
 

 

 

 

 

 

F5 Networks Training 
 

 

 

 

Getting Started with BIG-IP 
Programmability  

Try It Yourself Lab Guide 
 

 

 
  

November 2017 



Chapter 1 - Try It Yourself Lab 1-2 

Getting Started with BIG-IP Programmability 1-2 

Getting Started with BIG-IP Programmability 

Try It Yourself Lab Guide 
 

First Printing; November, 2017 
  

 

© 2017, F5 Networks, Inc. All rights reserved. 

 

 

 

Support and Contact Information 

Obtaining Technical Support 

 Web     tech.f5.com (Ask F5) 

 Phone    (206) 272-6888 

 Email (support issues) support@f5.com 

 Email (suggestions) feedback@f5.com 

 

Contacting F5 Networks 

 Web    www.f5.com 

 Email    sales@f5.com & info@f5.com 

 

  

F5 Networks, Inc.  F5 Networks, Ltd.  F5 Networks, Inc.   F5 Networks, Inc. 

Corporate Office  United Kingdom  Asia Pacific  Japan 

401 Elliott Avenue West  Chertsey Gate West  5 Temasek Boulevard   Akasaka Garden City 19F 

Seattle, Washington 98119 Chertsey Surrey  KT16 8AP  #08-01/02 Suntec Tower 5  4-15-1 Akasaka, Minato-ku 

T (888) 88BIG-IP  United Kingdom  Singapore, 038985  Tokyo  107-0052  Japan 

T (206) 272-5555  T (44) 0 1932 582-000  T (65) 6533-6103  T (81) 3 5114-3200 

F (206) 272-5557  F (44) 0 1932 582-001  F (65) 6533-6106  F (81) 3 5114-3201 

Training@f5.com  EMEATraining@f5.com  APACTraining@f5.com  JapanTraining@f5.com 

 



Chapter 1 - Try It Yourself Lab 1-3 

Getting Started with BIG-IP Programmability 1-3 

Legal Notices 

Copyright 

Copyright 2017, F5 Networks, Inc.  All rights reserved. 

F5 Networks, Inc. (F5) believes the information it furnishes to be accurate and reliable. However, F5 

assumes no responsibility for the use of this information, nor any infringement of patents or other rights 

of third parties which may result from its use. No license is granted by implication or otherwise under any 

patent, copyright, or other intellectual property right of F5 except as specifically described by applicable 

user licenses. F5 reserves the right to change specifications at any time without notice. 

Trademarks 

3DNS, Access Policy Manager, Acopia, Acopia Networks, Advanced Client Authentication, Advanced 

Routing, APM, Application Security Manager, ARX, AskF5, ASM, BIG-IP, Cloud Extender, 

CloudFucious, CMP, Data Manager, DevCentral, DevCentral [DESIGN], DSI, DNS Express, DSC, Edge 

Client, Edge Gateway, Edge Portal, EM, Enterprise Manager, F5, F5 [DESIGN], F5 Management Pack, 

F5 Networks, F5 World, Fast Application Proxy, Fast Cache, FirePass, Global Traffic Manager, GTM, 

IBR, Intelligent Browser Referencing, Intelligent Compression, IPv6 Gateway, iApps, iControl, iHealth, 

iQuery, iRules, iRules OnDemand, iSession, IT agility. Your way., L7 Rate Shaping, LC, Link 

Controller, Local Traffic Manager, LTM, Message Security Module, MSM, Netcelera, OneConnect, 

Packet Velocity, Protocol Security Module, PSM, Real Traffic Policy Builder, ScaleN, SSL Acceleration, 

StrongBox, SuperVIP, SYN Check, TCP Express, TDR, TMOS, Traffic Management Operating System, 

TrafficShield, Transparent Data Reduction, UNITY, VIPRION, vCMP, WA, WAN Optimization 

Manager, WANJet, WebAccelerator, WOM, and ZoneRunner, are trademarks or service marks of F5 

Networks, Inc., in the U.S. and other countries, and may not be used without F5's express written consent. 

All other product and company names herein may be trademarks of their respective owners. 

