
Getting Started with
Conversion Agent
SAP Conversion Agent by Informatica
(Version 8.5)

Getting Started with Conversion Agent

Version 8.5
June 2008

Copyright (c) 2001–2008 Informatica Corporation. All rights reserved.

This software and documentation contain proprietary information of Informatica Corporation and are provided under a license agreement containing
restrictions on use and disclosure and are also protected by copyright law. Reverse engineering of the software is prohibited. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica Corporation. This
Software is protected by U.S. Patent Numbers and other Patents Pending.

Use, duplication, or disclosure of the Software by the U.S. Government is subject to the restrictions set forth in the applicable software license agreement and as
provided in DFARS 227.7202-1(a) and 227.7702-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR
52.227-14 (ALT III), as applicable.

The information in this software and documentation is subject to change without notice. Informatica Corporation does not warrant that this software or
documentation is error free.

Informatica, PowerCenter, PowerCenterRT, PowerCenter Connect, PowerCenter Data Analyzer, PowerExchange, PowerMart, Metadata Manager, Informatica
Data Quality, Informatica Data Explorer, Informatica Complex Data Exchange, Informatica On Demand Data Replicator, and Informatica B2B Data Exchange
are trademarks or registered trademarks of Informatica Corporation in the United States and in jurisdictions throughout the world. All other company and
product names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright © Sun Microsystems. All
rights reserved. Copyright 1985-2003 Adobe Systems Inc. All rights reserved. Copyright 1996-2004 Glyph & Cog, LLC. All rights reserved.

This product includes software developed by Boost (http://www.boost.org/). Permissions and limitations regarding this software are subject to terms available at
http://www.boost.org/LICENSE_1_0.txt.

This product includes software developed by Mozilla (http://www.mozilla.org/). Your right to use such materials is set forth in the GNU Lesser General Public
License Agreement, which may be found at http://www.gnu.org/licenses/lgpl.html. The Mozilla materials are provided free of charge by Informatica, “as-is”,
without warranty of any kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular
purpose.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/) which is licensed under the Apache License, Version 2.0
(the “License”). You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the License.

This product includes software developed by SourceForge (http://sourceforge.net/projects/mpxj/). Your right to use such materials is set forth in the GNU Lesser
General Public License Agreement, which may be found at http://www.gnu.org/licenses/lgpl.html. The SourceForge materials are provided free of charge by
Informatica, “as-is”, without warranty of any kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness
for a particular purpose.

This product includes Curl software which is Copyright 1996-2007, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations
regarding this software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for
any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

This product includes ICU software which is Copyright (c) 1995-2003 International Business Machines Corporation and others. All rights reserved. Permissions
and limitations regarding this software are subject to terms available at http://www-306.ibm.com/software/globalization/icu/license.jsp.

This product includes OSSP UUID software which is Copyright (c) 2002 Ralf S. Engelschall, Copyright (c) 2002 The OSSP Project Copyright (c) 2002 Cable
& Wireless Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-
license.php.

This product includes Eclipse software which is Copyright (c) 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this
software are subject to terms available at http://www.eclipse.org/org/documents/epl-v10.php.

libstdc++ is distributed with this product subject to the terms related to the code set forth at http://gcc.gnu.org/onlinedocs/libstdc++/17_intro/license.html.

DISCLAIMER: Informatica Corporation provides this documentation “as is” without warranty of any kind, either express or implied, including, but not limited
to, the implied warranties of non-infringement, merchantability, or use for a particular purpose. The information provided in this documentation may include
technical inaccuracies or typographical errors. Informatica could make improvements and/or changes in the products described in this documentation at any
time without notice.

Part Number: DT-GST-86000-0001

Table of Contents

Preface . vii

Quick Reference . vii

Obtaining Conversion Agent Documentation . ix

Chapter 1: Introducing Conversion Agent . 1

Overview . 1

Introduction to XML . 1

How Conversion Agent Works . 2

Using Conversion Agent in Integration Applications . 3

Installation . 4

System Requirements . 4

Installation Procedure . 4

Default Installation Folder . 4

Tutorials and Workspace Folders . 4

Exercises and Solutions . 4

XML Editor . 5

Chapter 2: Basic Parsing Techniques . 7

Overview . 7

Opening Conversion Agent Studio . 8

Importing the Tutorial_1 Project . 9

A Brief Look at the Studio Window . 10

Defining the Structure of a Source Document . 12

Correcting Errors in the Parser Configuration . 17

Techniques for Defining Anchors . 17

Tab-Delimited Format . 18

Running the Parser . 18

Running the Parser on Additional Source Documents . 19

Points to Remember . 20

What's Next? . 21

Chapter 3: Defining an HL7 Parser . 23

Overview . 23

Requirements Analysis . 23

Creating a Project . 25

Using XSD Schemas in Transformations . 27

Defining the Anchors . 27

Editing the IntelliScript . 30

Testing the Parser . 30

Points to Remember . 32
 i i i

Chapter 4: Positional Parsing of a PDF Document . 35

Overview . 35

Requirements Analysis . 36

Creating the Project . 38

Defining the Anchors . 40

More About Search Scope . 44

Defining the Nested Repeating Groups . 44

Basic and Advanced Properties . 49

Using an Action to Compute Subtotals . 50

Actions . 52

Potential Enhancement: Handling Page Breaks . 52

Points to Remember . 52

Chapter 5: Parsing Word and HTML Documents . 55

Overview . 55

Scope of the Exercise . 56

Prerequisites . 56

Requirements Analysis . 56

Source Document . 56

XML Output . 57

The Parsing Problem . 58

Creating the Project . 59

Defining a Variable . 60

Parsing the Name and Address . 61

Why the Output Contains Empty Elements . 63

Parsing the Optional Currency Line . 63

Parsing the Order Table . 65

Why the Output does not Contain HTML Code . 68

Using Count to Resolve Ambiguities . 70

Using Transformers to Modify the Output . 70

Global Components . 73

Testing the Parser on Another Source Document . 73

Points to Remember . 74

Chapter 6: Defining a Serializer. 77

Overview . 77

Prerequisite . 77

Requirements Analysis . 77

Creating the Project . 78

Determining the Project Folder Location . 79

Configuring the Serializer . 80

Calling the Serializer Recursively . 81

Defining Multiple Components in a Project . 83

Points to Remember . 84
 iv Table of Contents

Chapter 7: Defining a Mapper . 85

Overview . 85

Requirements Analysis . 85

Creating the Project . 86

Configuring the Mapper . 87

Points to Remember . 88

Chapter 8: Running Conversion Agent Engine. 91

Overview . 91

Deploying a Transformation as a Service . 92

COM API Application . 92

Source Code . 92

Explanation of the API Calls . 93

Running the COM API Application . 94

Points to Remember . 95

Index . 97
 v

 vi Table of Contents

Preface

Getting Started with Conversion Agent is written for developers and analysts who are responsible for
implementing transformations. As you read it, you will perform several hands-on exercises that teach how to use
Conversion Agent in real-life transformation scenarios. When you finish the lessons, you will be familiar with
the Conversion Agent procedures, and you will be able to apply them to your own transformation needs.

We recommend that all users perform the first and second lessons, which teach the basic techniques for working
in Conversion Agent Studio. You can then proceed through the other lessons in sequence, or you can skim the
chapters and skip to the ones that you need.

Quick Reference

The following table is a guide to the Conversion Agent concepts, features, and components that are introduced
and explained in each lesson.

Concept Feature or component For more information, see...

