
CENTER FOR

MACHINE PERCEPTION

CZECH TECHNICAL

UNIVERSITY IN PRAGUE

B
A
C
H
E
L
O
R
T
H
E
S
IS

Gesture Recognition for Mobile
Phone Unlocking

Tomáš Sixta

sixta.tomas@gmail.com

May 23, 2014

Thesis Advisor: Mgr. Jan Šochman, Ph.D.

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
fax +420 2 2435 7385, phone +420 2 2435 7637, www: http://cmp.felk.cvut.cz

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Tomáš S i x t a

Study programme: Open Informatics

Specialisation: Computer and Information Science

Title of Bachelor Project: Gesture Recognition for Mobile Phone Unlocking

Guidelines:

Propose and implement a gesture based screen locking algorithm for mobile phones which is
both user friendly and safe from peek-over-the-shoulder problem and smudge attack. Similar
systems were proposed for automatic signature verification on tablet computers. The thesis
goal will be to adapt one of these methods for the specific scenario of mobile phone unlocking.

Instructions:

1. Study the state-of-the-art in the online signature verification,
2. Choose and adapt one of the methods for the gesture-based mobile phone unlocking,
3. Evaluate the method based on false positives, false negatives, but also based on its safety
 and user friendliness and easiness of training.

Bibliography/Sources:
[1] Zhaoxiang Zhang, Kaiyue Wang, Yunhong Wang: A Survey of On-line Signature
 Verification. Biometric Recognition Lecture Notes in Computer Science Volume 7098, 2011.
[2] Stan Z. Li: Markov Random Field Modeling in Image Analysis. 2009.

Bachelor Project Supervisor: Mgr. Jan Šochman, Ph.D.

Valid until: the end of the summer semester of academic year 2014/2015

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 10, 2014

České vysoké učení technické v Praze
Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student: Tomáš S i x t a

Studijní program: Otevřená informatika (bakalářský)

Obor: Informatika a počítačové vědy

Název tématu: Rozpoznávání gest pro odemykání mobilního telefonu

Pokyny pro vypracování:

Navrhněte a implementujte metodu odemykání mobilního telefonu založenou na gestech,
která bude uživatelsky jednoduchá a zároveň bezpečná, tj. uživatelské gesto nebude snadno
odkoukatelné druhou osobou (ať už přímo přes rameno nebo ze stopy po tahu prstem).
Podobné systémy fungují pro verifikaci podpisů na základě podpisových vzorů na tabletu.
Cílem práce bude adaptovat některou z těchto metod s přihlédnutím ke specifikům aplikace
odemykání mobilního telefonu.

Postup:

1. Seznamte se s literaturou zabývající se verifikací podpisů na tabletu.
2. Implementujte vhodnou metodu pro rozpoznávání gest na mobilním telefonu.
3. Vyhodnoťte úspěšnost metody (falešné poplachy, přehlédnutá nebezpečí), ale také
 bezpečnost (obtížnost „odkoukání“) a snadnost naučení a ovládání.

Seznam odborné literatury:
[1] Zhaoxiang Zhang, Kaiyue Wang, Yunhong Wang: A Survey of On-line Signature
 Verification. Biometric Recognition Lecture Notes in Computer Science Volume 7098, 2011.
[2] Stan Z. Li: Markov Random Field Modeling in Image Analysis. 2009.

Vedoucí bakalářské práce: Mgr. Jan Šochman, Ph.D.

Platnost zadání: do konce letního semestru 2014/2015

 L.S.

doc. Dr. Ing. Jan Kybic
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 10. 1. 2014

Author’s declaration

I hereby declare that I have completed this thesis independently and that I have listed all
used information sources in accordance with the Methodical guidelines on maintaining
ethical principles during the preparation of university theses.

Prohlášeńı autora práce

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré
použité informačńı zdroje v souladu s Metodickými pokyny o dodržováńı etických zásad
při př́ıpravě vysokoškolských závěrečných praćı.

V Praze dne .
Podpis autora práce

vii

Acknowledgements

I would like to express my thanks to Jan Šochman for guidance and mentoring, without
which this thesis could not be completed.

I would also like to thank the members of CMP and avast! Android team for taking
the time to take part in the experiments and for their critique and comments.

ix

Abstract

People use lockscreens to secure their mobile devices. However, many users aren’t
satisfied with currently available lockscreens - they either provide too little security or
require too much effort to be unlocked. In this thesis, we analyze available lockscreens
and summarize their weaknesses. Based on that analysis, a list of requirements for a
”perfect” lockscreen is presented.

Following the requirements, we design Tap lock - lockscreen that is unlocked by
tapping a unique sequence, which is based on a melody in user’s head. We describe a
relation between Tap lock and other gesture recognition problems and how it can be
resolved using hidden Markov models.

Extensive testing is then performed that shows that Tap lock can be used in everyday
use if simple recommendations on how to choose a proper sequence are followed. Tap
lock is easy to be unlocked for the user, but difficult to hack for a potential thief. It is
also extremely resistant to brute-force attacks.

During the summer 2014, we plan to publish Tap lock on Google Play in cooperation
with avast! antivirus company.

x

Abstrakt

Lidé zabezpečuj́ı svá mobilńı zař́ızeńı použ́ıváńım lockscreen̊u (zámk̊u obrazovky). Nicméně
mnoho uživatel̊u neńı spokojeno s lockscreeny, které jsou v současné době k dispozici -
buďto nejsou dostatečně bezpečné nebo vyžaduj́ı př́ılǐs mnoho úsiĺı k odemknut́ı. V této
práci zanalyzujeme dostupné lockscreeny a shrneme jejich slabé stránky. Na základě
této analýzy poté představ́ıme seznam požadavk̊u na ”ideálńı” lockscreen.

S ohledem na tyto požadavky poté navrhneme Tap lock - zámek, který se odemyká
vyťukáńım sekvence na základě melodie, kterou má uživatel v hlavě. Poṕı̌seme vz-
tah mezi Tap lockem a rozpoznáváńım gest a jak lze problém řešit pomoćı skrytých
markovských model̊u.

Poté provedeme rozsáhlé testováńı které ukazuje, že Tap lock lze běžně použ́ıvat
pokud se sekvence vyb́ıraj́ı s ohledem na jednoduchá doporučeńı. Uživatel zvládne Tap
lock odemknout snadno, zat́ımco pro hackera je to složité. Tap lock je také velmi odolný
proti útok̊um hrubou silou.

Během léta 2014 plánujeme zveřejnit Tap lock na Google Play ve spolupráci s antivi-
rovou společnost́ı avast!.

xi

Contents

1 Motivation 4

2 Contributions 5

3 Lockscreen Solutions 6
3.1 Default Android Lockscreens . 6

3.1.1 None . 6
3.1.2 Slide . 6
3.1.3 PIN . 6
3.1.4 Password . 7
3.1.5 Pattern . 7
3.1.6 Face Unlock . 7

3.2 3rd Party Apps / Widgets . 8
3.2.1 Unsecure Locksreen Apps . 8
3.2.2 Secure Lockscreen Apps . 8

Smart App Lock [19] . 8
Picture Password Lockscreen [21] 9
Sensor Lock [8] . 10

3.3 Drawbacks of Current Solutions . 11

4 Related Work and Proposed Solution 12
4.1 Related Work . 12

4.1.1 Online Signature Verification . 12
4.2 Requirements . 13
4.3 Proposed Solution . 14

4.3.1 Tap Lock . 15

5 Theoretical Background 16
5.1 Hidden Markov Models . 16
5.2 Forward-Backward Algorithm . 18

5.2.1 Forward process . 18
5.2.2 Backward process . 19
5.2.3 Getting the Observed Sequence Probability 19

5.3 Expectation-Maximization . 20
5.3.1 Expectation Stage . 20
5.3.2 Maximization Stage . 21

5.4 Additional Modifications . 22
5.4.1 Continuous Observation Probabilities 23
5.4.2 Multiple Training Sequences . 23

6 Implementation 25
6.1 Learning Stage . 25

6.1.1 Data Collection . 25
6.1.2 Data Measurements . 26

2

6.1.3 HMM Initialization . 26
State Representation . 26
Initial Parameters Estimates . 27

6.1.4 HMM Parameters Optimization 28
6.1.5 Threshold Selection . 28

6.2 Authorization Stage . 29
6.2.1 Sequence Evaluation . 29

7 Experiments 30
7.1 Experimental Protocol . 30

7.1.1 Data Collection . 30
7.1.2 Testing . 30
7.1.3 Hacking . 31
7.1.4 Data Statistics . 32

Users’ Reactions . 32
7.2 Sequence Analysis . 32

7.2.1 Lock Testing . 32
7.2.2 Lock Hacking . 34
7.2.3 Sequence Recommendations . 36

Recommendation . 38
7.2.4 Threshold Selection . 38
7.2.5 Training Set Size . 41
7.2.6 Resistance To Random Forgeries 42

7.3 Summary . 43
7.3.1 Future Work . 43

8 Conclusions 44

Bibliography 45

3

1 Motivation

With the increasing use of mobile devices, smartphones became easy targets for theives.
According to [10], there are about 10 000 reported thefts in the Czech Republic every
month (with many more not reported). Because of the spread of the Internet to mobile
devices, losing one’s smartphone often gives the thief unlimited control over the victim’s
accounts. Exposing user’s private Dropbox files or Gmail conversations can have serious
consequences. Mobile banking apps or apps like PayPal or Google Wallet contribute to
the possible threat even more.