Materials 

The material reproduced on this manual, including but not limited to graphics, text, pictures, photographs, 

layout and the like ("Content"), are protected by United States Copyright law.  Absolutely no Content 

from this manual may be copied, reproduced, exchanged, published, sold or distributed without the prior 

written consent of F5 Networks, Inc 

Patents 

This product may be protected by one or more patents indicated at: 

http://www.f5.com/about/policies/patents 

 

 

http://www.f5.com/about/policies/patents


 Chapter 1 - Try It Yourself Lab 1-4 

 Getting Started with BIG-IP Programmability 1-4 

Lab 1 – Try It Yourself 

Introduction: Escaping New Lines, cURL, jq and Pipes 

Escaping New Lines 
Almost every command shell available on Linux and macOS uses the same syntax to split long command 

lines into multiple shorter ones.  This is sometimes called line escaping or line continuation.  For 

example, the following command 

 echo Hello World 

could be made shorter by inserting a backslash at the split point, such as 

 echo Hello \ 

 World 

or even 

 echo \ 

 Hello \ 

 World 

All three examples print “Hello World”.  Notice there is a space in front of the backslash and there is no 

backslash on the final line of the split command. 

Windows shells allow the same technique, but use different characters, depending on the shell.  When 

using the COMMAND (CMD) shell, replace the backslash with a caret or circumflex character (^).  

When using PowerShell, replace the backslash with a backtick or grave accent character (`). 

macOS and Linux (most shells) Windows (COMMAND shell) Windows (PowerShell) 

echo \ 

Hello \ 

World 

echo ^ 

Hello ^ 

World 

echo ` 

Hello ` 

World 

cURL 
cURL is a command line tool for getting or sending data or files using URL syntax.  The simplest form of 

the command is 

 curl www.example.com 

which performs an HTTP GET to http://www.example.com. Our examples are typically more complex, 

such as 

curl -s -k -u admin:admin1 -X POST \ 

  -H 'Content-Type: application/json' \ 

  -d '{"send": "GET /\r\n", "recv": "F5 Training Services"}' \ 

  https://192.168.1.31/mgmt/tm/ltm/monitor/http/wiki.mon | jq . 

Notice this command has been written for Linux or macOS because it uses a backslash for line escaping. 

  



 Chapter 1 - Try It Yourself Lab 1-5 

 Getting Started with BIG-IP Programmability 1-5 

Dissecting the above command we inspect every component, one at a time. Notice the “-sku” flags above 

are three flags concatenated for brevity.  Below, we’ll examine each flag individually. 

curl Command name 

-s Silent mode, do not show cURL progress meter 

-k For HTTPS, cURL expects a Secure SSL (TLS) 
connection.  Use this flag if the server doesn’t have 
the proper cert (typical for lab testing) 

-u admin:admin1 Specify credentials as username:password 

-X POST Use POST method (GET is default) 

-H 'Content-Type: application/json' Specify header (required to send REST data) 

-d '{"send": "GET /\r\n", "recv": "..."}' JSON data to send (note the outer single-quotes are 
required) 

https://192.168.1.31/mgmt/... URL 

 

Pipe 
After the curl command notice the upright bar (|) character which is called a pipe and is available in 

Linux, macOS, Windows COMMAND and Windows PowerShell.  It takes the output from the command 

on the left (curl) and sends it to the input of the command on the right (jq). 

jq 
jq or JSON Query is a JSON processor and it runs on Linux, macOS and Windows. It is designed to 

query specific parts of a JSON output and then format the output for easier reading. However, we will 

only be using formatting part of jq.  The syntax “jq .” tells jq to neatly format all of the JSON output. 

 

Exercise 1: Create a Monitor, Pool and Virtual Server 
In this exercise, three rest commands are required to create a pool monitor, a pool and a virtual server.  

You are shown the tmsh command used to execute each step.  You are also shown the abbreviated REST 

syntax.  Finally, you are given the exact curl command needed to perform this task.  Use this command in 

your lab environment. 

Note the curl command syntax is for Linux or macOS.  If you are using Windows, change the backslash 

to the appropriate character for COMMAND or PowerShell (as described above). 

1. Create the monitor. 

TMSH create ltm monitor http wiki.mon send "GET /\r\n" recv "F5 Training Services" 

REST POST /ltm/monitor/http {"name": "wiki.mon", "send": "GET /\r\n", "recv": "F5 Training Services"} 

CURL curl -sku admin:admin1 -X POST \ 
   -H 'Content-Type: application/json' \ 
   -d '{"name": "wiki.mon","send": "GET /\r\n", "recv": "F5 Training Services"}' \ 
   https://192.168.1.31/mgmt/tm/ltm/monitor/http| jq . 