Working in
Conversion Agent
Studio

Viewing IntelliScript “Basic Parsing Techniques” on page 7

Editing IntelliScript “Defining an HL7 Parser” on page 23

Multiple script files “Defining a Serializer” on page 77

Color coding of anchors “Basic Parsing Techniques” on page 7

Basic and advanced properties “Positional Parsing of a PDF Document” on page 35

Global components “Parsing Word and HTML Documents” on page 55

Projects Importing “Basic Parsing Techniques” on page 7

Creating “Defining an HL7 Parser” on page 23

Containing multiple parsers or
serializers

“Defining a Serializer” on page 77

Project properties “Defining a Serializer” on page 77

Determining the project folder location “Defining a Serializer” on page 77
 vii

Parsers Example source documents “Basic Parsing Techniques” on page 7

Creating “Defining an HL7 Parser” on page 23

Running “Basic Parsing Techniques” on page 7

Viewing results “Basic Parsing Techniques” on page 7

Testing on example source “Defining an HL7 Parser” on page 23

Testing on additional source documents “Basic Parsing Techniques” on page 7
“Parsing Word and HTML Documents” on page 55

Document processors “Positional Parsing of a PDF Document” on page 35
“Parsing Word and HTML Documents” on page 55

Calling a secondary parser “Defining a Serializer” on page 77

Formats Text “Basic Parsing Techniques” on page 7

Tab-delimited “Basic Parsing Techniques” on page 7

HL7 “Defining an HL7 Parser” on page 23

Positional “Positional Parsing of a PDF Document” on page 35

PDF “Positional Parsing of a PDF Document” on page 35

Microsoft Word “Parsing Word and HTML Documents” on page 55

HTML “Parsing Word and HTML Documents” on page 55

Data holders Using an XSD schema “Basic Parsing Techniques” on page 7

Adding a schema to a project “Defining an HL7 Parser” on page 23

Creating and editing schemas “Defining an HL7 Parser” on page 23

Using multiple schemas “Defining a Mapper” on page 85

Variables “Parsing Word and HTML Documents” on page 55

Anchors Marker “Basic Parsing Techniques” on page 7

Marker with count “Parsing Word and HTML Documents” on page 55

Content “Basic Parsing Techniques” on page 7

Content with positional offsets “Positional Parsing of a PDF Document” on page 35

Content with opening and closing
markers

“Parsing Word and HTML Documents” on page 55

EnclosedGroup “Parsing Word and HTML Documents” on page 55

RepeatingGroup “Defining an HL7 Parser” on page 23

Search scope “Positional Parsing of a PDF Document” on page 35

Nested RepeatingGroup “Positional Parsing of a PDF Document” on page 35

Newlines as markers and separators “Positional Parsing of a PDF Document” on page 35

Transformers Default transformers “Parsing Word and HTML Documents” on page 55

AddString “Parsing Word and HTML Documents” on page 55

Replace “Parsing Word and HTML Documents” on page 55

Actions SetValue “Positional Parsing of a PDF Document” on page 35

CalculateValue “Positional Parsing of a PDF Document” on page 35

Map “Defining a Mapper” on page 85

Concept Feature or component For more information, see...
 viii Preface

Obtaining Conversion Agent Documentation

On Windows platforms, the Conversion Agent documentation is supplied as online help with the software. You
can download PDF copies of the Conversion Agent manuals from:

http://help.sap.com/saphelp_nw70/helpdata/en/43/fc39c16bfb025ee10000000a1553f7/content.htm

Serializers and
serialization
anchors

Creating “Defining a Serializer” on page 77

ContentSerializer “Defining a Serializer” on page 77

RepeatingGroupSerializer “Defining a Serializer” on page 77

EmbeddedSerializer “Defining a Serializer” on page 77

Calling a secondary serializer “Defining a Serializer” on page 77

Mappers and
mapper anchors

Creating “Defining a Mapper” on page 85

RepeatingGroupMapping “Defining a Mapper” on page 85

Testing Using color coding “Defining an HL7 Parser” on page 23

Viewing events “Basic Parsing Techniques” on page 7

Interpreting events “Defining an HL7 Parser” on page 23

Testing and debugging techniques “Defining an HL7 Parser” on page 23

Selecting which parser or serializer to
run

“Defining a Serializer” on page 77

Running services
in Conversion
Agent Engine

Deploying a Conversion Agent service “Running Conversion Agent Engine” on page 91

API “Running Conversion Agent Engine” on page 91

Concept Feature or component For more information, see...
Preface ix

http://help.sap.com/saphelp_nw70/helpdata/en/43/fc39c16bfb025ee10000000a1553f7/content.htm

 x Preface

C H A P T E R 1

Introducing Conversion Agent

This chapter includes the following topics:

♦ Overview, 1

♦ Installation, 4

Overview

SAP Conversion Agent enables you to transform data efficiently from any format to any other format, via XML-
based representations.

To configure a transformation, you can use approaches such as parsing by example. According to this approach,
you can teach Conversion Agent how to convert data to XML by marking up an example in a visual editor
environment. You do not need to do any programming to configure the transformation. You can configure even
a complex transformation in just a few hours or days, saving weeks or months of programming time.

Conversion Agent can process fully structured, semi-structured, or unstructured data. You can configure the
software to work with text, binary data, messaging formats, HTML pages, PDF documents, word-processor
documents, and any other format that you can imagine.

You can configure a Conversion Agent parser to transform the data to any standard or custom XML vocabulary.
In the reverse direction, you can configure a Conversion Agent serializer to transform the XML data to any
other format. You can configure a Conversion Agent mapper to perform XML to XML transformations.

This book is a tutorial introduction, intended for users who are new to Conversion Agent. As you perform the
exercises in this book, you will learn to configure and run your own transformations.

Introduction to XML
XML (Extensible Markup Language) is the de facto standard for cross-platform information exchange. For the
benefit of Conversion Agent users who may be new to XML, we present a brief introduction here. If you are
already familiar with XML, you can skip this section.

The following is an example of a small XML document:

<Company industry="metals">
 <Name>Ore Refining Inc.</Name>
 <WebSite>http://www.ore_refining.com</WebSite>
 <Field>iron and steel</Field>
 <Products>
 <Product id="1">cast iron</Product>
 <Product id="2">stainless steel</Product>
 </Products>
 1

</Company>

This sample is called a well-formed XML document because it complies with the basic XML syntactical rules. It
has a tree structure, composed of elements. The top-level element in this example is called Company, and the
nested elements are Name, WebSite, Field, Products, and Product.

Each element begins and ends with tags, such as <Company> and </Company>. The elements may also have
attributes. For example, industry is an attribute of the Company element, and id is an attribute of the Product
element.

To explain the hierarchical relationship between the elements, we sometimes refer to parent and child elements.
For example, the Products element is the child of Company and the parent of Product.

The particular system of elements and attributes is called an XML vocabulary. The vocabulary can be
customized for any application. In the example of a small XML document above, we made up a vocabulary that
might be suitable for a commercial directory.

The vocabulary can be formalized in a syntax specification called a schema. The schema might specify, for
example, that Company and Name are required elements, that the other elements are optional, and that the value
of the industry attribute must be a member of a predefined list. If an XML document conforms to a rigorous
schema definition, the document is said to be valid, in addition to being well-formed.

To make the XML document easier to read, we have indented the lines to illustrate how the elements are
nested. The indentation and whitespace are not essential parts of the XML syntax. We could have written a
long, unbroken string such as the following, which does not contain any extra whitespace:

<Company industry="metals"><Name>Ore Refining Inc.</Name><WebSite>
http://www.ore_refining.com</WebSite><Field>iron and steel</Field>
<Products><Product id="1">cast iron</Product><Product id="2">stainless
steel</Product></Products></Company>

The unbroken-string representation is identical to the indented representation. In fact, a computer might store
the XML as a string like this. The indented representation is how XML is conventionally presented in a book or
on a computer screen because it is easier to read.

For More Information

You can get information about XML from many books, articles, or web sites. For an excellent tutorial, see
http://www.w3schools.com. To obtain copies of the XML standards, see http://www.w3.org.

How Conversion Agent Works
The Conversion Agent system has two main components:

Conversion Agent Studio

The Studio is a visual editor environment where you can design and configure transformations such as parsers,
serializers, and mappers.

Use the Studio to configure Conversion Agent to process data of a particular type. If you are building a parser,
you can use a select-and-click approach to identify the data fields in an example source document, and define
how the software should transform the fields to XML. This procedure is called parsing by example.

Note that we use the term document in the broadest possible sense. A document can contain text or binary
data, and it can have any size. It can be stored or accessed in a file, buffer, stream, URL, database, messaging
system, or any other location.

Component Description

Conversion Agent Studio The design and configuration environment of Conversion Agent.

Conversion Agent Engine The transformation engine.
 2 Chapter 1: Introducing Conversion Agent

http://www.w3schools.com/
http://www.w3.org/

Conversion Agent Engine

Conversion Agent Engine is an efficient transformation processor. It has no user interface. It works entirely in
the background, executing the transformations that you have previously defined in Studio.

To move a transformation from the Studio to the Engine, you must deploy the transformation as a Conversion
Agent service.

An integration application can communicate with the Engine by submitting requests in a number of ways, for
example, by calling the Conversion Agent API. A request specifies the data to be transformed and the service
that should perform the transformation. The Engine executes the request and returns the output to the calling
application.

Using Conversion Agent in Integration Applications
The following paragraphs present some typical examples of how transformations are used in system integration
applications.

As you perform the exercises in this book, you will get experience using these types of transformations. The
chapter on HL7 parsers, for example, illustrates how to use Conversion Agent to parse HL7 messages. For more
information, see “Defining an HL7 Parser” on page 23.

The chapters on positional parsing and parsing Word documents describe parsers that process various types of
unstructured documents. For more information, see:

♦ “Positional Parsing of a PDF Document” on page 35

♦ “Parsing Word and HTML Documents” on page 55.