According to androidcentral.com poll from 2012 [6], over 55 % people do not use
any kind of secure lockscreen, 25 % use Pattern lock and 10 % use PIN lock. But
according to the associated comments, neither of these solutions is satisfactory. People
mostly complain about Pattern lock providing little protection and PIN Lock being too
annoying to unlock regularly.

Therefore we decided to come up with a completely new approach that provides both
high security and easy unlocking. This approach will be based on gesture recognition.
Rather than forcing users to remember another unlock code, we will analyze their
natural finger movements and use them for authorization.

4

2 Contributions

This thesis contributes to the mobile security research area by introducing a new way of
device locking. All secure lockscreens based on the gesture recognition share the same
weakness - if the data is collected from a wet surface or greasy fingers, the lockscreen
becomes unusable. Our approach avoids this problem entirely while being more com-
fortable for the user at the same time.

The main contributions of this thesis can be summarized as following:

• Current lockscreen approaches and their weaknesses were analyzed. We found out
that there is a demand for a new solution that is both safe and user-friendly.

• We proposed a new lockscreen, Tap lock. Tap lock relies on a unique concept of
unlocking the device by tapping a custom sequence that is based on a melody in
user’s head.

• Tap lock was implemented on Android operating system.

• Experiments were conducted in order to measure the efficiency of the proposed solu-
tion. We found that Tap lock can be used in real life if simple recommendations are
followed.

During the summer 2014, Tap lock will be finalized and with cooperation of avast!
antivirus company, it will be then published on Google Play.

5

3 Lockscreen Solutions

Today, number of different operating systems is used on mobile devices. However,
only two operating systems have remarkable market share - Android and iOS [23].
Because Android is more popular than iOS, we focused only on Android lockscreens in
this chapter. Nevertheless, touchscreen device unlocking works on the same principles
regardles of the operating systems, so very similar lockscreens are used on iOS.

Android lockscreens can be divided into two main groups. People either use one
of the Android’s default lockscreens, or they download a 3rd party lockscreen app or
widget that is usually highly customizeable.

Numbers and conclusions presented in the following subsection are based on internet
poll [6] and the associated user comments.

3.1 Default Android Lockscreens

3.1.1 None

About 25 % people do not use any kind of lockscreen. After waking up the phone, the
Home screen is shown instantly.

3.1.2 Slide

Slide is the most common lockscreen. The phone is unlocked by simply dragging the
finger across the screen. Even though it provides no security, about 30 % people use it.

Figure 3.1 Slide lockscreen. Courtesy of droid-life.com [4]

3.1.3 PIN

User has to input a 4-digit PIN code in order to unlock his phone. While being quite
secure, for users it is often annoying to input PIN code every time they want to check
their phone. This solution is used by approximately 10 % of users.

6

3.1 Default Android Lockscreens

3.1.4 Password

Password lock provides much better security compared to PIN lock, but is also ex-
tremely inconvinient, therefore remains virtually unused.

3.1.5 Pattern

This is the second most popular lockscreen. However, it is quite controversial by pro-
viding false sense of security. There are many possible combinations, but most people
use very predictable patterns (without even realizing how predictable their pattern is).
The issue of Patter lock security is very well analyzed in [26]. For example, according
to that research, over 50 % people start their sequence in the top left corner, which
greatly reduces the number of possible combinations. The unlock pattern is also easy
to be spotted or discovered by focusing on smudge trails on the screen.

Figure 3.2 PIN, Pattern and Password lockscreens. Courtesy of droid-life.com [4]

3.1.6 Face Unlock

This innovative feature is available only on those devices that posses front camera. That
itself limits the possible use to only a fraction of devices, but also the light conditions
must be good enough for the lockscreen to work. This might be the problem in the
night, in pubs, clubs etc. Therefore this solution is only used by about 3 % of users.

Figure 3.3 Face Unlock. Courtesy of droid-life.com [4]

7

3 Lockscreen Solutions

3.2 3rd Party Apps / Widgets

3.2.1 Unsecure Locksreen Apps

Unsecure lockscreens are mostly variations of the Slide lock, however they provide high
customizeability. People can choose their own shortcuts, background images, position-
ing of the elements on the screen and so on. Even though in Android 4.3 Lockscreen
Widgets have been introduced, these apps still remain a popular choice with tens of
millions of downloads on Google Play [11].

Figure 3.4 Unsecure 3rd party lockscreen - Start by Celltick. Courtesy of Google Play

3.2.2 Secure Lockscreen Apps

Most of the 3rd party secure lockscreens do not introduce any innovative way of un-
locking one’s device. They rather focus on providing the high customizeability or try
to deal with the after-theft scenarios (controlling phone over SMS or internet, deleting
any personal data, device tracking) - e.g. [9]. However there are a few applications that
present something new, although it could often be considered rather ”experimental”
than practical for everyday use.

Smart App Lock [19]

This is a very popular lockscreen on Google Play with more than 10 millions downloads
and high rating. Apart from providing custom variations of default Android lockscreens,
it also introduces Gesture lock (see Figure 3.6). Their Gesture lock however only uses
Android GestureLibrary, which is not precise enough.

Android GestureLibrary is designed to simplify gesture recognition for developers and
its intended use is phone control (e.g. draw circle to open menu, swipe left to go back
etc.). Therefore when recognizing a gesture, it has high tolerance and low refusal rate.
Moreover, it only uses touchscreen coordinates for gesture evaluation and disregards
time or pressure information. That could mean discarding important features of the
gesture.

Nevertheless, the introduced concept of Gesture lock is not very common approach
and might be worth further research.

8

3.2 3rd Party Apps / Widgets

Figure 3.5 Gesture Lock as implemented by Smart App Lock. Courtesy of Google Play

Picture Password Lockscreen [21]

User chooses his own image, then he draws a gesture connecting several places of in-
terest. For the user, this is extremely easy to accomplish, but the potential thief has
no idea what the points of interest might be. But, as mentioned before, once the thief
spots the user drawing the gesture, it is easy for him to repeat it.

For example, the user could choose city panorama as a background image. Then the
user would choose some buildings as his points of interest and draw a gesture connecting
them. User can easily remember those buildings and can repeat the gesture, but it would
be difficult for thief to guess the gesture. But if the thief saw the user draw it, he would
be probably able to repeat it easily.

Figure 3.6 Picture lock. The unlock gesture consists of moving the finger across the distinctive
skyline and touching the building in the middle, as marked by the blue lines. Courtesy of
Google Play

9

3 Lockscreen Solutions

Sensor Lock [8]

Most devices contain built-in gyroscope and accelerometer. This lock relies on a char-
acteristic orientation and acceleration of the device for unlocking. Preliminary testing
showed, however, that these sensors are not precise enough to be used for lockscreen
purposes, which makes this lock rather ”experimental”. Moreover, there would be
problems when trying to unlock this lockscreen e.g. in public transport.

Figure 3.7 Sensor Lock - acceleration and orientation patterns. Courtetsy of appszoom.com
[8]

10

3.3 Drawbacks of Current Solutions

3.3 Drawbacks of Current Solutions

When evaluating lockscreens, it is neccessary to focus on the ratio between security
they provide and the effort they require for unlocking. While the Slide lock is extremly
easy to unlock, it still leaves the devices completely vulnerable. On the other hand,
the effort to type a password to unlock the phone is too high for users to actually use
Password lock, even though it is very secure.

The most popular secure lockscreen, the Pattern lock, has two major weaknesses
apart from tempting users to unknowingly use very predictable patterns [26].

Peek-over-the-shoulder issue - Let us consider a user traveling in a bus. He checks
his phone and decides to read a new message, thus unlocking the phone (drawing the
pattern). The thief is standing behind the user and easily spots the pattern. He then
grabs the phone, gets off the bus and runs away. Because he now knows the pattern,
his access to the phone and related accounts is unlimited.

Smudge attack - Even if the thief doesn’t see the sequence or gets the phone another
way (finds it, steals it from handbag), it is often enough to position the screen against
the source of light. Then there are usually visible smudges on the display, which can
be used to guess the pattern or at least reduce the number of possible combinations.

Gesture lock is a better solution compared to Pattern lock, but it still shares the same
weaknesses - at least in its current implementation. This implementation uses Android
GestureLibrary, which isn’t suitable for security purposes, as explained in section 3.2.2.

11

4 Related Work and Proposed Solution

4.1 Related Work

Suprisingly, the lockscreen research is widely avoided. There are only a two papers
focusing on this issue [22] [7]. Both these papers share the same motivation and are
quite similar to each other, because rather than designing a new lockscreen, the authors
try to add a security layer to the Pattern lock. The main idea is that even if the thief
can see the user drawing the pattern (thus knows the exact unlock sequence), he cannot
repeat it because he cannot repeat certain characteristic features that cannot be easily
observed - acceleration, pressure, curvature of the gesture etc.

In [22], the authors use the Random Forest technique (multi-class classification
method based on combining results of random decision trees). They achieve error
rate1 10.39 %, however the user has to provide 50 samples of their chosen pattern to
set up the lock.

The lock proposed in [7] uses dynamic time warping (algorithm for measuring sim-
ilarity between two temporal sequences). It requires even more sequences for setup -
user has to repeat his pattern 80 times. Even still, the error rate of this lock is apx.
23 %.

Authors of these papers state that it is possible to create a unique pattern if enough
training samples are provided. However, the amount of sample patterns required from
the user in their presented solutions is too high to be used in real life.

4.1.1 Online Signature Verification

A domain very much related to the lockscreen problem is the online signature verifica-
tion [12] [17] [18] .

