
Getting SGD Off The Ground II
Basic Techniques We Always Use CS6787 Lecture 3 — Fall 2021

To get SGD off the ground, we don’t just need software.
Here are some basic statistical techniques that we pretty
much always use…

Mini-Batching

Gradient Descent vs. SGD

• Gradient descent: all examples at once

• Stochastic gradient descent: one example at a time

• Is it really all or nothing? Can we do something
intermediate?

wt+1 = wt � ↵t
1

N

NX

i=1

rf(wt;xi)

wt+1 = wt � ↵trf(wt;xit)

Mini-Batch Stochastic Gradient Descent

• An intermediate approach

where Bt is sampled uniformly from the set of all subsets
of {1, … , N} of size b.
• The b parameter is the batch size
• Typically choose b << N.

• Also called mini-batch gradient descent

wt+1 = wt � ↵t
1

|Bt|
X

i2Bt

rf(wt;xi)

How does runtime cost of Mini-Batch compare
to SGD and Gradient Descent?
• Takes less time to compute each update than gradient

descent
• Only needs to sum up b gradients, rather than N

• But takes more time for each update than SGD
• So what’s the benefit?

• It’s more like gradient descent, so maybe it converges faster
than SGD?

wt+1 = wt � ↵t
1

|Bt|
X

i2Bt

rf(wt;xi)

Advantages of Mini-Batch (reprise)

• Takes less time to compute each update than gradient
descent
• Only needs to sum up b gradients, rather than N

• Converges to a smaller noise ball than stochastic
gradient descent

wt+1 = wt � ↵t
1

|Bt|
X

i2Bt

rf(wt;xi)

lim
T!1

E
⇥
kwT � w⇤k2

⇤
 ↵M

(2µ� ↵µ2)b

How to choose the batch size?

• Mini-batching is not a free win
• Naively, compared with SGD, it takes b times as much effort to get a

b-times-as-accurate answer
• But we could have gotten a b-times-as-accurate answer by just

running SGD for b times as many steps with a step size of ⍺/b.

• But it still makes sense to run it for systems and statistical
reasons
• Mini-batching exposes more parallelism
• Mini-batching lets us estimate statistics about the full gradient more

accurately

• Another use case for hyperparameter optimization

Mini-Batch SGD is very widely used

• Including in basically all neural network training

• b = 32 is a typical default value for batch size
• From “Practical Recommendations for Gradient-Based

Training of Deep Architectures,” Bengio 2012.

Overfitting,
Generalization Error, and
Regularization

Minimizing Training Loss is Not our Real Goal

• Training loss looks like

• What we actually want to minimize is expected loss on new
examples
• Drawn from some real-world distribution ɸ

• Typically, assume the training examples were drawn from this
distribution

h(w) =
1

N

NX

i=1

f(w;xi)

h̄(w) = Ex⇠� [f(w;x)]

Overfitting

• Minimizing the training loss doesn't generally
minimize the expected loss on new examples
• They are two different objective functions after all

• Difference between the empirical loss on the training
set and the expected loss on new examples is called the
generalization error

• Even a model that has high accuracy on the training set
can have terrible performance on new examples
• Phenomenon is called overfitting

Demo

How to address overfitting

• Many, many techniques to deal with overfitting
• Have varying computational costs

• But this is a systems course…so what can we do with
little or no extra computational cost?

• Notice from the demo that some loss functions do
better than others
• Can we modify our loss function to prevent overfitting?

Regularization

• Add an extra regularization term to the objective
function

• Most popular type: L2 regularization

• Also popular: L1 regularization

h(w) =
1

N

NX

i=1

f(w;xi) + �2kwk22 =
1

N

NX

i=1

f(w;xi) + �2
dX

k=1

x2
k

h(w) =
1

N

NX

i=1

f(w;xi) + �kwk1 =
1

N

NX

i=1

f(w;xi) + �
dX

k=1

kxkk

Benefits of Regularization

• Cheap to compute
• For SGD and L2 regularization, there’s just an extra scaling

• L2 regularization makes the objective strongly convex
• This makes it easier to get and prove bounds on convergence

• Helps with overfitting

wt+1 = (1� 2↵t�
2)wt � ↵trf(wt;xit)

Demo

How to choose the regularization parameter?

