
1 Murach_Android_Programming_Sample_Chapter_1.docx10/31/2013 9:42:00 AM

Section 1

Get started fast with
Android
This section gets you started fast with Android programming. Chapter 1

introduces you to some important terms, concepts, and background

information. Chapter 2 shows you how to use Eclipse to work with Android

projects. Chapter 3 introduces you to the basic skills that you need for

developing Android apps. And chapter 4 shows you how to test and debug

Android apps.

To illustrate these skills, this section shows how to write, test, and

debug a simple Tip Calculator app. This app calculates the tip you would

give based on the amount of a bill. When you complete these chapters,

you’ll be able to write, test, and debug simple applications of your own.

2 Murach_Android_Programming_Sample_Chapter_1.docx10/31/2013 9:42:00 AM

Chapter 1

An introduction to
Android
This chapter introduces you to the concepts and terms that you need for

developing Android apps. To give you a clear idea of how the code for an

Android app works, this chapter presents some of the code for a simple app

that calculates tips. When you finish this chapter, you’ll be ready to get

started with Android development.

Android overview 3
Types of devices 3
Types of apps 4
A brief history 5
Versions 6
System architecture 7
How apps are compiled and run 8

A simple Android app 9
The user interface 9
The XML for the user interface 10
The XML for the display text 12
The Java source code 13
The Android manifest 15

Perspective 16

3 Murach_Android_Programming_Sample_Chapter_1.docx10/31/2013 9:42:00 AM

Android overview

Android is a Linux-based operating system designed primarily for

touchscreen mobile devices such as smartphones and tablet computers.

Before you begin developing apps that run on Android, it’s helpful to take a

moment to consider the types of Android devices and apps that are available

today. In addition, it’s helpful to understand the history, versions, and

architecture of Android.

Types of devices

Figure 1-1 starts by showing two of the most popular Android devices, a

smartphone and a tablet. However, the code for Android is open-source. As

a result, it can be customized to work with other types of electronic devices

such as eBook readers, cameras, home automation systems, home

appliances, vehicle systems, game consoles, and so on.

http://en.wikipedia.org/wiki/Ebook_reader

4 Murach_Android_Programming_Sample_Chapter_1.docx10/31/2013 9:42:00 AM

Types of apps

Android has a large community of developers writing applications,

more commonly referred to as apps, that extend the functionality of Android

devices. Figure 1-2 lists some categories of different types of apps and

describes some of the functionality available from each category. As you

review this list, keep in mind that these categories are only intended to give

you a general idea of the various types of Android apps. More categories

exist, and the functionality that’s available from Android apps is constantly

expanding.

If you have used a smartphone or tablet, you should be familiar with

some of the apps listed in this figure. For example, you probably use apps to

send and receive text messages and email. You probably use apps to take

pictures, listen to music, and watch video. You probably use apps to get

directions and navigate to a location. You probably use apps to check the

weather, read news, and browse the web.

In addition, you may use apps from social media companies like

Facebook and Twitter to work with social media. You may use apps to play

games like Angry Birds. The main point here is that there are many different

types of apps and that application developers are constantly creating new

apps that use the capabilities of Android phones in new ways.

Some apps come preinstalled on the device. For example, most phones

include apps for managing contacts, using the phone, sending and receiving

text messages and email, working with photos and video, and web browsing.

Other apps are available for download through Google Play or third-party

sites. Some apps are free. Other apps are expensive. All apps were created

by somebody like you who learned how to develop Android apps.

5 Murach_Android_Programming_Sample_Chapter_1.docx10/31/2013 9:42:00 AM

A brief history

Figure 1-3 summarizes the history of Android. In 2003, a handful of

entrepreneurs in Palo Alto, California, founded Android, Inc. In 2005,

Google bought Android, Inc. Then, in 2007, the Open Handset Alliance was

announced. This alliance consists of a consortium of hardware, software,

and telecommunication companies devoted to advancing open standards for

mobile devices. That same year, Google released Android code as open

source under the Apache License. In addition, Google helped to create the

Android Open Source Project (AOSP) and put it in charge of the

maintenance and further development of Android.

In 2008, the first version of the Android Software Development Kit

(SDK) was released. This SDK contains all of the tools that Android

developers need to develop apps. Later in 2008, the first Android phones

became available.

Since 2008, new versions of the Android SDK have continued to be

released, and Android devices have continued to proliferate. During that

time, hundreds of thousands of apps have been developed, and billions of

apps have been downloaded.

