
Getting SGD Off The Ground II
Basic Techniques We Always Use CS6787 Lecture 3 — Fall 2021

To get SGD off the ground, we don’t just need software.
Here are some basic statistical techniques that we pretty 
much always use… 



Mini-Batching



Gradient Descent vs. SGD

• Gradient descent: all examples at once

• Stochastic gradient descent: one example at a time

• Is it really all or nothing? Can we do something 
intermediate?
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Mini-Batch Stochastic Gradient Descent

• An intermediate approach

where Bt is sampled uniformly from the set of all subsets 
of {1, … , N} of size b.
• The b parameter is the batch size
• Typically choose b << N.

• Also called mini-batch gradient descent
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How does runtime cost of Mini-Batch compare 
to SGD and Gradient Descent?
• Takes less time to compute each update than gradient 

descent
• Only needs to sum up b gradients, rather than N

• But takes more time for each update than SGD
• So what’s the benefit?

• It’s more like gradient descent, so maybe it converges faster 
than SGD?
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Advantages of Mini-Batch (reprise) 

• Takes less time to compute each update than gradient 
descent
• Only needs to sum up b gradients, rather than N

• Converges to a smaller noise ball than stochastic 
gradient descent
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How to choose the batch size?

• Mini-batching is not a free win
• Naively, compared with SGD, it takes b times as much effort to get a 

b-times-as-accurate answer
• But we could have gotten a b-times-as-accurate answer by just 

running SGD for b times as many steps with a step size of ⍺/b.

• But it still makes sense to run it for systems and statistical
reasons
• Mini-batching exposes more parallelism
• Mini-batching lets us estimate statistics about the full gradient more 

accurately

• Another use case for hyperparameter optimization



Mini-Batch SGD is very widely used

• Including in basically all neural network training

• b = 32 is a typical default value for batch size
• From “Practical Recommendations for Gradient-Based 

Training of Deep Architectures,” Bengio 2012.



Overfitting,
Generalization Error, and 
Regularization



Minimizing Training Loss is Not our Real Goal

• Training loss looks like

• What we actually want to minimize is expected loss on new 
examples
• Drawn from some real-world distribution ɸ

• Typically, assume the training examples were drawn from this 
distribution
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Overfitting

• Minimizing the training loss doesn't generally 
minimize the expected loss on new examples
• They are two different objective functions after all

• Difference between the empirical loss on the training 
set and the expected loss on new examples is called the 
generalization error

• Even a model that has high accuracy on the training set 
can have terrible performance on new examples
• Phenomenon is called overfitting



Demo



How to address overfitting

• Many, many techniques to deal with overfitting
• Have varying computational costs

• But this is a systems course…so what can we do with 
little or no extra computational cost?

• Notice from the demo that some loss functions do 
better than others
• Can we modify our loss function to prevent overfitting?



Regularization

• Add an extra regularization term to the objective 
function

• Most popular type: L2 regularization

• Also popular: L1 regularization
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Benefits of Regularization

• Cheap to compute
• For SGD and L2 regularization, there’s just an extra scaling

• L2 regularization makes the objective strongly convex
• This makes it easier to get and prove bounds on convergence

• Helps with overfitting
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Demo



How to choose the regularization parameter?

• One way is to use an independent validation set to 
estimate the test error, and set the regularization 
parameter manually so that it is high enough to avoid 
overfitting
• This is what we saw in the demo

• But doing this naively can be computationally 
expensive
• Need to re-run learning algorithm many times

• Yet another use case for hyperparameter optimization



More general forms of regularization

•Regularization is used more generally to 
describe anything that helps prevent overfitting
• By biasing learning by making some models more 

desirable a priori

•Many techniques that give throughput 
improvements also have a regularizing effect
• Sometimes: a win-win of better statistical and 

hardware performance



Early Stopping



Asymptotically large training sets

• Setting 1: we have a distribution ɸ and we sample a very 
large (asymptotically infinite) number of points from it, then 
run stochastic gradient descent on that training set for only 
N iterations.

• Can our algorithm in this setting overfit?
• No, because its training set is asymptotically equal to the true 

distribution.

• Can we compute this efficiently?
• No, because its training set is asymptotically infinitely large



Consider a second setting
• Setting 1: we have a distribution ɸ and we sample a very 

large (asymptotically infinite) number of points from it, then 
run stochastic gradient descent on that training set for only 
N iterations.

• Setting 2: we have a distribution ɸ and we sample N points 
from it, then run stochastic gradient descent using each of 
these points exactly once.

• What is the difference between the output of SGD in these 
two settings?
• Asymptotically, there’s no difference!
• So SGD in Setting 2 will also never overfit



Early Stopping

• Motivation: if we only use each training example once 
for SGD, then we can’t overfit.

• So if we only use each example a few times, we 
probably won’t overfit too much.

• Early stopping: just stop running SGD before it 
converges.



Benefits of Early Stopping

•Cheap to compute
• Literally just does less work
• It seems like the technique was designed to make 

systems run faster

•Helps with overfitting



Another class of technique:
Acceleration and Momentum



How does the step size affect convergence?