HL7 Integration

HL7 is a messaging standard used in the health industry. HL7 messages have a flexible structure that supports
optional and repetitive data fields. The fields are separated by a hierarchy of delimiter symbols.

In a typical integration application, a major health maintenance organization (HMO) uses Conversion Agent to
transform messages that are transmitted to and from its HL7-based information systems.

Processing PDF Forms

The PDF file format has become a standard for formatted document exchange. The format permits users to
view fully formatted documents—including the original layout, fonts, and graphics,—on a wide variety of
supported platforms. PDF files are less useful for information processing, however, since applications cannot
access and analyze their unstructured, binary representation of data

Conversion Agent solves this problem by enabling conversion of PDF documents to an XML representation.
For example, Conversion Agent can convert invoices that suppliers send in PDF format to XML, for storage in
a database.

Converting HTML Pages to XML

Information in HTML documents is usually presented in unstructured and unstandardized formats. The goal
of the HTML presentation is visual display, rather than information processing.

Conversion Agent has many features that can navigate, locate, and store information found in HTML
documents. The software enables conversion of information from HTML to a structured XML representation,
making the information accessible to software applications. For example, retailers who present their stock on
the web can convert the information to XML, letting them share the information with a clearing house or with
other retailers.
Overview 3

Installation

Before you continue in this book, you should install the Conversion Agent software, if you have not already
done so.

For more information about the system requirements, installation, and registration, see the Conversion Agent
Administrator Guide. The following paragraphs contain brief instructions to help you get started.

System Requirements
To perform the exercises in this book, you should install Conversion Agent on a computer that meets the
following minimum requirements:

♦ Microsoft Windows 2000, XP Professional, or 2003 Server

♦ Microsoft Internet Explorer, version 6.0 or higher

♦ Microsoft .NET Framework, version 1.1 or higher

♦ At least 128 MB of RAM

Installation Procedure
To install the software, double-click the setup file and follow the instructions. Be sure to install at least the
following components:

Default Installation Folder
By default, Conversion Agent is installed in the following location:

c:\Program Files\SAP\ConversionAgent

The setup prompts you to change the location if desired.

Tutorials and Workspace Folders
To do the exercises in this book, you need the tutorial files, located in the tutorials folder of your main
Conversion Agent program folder. By default, the location is:

c:\Program Files\SAP\ConversionAgent\tutorials

As you perform the exercises, you will import or copy some of the contents of this folder to the Conversion
Agent Studio workspace folder. The default location of the workspace is:

My Documents\SAP\ConversionAgent\4.0\workspace

You should work on the copies in the workspace. We recommend that you do not modify the originals in the
tutorials folder, in case you need them again.

Exercises and Solutions
The tutorials folder contains two subfolders:

Component Description

Engine The Conversion Agent Engine component, required for all lessons in this book.

Studio The Conversion Agent Studio design and configuration environment, required for all lessons in
this book.

Document
Processors

Optional components, required for the lessons on parsing PDF and Microsoft Word documents.
 4 Chapter 1: Introducing Conversion Agent

♦ Exercises. This folder contains the files that you need to do the exercises. Throughout this book, we will
refer you to files in this folder.

As you perform the exercises, you will create Conversion Agent projects that have names such as Tutorial_1
andTutorial_2. The projects will be stored in your Conversion Agent Studio workspace folder.

♦ Solutions to Exercises. This folder contains our proposed solutions to the exercises. The solutions are
projects having names such as TutorialSol_1 and TutorialSol_2. You can import the projects to your
workspace and compare our solutions with yours. Note that there might be more than one correct solution
to the exercises.

XML Editor
By default, Conversion Agent Studio displays XML files in a plain-text editor.

Optionally, you can configure the Studio to use Microsoft Internet Explorer as a read-only XML editor.
Because Internet Explorer displays XML with color coding and indentation, it can help make a complex XML
structure much easier to understand.

The XML illustrations throughout this book use the Internet Explorer display.

To select Internet Explorer as the XML editor:

1. Open Conversion Agent Studio.

2. On the menu, click Window > Preferences.

3. On the left side of the Preferences window, select General> Editors> File Associations.

4. On the upper right, select the *.xml file type.

If it is not displayed, click Add and enter the *.xml file type.

5. On the lower right, click Add and browse to c:\Program Files\Internet Explorer\IEXPLORE.EXE.

6. Click the Default button to make IEXPLORE the default XML editor.

7. Close and re-open Conversion Agent Studio.
Installation 5

 6 Chapter 1: Introducing Conversion Agent

C H A P T E R 2

Basic Parsing Techniques

This chapter includes the following topics:

♦ Overview, 7

♦ Opening Conversion Agent Studio, 8

♦ Importing the Tutorial_1 Project, 9

♦ A Brief Look at the Studio Window, 10

♦ Defining the Structure of a Source Document, 12

♦ Running the Parser, 18

♦ Points to Remember, 20

♦ What's Next?, 21

Overview

To help you start using Conversion Agent quickly, we provide partially configured project containing a simple
parser. The project is called Tutorial_1.

Working in the Conversion Agent Studio environment, you will edit and complete the configuration. You will
then use the parser to convert a few sample text documents to XML.

The main purposes of this exercise are to:

♦ Demonstrate the parsing-by-example approach

♦ Start learning how to define and use a parser

Along the way, you will use some of the important Conversion Agent Studio features, such as:

♦ Importing and opening a project

♦ Defining the structure of the output XML by using an XSD schema

♦ Defining the source document structure by using anchors of type Marker and Content

♦ Defining a parser based on an example source document

♦ Using the parser to transform multiple source documents to XML

♦ Viewing the event log, which displays the operations that the transformation performed
 7

Opening Conversion Agent Studio
To open the Studio:

1. On the Start menu, click Programs > SAP Conversion Agent > Studio.

2. To display the Conversion Agent Studio Authoring perspective, click Window > Open Perspective > Other
> Conversion Agent Studio Authoring.

The Conversion Agent Studio Authoring perspective is a set of windows, menus, and toolbars that you can
use to edit projects in Eclipse.

3. Optionally, click Window > Reset Perspective. This is a good idea if you have previously worked in
Conversion Agent Studio, and you have moved or resized the windows. The command restores all the
windows to their default sizes and locations.

4. To display introductory instructions on how to use the Studio, click Help> Welcome and select the
Conversion Agent Studio welcome page.

You can close the welcome page by clicking the X at the right side of the editor tab.
 8 Chapter 2: Basic Parsing Techniques

Importing the Tutorial_1 Project

 To open the partially configured Tutorial_1 Project file, you must first import it to the Eclipse workspace.

To import the Tutorial_1 project:

1. On the menu, click File > Import. At the prompt, select the option to import an Existing Conversion
Agent Project into Workspace.

2. Click the Next button and browse to the following file:

c:\Program Files\SAP\ConversionAgent\tutorials\Exercises\Tutorial_1\Tutorial_1.cmw

Note: Substitute your path to the Conversion Agent installation folder.

3. Accept the default options on the remaining wizard pages. Click Finish to complete the import.

The Eclipse workspace folder now contains the imported Tutorial_1 folder:

My Documents\SAP\ConversionAgent\4.0\workspace\Tutorial_1

4. In the upper left of the Eclipse window, the Conversion Agent Explorer displays the Tutorial_1 files that
you have imported.
Import ing the Tutorial_1 Project 9

The following is a brief description of the folders and files:

Most of these folders are virtual. They are used to categorize the files in the display, but they do not actually
exist on your disk. Only the Results folder is a physical directory, which Conversion Agent creates when
your transformation generates output.

The Tutorial_1 folder contains additional files that do not display in the Conversion Agent Explorer, for
example:

A Brief Look at the Studio Window

Conversion Agent Studio displays numerous windows. The windows are of two types, called views and editors.
A view displays data about a project or lets you perform specific operations. An editor lets you edit the
configuration of a project freely.

The following paragraphs describe the views and editors, starting from the upper left and moving
counterclockwise around the screen.

Folder/File Description

Examples This folder contains an example source document, which is the sample input that you will
use to configure the parser.

Scripts A TGP script file, which stores the parser configuration.

XSD An XSD schema file, which defines the XML structure that the parser will create.

Results This folder is temporarily empty. When you configure and run the parser, Conversion Agent
will store its output in this folder.

File Description

Tutorial_1.cmw The main project file, containing the project configuration properties.

.project A file generated by the Eclipse development environment. This is not a Conversion
Agent file, but you need it to open the Conversion Agent project in Eclipse.
 10 Chapter 2: Basic Parsing Techniques

Upper Left

Lower Left

The lower left corner of the Conversion Agent window displays two, stacked views. You can switch between
them by clicking the tabs on the bottom.