The main objective of online signature verification is to authorize the user by analyz-
ing the gesture he draws with special pen (his signature) on a tablet (online signature
verifier - see Figure 4.1). The difference between signature verifier and a mobile de-
vice is, that while on mobile device we obtain features like x and y coordinates and
pressure, the verifier provides additional features (inclination, azimuth) thanks to the
presence of the pen. It also requires fewer samples for model training. Despite the lack
of some features, the algorithms used in online signature verification could be used for
touchscreen gesture recognition.

Independently of the used algorithm, all approaches share the first few steps. The
acquired data is preprocessed. This usually means normalization of size, position and
orientation, some smoothing or resampling, so different sequences can actually be com-
pared with each other.

Then additional features that are not obtained directly from the device are computed.
These typically include speed, acceleration or curvature and their derivatives [5].

Some authors use all available data points. However, in order to reduce this rather
large amount of points (most of the online signature verifiers create new datapoint every
10 miliseconds), some authors only extract points of interest that are later compared.

1Error rate is the total ratio of wrong results, both false positive and false negative.

12

4.2 Requirements

Figure 4.1 Online Signature Verifier. Courtesy of xyzmo.com

For example in [5], the points are clustered into several clusters and points of interest
are centres of these clusters. In [3], points of interest are such points, where the gesture
sharply changes direction (in terms of x and y coordinates).

After these initial steps, algorithm either uses provided sequences of points to create
a new model or evaluates the sequence of measured points and decides, whether the
signature is accurate enough. According to [1], there is a number of possible approaches,
but there is no common agreement in the research community as to which of these
approaches is the best. [12] gives the overview of the current state of the art and the
most popular algorithms. Hidden Markov models (HMM) and dynamic time warping
(DTW) seem to cover most of the research work and to be equally popular.

Also for a long time, there has been no estabilished benchmark that would indepen-
dently measure efficiency of different algorithms [1]. But in 2004, the first international
online signature verification competition took place [16]. We took a look at the methods
that ranked on the highest positions - the first place was won by a team that used DTW
[25]. On the other hand, team that placed second used HMM [5]. The team that placed
second later claimed that when given more training sequences, their method (HMM)
outperforms the first team’s DTW approach.

Motivated by the success of HMMs in online signature verification, we decided to
use hidden Markov models rather than DTW. Moreover, authors of [22] state that
DTW didn’t yield expected results and suggest that another method should be tried
for touchscreen pattern recognition.

4.2 Requirements

When designing a new lockscreen, there are some basic principles that need to be
followed. It is not possible to fullfill all these flawlessly and compromises have to be
made (speed vs accuracy, false positive vs false negative ratio etc.). These compromises
and particular settings will later be subject to experiments to maximize user experience
and lockscreen usability.

13

4 Related Work and Proposed Solution

• Low false negative rate (user is almost never denied access to his own device)

• Low false positive rate (stranger can almost never gain access to the device)

• Easy to unlock - preferrably using only one hand, one finger

• Fast to unlock - dynamic, with minimal evaluation time, max. couple of seconds

• Small training set - during the training phase, only 5-10 samples will be available for
learning

Apart from these, the problems described in section 3.3 need to be dealt with, i.e.
peek-over-the-shoulder issue and smudge trail issue.

4.3 Proposed Solution

After studying related work, it became appearent that designing a secure lockscreen
based on gesture recognition is quite challenging with uncertain results.

The implemented solutions [22] [7] do not meet the above-mentioned requirements
(specifically ”small training set”). The authors have shown that the secure Pattern
lock/Gesture lock can work, but requires huge training set and complex patterns. In
real life environment, people tend to use simple shapes and do not want to draw it
more than 5-10 times. But after considering various aspects of the touchscreen gesture
recognition, we noticed that the biggest problem is the data collection itself. Even
seemingly small problems, such as wet or shaking hands, would cause user to draw the
pattern in a quite different way.

It became clear that in order to keep up with the presented requirements, the idea of
Gesture lock had to be reformulated. Gestures provided by the users would probably
be too simple and not characteristic enough, which would make the lockscreen prone
to be hacked easily.

There are four basic features provided by the touchscreen - x and y coordinates,
pressure and timestamp. All these features are used in online signature verification.
But there are some differences which prevent them from being used for touchscreen
gesture recognition for security purposes. x & y coordinates cannot be used, because
they are easily influenced by common situations like greasy or shaking hands. The
pressure info provided by the touchscreen is generally very ”basic” and cannot be used
for security purposes.

However, we noticed that users can repeat the gesture - in terms of time and speed -
very well (even though the coordinates of the touch events differ a lot). Therefore, only
the time information itself could be used for the device unlocking. While it may seem
too simple at first look, the preliminary experiments have proved that users are very
consistent in repeating the gesture in terms of time feature - that means keeping the
rhytm. It is a simple and elegant solution, eliminating the mentioned problems (smudge
attack, wet hands etc.) while following the requirements. Therefore we propose Tap
lock.

14

4.3 Proposed Solution

4.3.1 Tap Lock

User has his favourite song or melody. It is very easy for the user to tap to the rhythm
of that melody - people often tap to the rhytm when they hear the song or when they
”sing it in their head”. So instead of tapping on the table or parts of their body, people
could actually tap on the touchscreen to unlock the device. As mentoned before, users
are very consistent in keeping the rhythm - they can repeat the tap sequence easily
(see Figure 4.2). On the other hand, we noticed that the strangers have difficulties
repeating the sequence - they have no idea what song is the user thinking about. Even
if the stranger could spot the sequence, which might be quite difficult, he would not be
able to repeat it with the same precision as the user and would be denied access.

Figure 4.2 Rhythm consistency - Tap lock training sequences

The algorithms used in online signature verification can still be applied to this prob-
lem. Even though the feature set is reduced, the tapped sequence can still be considered
a gesture.

15

5 Theoretical Background

Training and evaluation of Tap lock relies on hidden Markov models (HMMs), as rea-
soned in chapter 4.1.1. In the following sections, we give a short intoduction into basic
concepts of HMMs and algorithms used for HMM learning and sequence evaluation.

5.1 Hidden Markov Models

Hidden Markov model (HMM) is a statistical model used for modelling Markov pro-
cesses with hidden states. Compared to Markov model, where we know in which state
we are at given time, in HMM we can only observe measurements that have certain
relation to the real states (that are hidden from us).

To fully describe HMM, we use the notation of [15]:

• S = {s1, ..., sN} - set of N hidden states

• V = {v1, ..., vM} - set of M possible observations

• Q = q1q2...qT - considered state sequence

• O = o1o2...oT - observed sequence

• t = 1, 2, ..., T - time indexes associated with state and observation sequences

• aij ∈ ANxN - p(qt = sj |qt−1 = si), transition probability from state si to sj

• bi(vj) ∈ BNxM - p(ot = vj |qt = si), probability of observing symbol vj , given we are
in state si

• πi - probability of being in state si in time t = 1

To show how these parts interact with each other, consider the following Urn prob-
lem [15]. Observer knows that there are N urns, s1, ..., sN , and each of these urns
contains M balls v1, ..., vM . Observer cannot see the urns, but there is a genie in the
room. According to some random process, a genie chooses the initial urn (probability
of starting with urn si is πi). Then he randomly draws a ball from it (being at urn si,
the probability of choosing ball vk is bi(vk)) . He shows the ball to the observer, who
records it as an observation o1, then the ball is placed back into the urn it was drawn
from.

The genie then proceeds and based on some random process associated with the
current urn, he chooses another urn (probability that the genie is at urn si and chooses
urn sj as the next urn is aij). From the newly chosen urn, he randomly draws a ball.
Again, the ball is shown to the observer, who records it as observation o2, then the ball
is placed back. Genie keeps choosing new urns, drawing balls from them and showing
them to the observer until T observations are recorded.

In the end, the observer records a sequence of T observations o1...oT . He doesn’t
know from which urns they were drawn from, but there are ways how the most likely
sequence of urns or the most probable urn at time t can be computed.

16

5.1 Hidden Markov Models

Figure 5.1 HMM schema. Courtesy of Wikipedia.org

In case of Tap lock, a hidden state / observation is a duration between two consecutive
touch events relative to the total length of the sequence (details in chapter 6.1.2).
Basically, melody in the user’s head can be considered a sequence of hidden states
and nobody except the user knows it. Touchscreen taps based on that melody can be
considered observations

There are three main problems that need to be solved when using hidden Markov
models:

1. Determine appropriate state representation and the number of states

2. Given observed sequence O = o1o2...oT and a model defined by parameters λ =
(A,B, π), determine the probability p(O|λ) of that sequence

3. Learn sub-optimal set of of parameters λ = (A,B, π)

While the state-related settings are problem-specific and usually subject to experi-
ments, the other two problems - λ optimization and computing p(O|λ) - can be solved
using Expectationg-Maximization and Forward-Backward algorithms.

17

5 Theoretical Background

5.2 Forward-Backward Algorithm

Consider we observe a sequence O = o1o2...oT of length T and, given λ = (A,B, π),
we want to find out p(O|λ), probability of observing that sequence. The most simple,
brute-force solution would be to compute it for all possible underlying state sequences
Q (of length T) and then sum the results.

Consider a fixed sequence of states Q = q1q2...qT of length T . Then the probability
of observing O given Q and λ is

p(O|Q,λ) = bq1(o1) · bq2(o2)...bqT (oT) (5.1)

Also, we need to compute probability of state sequence Q actually happening:

p(Q|λ) = πq1 · aq1q2 · aq2q3 ...aqT−1qT (5.2)

The joint probability of O and Q - probability that Q occurs and we observe O - is
simply the product of the equations (5.1) and (5.2). To compute the probability p(O|λ),
we need to sum over all possible sequences Q, yielding equation:

p(O|λ) =
∑
Q

p(O|Q,λ) · p(Q|λ) (5.3)

It is obvious that this solution with time complexity 2T · NT is unfeasible and we
need to use more sophisticated method.