Using the Config Utility or tmsh, confirm the monitor was properly created. 

  



 Chapter 1 - Try It Yourself Lab 1-6 

 Getting Started with BIG-IP Programmability 1-6 

2. Create the pool. 

TMSH create ltm pool wiki.pool members add { 192.168.2.1:80 192.168.2.2:80 } monitor wiki.mon 

REST POST ltm/pool {"name": "wiki.pool", 
                             "members": ["192.168.2.1:80", "192.168.2.2:80"], 
                             "monitor": "wiki.mon"} 

CURL curl -sku admin:admin1 -X POST \ 
   -H 'Content-Type: application/json' \ 
   -d '{"name": "wiki.pool","member": ["192.168.2.1:80","192.168.2.2:80"],  

          "monitor": "wiki.mon"}' \ 
   https://192.168.1.31/mgmt/tm/ltm/pool| jq . 

Using the Config Utility or tmsh, confirm the pool was properly created. 

 

3. Create the virtual server. 

TMSH create ltm virtual wiki.vs destination 10.10.1.101:443  
  profiles add { clientssl } source-address-translation { type automap } 
  pool wiki.pool 

REST POST ltm/virtual {"name": "wiki.vs", "destination": "10.10.1.101:443", 
                                 "profiles": "clientssl", "sourceAddressTranslation": {"type": "automap"}, 
                                   "pool": "wiki.pool"} 

CURL curl -sku admin:admin1 -X POST \ 
   -H 'Content-Type: application/json' \ 
   -d '{"name": "wiki.vs", "destination": "10.10.1.101:443", \ 
          "profiles": "clientssl", "sourceAddressTranslation": {"type": "automap"}, \ 
          "pool": "wiki.pool"}' \ 

   https://192.168.1.31/mgmt/tm/ltm/pool| jq . 

Using the Config Utility or tmsh, confirm the pool was properly created. 

Can you connect to the newly created virtual server? 

 

Exercise 2: Perform the tasks necessary to set up a  
BIG-IP System 
These tasks are normally performed by the BIG-IP Setup Wizard.  In the previous exercise, you were 

shown the tmsh syntax as well as the actual curl command syntax.  In this example, you are only given 

the abbreviated REST syntax.  Use this information to craft your own curl commands. 

4. Set the time zone. 

REST PUT cm/device/bigip1 {"time-zone": "America/New_York"}  

The time zone is set to “America/Los_Angeles” by default. Using the Config Utility or tmsh, confirm the 

time zone changed. 

Note, it is recommended that you use tmsh, because the Config Utility will be in Setup Mode.  However, if you 
still prefer to use Config Utility, skip ahead to Step 14 and then return here to confirm the Time Zone has been 
set correctly. 

 



 Chapter 1 - Try It Yourself Lab 1-7 

 Getting Started with BIG-IP Programmability 1-7 

5. Set the host name. 

REST PATCH sys/global-settings {"hostname": "bigip1.f5trn.com"} 

The time zone is set to “America/Los_Angeles” by default.  Using the Config Utility or tmsh, confirm the 

host name changed. 

 

6. Set the DNS server. 

REST PUT sys/dns {"nameServers": ["172.16.20.20"]} 

The time zone is set to “America/Los_Angeles” by default.  Using the Config Utility or tmsh, confirm the 

DNS server changed. 

 

7. Set the NTP server. 

REST PUT sys/ntp {"servers": ["172.16.20.20"]}  

 

8. Create external VLAN, attach interface, and create self and floating IP Addresses. 

REST POST net/vlan {"name": "external", "tag": 4093} 

REST PUT net/vlan/external {"interfaces": [{"name": "1.1"}], "tag": 4093} 

REST POST net/self {"name": "10.10.1.31", "address": "10.10.1.31/16",  
                           "vlan": "external", "allowService": []} 

REST POST net/self {"name": "10.10.1.33", "address": "10.10.1.33/16",  
                           "vlan": "external", "allowService": [], 
                           "traffic-group": "traffic-group-1"} 

Using the Config Utility or tmsh, confirm the external self and floating IP addresses exist. 