6 Murach_Android_Programming_Sample_Chapter_1.docx10/31/2013 9:42:00 AM

Versions

Figure 1-4 describes all major releases of Android starting with version

1.6 and ending with version 4.3. Here, each version of Android corresponds

with an API (Application Programming Interface) number. For example,

version 4.2 corresponds with API 17, and version 2.2 corresponds with API

8. In addition, each version has a code name that’s based on something

sweet. For example, version 2.2 carries the code name Froyo, while version

4.1 is known as Jelly Bean.

As you develop an Android app, you must decide the minimum API

level that your app supports. As of April 2013, many developers choose 7 or

8 as the minimum API level to support since that covers a high percentage

of all Android devices.

The distribution percentages shown here are from April 2013. As time

progresses, more users will upgrade from older devices to newer ones. As a

result, you should check the URL shown in this figure to get current

percentages before you decide the minimum API level for your app.

As you review this figure, you may notice that it doesn’t include some

versions of Android such as 1.0 and 1.1. That’s because there are virtually

no devices left that run on these versions of Android. As time marches on,

it’s inevitable that the same fate will befall other older versions of Android

too.

7 Murach_Android_Programming_Sample_Chapter_1.docx10/31/2013 9:42:00 AM

System architecture

Figure 1-5 shows the Android system architecture, which is also known

as the Android stack. This stack has four layers.

The bottom layer of the stack is Linux, an open-source operating system

that’s portable and secure. This operating system provides low-level drivers

for hardware, networking, file system access, and inter-process

communication (IPC).

The second layer up in the stack contains the native libraries. These

libraries are written in C or C++. They include the Dalvik virtual machine

(VM), which works similarly to the Java virtual machine (JVM). However,

the Dalvik VM was designed specifically for mobile devices and their

inherent limitations, such as battery life and processing power.

The third layer up in the stack contains the application framework. This

layer is written mostly in Java, and it provides libraries that can be used by

the top layer of the stack. In this book, you’ll learn how to use some of these

libraries, such as the libraries for the notification manager, content

providers, and the location manager.

The top layer of the stack contains Android apps. These apps include

pre-installed apps such as the apps that you can use to manage the home

screen, manage your contacts, make and receive calls, browse the web, and

so on. In addition, these apps include other apps that you can download and

install. These types of apps are written in Java, and they are the type of apps

that you’ll learn to develop in this book.

8 Murach_Android_Programming_Sample_Chapter_1.docx10/31/2013 9:42:00 AM

How apps are compiled and run

When you develop an Android app, you typically use an IDE

(Integrated Development Environment) such as Eclipse to create a project.

A project contains all of the files for the app including the files for the Java

source code. In the next chapter, you’ll learn how to use Eclipse to work

with Android projects.

When you’re ready to test a project, you can run it. Figure 1-6 shows

how this works. When you run a project, the IDE typically compiles and

packages the project automatically before running it. This is known as

building the project.

When the IDE builds a project, it compiles the Java source code (.java

files) into Java bytecodes (.class files). Then, it compiles the Java bytecodes

into Dalvik executable files (.dex files) that can be run by the Dalvik virtual

machine that’s available from all Android devices.

When the IDE builds a project, it puts the .dex files and the rest of the

files for the project into an Android package (.apk file). This file contains all

of the files necessary to run your app including the .dex files and other

compiled resources, uncompiled resources, and a binary version of the

Android manifest. The Android manifest is a file that specifies some

essential information about an app that the Android system must have before

it can run the app. In its non-binary version, the Android manifest is stored

in a file named AndroidManifest.xml.

For security reasons, all Android apps must be digitally signed with a

certificate. During development, the IDE typically signs the app for you

automatically using a special debug key. Then, it runs the app on the

specified physical device such as a smartphone or tablet. Or, it runs the app

on the specified emulator, which is a piece of software that runs on your

computer and mimics an Android device. An Android emulator can also be

called an Android Virtual Device (AVD).

The Android debug bridge (ADB) lets your IDE communicate with an

emulator or a physical Android device. This is necessary to provide the

debugging capabilities described in chapter 4.

When you are ready to release the app, you must sign the app in release

mode, using your own private key. For more information about this, please

see chapter 17.

9 Murach_Android_Programming_Sample_Chapter_1.docx10/31/2013 9:42:00 AM

A simple Android app

To give you a better idea of how an Android app works, this topic

presents a basic Tip Calculator app. For a simple app like this one, the

programmer only needs to modify three files: the XML file for the user

interface, the XML file for the display text, and the Java source code for the

activity. In addition, the programmer may sometimes need to view or

modify the Android manifest file for the app.

The user interface

Figure 1-7 shows the user interface for the Tip Calculator app after it

has been displayed in an emulator for Android 4.2 (API 17). Of course, this

app can also be run on emulators for other Android platforms. Similarly, this

app can also be run on a physical device that’s configured for debugging.