5.2.1 Forward process

Let us define a variable

αt(i) = p(o1o2...ot, qt = si|λ) (5.4)

It represents the probability of observing subsequence o1o2...ot and being in the state
si at time t. It can be computed recursively, as illustrated by Figure 5.2. First we
initialize

α1(i) = πi · bi(o1) 1 ≤ i ≤ N (5.5)

Then we repeat the following recursion until we compute α for all times and states:

αt+1(j) = [

N∑
i=1

αt(i) · aij] · bj(ot+1) 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (5.6)

We can get to state sj at time t + 1 through N possible states si, 1 ≤ i ≤ N . Since
αt(i) is the probability observing subsequence o1o2...ot and being in the state si at time
t, then product αt(i)aij is the probability of observing subsequence o1o2...ot and being
in state sj at time t+ 1, passing through state si at time t. When we sum this product
over all possible states si, 1 ≤ i ≤ N , we get the probability of being in the state sj at
time t + 1 considering observations up till time t. Then, by simply multiplying it by
observation probability bj(ot+1), we get the αt+1(j).

18

5.2 Forward-Backward Algorithm

Figure 5.2 Forward algorithm. Courtesy of bioinfopakistan.ucoz.com

5.2.2 Backward process

The backward process is similar. Let us define

βt(i) = p(ot+1ot+2...oT |qt = si, λ) (5.7)

This represents the probability of observing sequence ot+1ot+2...oT when we know that
we are in the state si at time t.

It naturally comes from the definition that we need to set the following values before
starting the recursion (probability of observing empty sequence is always 1):

βT (i) = 1 1 ≤ i ≤ N (5.8)

Then we recursively compute the values for β for all times and states:

βt(i) =
N∑
j=1

(aij · bj(ot+1) · βt+1(j)) 1 ≤ t ≤ T − 1, 1 ≤ i ≤ N (5.9)

5.2.3 Getting the Observed Sequence Probability

Now that we have computed α and β, we can use them to compute the probability
p(O|λ). From the definitions it is obvious that

p(O|qt = si, λ) = αt(i) · βt(i) (5.10)

meaning that the probability of seeing sequence o1o2...oT given we are at state si at
time t is simply product of αt(i) and βt(i). Getting the overall sequence probability is
as simple as summing that equation over all possible states si, 1 ≤ i ≤ N for arbitrary
time t.

p(O|λ) =
N∑
i=1

αt(i) · βt(i) (5.11)

19

5 Theoretical Background

Since we can choose the time t, we can utilize this to further reduce time complexity
by half. Insted of running the whole Forward-Backward algorithm, we can make use of
the fact that βT (i) = 1 for every i. Therefore, if we choose t = T , we can completely
disregard the backward process and simply compute the sequence probability by running
only the forward part of the algorithm:

p(O|λ) =
N∑
i=1

αT (i) (5.12)

The time complexity of Forward-Backward algorithm is TN2, which is far better than
the brute-force solution. Moreover, we acquired the variables α and β, which will be
usefull in the Expectation-Maximization algorithm.

5.3 Expectation-Maximization

The EM algorithm (known as Baum-Welch algorithm when referring to HMMs) is used
for λ = (A,B, π) optimization. We are given training sequence O = o1o2...oT , from
which we want to infer the best possible set of parameters λ, maximizing p(O|λ).

The algorithm has two stages - E-stage (expectation) and M-stage (maximization).
In the E-stage, auxiliary variables are computed using the results of Forward-Backward
algorithm. These auxiliary variables are then used in the M-stage for updating the set
of parameters λ. This whole process is repeated until the local maxima is reached or
some other stopping criterion fulfilled.

EM algorithm only reaches local maxima. One way to deal with this issue is to
perform k-fold crossvalidation with random initial values. But estimating the inintial
values based on performed experiments or some reasoning tends to achieve much better
results (as shown in chapter 6.1.3).

5.3.1 Expectation Stage

Here we introduce two auxiliary variables that will be later used for updating λ.

State variable γt(i) = p(qt = si|O, λ) is the probability of being in state si at time
t given observed sequence O. This can be computed easily using the results from
Forward-Backward algorithm.

γt(i) =
αt(i) · βt(i)
p(O|λ)

=
αt(i) · βt(i)∑N

i=1 αT (i)
1 ≤ t ≤ T, 1 ≤ i ≤ N (5.13)

The other variable we introduce is joint variable ξt(i, j). This denotes the probability
of being in state si at time t and in state sj at time t+ 1.

ξt(i, j) = p(qt = si, qt+1 = sj |O, λ) (5.14)

20

5.3 Expectation-Maximization

Figure 5.3 Joint variableξt(i, j). Courtesy of winnie.kuis.kyoto-u.ac.jp

This can be actually computed quite easily, again using α and β from Forward-
Backward algorithm. Figure 5.3 can be usefull when trying to understand this variable.

Probability of being in state si at time t, given observations o1o2...ot is stored in
αt(i). Probability of observing ot+1ot+1...oT given we are are state sj at time t + 1 is
stored in βt+1(j). So we only need to add the transition probability from state si to sj ,
aij , and the observation probability of symbol ot+1 given state sj , bj(ot+1).

ξt(i, j) =
αt(i) · aij · bj(ot+1) · βt+1(j)

p(O|λ)
1 ≤ t ≤ T − 1, 1 ≤ i ≤ N, 1 ≤ j ≤ N (5.15)

5.3.2 Maximization Stage

Now that we computed the auxiliary variables, we can use them to compute a new λ̄
from λ. It is guaranteed that the new sequence likelihood will be at least as high as
the current sequence likelihood [15]:

p(O|λ̄) ≥ p(O|λ) (5.16)

The update equations can be derived by solving optimization problem of maximizing
p(O|λ) given following constraints:

N∑
j=1

aij = 1 1 ≤ i ≤ N (5.17)

M∑
k=1

bj(k) = 1 1 ≤ j ≤ N (5.18)

N∑
i=1

πi = 1 (5.19)

That is, rows of A and B must sum up to one and initial probabilities π must sum up
to one, so they actually represent valid probability distributions.

The technique that is used for this optimization problem is know as Lagrange multi-
pliers. Details of derivation can be found at [20]. In the end, we end up with following

21

5 Theoretical Background

update formulas:

āij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

(5.20)

b̄j(vk) =

∑T
t=1 γt(j) · d(ot, vk)∑T

t=1 γt(j)
(5.21)

π̄i = γ1(i) (5.22)

where d is so called indicator function defined as d(ot, vk) = 1 iff ot = vk and d(ot, vk) =
0 iff ot 6= vk

To easily understand why these formulas work, we can also derive them by counting
event occurences:

āij =
expected number of transitions from state si to state sj

expected number of transitions from state si

=

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

(5.23)

b̄j(vk) =
expected number of times in state sj and observing sysmbok vk

expected number of times in state sj

=

∑T
t=1 γt(j) · d(ot, vk)∑T

t=1 γt(j)

(5.24)

π̄i = expected number of times in state si at time t = 1 = γ1(i) (5.25)

Generally the algorithm will converge at increasingly slower rate as it approaches the
local maxima (as described in chapter 6.5). Therefore, some stopping criterion should
be used to break the iterations when we are satisfied with the result. Simple example
of such stopping criterion might be a condition that if two consecutive likelihoods
p(O|λiter), p(O|λiter+1) differ by less than some chosen tolerance ε, the algorithm is
terminated.

5.4 Additional Modifications

The algorithms introduced so far have two major disadvantages.

First, the symbols we can observe are discrete values. However, in reality we observe
continuous measurements (e.g. tap does not last 1 or 2 seconds, but rather 1.452s).
The most simple solution would be to round the measurements and possibly increase
the state count N . But we are using EM algorithm, we could also model bj(vk) as
a Gaussian distribution rather than a NxM matrix and then optimize its parameters
with the EM algorithm.

Second, the number of training sequences is limited to only one. That is certainly
undesirable, because it causes overfitting. We need to use more training sequence for λ
learning.

22

5.4 Additional Modifications

5.4.1 Continuous Observation Probabilities

Up to this moment, we have considered bj(vk) = p(ot = vk|qt = sj). Instead, imagine
that vk is a continuous measurement rather than a discrete value.

So let us reconsider the observation probability. We can redefine it as following:

bj(vk) = N (vk, µj , σ
2
j) (5.26)

where N () is the probability density function of the normal distribution and µj and σ2j
are mean and variance related to state sj .

If we kept using discrete observations, the measurements would have to be rounded,
which would impair the results.

The problem that arises with this change of b is how to learn it properly. We obviously
cannot use the formula (5.24). Fortunatelly the learning process is just as easy as in
the discrete version. The variable µ is given by:

µj =

∑T
t=1 γt(j) · ot∑T

t=1 γt(j)
1 ≤ j ≤ N (5.27)

The mean µj for state sj is thus just a mean of observations weighted by thier proba-
bilities of being in state sj at time t.

The formula for updating σ2 is given by:

σ2j =

∑T
t=1 γt(j) · (ot − µj) · (ot − µj)′∑T

t=1 γt(j)
1 ≤ j ≤ N (5.28)

This is very similar to stadard formula for variance computation, however here the
additions have different weights, again based on the probability γt(j).