• One way is to use an independent validation set to
estimate the test error, and set the regularization
parameter manually so that it is high enough to avoid
overfitting
• This is what we saw in the demo

• But doing this naively can be computationally
expensive
• Need to re-run learning algorithm many times

• Yet another use case for hyperparameter optimization

More general forms of regularization

•Regularization is used more generally to
describe anything that helps prevent overfitting
• By biasing learning by making some models more

desirable a priori

•Many techniques that give throughput
improvements also have a regularizing effect
• Sometimes: a win-win of better statistical and

hardware performance

Early Stopping

Asymptotically large training sets

• Setting 1: we have a distribution ɸ and we sample a very
large (asymptotically infinite) number of points from it, then
run stochastic gradient descent on that training set for only
N iterations.

• Can our algorithm in this setting overfit?
• No, because its training set is asymptotically equal to the true

distribution.

• Can we compute this efficiently?
• No, because its training set is asymptotically infinitely large

Consider a second setting
• Setting 1: we have a distribution ɸ and we sample a very

large (asymptotically infinite) number of points from it, then
run stochastic gradient descent on that training set for only
N iterations.

• Setting 2: we have a distribution ɸ and we sample N points
from it, then run stochastic gradient descent using each of
these points exactly once.

• What is the difference between the output of SGD in these
two settings?
• Asymptotically, there’s no difference!
• So SGD in Setting 2 will also never overfit

Early Stopping

• Motivation: if we only use each training example once
for SGD, then we can’t overfit.

• So if we only use each example a few times, we
probably won’t overfit too much.

• Early stopping: just stop running SGD before it
converges.

Benefits of Early Stopping

•Cheap to compute
• Literally just does less work
• It seems like the technique was designed to make

systems run faster

•Helps with overfitting

Another class of technique:
Acceleration and Momentum

How does the step size affect convergence?

• Let’s go back to gradient descent

• Simplest possible case: a quadratic function

xt+1 = xt � ↵rf(xt)

f(x) =
1

2
x2

xt+1 = xt � ↵xt = (1� ↵)xt

Step size vs. convergence: graphically

|xt+1 � 0| = |1� ↵| |xt � 0|

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 1 2 3

co
n

ve
rg

en
ce

 r
at

e

step size

What if the curvature is different?

f(x) = 2x2 xt+1 = xt � 4↵xt = (1� 4↵)xt

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 1 2 3

co
n

ve
rg

en
ce

 r
at

e

step size

previou
s f

Step size vs. curvature

• For these one-dimensional quadratics, how we should
set the step size depends on the curvature
• More curvature à smaller ideal step size

• What about higher-dimensional problems?
• Let’s look at a really simple quadratic that’s just a sum of our

examples.

f(x, y) =
1

2
x2 + 2y2

Simple two dimensional problem

• Gradient descent:

f(x, y) =
1

2
x2 + 2y2

xt+1

yt+1

�
=

xt

yt

�
� ↵

xt

4yt

�

=

1� ↵ 0
0 1� 4↵

�
xt

yt

�

xt+1

yt+1

�
=

xt

yt

�
� ↵

xt

4yt

�

=

1� ↵ 0
0 1� 4↵

�
xt

yt

�

What’s the convergence rate?

• Look at the worst-case contraction factor of the update

• Contraction is maximum of previous two values.

max
x,y

����

1� ↵ 0
0 1� 4↵

�
x
y

�����
����

x
y

�����
= max(|1� ↵| , |1� 4↵|)

Convergence of two-dimensional quadratic

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 1 2 3

co
n

ve
rg

en
ce

 r
at

e

step size

previous f

new f

What does this example show?

• We’d like to set the step size larger for dimension with
less curvature, and smaller for the dimension with more
curvature.

• But we can’t, because there is only a single step-size
parameter.

• There’s a trade-off
• Optimal convergence rate is substantially worse than what

we’d get in each scenario individually — individually we
converge in one iteration.

