 feet
900 feet	2,100 feet	6,500 feet143.2
1,000 feet65. 3	2,200 feet77.3	7,000 feet153.2
1,100 feet65. 8	2,300 feet	7,250 feet157.7
1,200 feet65. §	2,400 feet79.3	7,310 feet ¹ 158. 3

Some of the rates of increase indicated by these figures are as follows: 100 to 7,310 feet, 1° in 70.2 feet; 100 to 7,000 feet, 1° in 70.7 feet; 100 to 5,000 feet, 1° in 83.6 feet; 1,000 to 7,310 feet, 1° in 67.8 feet; 2,000 to 7,310 feet, 1° in 63.7 feet; 4,000 to 7,250 feet, 1° in 56.3 feet.

WISCONSIN.

TEMPERATURES.

Temperatures of flows of certain Wisconsin wells are given in the reports of the State Survey ² and water-supply papers of the United States Geological Survey, but for the most part the depth from which the flows are derived is not given, and some of the wells are pumped. The following selected list may afford a few data of value:

1 Regarded as about 0.5° F. too low.

² Weidman, Samuel, and Schultz, A. R., The underground and surface water supplies of Wisconsin: Wisconsin Geol. and Nat. Hist. Survey Bull. 35, 664 pp., 5 pls., 1915. Temperatures in wells in Wisconsin.

						· · · · · · · · · · · · · · · · · · ·
e Location.	Depth (feet).	Flow (gal- lons per min- ute).	Tem- pera- ture (°F.).	Mean annual tem- pera- ture (°F.).	Depth per degree of in- crease in tem- pera- ture (feet).	Remarks.
Crawford County: Prairie du Chien a Do Green Lake County: Ber- lin. Marinette County: Mari- nette. Oconto County: Oconto Pepin County: Durand f Richland County: Rich- land Center.	350-375 960-1,004 425 716 400 200 748	200 540 Many. 450 Many. 2,400	54 57 52 49 50 51 53	47.5 47.5 b 45.2 d 43.3 e 44.1 g 44.2 h 45.3	54 63 71 68 30 96	Flow from below 324 feet. Cased to 333 feet; water at 405-410 feet; not any below 415 feet. Cased to 225 feet; source of flow unknown. Pumped 11 feet; water proba- by from considerably above bottom.
Sheboygan County: She- boygan./ Vernon County: Genoa De Soto Walworth County: Elk- horn.	1,475 450 446 1,050	225 200 126 Many.	\$ 59.1 52 52 58	1 45.7 k 46.7 l 46.7 46	100 87 84 88	Pumped 104 feet; main sup- ply probably from 1,340 feet. Pumped 30 feet. Flow. Air lift, pumped 155 feet.

a Calculated to depth of 1,340 feet.

a Calculated to depth of 1,540 lett.
b Oshkosh average for 28 years.
c Wisconsin Geol, and Nat. Hist. Survey Bull. 35, p. 364, 1914.
d Average at Menominee, Mich., for 18 years.
e Average for 28 years.
f Wisconsin Geol, and Nat. Hist. Survey Bull. 35, p. 502, 1914.

Wisconsin Geol, and Nat. Hist. Survey Bull, 35, p. 5
J Idom, p. 284.
Viroqua average for 27 years plus 0.5°.
Wisconsin Geol, and Nat. Hist. Survey, p. 569, 1914.
Average for 18 years.
Maan of La Crosse and Prairie du Chien.

I Delavan average for 24 years.

SUMMARY.

Exclusive of Sheboygan, Elkhorn, and Richland wells, of which the true underground temperatures are uncertain, there is a fair degree of accordance in the rates indicated by the Prairie du Chien, Berlin, Marinette, Genoa, De Soto, and Oconto wells. Owing, however, to some uncertainty as to the precise source of water, the figures can be regarded only as approximations. The temperature of the flow from relatively shallow wells at Durand indicates a high rate.

GEOLOGIC RELATIONS.

The wells in the above list are all in the Paleozoic rocks on the slope of the low structural dome whose summit is in the broad area of crystalline rocks that occupies the northern part of the State. There are no local disturbances of any note. All the wells draw from sandstone, either the St. Peter sandstone, as at Oconto and Sheboygan, or the Upper Cambrian, some distance below the St. Peter horizon. At Marinette the granite "bedrock" is reached at a depth of 712 feet, and at Richland at 665 feet. At Durand it is

WYOMING.

not far below the bottom of the 200-foot well. At Sheboygan a hole 1,782 feet deep did not reach the bedrock. There is no apparent relation between the gradients and geologic conditions.

WYOMING.

The deep-well temperatures in Wyoming given in the following table were carefully determined with Darton thermometers sunk to the bottom of the holes by my assistants or myself.

	Depth (feet).	Tem- perature (°F.),	Mean annual air tem- perature (°F.).	Depth per degree of increase in tem- perature (feet).	Remarks.
Big Horn County: SW. 1 SE. 1 sec. 27, T. 102, R. 48, 10 miles southwest of Meteetse.	1,400	66	a 40	54	Dry hole; thermometer sunk by C. A. Fisher.
Cambria	1,475	59	b 45.2	107	Thermometer sunk by G. B. Richardson, 1899.
Newcastle, 2 miles west	374	63	45.2	21	Thermometer sunk by N. H. Darton, 1900.

Temperatures in wells in Wyoming.

a Mean annual air temperature at Four Bear, 10 miles west, plus 0.3° for lower altitude. b Newcastle average.

All these figures are correct, and no vitiating conditions are indicated. The Cambria and Newcastle wells were full of water. The steep gradient of the Newcastle well is inexplicable.

137163°—20—Bull. 701—7

97