Lower Right

The lower right displays several views, which you can select by clicking the tabs.

Upper Right

Conversion Agent Studio displays editor windows on the upper right. You can open multiple editors, and
switch between them by clicking the tabs.

View Description

Conversion Agent
Explorer view

Displays the projects and files in the Conversion Agent Studio workspace. By right-clicking or
double-clicking in this view, you can add existing files to a project, create new files, or open files
for editing.

View Description

Component view Displays the main components that are defined in a project, such as parsers, serializers,
mappers, transformers, and variables. By right-clicking or double-clicking, you can open a
component for editing.

IntelliScript
Assistant view

The view helps you configure certain components in the IntelliScript configuration of a
transformation. For an explanation, see the description of the IntelliScript editor below.

View Description

Help view Displays help as you work in an IntelliScript editor. When you select an item in the editor, the
help scrolls automatically to an appropriate topic.
You can also display the Conversion Agent help from the Conversion Agent Studio Help menu, or
from the SAP Conversion Agent folder on the Windows Start menu. These approaches let you
access the complete Conversion Agent documentation.

Events view Displays events that occur as you run a transformation. You can use the events to confirm that a
transformation is running correctly or to diagnose problems.

Binary Source view Displays the binary codes of the example source document. This is useful if you are parsing
binary input, or if you need to view special characters such as newlines and tabs.

Schema view Displays the XSD schemas associated with a project. The schemas define the XML structures
that a transformation can process.

Repository view Displays the services that are deployed for running in Conversion Agent Engine.

Editor Description

IntelliScript editor Used to configure a transformation. This is where you will perform most of the work as you do the
exercises in this book.
The left pane of the IntelliScript editor is called the IntelliScript pane. This is where you define the
transformation. The IntelliScript has a tree structure, which defines the sequence of Conversion
Agent components that perform the transformation.
The right pane is called the example pane. It displays the example source document of a parser.
You can use this pane to configure a parser.
A Brief Look at the Studio Window 11

Defining the Structure of a Source Document

You are ready to start defining the structure of the source document. You will use the parsing-by-example
approach to do this.

To define the structure of the source document:

1. In the Conversion Agent Explorer, expand the Tutorial_1 files node and double-click the
Tutorial_11.tgp file. The file opens in an IntelliScript editor.

2. The IntelliScript displays a Parser component, called MyFirstParser. Expand the IntelliScript tree, and
examine the properties of the Parser. They include the following values, which we have configured for
you:

The example source, File1.txt, should be displayed in the right pane of the editor. If it is not, right-click
MyFirstParser in the left pane, and click Open Example Source.

Note: You can toggle the display of the left and right panes. To do this, open the IntelliScript menu and
select IntelliScript, Example, or Both. There are also toolbar buttons for these options.

3. Examine the example source more closely. It contains two kinds of information.

Figure 2-1. IntelliScript Editor

Property Description

example_source The example source document, which you will use to configure the parser. We have
selected a file called File1.txt as the example source. The file is stored in the
project folder.

format We have specified that the example source has a TextFormat, and that it is
TabDelimited. This means that the text fields are separated from each other by
tab characters.
 12 Chapter 2: Basic Parsing Techniques

The left entries, such as First Name:, Last Name:, and Id: are called Marker anchors. They mark the
locations of data fields. The right entries, such as Ron, Lehrer, and 547329876 are the Content anchors,
which are the values of the data fields

The Marker and Content anchors are separated by tab characters, which are called tab delimiters.

To make your job easier, we have already configured the parser with the basic properties, such as the
TabDelimited format. To complete the configuration of the parser, you will configure the parser to search
for each Marker anchor and retrieve the data from the Content anchor that follows it. The parser will then
insert the data in the XML structure.

As you continue in this book, you will learn about many other types of anchors and delimiters. Anchors are
the places where the parser hooks into a source document and performs an operation. Delimiters are
characters that separate the anchors. Conversion Agent lets you define anchors and delimiters in many
different ways.

4. You are now ready to start parsing by example. In the example pane, move the mouse over the first Marker
anchor, which is First Name:.

5. Click Insert Marker.

Figure 2-2. Marker and Content Anchors
Defining the Structure of a Source Document 13

6. Your last action caused a Marker anchor to be inserted in the IntelliScript. You are now prompted for the
first property that requires your input, which is search. This property lets you specify the type of search,
and the default setting is TextSearch. Since this is the desired setting, press Enter.

7. You are now prompted for the next property that needs your input, which is the text of the anchor that the
parser searches for. The default is the text that you selected in the example source. Press Enter again.

In the images displayed here, the selected property is white, and the background is gray. On your screen,
the background might be white. You can control this behavior by using the Windows > Preferences
command. On the Conversion Agent page of the preferences, select or deselect the option to Highlight
Focused Instance.

8. The IntelliScript displays the new Marker anchor as part of the MyFirstParser definition.

In the example source, the Marker is highlighted in yellow. If the color coding is not immediately displayed,
open the IntelliScript menu, and confirm that the option to Learn the Example Automatically is checked.

9. Now, you are ready to create the first Content anchor. In the example source, select the word Ron. Right-
click the selected text. On the pop-up menu, click Insert Content.

10. This inserts a Content anchor in the IntelliScript, and prompts you for the first property that requires your
input, which is value. This property lets you specify how the parsing will be performed.
 14 Chapter 2: Basic Parsing Techniques

The default is LearnByExample, which means that the parser finds the anchor based on the delimiters
surrounding it in the example source. This is the desired behavior. To accept the default, click Enter.

11. You can accept the defaults for the next few properties, such as example, opening_marker, and closing-
marker, or you can skip them by clicking elsewhere with the mouse.

12. Your next task is to specify where the Content anchor stores the data that it extracts from the source
document.

The output location is called a data holder. This is a generic term which means “an XML element, an XML
attribute, or a variable”. In this exercise, you will use data holders that are elements or attributes. In a later
exercise, you will use variables.

To define the data holder, select the data_holder property, and double-click or press Enter. This opens a
Schema view, which displays the XML elements and attributes that are defined in the XSD schema of the
project, Person.xsd.

Expand the no target namespace node, and select the First element. This means that the Content
anchor stores its output in an XML element called First, like this:

<First>Ron</First>

More precisely, the First element is nested inside Name, which is nested inside Person. The actual output
structure generated by the parser will be:

<Person>
 <Name>
 <First>Ron</First>
 </Name>
</Person>

When you click the OK button, the data_holder property is assigned the value /Person/*s/Name/*s/
First. In XML terminology, this is called an XPath expression. It is a representation of the XML structure
that we have outlined above.

Figure 2-3. Selecting a Data Holder
Defining the Structure of a Source Document 15

Actually, the standard XPath expression is /Person/Name/First. The *s symbols are Conversion Agent
extensions of the XPath syntax, which you can ignore.

Conversion Agent Studio highlights the Content anchor in the example source. The Marker and Content
anchors are in different colors, to help you distinguish them.

13. Click the File > Save command on the menu, or click the Save button on the toolbar. This ensures that
your editing is saved in the project folder.

14. So far, you have told the parser to search for the First Name: anchor, retrieve the Ron anchor that follows
it, and store the content in the First element of the XSD schema.

Proceed through the source document, defining the other Marker and Content anchors in the same way.
The following table lists the anchors that you need to define.

Be sure to define the anchors in the above sequence, which is their sequence in the source document. Using
the correct sequence is important in establishing the correct relationship between each Marker and the
corresponding Content. If you make a mistake in the sequence, Conversion Agent might fail to find the
text.

Anchor Anchor Type Data Holder

Last Name: Marker

Lehrer Content /Person/*s/Name/*s/Last

Id: Marker

547329876 Content /Person/*s/Id

Age: Marker

27 Content /Person/*s/Age

Gender: Marker

M Content /Person/@gender
 16 Chapter 2: Basic Parsing Techniques

When you have finished, the Conversion Agent Studio window should look like the following illustration.
You can expand or collapse the tree to view the illustrated lines.

15. Save the project again.

Correcting Errors in the Parser Configuration
As you define anchors, you might occasionally make a mistake such as selecting the wrong text, or setting the
wrong property values for an anchor.

If you make a mistake, you can correct it in several ways:

♦ On the menu, you can click Edit > Undo.

♦ In the IntelliScript pane, you can select a component that you have added to the configuration and press the
Delete key.

♦ In the IntelliScript pane, you can right-click a component and click Delete.

As you gain more experience working in the IntelliScript pane, you can use the following additional techniques:

♦ If you create an anchor in the wrong sequence, you can drag it to the correct location in the IntelliScript.

♦ If you forget to define an anchor, right-click the anchor following the omitted anchor location and click
Insert.