For general quadratics

• For PSD symmetric A,

• Gradient descent has update step

• What does the convergence rate look like in general?

f(x) =
1

2
xTAx

xt+1 = xt � ↵Axt = (I � ↵A)xt

Convergence rate for general quadratics

max
x

k(I � ↵A)xk
kxk = max

x

1

kxk

�����

I � ↵

nX

i=1

�iuiu
T
i

!
x

�����

= max
x

��Pn
i=1(1� ↵�i)uiuT

i x
��

��Pn
i=1 uiuT

i x
��

= max
i

|1� ↵�i|

= max(1� ↵�min,↵�max � 1)

max
x

k(I � ↵A)xk
kxk = max

x

1

kxk

�����

I � ↵

nX

i=1

�iuiu
T
i

!
x

�����

= max
x

��Pn
i=1(1� ↵�i)uiuT

i x
��

��Pn
i=1 uiuT

i x
��

= max
i

|1� ↵�i|

= max(1� ↵�min,↵�max � 1)

Optimal convergence rate

• Minimize:

• Optimal value occurs when

• Optimal rate is

max(1� ↵�min,↵�max � 1)

1� ↵�min = ↵�max � 1) ↵ =
2

�max + �min

max(1� ↵�min,↵�max � 1) =
�max � �min

�max + �min

What affects this optimal rate?

• Here, 𝜅 is called the
condition number of the
matrix A.

• Problems with larger
condition numbers
converge slower.
• Called poorly conditioned.

rate =
�max � �min

�max + �min

=
�max/�min � 1

�max/�min + 1

=
� 1

+ 1
.

 =
�max

�min

Poorly conditioned problems

• Intuitively, these are problems that are highly curved in
some directions but flat in others

• Happens pretty often in machine learning
• Measure something unrelated à low curvature in that

direction
• Also affects stochastic gradient descent

• How do we deal with this?

Momentum

Motivation

• Can we tell the difference between the curved and flat
directions using information that is already available to the
algorithm?

• Idea: in the one-dimensional case, if the gradients are
reversing sign, then the step size is too large
• Because we’re over-shooting the optimum
• And if the gradients stay in the same direction, then step size is too

small

• Can we leverage this to make steps smaller when gradients
reverse sign and larger when gradients are consistently in
the same direction?

Polyak Momentum

• Add extra momentum term to gradient descent

• Intuition: if current gradient step is in same direction as
previous step, then move a little further in that direction.
• And if it’s in the opposite direction, move less far.

• Also known as the heavy ball method.

xt+1 = xt � ↵rf(xt) + �(xt � xt�1)

Momentum for 1D Quadratics

• Momentum gradient descent gives

f(x) =
�

2
x2

xt+1 = xt � ↵�xt + �(xt � xt�1)

= (1 + � � ↵�)xt � �xt�1

Characterizing momentum for 1D quadratics

• Start with

• Trick: let

xt+1 = (1 + � � ↵�)xt � �xt�1

xt = �t/2zt

�(t+1)/2zt+1 = (1 + � � ↵�)�t/2zt � � · �(t�1)/2zt�1

zt+1 =
1 + � � ↵�p

�
zt � zt�1

Characterizing momentum (continued)

• Let

• Then we get the simplified characterization

• This is a degree-t polynomial in u

u =
1 + � � ↵�

2
p
�

zt+1 = 2uzt � zt�1

Chebyshev Polynomials

• If we initialize such that then these are a
special family of polynomials called the Chebyshev
polynomials

• Standard notation:

• These polynomials have an important property: for all t

z0 = 1, z1 = u

zt+1 = 2uzt � zt�1

�1 u 1) �1 zt 1

Tt+1(u) = 2uTt(u)� Tt�1(u)

Chebyshev Polynomials

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

T0(u) = 1

Chebyshev Polynomials

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

T1(u) = u

Chebyshev Polynomials

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

T2(u) = 2u2 � 1

Chebyshev Polynomials

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Chebyshev Polynomials

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Chebyshev Polynomials

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Chebyshev Polynomials

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Characterizing momentum (continued)

• What does this mean for our 1D quadratics?
• Recall that we let

• So

xt = �t/2zt

xt = �t/2 · x0 · Tt(u)

= �t/2 · x0 · Tt

✓
1 + � � ↵�

2
p
�

◆

�1 1 + � � ↵�

2
p
�

 1) |xt| �t/2 |x0|

Consequences of momentum analysis

• Convergence rate depends only on momentum parameter
β
• Not on step size or curvature.