5.4.2 Multiple Training Sequences

So far we have been working with only one training sequence. While that may be fine
in some cases, to resolve our problem we need to make use of all the provided training
sequences to prevent overfitting. Actually this is very easy and probably best explained
by equations (5.23 - 5.25).

As we can see, the set of parameters λ is just a result of counting the observation and
transition frequencies. The only thing we have to do when modifying the algorithm to
work with multiple sequences is to not only count the frequencies for one sequence, but
over all available sequences. The formal derivation of these equations can be found in
[13].

Let us define O = {O(1), O(2), ..., O(K)} as a set of K training sequences, where each

sequence O(k) = o
(k)
1 o

(k)
2 ...o

(k)
T consists of T observations. Similarly, the superscripts

will be used for γt(i)
(k), ξt(i, j)

(k) to refer to the variables computed over the particular
sequence.

Then the transition probabilities become

āij =

∑K
k=1

∑T−1
t=1 ξt(i, j)

(k)∑K
k=1

∑T−1
t=1 γt(i)

(k)
1 ≤ i ≤ N, 1 ≤ j ≤ N (5.29)

and the initial probabilities π are just as easy to compute:

π̄i =

∑K
k=1 γ1(i)

(k)∑K
k=1

∑N
j=1 γ1(j)

(k)
1 ≤ i ≤ N (5.30)

23

5 Theoretical Background

These are basically the same equations as (5.23, 5.25), only this time they are summed
over all the training sequences O. The denominator in (5.30) is there only to ensure
that π̄ sums up to one.

Finally we need to adjust the observation probability. Even though continuous ob-
servation probabilites are used, as stated in section 5.4.1, the update step is all about
summing over K training sequences:

µj =

∑K
k=1

∑T
t=1 γt(j)

(k) · o(k)t∑K
k=1

∑T
t=1 γt(j)

(k)
1 ≤ j ≤ N (5.31)

σ2j =

∑K
k=1

∑T
t=1 γt(j)

(k) · (o(k)t − µj) · (o
(k)
t − µj)′∑K

k=1

∑T
t=1 γt(j)

(k)
1 ≤ j ≤ N (5.32)

24

6 Implementation

In this chapter, we give a short overview how the described methods can be combined
to create a functioning lockscreen.

The whole process can be divided into two stages - a learning stage and an autho-
rization stage. In the learning stage, data is collected from the user and measurements
are acquired from them. These measurements are then used for HMM construction and
HMM parameter learning using the EM algorithm. The cross-validation is performed
to determine a likelihood threshold.

In the autorization stage, after the user/hacker taps the sequence, the measurements
are acquired from the data. Using Forward algorithm, likelihood of the observed se-
quence given the learned HMM is found. Finally, the sequence likelihood is compared
to the selected threshold and it is determined, whether to unlock the device or not.

6.1 Learning Stage

6.1.1 Data Collection

User needs to think of a melody and create a sequence based on that melody, preferably
following recommendations presented in chapter 7.2.3. Then the user is asked to tap
his chosen sequence ten times.

Figure 6.1 Tap lock implementation - data collection

25

6 Implementation

6.1.2 Data Measurements

Consider a data sequence D = d1d2dT+1 is collected. New data point di is added,
whenever a touch event is registered (finger is lifted up or touches the screen). di is
the number of miliseconds that elapsed from the first touch event. Then value dt does
not only depend on dt−1, but also on all previous values d1...dt−1. That contradicts
the Markov property, which says that the value dt only depends on the previous value,
dt−1. Therefore the sequence D cannot be used as the observation sequence O.

Instead, the first derivative of the acquired data sequence D is used. The derivative
is defined as follows:

ot = dt+1 − dt (6.1)

which is basically means that the measurements are the durations between two consec-
utive touch events. Sequence o1...oT is then used as the observation sequence O.

Then these durations are normalized, so they sum up to 1. This means that the
total length of the sequence doesn’t matter, only the rhythm is considered. Then the
measurement can be interpreted as a duration between two consecutive touch events
relative to the length of the whole tap sequence. As can bee seen in Figure 6.2, total
lengths of the sequences representing the same melody differ by up to 1 second. It
depends on the situation - in stressed situations, the user taps the sequence faster than
when he is relaxed. However, he can still keep the rhythm.

Figure 6.2 The same sequences before and after normalization. User is quite consistent in
keeping the rhythm, but the total lengths differ by up to 1 second.

6.1.3 HMM Initialization

State Representation

The hidden states, just like observations, represent the duration between two consec-
utive tap events relative to the total length of the sequence. State si, 1 ≤ i ≤ N
represents the duration of length i

N .

In our implementation, we useN = 30 states. The lower number of states means lower
number of false negatives, but also higher number of false positives. Obviously it would
be better to increase the number of states, but with the algorithm’s time complexity
of TKN2, where T is the length of the tap sequence, K number of sequences used for
learning and N number of states, it is impractical to use too many states. We found
that N = 30 states provides low error rate while maintaining reasonable execution
speed.

26

6.1 Learning Stage

Initial Parameters Estimates

As mentioned in section 5.3, the EM algorithm requires good initialization in order to
give satisfying results. In our case, the k-fold crossvalidation with random initial values
gave very poor results. But observed sequences can be used to set up the transition
matrix A, observation vectors µ and σ2 and the initial probabilities π.

The transition matrix A is initialized as an empty matrix of size N × N . Then

the algorithm iterates through all pairs of observations in all sequences o
(k)
t o

(k)
t+1 for

1 ≤ t ≤ T − 1 and 1 ≤ k ≤ K. The closest state representations of these observations,

si, sj respectively, are found: si = round(N ∗ o(k)t) and similarly for sj . The state
transition from si to sj is then entered into the matrix A: Aij+ = 1.

Because these are just estimates, some tolerance ε needs to be introduced. This

tolerance says that they underlying state q
(k)
t of the observation o

(k)
t isn’t necessarily

q
(k)
t = si (the closest state). The underlying state q

(k)
t can rather be q

(k)
t = sl, where

i − ε ≤ l ≤ i + ε and ε is the chosen tolerance. In our implementation, we decided
to use ε = 3 given we use N = 30 states. This seems like a reasonable value. Lower
tolerance would mean that the learning would be too limited by the initial estimates,
higher tolerance would make the initial estimates unnecessary.

To implement this tolerance into the transition probabilities estimates, the matrix
A is smoothed by Gaussian filter. The width of this filter is given by the chosen
tolerance. Variance used for this filter is set as σ2 = 1. Preliminary experiments
showed that if the variance of the Gaussian filter is too high, the algorithm converges
slowly, but if it is too low, the learning is limited by the initial estimates just like if the
tolerance ε was too low. In MATLAB notation, the Gaussian filter would be created as
filt = fspecial(’gaussian’, 2 ∗ ε+ 1, 1);

Figure 6.3 Initial estimates of transition probabilities, initial probabilities, observation means
and observation variances

The state-related observation means µ = (µ1, ..., µN) and observation variances σ2 =
(σ21, ..., σ

2
N) are then initialized following the above-mentioned concept of tolerance.

Given we are in state si, we will most likely observe value i
N . Therefore, µi = i for

1 ≤ i ≤ N . Tolerance is then implemented into the observation probabilities using the
observation variances (σ21, ..., σ

2
N).

Observation variances (σ21, ..., σ
2
N) could be initially set to a constant value just like

27

6 Implementation

the variance of the Gaussian filter. However, preliminary experiments showed that if
(σ21, ..., σ

2
N) are set with respect to the given observations, it leads to faster convergence

of the algorithm.

Consider ρ = max
k∈K,t∈T

(var(o
(k)
t)). Then the initial observation variance is set as the

maximal variance among the observed sequences for all states: σ2i = ρ, 1 ≤ i ≤ N .

Initial probabilities πi = 1
N , 1 ≤ i ≤ N are simply set to a constant value. Preliminary

experiments proved that this initial setting has no effect on the results nor convergence
speed, algorithm will adjust these accordingly after the first iteration.

Figure 6.4 Final values afther the EM algorithm is terminated

6.1.4 HMM Parameters Optimization

After obtaining the initial estimates, the EM algorithm is iteratively executed to tune
the parameters and to maximize p(O|λ).

The algorithm takes - especially on mobile devices - quite some time for each iteration
to complete. Therefore it is advisable to limit the number of iterations to reduce the
execution time, while still aiming for the best possible precision. We used a simple
stopping criterion - as long as the algorithm converges steeply, we let it run. If the
convergence becomes too slow, the algorithm is terminated (see Figure 6.5).

Consider Pi = p(O|λi) in iteration i. If Pi−4/Pi > 0.1, the algorithm is terminated.
That is, if the likelihood p(O|λ) hasn’t improved at least 10× during the last 4 iterations,
the convergence is considered to be too slow.

6.1.5 Threshold Selection

Because only sequences from the genuine user are availabe, and not from the hacker, the
cross-validation is performed. 8 sequences are chosen at random and used for HMM
training, then the remaining 2 sequences are evaluated. This process is repeated 10
times, resulting in 20 different likelihoods. The 2 lowest likelihoods are filtered out
(presumed to be outliers), and the threshold is then selected as the value of the lowest
remaining likelihood divided by 10. This approach is reasoned in chapter 7.2.4.

28

6.2 Authorization Stage

Figure 6.5 Stopping criterion based on algorithm’s convergence. As long as the likelihood is
improving fast enough, EM keeps iterating. After the 9th sequence, the likelihoods starts to
improve very slowly, so the algorithm is terminated

6.2 Authorization Stage

When unlocking the device, the user is shown a simple, empty screen [figure]. He only
needs to tap his sequence to unlock the device. The user doesn’t even need to look at
the device.