♦ You can copy and paste components such as anchors in the IntelliScript.

♦ You can edit the property values in the IntelliScript.

Techniques for Defining Anchors
In the above steps, you inserted markers by using the Insert Marker and Insert Content commands.

There are several alternative ways to define anchors:

♦ You can define a Content anchor by dragging text from the example source to a data holder in the Schema
view. This inserts the anchor in the IntelliScript, where the data_holder property is already assigned.

♦ You can define anchors by typing in the IntelliScript pane, without using the example source.

♦ You can edit the properties of Marker and Content anchors in the IntelliScript Assistant view.

We encourage you to experiment with these features. For more information editing the IntelliScript, see Using
Conversion Agent Studio in Eclipse.
Defining the Structure of a Source Document 17

Tab-Delimited Format
Do you remember that MyFirstParser is defined with a TabDelimited format? The delimiters define how the
parser interprets the example source. In this case, the parser understands that the Marker and Content anchors
are separated by tab characters.

In the instructions, we suggested that you select the Marker anchors including the colon character, for example:

First Name:

Because the tab-delimited format is selected, the colon isn't actually important in this parser. If you had selected
First Name without the colon, the parser would still find the Marker and the tab following the Marker, and it
would read the Content correctly. It would ignore other characters, such as the colon.

The tab-delimited format also explains why you can select a short Content anchor such as Ron, and not be
concerned about the field size. In another source document, a person might have a long first name such as
Rumpelstiltskin. By default, a tab-delimited parser reads the entire string after the tab, up to the line break.
This is the case, unless the line contains another anchor or tab character.

Running the Parser

You are now ready to test the parser that you have configured.

To test the parser:

1. In the IntelliScript, right-click the Parser component, which is named MyFirstParser. Click the option to
Set as Startup Component.

This means that when you run the project, Conversion Agent will activate MyFirstParser.

2. On the menu, click Run > Run MyFirstParser.

3. After a moment, the Studio displays the Events view. Among other information, the events list all the
Marker and Content anchors that the parser found in the example source.

You can use the Events view to examine any errors encountered during execution. Assuming that you
followed the instructions carefully, the execution should be error-free.

4. Now you can examine the output of the parser process. In the Conversion Agent Explorer, expand the
Tutorial_1 files/Results node, and double-click the file output.xml.
 18 Chapter 2: Basic Parsing Techniques

The Studio displays the XML file in an Internet Explorer window. Examine the output carefully, and
confirm that the results are correct. If the results are incorrect, examine the parser configuration that you
created, correct any mistakes, and try again.

If you are using Windows XP SP2 or higher, Internet Explorer might display a warning about active
content in the XML results file. You can safely ignore the warning.

Do not worry if the XML processing instruction (<?xml version="1.0"...?>) is missing or different from
the one displayed above. This is due to the settings in the project properties. You can ignore this issue for
now.

Running the Parser on Additional Source Documents
To further test the parser, you can run it on additional source documents, other than the example source.

To test the parser on additional source documents:

1. At the right of the Parser component, click the >> symbol. This displays the advanced properties of the
component.

The >> symbol changes to <<. You can close the advanced properties by clicking the << symbol.

2. Select the sources_to_extract property, and double-click or press Enter. From the drop-down list, select
LocalFile.

Figure 2-4. Displaying Advanced Properties
Running the Parser 19

3. Expand the LocalFile node of the IntelliScript, and assign the file_name property. Conversion Agent
Studio displays an Open dialog, where you can browse to the file.

You can use one of the test files that we have supplied, which are in the folder

tutorials\Exercises\Tutorial_1\Additional source files

For example, select File2.txt, which has the following content:

First Name: Dan
Last Name: Smith
Id: 45209875
Age: 13
Gender: M

4. Run the parser again. You should get the same XML structure as above, containing the data that the parser
found in the test file.

[

Points to Remember

A Conversion Agent project contains the parser configuration and the XSD schema. It usually also contains the
example source document, which the parser uses to learn the document structure, and other files such as the
parsing output.

The Conversion Agent Explorer displays the projects that exist in your Studio workspace. To copy an existing
project into the workspace, use the File > Import command.

To open a transformation for editing in the IntelliScript editor, double-click its TGP script file in the
Conversion Agent Explorer. In the IntelliScript, you can add components such as anchors. The anchors define
locations in the source document, which the parser seeks and processes. Marker anchors label the data fields,
and Content anchors extract the field values.

To define a Marker or Content anchor, select the source text, right-click, and choose the anchor type. This
inserts the anchor in the IntelliScript, where you can set its properties. For example, you can set the data
holder—an XML element or attribute—where a Content anchor stores its output.

Use the color coding to review the anchor definitions.

The delimiters define the relation between the anchors. A tab-delimited format means that the anchors are
separated by tabs.

To test a parser, set it as the startup component. Then use the Run command on the Conversion Agent Studio
menu. To view the results file, double-click its name in the Conversion Agent Explorer.
 20 Chapter 2: Basic Parsing Techniques

What's Next?

Congratulations! You have configured and run your first Conversion Agent parser.

Of course, the source documents that you parsed had a very simple structure. The documents contained a few
Marker anchors, each of which was followed by a tab character and by Content.

Moreover, all the documents had exactly the same Marker anchors in the same sequence. This made the parsing
easy because you did not need to consider the possible variations among the source documents.

In real-life uses of parsers, very few source documents have such a simple, rigid structure. In the following
chapters, you will learn how to parse complex and flexible document structures using a variety of parsing
techniques. All the techniques are based, however, on the simple steps that you learned in this chapter.
What's Next? 21

 22 Chapter 2: Basic Parsing Techniques

C H A P T E R 3

Defining an HL7 Parser

This chapter includes the following topics:

♦ Overview, 23

♦ Creating a Project, 25

♦ Defining the Anchors, 27

♦ Testing the Parser, 30

♦ Points to Remember, 32

Overview

In this chapter, you will parse an HL7 message. HL7 is a standard messaging format used in medical
information systems. The structure is characterized by a hierarchy of delimiters and by repeating elements.
After you learn the techniques for processing these features, you will be able to parse a large variety of
documents that are used in real applications.

In this lesson, you will configure the parser yourself. We will provide the example source document and a
schema for the output XML vocabulary. You will learn techniques such as:

♦ Creating a project

♦ Creating a parser

♦ Parsing a document selectively, that is, retrieving selected data and ignoring the rest

♦ Defining a repeating group

♦ Using delimiters to define the source document structure

♦ Testing and debugging a parser

Requirements Analysis
Before you start the exercise, we will analyze the input and output requirements of the project. As you design
the parser, you will use this information to guide the configuration.

HL7 Background

HL7 is a messaging standard for the health services industry. It is used worldwide in hospital and medical
information systems.

For more information about HL7, see the Health Level 7 web site, http://www.hl7.org.
 23

http://www.hl7.org/

Input HL7 Message Structure

The following lines illustrate a typical HL7 message, which you will use as the source document for parsing.

MSH|^~\&|LAB||CDB||||ORU^R01|K172|P
PID|||PATID1234^5^M11||Jones^William||19610613|M
OBR||||80004^Electrolytes
OBX|1|ST|84295^Na||150|mmol/l|136-148|Above high normal|||Final results
OBX|2|ST|84132^K+||4.5|mmol/l|3.5-5|Normal|||Final results
OBX|3|ST|82435^Cl||102|mmol/l|94-105|Normal|||Final results
OBX|4|ST|82374^CO2||27|mmol/l|24-31|Normal|||Final results

The message is composed of segments, which are separated by carriage returns. Each segment has a three-
character label, such as MSH (message header) or PID (patient identification). Each segment contains a
predefined hierarchy of fields and sub-fields, which are delimited by the characters immediately following the
MSH designator (|^~\&).

For example, the patient's name (Jones^William) follows the PID label by five | delimiters. The last and first
names (Jones and William) are separated by a ^ delimiter.

The message type is specified by a field in the MSH segment. In the above example, the message type is ORU,
subtype R01, which means Unsolicited Transmission of an Observation Message. The OBR segment specifies the
type of observation, and the OBX segments list the observation results.

In this chapter, you will configure a parser that processes ORU messages such as the above example. Some key
issues in the parser definition are how to define the delimiters and how to process the repeating OBX group.