The emulator shown in the figure includes a message that indicates that

the hardware keyboard is not enabled in AVD and that you should use the

on-screen keyboard. As a result, you can use the on-screen keyboard, known

as a soft keyboard, to enter text as shown in this figure. To do that, you click

on the Bill Amount text box. When you do, the emulator should display a

soft keyboard that’s optimized for entering a number with a decimal point.

When you’re done using that keyboard to enter an amount for the bill, you

can click the Done key. When you do, the app calculates the tip and total for

the bill.

If the Hardware Keyboard option is enabled for an emulator, the

emulator should display a message that indicates that you can use your

computer’s keyboard to enter text. In that case, the emulator won’t display a

soft keyboard when you click on the Bill Amount text box. Instead, you use

your computer’s keyboard to enter text. Although this provides an easier

way to enter text, it doesn’t accurately emulate touchscreen devices.

By default, this Tip Calculator app uses a tip percent of 15%. However,

if you want to increase or decrease the tip amount, you can click the

Increase (+) or Decrease (-) buttons. When you do, the app recalculates the

tip and total amounts for the bill.

10 Murach_Android_Programming_Sample_Chapter_1.docx10/31/2013 9:42:00 AM

The XML for the user interface

Figure 1-8 shows the XML for the user interface. This code defines an

activity, which is a screen that users can interact with, and it’s stored in a file

named activity_tip_calculator.xml.

If you have experience with XML or HTML, you may be able to

understand much of this code already. If not, don’t worry! You’ll learn the

details about how this code works in chapter 3. For now, here’s a brief

explanation.

An XML file consists of one or more elements. These elements can be

nested within each other. In this file, the RelativeLayout element is the

parent element, and it has ten child elements: seven TextView elements, one

EditText element, and two Button elements.

Each of these elements has multiple attributes. For example, the

RelativeLayout element has a padding attribute that determines how much

space there is on the screen between the RelativeLayout element and its

child elements. Many of these attributes are set automatically for you when

you use a graphical tool, like Eclipse to create the layout. As a result, you

often don’t need to set these attributes. However, you sometimes need to

modify them.

The RelativeLayout element defines a layout, which is a container that

determines where its child elements are displayed on the screen. In Android,

there are several types of layouts that use different techniques to control

where the child elements are displayed. The relative layout organizes its

child elements in relation to one another.

The RelativeLayout element has several attributes that determine how it

works. Here, the first two attributes are set automatically, and you can

usually ignore them. Then, the layout_width and layout_height attributes

determine that the layout should use the whole screen. Finally, the padding

attribute determines that there should be some padding, or space, between

the edge of the layout and its child elements.

To specify the amount of space, the padding attribute specifies a

measurement of “10dp”. Here, dp stands for density-independent pixel. In

general, it’s considered a best practice to use density-independent pixels for

padding and margins whenever possible as it allows your app to scale

properly on various devices.

The child elements define the controls for the bill amount. In Android,

controls are typically referred to as widgets.

The first TextView element displays “Bill Amount” on the user

interface. In Android terms, this element is often referred to as a text view.

Since this widget displays text that labels another widget, it can also be

referred to as a label.

The first attribute of this widget defines an ID for the widget. Here, the

value for the id attribute begins with “@+id/”. This indicates that the

following text is the ID for the widget. In this case, the widget has an ID of

billAmountLabel. The next three attributes for this widget set its height,

width, and padding.

11 Murach_Android_Programming_Sample_Chapter_1.docx10/31/2013 9:42:00 AM

The fifth attribute sets the text that’s displayed on the widget to the

value that’s stored in the bill_amount_label string of the strings.xml file,

which you’ll learn about in a moment. To get a string from the strings.xml

file, the value for this attribute begins with “@string/”. This indicates that

the following text is the name of the string element that contains the text.

To specify the size of the text, the textSize attribute specifies a

measurement of “20sp”. Here, sp stands for scale-independent pixel. In

general, it’s considered a best practice to use scale-independent pixels for

text sizes whenever possible as it allows your text sizes to scale properly.

Finally, the textStyle attribute sets the style of this text to bold.

The EditText element that follows displays the widget that allows the

user to enter a bill amount. The Android documentation refers to this type of

widget as an editable text view, but you can also refer to it as a text box.

Most of the attributes of this EditText element work similarly to those of the

previous TextView element. However, there are some differences. For

example, the alignment attributes align the text box relative to its label.

Then, the ems attribute specifies that the text box width should be 8 ems (8

of the letter m). Next, the inputType element specifies that the soft keyboard

should only allow the user to enter decimal numbers.