• We don’t need to be that precise in setting the step size
• It just needs to be within a window
• Pointed out in “YellowFin and the Art of Momentum Tuning” by

Zhang et. al.

• If we have a multidimensional quadratic problem, the
convergence rate will be the same in all directions
• This is different from the gradient descent case where we had a

trade-off

Choosing the parameters

• How should we set the step size and momentum
parameter if we only have bounds on λ ?

• Need:

• Suffices to have:

�1 1 + � � ↵�

2
p
�

 1

�1 =
1 + � � ↵�max

2
p
�

and
1 + � � ↵�min

2
p
�

= 1

Choosing the parameters (continued)

• Adding both equations:

0 =
2 + 2� � ↵�max � ↵�min

2
p
�

0 = 2 + 2� � ↵�max � ↵�min

↵ =
2 + 2�

�max + �min

Choosing the parameters (continued)

• Subtracting both equations:

1 + � � ↵�min � 1� � + ↵�max

2
p
�

= 2

↵(�max � �min)

2
p
�

= 2

Choosing the parameters (continued)

• Combining these results:

2 + 2�

�max + �min
· (�max � �min)

2
p
�

= 2

↵(�max � �min)

2
p
�

= 2↵ =
2 + 2�

�max + �min

0 = 1� 2
p
�
�max + �min

�max � �min
+ �

Choosing the parameters (continued)

• Quadratic formula: 0 = 1� 2
p
�
�max + �min

�max � �min
+ �

p
� =

+ 1

� 1
�

s✓
+ 1

� 1

◆2

� 1

=
+ 1

� 1
�

r
4

2 � 2+ 1

=
+ 1

� 1
� 2

p

� 1
=

(
p
� 1)

2

� 1
=

p
� 1p
+ 1

p
� =

+ 1

� 1
�

s✓
+ 1

� 1

◆2

� 1

=
+ 1

� 1
�

r
4

2 � 2+ 1

=
+ 1

� 1
� 2

p

� 1
=

(
p
� 1)

2

� 1
=

p
� 1p
+ 1

p
� =

+ 1

� 1
�

s✓
+ 1

� 1

◆2

� 1

=
+ 1

� 1
�

r
4

2 � 2+ 1

=
+ 1

� 1
� 2

p

� 1
=

(
p
� 1)

2

� 1
=

p
� 1p
+ 1

Gradient Descent versus Momentum

• Recall: gradient descent had a convergence rate of

• But with momentum, the optimal rate is

• This is called convergence at an accelerated rate

� 1

+ 1

p
� =

p
� 1p
+ 1

Demo

Setting the parameters

• How do we set the momentum in practice for machine
learning?

• One method: hyperparameter optimization

• Another method: just set β = 0.9
• Works across a range of problems
• Actually quite popular in deep learning

Nesterov momentum

What about more general functions?

• Previous analysis was for quadratics

• Does this work for general convex functions?

• Answer: not in general
• We need to do something slightly different

Nesterov Momentum

• Slightly different rule

• Main difference: separate the momentum state from
the point that we are calculating the gradient at.

xt+1 = yt � ↵rf(yt)

yt+1 = xt+1 + �(xt+1 � xt)

Nesterov Momentum Analysis

• Converges at an accelerated rate for ANY convex
problem

• Optimal assignment of the parameters:

sp
� 1p

↵ =
1

�max
, � =

p
� 1p
+ 1

Nesterov Momentum is Also Very Popular

• People use it in practice for deep learning all the time

• Significant speedups in practice

Demo

What about SGD?

• All our above analysis was for gradient descent

• But momentum still produces empirical improvements
when used with stochastic gradient descent

• And we’ll see how in one of the papers we’re reading on
Monday!