 

9. Create internal VLAN, attach interface and create self and floating IP Addresses. 

REST POST net/vlan {"name": "external", "tag": 4093} 

REST PUT net/vlan/external {"interfaces": [{"name": "1.1"}], "tag": 4093} 

REST POST net/self {"name": "10.10.1.31", "address": "10.10.1.31/16",  
                           "vlan": "external", "allowService": []} 

REST POST net/self {"name": "10.10.1.33", "address": "10.10.1.33/16",  
                           "vlan": "external", "allowService": [], 
                           "traffic-group": "traffic-group-1"} 

Using the Config Utility or tmsh, confirm the internal self and floating IP addresses exist. 

 

  



 Chapter 1 - Try It Yourself Lab 1-8 

 Getting Started with BIG-IP Programmability 1-8 

10. Create IP addresses for BIG-IP system clustering. 

REST PATCH sys/state-mirroring {"addr": "172.16.1.31"} 

REST PUT cm/device/bigip1 {"unicastAddress":  
                                             [ 
                                                {"effectiveIp": "172.16.1.31",  
                                                 "effectivePort": 1026, 
                                                 "ip": "172.16.1.31"}, 
                                                {"effectiveIp": "management-ip", 
                                                 "effectivePort": 1026, 
                                                 "ip": "management-ip"} 
                                             ],  
                                         "configsyncIp": "172.16.1.31", 
                                         "mirrorIp": "172.16.1.31", 
                                         "multicastIp": "any"} 

Using the Config Utility or tmsh, confirm the State Mirroring address, Unicast address, Config Sync IP 

address and the Mirror IP address are correct. 

 

11. Change the root password. 

REST POST /mgmt/shared/authn/root {"oldPassword": "default", "newPassword": "root1"} 

Using ssh, log into BIG-IP and confirm the root password is correct. 

 

12. Change the admin password, and add a description. 

REST PUT auth/user/admin {"password": "admin1"} 

REST PATCH auth/user/admin {"description": "Admin User"} 

Using a web browser, log into the BIG-IP Config Utility and confirm the admin password is correct. 

 

13. Save the system configuration (save sys config). 

REST POST sys/config {"command":  "save"} 

At this point, the configuration is complete and it is an appropriate time to save the most recent 

configuration.  Using ssh, log into BIG-IP and inspect the /config/bigip_base.conf configuration file and 

confirm the changes you made in steps 4 through 12. 

 

14. Change the resource provisioning. 

REST PATCH sys/provision/apm {"level": "nominal"} 

In this example, you will provision BIG-IP APM, but this is the method used to provision or deprovision 

any other module.  Other levels of provisioning are available, just as there are in the Config Utility and 

tmsh.  BIG-IP LTM is provisioned by default.  To deprovision an already provisioned module, set the 

“level” to “none”. 

  



 Chapter 1 - Try It Yourself Lab 1-9 

 Getting Started with BIG-IP Programmability 1-9 

15. Check if BIG-IP System needs to be rebooted, and reboot if needed. 

REST POST util/bash {"command": "run", "utilCmdArgs": "-c \"cat /var/prompt/ps1\""} 

REST POST sys {"command": "reboot"} 

Sometimes after the provisioning step, BIG-IP needs to be rebooted.  This typically occurs when an 

already provisioned module is deprovisioned.  When you are logged on to BIG-IP using a web browser, 

you receive a warning in the top-left corner of the Config Utility alerting you to reboot.  When you are 

logged into BIG-IP using ssh and tmsh, the command prompt changes to alert you that a reboot is 

required. 

If you are performing this action programmatically, the automation tool needs to know if a reboot is 

required.  The first command, above, obtains that information.  If you look closely at the syntax, you will 

discover that this command is using iControl REST to run a bash shell that in turn runs a command to list 

out the contents of a file.  The contents of that file are returned as JSON to the calling program which can 

then determine if a BIG-IP reboot is required.  If it is, the second command will perform this task. 

 

16. Take the Config Utility out of setup mode. 

REST PATCH sys/global-settings {"guiSetup": "disabled"} 

When BIG-IP is delivered new, or when it is reset to its default settings, the Config Utility is in Setup 

Mode.  When you complete the Setup Wizard, it takes the Config Utility out of Setup Mode.  The above 

command performs that task. 

Using the Config Utility, confirm the BIG-IP system is no longer in the Setup Wizard and that you can 

see all the features and modules expected with your current level of licensing and provisioning. 

 

 

 