Output XML Structure

The purpose of this exercise is to create a parser, which will convert the above HL7 message to the following
XML output:

<Message type="..." id="...">
 <Patient id="..." gender="...">
 <f_name>...</f_name>
 <l_name>...</l_name>
 <birth_date>...</birth_date>
 </Patient>
 <Test_Type test_id="...">...</Test_Type>
 <Result num="...">
 <type>...</type>
 <value>...</value>
 <range>...</range>
 <comment>...</comment>
 <status>...</status>
 </Result>
 <Result num="...">
 <type>...</type>
 <value>...</value>
 <range>...</range>
 <comment>...</comment>
 <status>...</status>
 </Result>
 <!-- Additional Result elements as needed -->
</Message>

The XML has elements that can store much—but not all—of the data in the sample HL7 message. That is
acceptable. In this exercise, you will build a parser that processes the data in the source document selectively,
retrieving the information that it needs and ignoring the rest. The XML structure contains the elements that are
required for retrieval.

Notice the repeating Result element. This element will store data from the repeating OBX segment of the HL7
message.
 24 Chapter 3: Defining an HL7 Parser

Creating a Project

First, you will create a project where Conversion Agent Studio can store your work.

To create a project:

1. On the Conversion Agent Studio menu, click File > New > Project.

This opens a wizard where you can select the type of project.

You don’t have to close or remove the Tutorial_1 project or any other projects that you already have. The
Eclipse workspace can contain any number of projects.

2. Under the Conversion Agent node, select a Parser Project.

3. On the next page of the wizard, enter a project name, such as Tutorial_2. the software creates a folder and
a *.cmw configuration file having this name.

4. On the following wizard page, enter a name for the Parser component. Since this parser will parse HL7
message of type ORU, call it HL7_ORU_Parser.

5. On the next page, enter a name for the TGP script file that the wizard creates. A convenient name is
Script_Tutorial_2.

6. On the next page, you can select an XSD schema, which defines the XML structure where the parser will
store its output. We have provided a schema for you. In the Conversion Agent installation folder, the
location is:

tutorials\Exercises\Files_For_Tutorial_2\HL7_tutorial.xsd

Browse to this file and click Open. The Studio copies the schema to the project folder.
Creating a Project 25

7. On the next page, specify the example source type. In this exercise, it is a file, which we have provided.
Select the File option.

8. The next page prompts you to browse to the example source file. The location is:

tutorials\Exercises\Files_For_Tutorial_2\hl7-obs.txt

The Studio copies the file to the project folder.

9. On the next page, select the encoding of the source document. In this exercise, the encoding is ASCII,
which is the default.

10. You can skip the document preprocessors page. You do not need a document preprocessor in this project.

11. Select the format of the source document. In this project, the format is HL7.

This causes the parser to assume that the message fields are separated by the HL7 delimiter hierarchy:

newline
|
Other symbols such as ^ and tab

For example, the parser might learn that a particular Content anchor starts at a count of three | delimiters
after a Marker, and ends at the fourth | delimiter.

12. Review the summary page and click Finish.

13. The software creates the new project. It displays the project in the Conversion Agent Explorer. It opens the
script that you have created, Script_Tutorial_2.tgp, in an IntelliScript editor.

In the IntelliScript, notice that the example_source and format properties have been assigned according to
your specifications.
 26 Chapter 3: Defining an HL7 Parser

The example source should be displayed. If it is not, right-click the Parser component and click Open
Example Source.

Using XSD Schemas in Transformations
Transformations require XSD schemas to define the structure of XML documents. Every parser, serializer, or
mapper project requires at least one schema.

When you perform the tutorial exercises in this book, we provide the schemas that you need. For your own
applications, you might already have the schemas, or you can create new ones.

Learning XSD

For an excellent introduction to the XSD schema syntax, see the tutorial on the W3Schools web site, http://
www.w3schools.com. For definitive reference information, see the XML Schema standard at http://
www.w3.org.

Editing Schemas

You can use any XSD editor to create and edit the schemas that you use with Conversion Agent. For more
information about schemas, see the Conversion Agent Studio User Guide.

Defining the Anchors

Now it is time to define the transformation anchors.

To define the anchors:

1. You need to define Marker anchors that identify the locations of fields in the source document, and
Content anchors that identify the field values.

You will start with the non-repeating portions of the document, which are the first three lines. The most
convenient Marker anchors are the segment labels, MSH, PID, and OBR. These labels identify portions of the
document that have a well-defined structure.

Within each segment, you need to identify the data fields to retrieve. These are the Content anchors. There
are several Content anchors for each Marker.

In addition, you need to define the data holders for each Content anchor. The data holders are elements or
attributes in the XML output, which is illustrated above.
Defining the Anchors 27

http://www.w3schools.com/
http://www.w3schools.com/
http://www.w3.org/
http://www.w3.org/

If you study the HL7 message and the XML structure that should be produced, you can probably figure out
which message fields need to be defined as anchors, and you can map the fields to their corresponding data
holders. To save time, we have done this job for you. We present the results in the following table:

Note the @ symbol in some of the XPath expressions, such as /Message/@type. The symbol means that
type is an attribute, not an element.

Create the anchors in the parser definition, as you did in the preceding chapter. When you finish, the
IntelliScript editor should appear as in the following illustration.

2. Now, you need to teach the parser how to process the OBX lines of the source document. There are several
OBX lines, each having the same format. The parser should create output for each OBX line that it finds.

To do this, you will define an anchor called a RepeatingGroup. The anchor tells Conversion Agent to
search for a repeated segment. Inside the RepeatingGroup, you will nest several Content anchors, which tell
the parser how to parse each iteration of the segment.

In the IntelliScript pane, find Electrolytes, the last anchor that you defined. Immediately below the
anchor, there is an empty node containing three dots (...). That is where you should define the new
anchor.

Select the three dots and press the Enter key. This opens a drop-down list, which displays the names of the
available anchors.

Anchor Anchor Type Data Holder

MSH Marker

ORU Content /Message/@type

K172 Content /Message/@id

PID Marker

PATID1234^5^M11 Content /Message/*s/Patient/@id

Jones Content /Message/*s/Patient/*s/l_name

William Content /Message/*s/Patient/*s/f_name

19610613 Content /Message/*s/Patient/*s/birth_date

M Content /Message/*s/Patient/@gender

OBR Marker

80004 Content /Message/*s/Test_Type/@test_id

Electrolytes Content /Message/*s/Test_Type
 28 Chapter 3: Defining an HL7 Parser

In the list, select the RepeatingGroup anchor. Alternatively, you can type the text RepeatingGroup in the
box. After you type the first few letters, Conversion Agent Studio automatically completes the text.

Press the Enter key again to accept the new entry.

3. Now, you must configure the RepeatingGroup so it can identify the repeating segments. You will do this
by assigning the separator property. You will specify that the segments are separated from each other by a
Marker, which is the text OBX.

In the IntelliScript pane, expand the RepeatingGroup. Find the line that defines the separator property.

By default, the separator value is empty, which is symbolized by a ... symbol. Select the ... symbol,
press Enter, and change the value to Marker. Press Enter again to accept the new value. The Marker value
means that the repeating elements are separated by a Marker anchor.

Expand the Marker property, and find its text property. Select the value, which is empty by default, and
press Enter. Type the value OBX, and press Enter again. This means that the separator is the Marker anchor
OBX.

In the example pane, Conversion Agent Studio highlights all the OBX anchors, signifying that it found
them correctly.

4. Now, you will insert the Content anchors, which parse an individual OBX line.

To do this, keep the RepeatingGroup selected. You must nest the Content anchors within the
RepeatingGroup.

Define the anchors only on the first OBX line. Because the anchors are nested in a RepeatingGroup, the
parser looks for the same anchors in additional OBX lines.

Define the Content anchors as follows:

Anchor Anchor Type Data Holder

1 Content /Message/*s/Result/@num

Na Content /Message/*s/Result/*s/type

150 Content /Message/*s/Result/*s/value

136-148 Content /Message/*s/Result/*s/range

Above high normal Content /Message/*s/Result/*s/comment

Final results Content /Message/*s/Result/*s/status
Defining the Anchors 29

When you finish, the markup in the example pane should look like this:

Editing the IntelliScript
The procedure illustrated above is the general way to edit the IntelliScript.

To edit the IntelliScript:

1. Select the desired location for editing.

2. Press Enter. In most locations, you can also double-click instead of pressing Enter.

3. Choose or type a value.

4. Press Enter again to accept the edited value.

Testing the Parser

There are several ways to test the parser and confirm that it works correctly:

♦ You can view the color coding in the example source. This tests the basic anchor configuration.

♦ You can run the parser, confirm that the events are error-free, and view the XML output. This tests the
parser operation on the example source.

♦ You can run the parser on additional source documents. This confirms that the parser can process variations
of the source structure that occur in the documents.

In this exercise, you will use the first two methods to test the parser. We will not take the time for the third test,
although it is easy enough to do. For more information, see “Running the Parser on Additional Source
Documents” on page 19.