To make it easy to test this app, the text attribute for the EditText

element specifies a default value of “34.60”. During development, you can

leave this attribute set to a default value like this one. However, once the

application is working, you can set this attribute to an empty string.

The next two TextView elements define the widgets that display the tip

percent. By now, you should have a general idea of what most of the

attributes for these elements do. The main point to notice is that the layout

attributes align these controls relative to one another. For example, the label

for the tip percent is aligned with the left side of the label for the bill

amount. Similarly, the percent label is displayed below the bill amount

label.

The Button elements define the buttons that allow the user to increase or

decrease the tip percent. These widgets are 45dp wide and high and they’re

aligned to the right of the TextView widgets for the tip percent.

The last four TextView elements define the widgets that display the tip

and total amounts. These elements work like the previous TextView

elements shown in this figure.

12 Murach_Android_Programming_Sample_Chapter_1.docx10/31/2013 9:42:00 AM

The XML for the display text

Part 3 of figure 1-8 also shows the XML for the display text. This XML

is stored in a file named strings.xml, and it defines the names and values for

the display text. For example, the string element with a name of app_name

has a value of “Tip Calculator”. The string element with a name of

bill_amount_label has a value of “Bill Amount”. The string element with a

name of bill_amount has a value of “34.60”. And so on. To differentiate

between the widgets that display labels and the widgets that display results, I

have appended “_label” to the names of the labels.

At this point, you may be wondering why Android provides a

mechanism for separating the display text from the user interface. The

reason is because Android apps are likely to run on devices used around the

world. As a result, Android attempts to make it easy to develop apps that are

appropriate for different locales. This is known as localization. For example,

you can provide one strings.xml file for English and another for French.

Then, if Android determines that the locale for the device is French, it will

use the strings.xml file that contains the French text. You’ll learn more

about how that works in chapter 3.

13 Murach_Android_Programming_Sample_Chapter_1.docx10/31/2013 9:42:00 AM

The Java source code

Figure 1-9 shows the Java source code that handles events that occur on

the user interface, gets input from the user interface, performs calculations,

and updates the user interface. This source code is stored in a file named

TipCalculatorActivity.java.

If you have experience with Java, you may be able to understand much

of this code already. If not, don’t worry! You’ll learn the details about how

this code works in chapter 3. For now, here’s a brief explanation.

This source code declares a class named TipCalculatorActivity. To start,

the package statement stores this class in the com.murach.tipcalculator

package. Then, it imports all the Java and Android classes and interfaces

that are needed for this class. As you can see, most of these classes and

interfaces are stored in the android.view or android.widget packages.

The TipCalculatorActivity class inherits the Activity class that’s

provided by Android. This class defines the methods that are called during

the lifecycle of an activity. This allows the TipCalculatorActivity class to

override these lifecycle methods to perform tasks at different points in the

activity’s life.

Of these methods, the most important one is the onCreate method,

which is called when Android creates an activity. This method is the only

lifecycle method that’s used by the activity shown in this chapter. However,

in chapter 3, you’ll learn how to use two other activity lifecycle methods to

save and restore data if the activity is interrupted by another activity such as

a phone call.

The TipCalculatorActivity class also implements two interfaces. These

interfaces allow this class to handle the events that occur on the user

interface. First, the OnEditorActionListener interface makes the class a

listener for the EditorAction event. As a result, this class must implement

the onEditorAction method. Then, the OnClickListener interface makes the

class a listener for the Click event. As a result, this class must implement the

onClick method.

Within the class, the first six statements define the instance variables for

the widgets that the class needs to work with. Then, the seventh statement

defines an instance variable for the tip percent and sets its default value to

.15. Since this statement uses the float type, this code appends an f to the

number to indicate that the literal is of the float type, not the double type.

The onCreate method begins by passing its Bundle parameter to the

superclass (the Activity class). Then, it uses the setContentView method

that’s available from the Activity superclass to display the user interface

that’s defined in the activity_tip_calculator.xml file. To do that, this method

uses the R class to access the compiled resources that are available to the

Android app. This class is created and compiled automatically when you

build a project. In other words, Android converts the XML in the

activity_tip_calculator.xml file into Java code, compiles it, and makes it

available through the R class.

14 Murach_Android_Programming_Sample_Chapter_1.docx10/31/2013 9:42:00 AM

After displaying the user interface, the onCreate method gets references

to the six widgets that it declared earlier. To do that, it calls the

findViewById method for each widget and uses the R class to pass the ID of

the widget to that method. Then, it casts the widget object that’s returned to

the appropriate type. These types correspond with the names of the elements

in the XML file for the user interface.