There are no indicators displayed that would help the potential attacker to spot the
sequence, e.g. tap feedback.

6.2.1 Sequence Evaluation

When the user taps his unlock sequence, the measurements are acquired from the
data (just like in Learning stage) and then the likelihood of the sequence is evaluated
according to the chapter 5.2.3. If the likelihood is higher than the previously selected
threshold, the device is unlocked, otherwise the access is denied.

29

7 Experiments

Extensive testing was conducted in order to determine Tap lock efficiency and usability.
The main goal of this testing was to determine, whether the Tap lock is usable in real-life
scenarios and to find out people’s reactions when confronted with this new lockscreen.
Apart from that, we also analyzed the sequences and their strengths and weaknesses,
so we could give recommendations on how to choose a proper sequence.

7.1 Experimental Protocol

Simple testing app was developed for testing purposes. This app was designed for
Samsung Galaxy Tab 10.1, but can run on most of the Android tablets.

The experiment had three parts:

• Data Collection, where the users provided training sequences,

• Testing, where the users tried to unlock their own lock

• Hacking, where the users tried to hack someone else’s lock

7.1.1 Data Collection

Users were asked to choose a favourite melody, remember it and based on that chosen
melody, tap a sequence 10 times (referred to as a set of observations O2). Users could
contribute with up to three different melodies. HMM was created and its parameters
optimized right away and the result was saved into device’s SD card.

Users were told that this sequence would be used for phone unlocking and all of them
agreed, that they would use their selected sequence (i.e. that it’s not too long or too
complex for them).

The whole process was recorded on a video camera. The recording was later cut into
ten parts - each part covered one sequence. These parts were then used in the Hacking
part of the experiment. When choosing a video recording for hacking purposes, one of
these ten parts was chosen at random and shown to the subject.

7.1.2 Testing

In the context of this experiment, testing refers to the process of the user unlocking
his own lock (while hacking is the process of the user unlocking someone else’s lock).
Testing was divided into two stages.

The first stage took place right after the data collection. The user was asked to tap
his chosen sequence 5 times. The purpose of this stage was to see whether the user
could unlock his own device.

The second stage took place several days after data collection. The purpose of this
stage was to find out, wheter users could remember their sequence(s) with high enough
accuracy to unlock the device.

2Set of observations O = 10 sequences representing the same melody from one user.

30

7.1 Experimental Protocol

Every user that contributed with at least one set had to go through stage 1, most of
the users went through stage 2 as well3.

7.1.3 Hacking

In this part of the experiment, we measured how easy/difficult it is to spot a sequence,
how many times the thief needs to see it to be able to reproduce it and whether it can
actually be reproduced with high enough accuracy.

A subject (mostly those users who took part in Data Collection, but also some new
people) was assigned an observation set O chosen at random (excluding his own sets).
He then tried to hack lock based on that set.

Hacking part was divided into three stages. First, the subject was shown one part
of the recording of the other user tapping a sequence. He was allowed to see it only
once to imitate real-life situations like trying to spot the unlock sequence in the public
transport or in a pub. The subject was then encouraged to repeat the sequence and to
try to hack the lock. He tapped 5 sequences, then the next stage took part.

Figure 7.1 One frame of a video recording that illustrates what hackers could see

In stage 2, the subject was shown the video 3 more times (different parts of the same
recording). He was then again asked to reproduce it 5 times.

In the final stage, the subject was given unlimited access to the video recording.
After the subject felt confident enough, he would try to reproduce the sequence 5 more
times.

3Some users could not be reached or were too busy to take part in the stage 2.

31

7 Experiments

7.1.4 Data Statistics

15 people provided total of 29 training sets. All these people tested their locks in stage
1, 11 of those people (total of 21 sets) tested their locks in stage 2.

14 people (from which 9 provided training sets) then tried to hack someone else’s
lock. Total of 30 locks (chosen at random) were attempted to be hacked. Because of
the random selection, some locks might have been chosen multiple times, while other
locks would not be used at all.

Even though given opportunities to watch more parts of video recording in hacking
stage 2 and stage 3, many users felt that it wasn’t necessary and proceeded to tap
the sequences right away. On the other hand, some users (usually those who failed to
hack the lock in the previous stages) took the opportunity of watching unlimited video
recording and studied the sequence carefully.

In 7 cases, the hackers couldn’t even spot the correct number of taps during the
hacking stage 1.

Users’ Reactions

Users grasped the idea of Tap lock very quickly. However, for most of them it was dif-
ficult to think of more than one non-trivial melody. Therefore, most users contribuded
with only one or two melodies, because they couldn’t think of any other suitable melody.

In the hacking part of the experiment, hackers often became quickly frustraded when
they couldn’t hack a seemingly easy sequence. For some users, this was a motivation
to try even harder, while other users just gave up.

The users’ overall reaction was positive. They mostly appreciated the idea of Tap
lock, even though some users expressed their concerns about the practical use. Approx-
imately half of the users asked, when will Tap lock be available on Google Play.

7.2 Sequence Analysis

Evaluation of Tap lock was based on the requirements presented in chapter 4.2. Users
agreed that the lock is fast and easy enough for them. Therefore the main goal of
this experiment was to find false positive and false negative rate, how they affect the
lock and what can be done about it. We also studied both easy-to-hack sequences
and sequences that couln’t be hacked, so the method could be improved and some
recommendations could be made on how to choose the ”perfect” melody. Finally, we
analyzed the sequences in order to choose the best way of selecting threshold and to
choose the minimum acceptable training set size.

7.2.1 Lock Testing

The lock is considered successfully tested by the author, if he could unlock it at least
3 times during the testing stage 1. It turned out that the testing stage 2 couldn’t be
used for evaluation. Approximately half of the people forgot the melody, because they
hadn’t been using it for a couple of days, and they needed to see the video recording of
themselves tapping their sequence. That put them in more or less the same situation
as hackers. In real-life, according to [24], people in USA check their phone up to 150
times a day. That means that they would repeat the sequence so often that they would
have no chance of forgetting it.

32

7.2 Sequence Analysis

Of those 29 different locks, 25 were successfully tested. That gives the success rate
of apx. 86 %, i.e. false negative rate is about 14 %. Taking look at the first melody
that even the author couldn’t repeat, we can see in Figure 7.2 that the user was so
inconsistent, that he couldn’t repeat the same sequence.

Figure 7.2 Lock that failed to be tested by the author - rhythm is too inconsistent. Left figure
represents sequences used for HMM learning, figure on the right represents sequences used
for lock testing.

The problem of the other melody represented by Figures 7.3 is exactly the opposite.
These sequences are too consistent and similar to each other and that caused overfitting.
Thus the threshold is set too high that the testing sequences are not authorized.

Figure 7.3 Lock that failed to be tested by the author - training sequences are so similar that
it caused overfitting. Left figure represents sequences used for HMM learning, figure on the
right represents sequences used for lock testing.

The remaining two locks, represented by Figures 7.4, 7.5, were created based on
reasonably similar sequences. However, during the testing, the authors provided not-
so-similar sequences, as if they forgot the melody. Therefore they failed to unlock the
device.

33

7 Experiments

Figure 7.4 Lock that failed to be tested by the author - training sequences are reasonably simi-
lar to each other. Testing sequences, however, are quite different from the training sequences.
Left figure represents sequences used for HMM learning, figure on the right represents se-
quences used for lock testing.

Figure 7.5 Lock that failed to be tested by the author - training sequences are reasonably simi-
lar to each other. Testing sequences, however, are quite different from the training sequences.
Left figure represents sequences used for HMM learning, figure on the right represents se-
quences used for lock testing.

7.2.2 Lock Hacking

When defining what hacked lock is, the typical Tap lock use needs to be considered.
Due to the nature of the Tap lock, the user doesn’t need to look at the screen when
unlocking his device. This is a great advantage compared to more conservative locks -
the user can start tapping his sequence right after taking the device out of the pocket.
This makes it even more difficult for the potential thief to spot the sequence.

In our experiments, each hacker knew what to expect and what to focus on. In real
life, the hacker would probably need several opportunities before realizing he needs to
repeat the tap sequence and then spotting the tap sequence clearly. In our experimental
environment, we provided the hackers with perfect conditions - they were told what to
expect and the sequence could be seen clearly.

Therefore, we consider the lock hacked, if the hacker managed to successfully unlock
the device within the first 5 attempts - after watching the recording only once. In
reality, the hacker wouldn’t probably get more than one ”perfect” opportunity anyway.

Figure 7.6 gives an overview about the hacking part of the experiment. Total of

34

7.2 Sequence Analysis

30 locks were hacked. Some locks were hacked multiple times. Black lines above the
columns connect the same locks hacked multiple times by different users. The result
of yth attempt to hack lock x is marked at the position [x, y] by the appropriate color.
Green color means that the hacker gained access to the device, red color means that
the access was denied. The missing hacking data (because hackers didn’t provide more
hacking sequences) are marked by the blue color.

Figure 7.6 Overview of hack results recorded during the hacking part of the experiment.

As it can be seen in Figure 7.7, seeing the sequence being tapped only once was
enough to hack it in 12 cases. Watching the recording 3 more times then resulted
in hacking 7 more locks. Interestingly, unlimited video recording access improved the
number of hacked locks by only 3. In 8 cases, the hacker didn’t succeed at all.

Hacking the lock in 12 of 30 instances gives false positive rate 40 %. This number
is quite high, but it can be easily reduced by following two basic recommendations on
how to choose a proper sequence as discussed in the following section.