Figure 3-1. Nesting Anchors in a RepeatingGroup
 30 Chapter 3: Defining an HL7 Parser

To test the parser:

1. On the menu, click IntelliScript > Mark Example. Alternatively, you can click the button near the right
end of the toolbar, which is labeled Mark the Entire Example According to the Current Script.

Notice that the color-coding is extended throughout the example source document. Previously, only the
anchors that you defined in the first line of the repeating group were highlighted. When you ran the Mark
Example command, Conversion Agent ran the parser and found the anchors in the other lines.

Confirm that the marking is as you expect. For example, check that the test value, range, and comment are
correctly identified in each OBX line.

If the marking is not correct, or if there is no marking, there is a mistake in the parser configuration.
Review the instructions, correct the mistake, and try again.

2. As an experiment, you can test what would happen if you made a deliberate error in the configuration.

Do you remember the HL7 delimiters option, which you set in the New Parser wizard? Try changing the
option to another value:

♦ Save your work. This can be helpful if you make a serious error during this experiment.

♦ Edit the delimiters property. It's located under Parser/format.

♦ Change the value from HL7 to Positional. This means that the Content anchors are located at fixed
positions, measured by numbers of characters, after the Marker anchors.

♦ Try the Mark Example command again. The anchors are incorrectly identified. For example, in the
second OBX line, the comment is reported as rmal|||Final resu instead of Normal. The problem
occurs because the parser thinks that the anchors are located at fixed positions on the line.

♦ Change the delimiters property back to HL7. Confirm that Mark Example now works correctly.
Alternatively, click Edit > Undo to restore the previous configuration.

♦ Save your work again.

3. Now, it is time to run the parser. Right-click the Parser component and set it as the startup component.
Then use the Run > Run command to run it.

4. After a few moments, the Events view appears.

Notice that most of the events are labeled with the information event icon (). This is normal when the
parser contains no mistakes.

If you search the event tree, you can find an event that is labeled with an optional failure icon (). The
event is located in the tree under Execution/RepeatingGroup, and it is labeled Separator before 5. This
means that the RepeatingGroup failed to find a fifth iteration of the OBX separator. This is expected because
the example source contains only four iterations. The failure is called optional because it is permitted for
the separator to be missing at the end of the iterations.

Nested within the optional failure event, you can find a failure event icon (). This event means that
Conversion Agent failed to find the Marker anchor, which defines the OBX separator. Because the failure is
Testing the Parser 31

nested within an optional failure, it is not a cause for concern. In general, however, you should pay
attention to a failure event and make sure you understand what caused it. Often, a failure indicates a
problem in the parser.

In addition to failure events, pay attention to warning event icons () and to fatal event icons ().
Warnings are less severe than failures. Fatal errors are the most severe. They stop the transformation from
running.

5. In the right pane of the Events view, try double-clicking one of the Marker or Content events.

When you do this, Conversion Agent highlights the anchor that caused the event in the IntelliScript and
example panes. This is a good way to find the source of failure or error events.

6. In the Conversion Agent Explorer, double-click the output.xml file, located under the Tutorial_2 files/
Results node. You should see the following XML:

Points to Remember

To create a new project, run the File > New > Project command. This displays a wizard, where you can set
options such as:

♦ The parser name

♦ The XSD schema for the output XML

♦ The example source document, such as a file

♦ The source format, such as text or binary

♦ The delimiters that separate the data fields

After you create the project, edit the IntelliScript and add the anchors, such as Marker and Content for simple
data structures, or RepeatingGroup for repetitive structures.
 32 Chapter 3: Defining an HL7 Parser

To edit the IntelliScript, use the Select-Enter-Assign-Enter approach. That is, select the location that you want
to edit. Press the Enter key. Assign the property value, and press Enter again.

Click IntelliScript > Mark Example to color-code the markers.

Click Run > Run to execute the parser. View the results file, which contains the output XML.
Points to Remember 33

 34 Chapter 3: Defining an HL7 Parser

C H A P T E R 4

Positional Parsing of a PDF
Document

This chapter includes the following topics:

♦ Overview, 35

♦ Creating the Project, 38

♦ Defining the Anchors, 40

♦ Defining the Nested Repeating Groups, 44

♦ Using an Action to Compute Subtotals, 50

♦ Points to Remember, 52

Overview

In many parsing applications, the source documents have a fixed page layout. This is true, for example, of bills,
invoices, and account statements. In such cases, you can configure a parser that uses a positional format to find
the data fields.

In this chapter, you will use a positional strategy to parse an invoice form. You will define the Content anchors
according to their character offsets from the Marker anchors.

In addition to the positional strategy, the exercise illustrates several other important Conversion Agent features:

♦ The source document is a PDF file. The parser uses a document processor to convert the document from the
binary PDF format to a text format, which is suitable for further processing.

♦ The data is organized in nested repeating groups.

♦ The parser uses actions to compute subtotals, which are not present in the source document.

♦ The document contains a large quantity of irrelevant data that is not required for parsing. Some of the
irrelevant data contains the same marker strings as the desired data. The exercise introduces the concept of
search scope, which you can use to narrow the search for anchors and identify the desired data reliably.

♦ To configure the parser, you will use both the basic properties and the advanced properties of components.
The advanced properties are hidden but can be displayed on demand.

In this exercise, you will solve a complex, real-life parsing problem. Have patience as you do the exercise. Do
not be afraid to delete or undo your work if you make a mistake. With a little practice, you will be able to create
parsers like this easily
 35

Requirements Analysis
Before you start to configure a Conversion Agent project, examine the source document and the desired XML
output, and analyze what the transformation needs to do.

Source Document

To view the PDF source document, you need the Adobe Reader, which you can download from http://
www.adobe.com. You need the Reader only for viewing the document. Conversion Agent has a built-in
component for processing PDF documents and does not require any additional PDF software.

In the Adobe Reader, open the file in the Conversion Agent installation folder:

tutorials\Exercises\Files_for_Tutorial_3\Invoice.pdf

The document is an invoice that a fictitious egg-and-dairy wholesaler, called Orshava Farms, sends to its
customers. The first page of the invoice displays data such as:

♦ The customer's name, address, and account number

♦ The invoice date

♦ A summary of the current charges

♦ The total amount due

The top and bottom of the first page display boilerplate text and advertising.

The second page displays the itemized charges for each buyer. The sample document lists two buyers, each of
whom made multiple purchases. The page has a nested repeating structure:

♦ The main section is repeated for each buyer.

♦ Within the section for each buyer, there is a two-line structure, followed by a blank space, for each purchase
transaction.

At the top of the second page, there is a page header. At the bottom, there is additional boilerplate text.
 36 Chapter 4: Positional Parsing of a PDF Document

http://www.adobe.com/
http://www.adobe.com/

This structure is typical of many invoices: a summary page, followed by repeating structures for different
account numbers and credit card numbers. A business might store such invoices as PDF files instead of saving
paper copies. It might use the PDF invoices for online billing by email or via a web site.

Your task, in designing the parser, is to retrieve the required data while ignoring the boilerplate. Since you are
doing this, presumably for a system integration application, you must do it with a very high degree of
reliability.

XML Output

For the purpose of this exercise, we assume that you want to retrieve the transaction data from the invoice. You
need to store the data in an XML structure, which looks like this:

<Invoice account="12345">
 <Period_Ending>April 30, 2003</Period_Ending>
 <Current_Total>351.01</Current_Total>
 <Balance_Due>457.07</Balance_Due>
 <Buyer name="Molly" total="217.64">
 <Transaction date="Apr 02" ref="22498">
 <Product>large eggs</Product>
 <Total>29.07</Total>
 </Transaction>
 <Transaction date="Apr 08" ref="22536">
 <Product>large eggs</Product>
 <Total>58.14</Total>
 </Transaction>
 <!-- Additional transaction elements -->
 </Buyer>
 <Buyer name="Jack" total="133.37">
 <!-- Transaction elements -->
 </Buyer>
</Invoice>

The structure contains multiple Buyer elements, and each Buyer element contains multiple Transaction
elements. Each Transaction element contains selected data about a transaction: the date, reference number,
product, and total price.
Overview 37

The structure omits other data about a transaction, which we choose to ignore. For example, the structure omits
the discount, the quantity of each product, and the unit price.

Each Buyer element has a total attribute, which is the total of the buyer's purchases. The total per buyer is not
recorded in the invoice. We require that Conversion Agent compute it.

The Parsing Problem

Try opening the Invoice.pdf file in Notepad. You will see something like this:

Parsing this binary data might be possible, but it would clearly be very difficult. We would need a detailed
understanding of the internal PDF file format, and we would need to work very hard to identify the Marker and
Content anchors unambiguously.