• Let’s go back to gradient descent

• Simplest possible case: a quadratic function
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Step size vs. convergence: graphically

|xt+1 � 0| = |1� ↵| |xt � 0|

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 1 2 3

co
n

ve
rg

en
ce

 r
at

e

step size



What if the curvature is different?

f(x) = 2x2 xt+1 = xt � 4↵xt = (1� 4↵)xt
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Step size vs. curvature 

• For these one-dimensional quadratics, how we should 
set the step size depends on the curvature
• More curvature à smaller ideal step size

• What about higher-dimensional problems?
• Let’s look at a really simple quadratic that’s just a sum of our 

examples.
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Simple two dimensional problem

• Gradient descent:
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What’s the convergence rate?

• Look at the worst-case contraction factor of the update

• Contraction is maximum of previous two values.
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Convergence of two-dimensional quadratic
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What does this example show?

• We’d like to set the step size larger for dimension with 
less curvature, and smaller for the dimension with more 
curvature.

• But we can’t, because there is only a single step-size 
parameter.

• There’s a trade-off
• Optimal convergence rate is substantially worse than what 

we’d get in each scenario individually — individually we 
converge in one iteration.



For general quadratics

• For PSD symmetric A,

• Gradient descent has update step

• What does the convergence rate look like in general?
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Convergence rate for general quadratics
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Optimal convergence rate

• Minimize:

• Optimal value occurs when

• Optimal rate is
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What affects this optimal rate?

• Here, 𝜅 is called the 
condition number of the 
matrix A.

• Problems with larger 
condition numbers 
converge slower.
• Called poorly conditioned.
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Poorly conditioned problems

• Intuitively, these are problems that are highly curved in 
some directions but flat in others

• Happens pretty often in machine learning
• Measure something unrelated à low curvature in that 

direction
• Also affects stochastic gradient descent

• How do we deal with this?



Momentum



Motivation

• Can we tell the difference between the curved and flat 
directions using information that is already available to the 
algorithm?

• Idea: in the one-dimensional case, if the gradients are 
reversing sign, then the step size is too large
• Because we’re over-shooting the optimum
• And if the gradients stay in the same direction, then step size is too 

small

• Can we leverage this to make steps smaller when gradients 
reverse sign and larger when gradients are consistently in 
the same direction?



Polyak Momentum

• Add extra momentum term to gradient descent

• Intuition: if current gradient step is in same direction as 
previous step, then move a little further in that direction.
• And if it’s in the opposite direction, move less far.

• Also known as the heavy ball method.

xt+1 = xt � ↵rf(xt) + �(xt � xt�1)



Momentum for 1D Quadratics

• Momentum gradient descent gives
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Characterizing momentum for 1D quadratics

• Start with

• Trick: let  
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Characterizing momentum (continued)

• Let

• Then we get the simplified characterization

• This is a degree-t polynomial in u
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Chebyshev Polynomials

• If we initialize such that                              then these are a 
special family of polynomials called the Chebyshev 
polynomials 

• Standard notation:

• These polynomials have an important property: for all t

z0 = 1, z1 = u

zt+1 = 2uzt � zt�1
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Chebyshev Polynomials
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Chebyshev Polynomials
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Chebyshev Polynomials
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Chebyshev Polynomials
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Chebyshev Polynomials
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Chebyshev Polynomials
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Chebyshev Polynomials
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Characterizing momentum (continued)

• What does this mean for our 1D quadratics?
• Recall that we let 

• So

xt = �t/2zt

xt = �t/2 · x0 · Tt(u)
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Consequences of momentum analysis

• Convergence rate depends only on momentum parameter 
β
• Not on step size or curvature.

• We don’t need to be that precise in setting the step size
• It just needs to be within a window
• Pointed out in “YellowFin and the Art of Momentum Tuning” by 

Zhang et. al.

• If we have a multidimensional quadratic problem, the 
convergence rate will be the same in all directions
• This is different from the gradient descent case where we had a 

trade-off



Choosing the parameters

• How should we set the step size and momentum 
parameter if we only have bounds on λ ?

• Need:

• Suffices to have:
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Choosing the parameters (continued)

• Adding both equations:
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Choosing the parameters (continued)

• Subtracting both equations:
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Choosing the parameters (continued)

• Combining these results:
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Choosing the parameters (continued)

• Quadratic formula: 0 = 1� 2
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Gradient Descent versus Momentum

• Recall: gradient descent had a convergence rate of

• But with momentum, the optimal rate is

• This is called convergence at an accelerated rate
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Demo



Setting the parameters

• How do we set the momentum in practice for machine 
learning?

• One method: hyperparameter optimization

• Another method: just set β = 0.9
• Works across a range of problems
• Actually quite popular in deep learning



Nesterov momentum



What about more general functions?

• Previous analysis was for quadratics

• Does this work for general convex functions?

• Answer: not in general
• We need to do something slightly different



Nesterov Momentum

• Slightly different rule

• Main difference: separate the momentum state from 
the point that we are calculating the gradient at.

xt+1 = yt � ↵rf(yt)

yt+1 = xt+1 + �(xt+1 � xt)



Nesterov Momentum Analysis

• Converges at an accelerated rate for ANY convex 
problem

• Optimal assignment of the parameters:
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Nesterov Momentum is Also Very Popular

• People use it in practice for deep learning all the time

• Significant speedups in practice



Demo



What about SGD?

• All our above analysis was for gradient descent

• But momentum still produces empirical improvements 
when used with stochastic gradient descent

• And we’ll see how in one of the papers we’re reading on 
Monday!