Low false negative and low false positive requirements go usually against each other.
Therefore it is important to find a compromise. In order for users to use the Tap lock
on a daily basis, it needs to authorize the users with as few mistakes as possible. As
explained above, even if the number of false positives is high, the lock will still be
difficult to hack, because the sequences are difficult to spot. In 7 cases, hackers didn’t
even spot the correct number of taps despite the perfect hacking conditions. Moreover,
the lock is extremely resistant to random forgeries (brute-force hacking) as explained
in section 7.2.6.

35

7 Experiments

Figure 7.7 Number of locks that were hacked within the given number of attempts

7.2.3 Sequence Recommendations

Some sequence are prone to be hacked - by analyzing their weaknesses, and by analyzing
the strengths of those unhacked sequences, recommendations can be made on how to
create a proper sequence that is easy to repeat for the author, but difficult to reproduce
for the hacker.

The two obvious things that matter the most are the tap count and the length of the
taps.

As can be seen in in Figure 7.8, 7 of 12 locks hacked in the stage 1 only use sequences
of 4 taps. Resistant locks usually use 6 or 7 taps. This can be explained easily - short
sequences are easier to spot and remember, and thus repeat for both the user and the
hacker. Longer sequences require more concentration, which is a problem for the hacker,
but should not matter to the user. The user knows the sequence very well and should
be able to repeat it without thinking too much about it (it’s his favourite melody after
all).

However, tap count itself doesn’t guarantee a safe lock, as illustrated by Figure 7.9.
Even though these sequences consist of a high number of taps, these taps are too
monotonous, which makes those sequences easy to reproduce.

36

7.2 Sequence Analysis

Figure 7.8 Tap counts of locks hacked in different stages. Easy-to-hack locks are characteristic
by a very low tap count. Jittering (points are randomly moved to a side a bit) is applied, so
overlapping values can be told apart.

Figure 7.9 Examples of easy-to-hack sequences. Even though they consist of many taps, these
taps are too monotonous.

Now consider for example the sequences in Figure 7.10. These sequences represent
two very hack-resistant locks. Clearly, the authors combined short and long taps and
together with sufficient tap count created safe sequences.

The best idea when choosing a melody seems to be to combine taps of varying lengths.
Different tap durations make the sequences difficult to repeat for the hacker.

37

7 Experiments

Figure 7.10 Examples of resistant sequences. They both utilize many taps of different lengths.

Recommendation

When creating a sequence, the user should utilize taps of varying length and combine
them for maximal safety. The sequence should consist of at least 6 taps.

This might take a bit more time then simply tapping the first thing that comes to
users’s mind, but it’s worth spending extra few seconds by creating a better sequence.
In return, the sequence will be resistant to hacking.

As for the time required to tap the sequence - those resistant sequences in Figure 7.10
last approximately 3s. Easily hackable sequences presented in Figure 7.9 last about 2s
and 3s respectively. It depends on the user, some users might want to pick an unsafe
sequence that will open the device quickly, while other users prefer more security and
don’t mind spending an extra second unlocking the device. Still those 3 seconds is a
reasonable time compared to e.g. Pattern lock or PIN lock (especially when user can
tap the sequence without looking at the screen).

7.2.4 Threshold Selection

Because only the sequences from the author and not from the hacker are available when
creating the HMM, the crossvalidation is performed. From the 10 available sequences,
8 are chosen at random and HMM is constructed, then the remaining 2 are evalu-
ated. This process is repeated 10 times, resulting in a set L of 20 different likelihoods
L1, ..., L20.

Preliminary experiments have shown that these likelihoods are approximately the
same as the likelihoods of the testing sequences evaluated on fully learned HMM4 and
can be used for the threshold selection.

Initially, using the maximum likelihood estimation, we tried to model a Gaussian
distribution N(µ, σ2) based on L. The idea was the threshold T would be selected as
T = µ−3∗σ. So called 68–95–99.7 rule says that approximately 99.7 % values lie within
3 standard deviations from the mean. Thus we expected that 99.7 % of sequences from
the author would be accepted. However, for nearly all sequences the standard deviation
turned out to be so high that the threshold mostly ended up as a negative value, or
such a low value that virtually any sequence was accepted, as illustrated by Figure 7.11.

By analyzing the likelihood sets L from various sequences, we found that most like-
lihoods L ∈ L lie relatively close to each other, but some likelihoods are far away and

4HMM learned using all 10 training sequences

38

7.2 Sequence Analysis

Figure 7.11 Threshold selected by using the 68-95-99.7 rule usually ends up as a negative
value. Then every sequence, including hacker’s sequences, is accepted.

can be considered outliers. In each sequence, there were about 5-10 % outliers.

So given there are 20 likelihoods available for threshold detection, 2 with the lowest
values are filtered out preventively (presumed to be outliers). Threshold T is then set
as the value of the lowest remaining likelihood divided by 10 (to add extra tolerance).
This way, 90 % of the sequences from the author are expected to be above the threshold.

Figure 7.12 shows that most of the author’s sequences are accepted, while hacker’s
sequences are refused. This lock could be considered very safe. For better visualization,
log-likelihoods are used instead.

However, as can be seen in Figure 7.13, in some cases (especially in the later stages of
hacking) the hacker can repeat the sequence with high engouh accuracy, that it cannot
be told apart using only threshold. Therefore this lock is considered prone to being
hacked.

As shown in Figure 7.14, likelihoods of the author and the hacker can overlap and
cannot be told apart using threshold. In this case however, the threshold is set too high
even for the author, who failed to test the lock. Therefore, this lock wouldn’t probably
be used anyway.

39

7 Experiments

Figure 7.12 Threshold divides sequences acquired from user and hacker with a few errors.
Better threshold selection would result in accepting all author’s sequences while refusing all
hacker’s sequences.

Figure 7.13 Hacker’s and user’s likelihoods can be told apart by the threshold, at least at the
hacking stage 1. Threshold is, however, chosen to be too low, which results in easy hacking.

40

7.2 Sequence Analysis

Figure 7.14 Likelihoods of sequences from the user and the hacker are nearly identical and
cannot be told apart using threshold.

As demonstrated, likelihoods of user’s testing sequences are usually higher than like-
lihoods of hacker’s hacking sequences, at least in the hacking stage 1. But the threshold
selection we have used should be improved. That is a challenging task, because at the
time of threshold selection, neither testing or hacking sequences are available and the
threshold can only be chosen using the training dataset.

7.2.5 Training Set Size

During the experiment, the HMM was trained using 10 sequences. However, in real
use, it might be practical to require fewer number of training sequences.

To test how many samples it is really necessary to collect, simple experiment was
performed:

Using only 3 of the sequences acquired in the Data collection stage (randomly chosen),
HMM was trained. Then the sequences from Training and Hacking stages were evalu-
ated. The number of sequences that author could test and hacker hack was counted.
This was repeated using 4, ..., 10 sequences.

Obviously the goal is to maximize the number of tested sequences (Figure 7.15), while
minimizing the number of hacked ones (Figure 7.16).

Currently used way of choosing the threshold is through cross-validation. When only
a small number of training sequences is provided, the data to be used for threshold
selection will be very limited. The task will then become even more complicated and
will give much worse results. When only 3 or 4 training sequences are used, the threshold
is set very low. That results in most of the authors successfully unlocking their locks,
but also means that the hackers will succeed just as easily.

41

7 Experiments

Figure 7.15 Most of the 29 available locks is successfully tested by their author even with a
small number of training samples. With increasing number of available training sequences,
the number of tested locks increases relatively slowly.

More training sequences mean more data that can be used for threshold selection.
Better threshold selection leads to increased security and lowers the chances of the lock
being hacked.

During the Data collection part of the experiment, users provided 10 sequences. It
took about 1 minute to tap the sequences and apx. 20-30 seconds for HMM optimization
and threshold selection, which is still acceptable. By providing only 5 sequences, the
users would save about 30 seconds, but that would make the Tap lock useless.

7.2.6 Resistance To Random Forgeries

One of the main advantages of Tap lock, compared to common lockscreens, is its resis-
tance to random forgeries.

Random forgery is a brute-force attack, sequence tapped without any knowledge of
how the author’s sequnces look like. The hacker doesn’t know the tap count nor the
tap lengths.

In Tap lock, it is not possible to systematically try all possible combinations like e.g.
when guessing PIN or Pattern. There is a huge number of possible combinations and
even miliseconds can make difference. The hacker has no idea how long his own taps are
(cannot measure it with milisecond precision). The sequence normalization complicates
the situation (in terms of random forgeries) even more.

There is also no way how to reduce the number of possibilite combinations, such as
looking for smudge trail. So if the user doesn’t pick an easy sequence (low number of
taps or monotonous taps) or some extremely popular melody (such as Star Wars theme)

42

7.3 Summary

Figure 7.16 The locks provide very low security when only a small number of training samples
is used.

and rather follows the recommendations (7.2.3), the Tap lock will be nearly impossible
to hack without spotting the sequence.

7.3 Summary

The Tap lock is a functioning lockscreen. It provides fun and innovative way of un-
locking one’s device. The number of false positives is acceptable for common use and
will probably decrease over time (user will get more accustomed to his own melody).
If the recommendations for choosing a proper sequence are followed, it also provides
high security. Unless the unlock sequence is spotted, which is quite difficult, it is nearly
impossible to be hacked by a brute-force attack.

7.3.1 Future Work

Even though the Tap lock can be used as is, there are still some things that could
be improved. This is mainly the process of threshold selection. As demonstrated in
the section 7.2.4, likelihoods of user’s and hacker’s sequences can often be told apart,
but the threshold is set too high or too low, which results in increased number of false
positives/false negatives.