After getting references to the widgets, this code sets the listeners. First,

it sets the current class (TipCalculatorActivity) as the listener for the

EditorAction event on the bill amount text box. As a result, the

onEditorAction method in this class is executed when the user uses the bill

amount text box to enter an amount for the bill. Then, this code sets the

current class as the listener for the Click event on both of the buttons. As a

result, the onClick method is executed when the user clicks on either button.

After setting the listeners, this code calls the calculateAndDisplay

method. This method calculates the tip and total amounts and displays all

current data on the user interface. To start, it gets the string that was entered

into the bill amount text box. Then, it checks whether the string is empty. If

so, it sets the bill amount to zero. Otherwise, it converts the string to a float

value. Next, it calculates the tip and total amounts. Finally, it formats and

displays the results of the calculations. To do that, it uses the NumberFormat

class to convert the float values into string values that have currency and

percent formatting.

The onEditorAction method is executed whenever the user presses an

action key on a soft keyboard such as the Done key. This method calls the

calculateAndDisplay method to calculate the new tip amount and total and

display it on the user interface.

The onClick method is executed whenever the user clicks on either of

the buttons. This method begins by using a switch statement to check which

button is clicked. Then, if the Decrease (-) button is clicked, this code

decreases the tip percent by 1 percent and calls the calculateAndDisplay

method to refresh the data that’s on the user interface. Conversely, if the

Increase (+) button is clicked, this code increases the tip percent by 1

percent and calls the calculateAndDisplay method to refresh the data.

15 Murach_Android_Programming_Sample_Chapter_1.docx10/31/2013 9:42:00 AM

The Android manifest

Figure 1-10 shows the AndroidManifest.xml file, which is known as the

Android manifest. This file specifies some essential information about an

app that the Android system must have before it can run the app. Within the

manifest, there is always one application element. Within the application

element, there may be one or more activity elements. However, for this app,

there is only a single activity. This activity is identified as the main activity,

and it is launched when the app starts.

Like the XML file for the user interface, the manifest file can access

strings in the strings.xml file. For example, the label attribute of the

application element specifies the app_name string in the strings.xml file.

Similarly, the label attribute of the activity element specifies the

title_activity_tip_calculator string in the strings.xml file.

This manifest file sets the screenOrientation attribute of the activity to

“portrait”. As a result, this application can only be displayed in portrait

orientation, not landscape orientation. That’s important because this activity

doesn’t include the code that’s necessary to gracefully handle the switch

between the portrait and landscape orientations. In chapter 3, you’ll learn

how to handle changes in orientation.

16 Murach_Android_Programming_Sample_Chapter_1.docx10/31/2013 9:42:00 AM

Perspective

The goal of this chapter has been to introduce you to some concepts and

terms that you should understand before getting started with Android

programming. However, this chapter is just an overview of Android

programming. In the next few chapters, you’ll learn the hands-on skills you

need to develop a simple Android app like one shown in this chapter.

Terms

Android

application

app

Open Handset Alliance

Android Open Source Project (AOSP)

Software Development Kit (SDK)

Android stack

Dalvik virtual machine (VM)

Java virtual machine (JVM)

Integrated Development Environment

(IDE)

project

building

Java source code

Java bytecodes

Dalvik executable files

Android package

Android manifest

signed app

emulator

Android Virtual Device (AVD)

Android debug bridge (ADB)

soft keyboard

activity

element

parent element

child element

attribute

layout

relative layout

padding

density-independent pixel (dp)

control

widget

text view

label

scale-independent pixel (sp)

editable text view

text box

localization

17 Murach_Android_Programming_Sample_Chapter_1.docx10/31/2013 9:42:00 AM

Summary

 Android is a Linux-based operating system designed primarily for

touchscreen mobile devices such as smartphones and tablet computers. It

was first released in 2008. Android code is open-source.

 Android developers write applications, or apps.

 Android system architecture, known as the Android stack, consists of four

layers: Linux, native libraries, the application framework, and Android apps.

 An Android app is typically developed using an IDE (Integrated

Development Environment) like Eclipse, using Java as the programming

language.

 Android apps can be run on a physical Android device or on an emulator,

also called an Android Virtual Device (AVD).

 An Android project must be built before it is run, compiling the Java source

code (.java files) into Java bytecodes (.class files) and then into Dalvik

executable files (.dex files).

 All of the files for an Android project are put into an Android package (.apk

file), which includes a binary version of the AndroidManifest.xml file.

 To run an app on an emulator or device, it must be digitally signed with a

certificate.

 The Android debug bridge (ADB) lets your IDE communicate with an

emulator or a physical Android device.