Also, a completely different approach might be used instead of hidden Markov models
to compare the methods.

43

8 Conclusions

We have found that current lockscreens either do not provide enough security or require
too much effort to be unlocked. There is a demand for a new lockscreen that is both
secure and user-friendly. We have decided to come up with a new lockscreen that fulfills
these requirements.

Rather than forcing users to remember another code, the natural movement of their
fingers can be used for unlocking. Several papers were already written on the subject,
but they all analyze the gesture or the pattern the user draws on the touchscreen. In
our opinion this is a dead end, because simple things like raindrops on the touchscreen
or greasy fingers can make the whole lockscreen unusable.

We have proposed Tap lock, a unique lockscreen that relies on tapping sequences
based on the melody in the user’s head. This approach fulfills the above-mentioned
requirements and has a great marketing potential.

There are still some aspects of our approach that could be improved - namely the
likelihood threshold selection. This might be a topic for a future work.

Finally, Tap lock has been implemented for Android devices. Experiments have
shown that it could be used in real life if simple recommendations on how to choose a
proper tap sequence are followed.

During the summer 2014, we plan to publish the Tap lock on Google Play in coop-
eration with avast! antivirus company.

44

Bibliography

[1] Signature verification, 2005. http://www.cse.msu.edu/~cse802/Papers/802_

Signature_Verification.pdf. 13

[2] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[3] Anil K. Jain; Friederike D. Griess; Scott D. Connell. On-line signature verification.
Pattern Recognition, 35, 2002. 13

[4] Kellex; droid life.com. An overview of android lock screen se-
curity options, 2013. http://www.droid-life.com/2013/03/27/

an-overview-of-android-lock-screen-security-options-beginners-guide/.
6, 7

[5] Julian Fierrez; Javier Ortega-Garcia; Daniel Ramos; Joaquin Gonzalez-Rodriguez.
Hmm-based on-line signature verification: Feature extraction and signature mod-
eling. Pattern Recognition Letters, 28(16), 2007. 12, 13

[6] Jerry Hildenbrand. Late-night poll: Do you use
lockscreen security?, 2012. http://www.androidcentral.com/

late-night-poll-do-you-use-lockscreen-security. 4, 6

[7] Alexander De Luca; Alina Hang; Frederik Brudy; Christian Lindner; Heinrich
Hussmann. Touch me once and i know it’s you!: implicit authentication based on
touch screen patterns. In SIGCHI Conference on Human Factors in Computing
Systems, 2012. 12, 14

[8] Keyvan Kambakhsh. Sensor lock pattern demo. http://www.appszoom.com/

android_applications/tools/sensor-lock-pattern-demo_deayw.html. 2, 10

[9] LSDroid. Cerberus anti theft, 2014. https://play.google.com/store/apps/

details?id=com.lsdroid.cerberus. 8

[10] Police of the Czech Republic. Statistical criminal-
ity overview, 2014. http://www.policie.cz/clanek/

archiv-statistiky-statisticke-prehledy-kriminality.aspx. 4

[11] Nick T.; phonearena.com. 10 lock screen replacement apps for
your android smartphone, 2013. http://www.phonearena.com/news/

10-lock-screen-replacement-apps-for-your-Android-smartphone_

id46003. 8

[12] Donato Impedovo; Giuseppe Pirlo. Automatic signature verification: The state of
the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applica-
tions and Reviews, 38(5), 2007. 12, 13

[13] Xiaolin Li; M. Parizeau; Rejean Plamondon. Training hidden markov models with
multiple observations-a combinatorial method. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2000. 23

45

http://www.cse.msu.edu/~cse802/Papers/802_Signature_Verification.pdf
http://www.cse.msu.edu/~cse802/Papers/802_Signature_Verification.pdf
http://www.droid-life.com/2013/03/27/an-overview-of-android-lock-screen-security-options-beginners-guide/
http://www.droid-life.com/2013/03/27/an-overview-of-android-lock-screen-security-options-beginners-guide/
http://www.androidcentral.com/late-night-poll-do-you-use-lockscreen-security
http://www.androidcentral.com/late-night-poll-do-you-use-lockscreen-security
http://www.appszoom.com/android_applications/tools/sensor-lock-pattern-demo_deayw.html
http://www.appszoom.com/android_applications/tools/sensor-lock-pattern-demo_deayw.html
https://play.google.com/store/apps/details?id=com.lsdroid.cerberus
https://play.google.com/store/apps/details?id=com.lsdroid.cerberus
http://www.policie.cz/clanek/archiv-statistiky-statisticke-prehledy-kriminality.aspx
http://www.policie.cz/clanek/archiv-statistiky-statisticke-prehledy-kriminality.aspx
http://www.phonearena.com/news/10-lock-screen-replacement-apps-for-your-Android-smartphone_id46003
http://www.phonearena.com/news/10-lock-screen-replacement-apps-for-your-Android-smartphone_id46003
http://www.phonearena.com/news/10-lock-screen-replacement-apps-for-your-Android-smartphone_id46003

Bibliography

[14] Simon J. D. Prince. Computer vision: models, learning and inference. Cambridge
University Press, 2012.

[15] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applica-
tions in speech recognition. In Proceedings of the IEEE, 1989. 16, 21

[16] Dit-Yan Yeung; Susan George; Ramanujan Kashi; Takashi Matsumoto; Gerhard
Rigoll. Signature verification contest 2004, 2004. http://www.cse.ust.hk/

svc2004/index.html. 13

[17] C. Gruber; T. Gruber; S. Krinninger; B. Sick. Online signature verification with
support vector machines based on lcss kernel functions. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, 40(4), 2009. 12

[18] Colin Sindle. Handwritten signature verification using hidden markov models.
Master’s thesis, Stellenbosch University, 2003. 12

[19] SpSoft. Smart app lock, 2014. https://play.google.com/store/apps/details?
id=com.sp.protector.free. 2, 8

[20] Stephen Tu. Derivation of baum-welch algorithm for hidden
markov models. http://people.csail.mit.edu/stephentu/writeups/

hmm-baum-welch-derivation.pdf. 21

[21] TwinBlade. Picture password lockscreen, 2014. https://play.google.com/

store/apps/details?id=com.TwinBlade.PicturePassword. 2, 9

[22] Julio Angulo; Erik Wastlund. Exploring touch-screen biometrics for user identifi-
cation on smart phones. Master’s thesis, Karlstad, Sweden, 2012. 12, 13, 14

[23] Lance Whitney. iphone market share shrinks as android,
windows phone grow, 2014. http://www.cnet.com/news/

iphone-market-share-shrinks-as-android-windows-phone-grow/. 6

[24] Mary Meeker; Liang Wu. 2013 internet trends, 2013. http://www.kpcb.com/

insights/2013-internet-trends. 32

[25] Alisher Kholmatov; Berrin Yanikoglu. Identity authentication using improved on-
line signature verification method. Pattern Recognition Letters, 26, 2005. 13

[26] Panagiotis Andriotis; Theo Tryfonas; George Oikonomou; Can Yildiz. A pilot
study on the security of pattern screen-lock methods and soft side channel attacks.
In WiSec ’13, 2013. 7, 11

46

http://www.cse.ust.hk/svc2004/index.html
http://www.cse.ust.hk/svc2004/index.html
https://play.google.com/store/apps/details?id=com.sp.protector.free
https://play.google.com/store/apps/details?id=com.sp.protector.free
http://people.csail.mit.edu/stephentu/writeups/hmm-baum-welch-derivation.pdf
http://people.csail.mit.edu/stephentu/writeups/hmm-baum-welch-derivation.pdf
https://play.google.com/store/apps/details?id=com.TwinBlade.PicturePassword
https://play.google.com/store/apps/details?id=com.TwinBlade.PicturePassword
http://www.cnet.com/news/iphone-market-share-shrinks-as-android-windows-phone-grow/
http://www.cnet.com/news/iphone-market-share-shrinks-as-android-windows-phone-grow/
http://www.kpcb.com/insights/2013-internet-trends
http://www.kpcb.com/insights/2013-internet-trends

	Motivation
	Contributions
	Lockscreen Solutions
	Default Android Lockscreens
	None
	Slide
	PIN
	Password
	Pattern
	Face Unlock

	3rd Party Apps / Widgets
	Unsecure Locksreen Apps
	Secure Lockscreen Apps
	Smart App Lock smartapplock
	Picture Password Lockscreen picturepass
	Sensor Lock sensorlock

	Drawbacks of Current Solutions

	Related Work and Proposed Solution
	Related Work
	Online Signature Verification

	Requirements
	Proposed Solution
	Tap Lock

	Theoretical Background
	Hidden Markov Models
	Forward-Backward Algorithm
	Forward process
	Backward process
	Getting the Observed Sequence Probability

	Expectation-Maximization
	Expectation Stage
	Maximization Stage

	Additional Modifications
	Continuous Observation Probabilities
	Multiple Training Sequences

	Implementation
	Learning Stage
	Data Collection
	Data Measurements
	HMM Initialization
	State Representation
	Initial Parameters Estimates

	HMM Parameters Optimization
	Threshold Selection

	Authorization Stage
	Sequence Evaluation

	Experiments
	Experimental Protocol
	Data Collection
	Testing
	Hacking
	Data Statistics
	Users' Reactions

	Sequence Analysis
	Lock Testing
	Lock Hacking
	Sequence Recommendations
	Recommendation

	Threshold Selection
	Training Set Size
	Resistance To Random Forgeries

	Summary
	Future Work

	Conclusions
	Bibliography