If we extract the text content of the document, the parsing problem seems more tractable:

Apr 08 22536 large eggs 61.20 3.06 58.14
 60 dozen @ 1.02 per dozen

Apr 08 22536 cheddar cheese 45.90 2.30 43.61
 30 lbs. @ 1.53 per lb.

The transaction data is aligned in columns. The position of each data field is fixed relative to the left and right
margins. This is a perfect case for positional parsing—extracting the content according to its position on the
page. That is why the positional format is appropriate for this exercise.

Another feature is that each transaction is recorded in a fixed pattern of lines. The first line contains the data
that we wish to retrieve. The second line contains the quantity of a product and the unit price, which we do not
need to retrieve. The following line is blank. We can use the repeating line structure to help parse the data.

A third feature is that the group of transactions is preceded by a heading row, such as:

Purchases by: Molly

The heading contains the buyer's name, which we need to retrieve. The heading also serves as a separator
between groups of transactions.

Creating the Project

Now that you understand the parsing requirements, you are ready to configure the Conversion Agent project.
 38 Chapter 4: Positional Parsing of a PDF Document

To create the project:

1. Use the File > New > Project command to create a parser project called Tutorial_3.

2. On the first few pages of the wizard, set the following options. The options are similar to the ones that you
set in the preceding tutorial. For more information, see “Defining an HL7 Parser” on page 23.

♦ Name the parser PdfInvoiceParser.

♦ Name the script file Pdf_ScriptFile.

♦ When prompted for the schema, browse to the file OrshavaInvoice.xsd, which is in following folder:
tutorials\Exercises\Files_For_Tutorial_3.

♦ Specify that the example source is a file on a local computer.

♦ Browse to the example source file, which is Invoice.pdf.

♦ Specify that the source content type is PDF.

3. When you reach the document processor page of the wizard, select the PDF to Unicode (UTF-8) processor.

This processor converts the binary PDF format to the text format that the parser requires. The processor
inserts spaces and line breaks in the text file, in an attempt to duplicate the format of the PDF file as closely
as possible.

Note: PDF to Unicode (UTF-8) is a description of the processor. In the IntelliScript, you can view the
actual name of the processor, which is PdfToTxt_3_01.

4. On the next wizard page, select the document format, which is CustomFormat. You will change this value
later, when you edit the IntelliScript.

5. On the final page, click Finish.

6. After a few seconds, the Conversion Agent Explorer displays the Tutorial_3 project, and the script file is
opened in an IntelliScript editor.

7. Notice that the example pane displays the example source in text format, which is the output of the
document processor. You will configure anchors that process the text.
Creating the Project 39

8. Try clicking the Browser tab at the bottom of the example pane. This tab displays the original document in
a Microsoft Internet Explorer window, which uses the Adobe Reader as a plug-in component to display the
file. The Browser tab is for display only. Return to the Source tab to configure the anchors.

9. Now that the project and parser have been created, you can do some fine tuning by editing the
IntelliScript.

Expand the format property of the parser, and change its value from CustomFormat to TextFormat. This is
appropriate because the parser will process the text form of the document, which is the output of the
document processor.

Under the format property, change delimiters to Positional. This means that the parser learns the
structure of the example source by counting the characters between the anchors.

Defining the Anchors

Now, you will define the anchors. You will use the parse-by-example approach to do this.

To define the anchors:

1. Near the top of the example source, find the string ACCOUNT NO:, which marks the beginning of the text
that you need to parse. Define the string as a Marker anchor by selecting it, right-clicking, and choosing
Insert Marker.

The Marker is automatically displayed in the IntelliScript, and you are prompted to enter the search
property setting. Select the value TextSearch, which is the default. Under TextSearch, confirm that the
text string is ACCOUNT NO:.

Click the >> symbol at the end of TextSearch to display its advanced properties. Select the match case
option under Marker. The option means that the parser looks only for the string ACCOUNT NO:, and not
account no:, Account No:, or any other spelling. This can help prevent problems if one of the other
spellings happens to occur in the document. In fact, the spelling Account No: occurs in the header of the
second page.

Although it is not strictly necessary, we suggest that you select the match case option for all the Marker
anchors that you define in this exercise.
 40 Chapter 4: Positional Parsing of a PDF Document

For more information about the advanced properties, see “Basic and Advanced Properties” on page 49.

2. Continuing on the same line of the source document, after the Marker, select and right-click 12345. On the
menu, click Insert Offset Content.

This inserts a Content anchor, with property values that are appropriate for positional parsing. The
properties are as follows:

3. Edit the data_holder property of the Content anchor. Set its value to /Invoice/@account. This is the data
holder where the Content anchor will store the text that it retrieves from the source document.

4. There is a small problem in the definition of the Content anchor. What will happen if a source document
has an account number such as 987654321, which is longer than the number in the example source?
According to the current definition of the closing_marker, the parser will retrieve only the first five digits,
truncating the value to 98765.

Property Description

opening_marker =
OffsetSearch(1)

This means that the text 12345 starts 1 character after the Marker anchor.

closing_marker =
OffsetSearch(5)

This means that the text 12345 ends 5 characters after its start.
Defining the Anchors 41

To solve this potential problem, change the closing_marker to retrieve not only until character 5, but
until the end of the text line. Do this by changing the value of closing_marker from OffsetSearch to
NewlineSearch.

5. Continuing to the next line of the example source, define PERIOD ENDING: as a Marker anchor.

6. Define April 30, 2003 as a Content anchor with the offset properties. Map the Content to the /Invoice/
*s/Period_Ending data holder. Change the closing_marker to NewlineSearch, to support source
documents where the date string is longer than in the example source.

7. The next data that you need to retrieve is the current invoice amount. Scroll a few lines down, and define
CURRENT INVOICE as a Marker.

8. At the end of the same line, define 351.01 as an offset Content anchor. Map the Content to the /Invoice/
*s/Current_Total data holder.

When you select the Content, include a few space characters to the left of the string 351.01. In positional
parsing, this is important because the area to the left might contain additional characters. For example, the
content might be 1351.01.

As above, change closing_marker to NewlineSearch, in case the number is located to the right of its
position in the example source.

9. In the same way, define BALANCE DUE as a Marker and 475.07 as Content. Map the Content to /Invoice/
*s/Balance_Due.

10. Examine the IntelliScript, and confirm that the sequence of Marker and offset-Content anchors is correct.
It should look like this:
 42 Chapter 4: Positional Parsing of a PDF Document

The precise offsets in your solution might differ from the ones in the illustration. The offsets depend on
the number of spaces that you selected to the left or right of each anchor.

11. Examine the color coding in the example pane. It should look like this:

12. Right-click and define PdfInvoiceParser as the startup component.

13. Run the parser and view the results file. The file should look like this:

14. You are now almost ready to define the repeating group, which creates the Buyer elements of the XML
output. Afterwards, you will define a nested repeating group, which creates the Transaction elements.

The repeating group starts at the Purchases by: line, which is on page 2 of the invoice. You will define
Purchases by: as the separator of the repeating group.

There is a catch, however. The string Purchases by: appears also on the bottom of page 1. To prevent this
from causing a problem, you need to start the search scope for the repeating group at the beginning of page
2.
Defining the Anchors 43

To do this, define the string Page 2 as a Marker anchor. By default, the parser assumes that the anchors are
defined in the order that they appear in the document. Therefore, it starts looking for the subsequent
repeating group from the end of this Marker.

More About Search Scope
The Marker for Page 2 is used to establish the search scope of the subsequent repeating group. Every Marker
anchor is to establish the search scope of other anchors. For example, suppose that a Content anchor is located
between two Marker anchors. Conversion Agent finds the Marker anchors in an initial pass through the
document, called the initial phase. In a second pass, called the main phase, the software searches for the
Content between the Marker anchors. You have already seen many examples of how this works as you
performed the preceding exercises.

There are many ways to refine the search scope and the way in which the software searches for anchors. For
example, you can configure Conversion Agent to:

♦ Search for particular anchors in the initial, main, or final phase of the processing

♦ Search backwards for anchors

♦ Permit anchors to overlap one another

♦ Find anchors according to search criteria such as a specified text string, a pattern, which is a regular
expression, or a specified data type

Adjusting the search scope, phase, and criteria is one of the most powerful features that Conversion Agent offers
for parsing complex documents. For more information about anchor features, see the Conversion Agent Studio
User Guide.

Defining the Nested Repeating Groups

Now, you need to define a RepeatingGroup anchor that parses the repeating Purchases by: structure. Within
it, you will define a nested RepeatingGroup that parses the individual transactions.

Do you remember how to define a repeating group? For more information about the procedure, see “Defining
an HL7 Parser” on page 23.

To define the repeating groups:

1. At the end of the anchor list, edit the IntelliScript to insert a RepeatingGroup.

2. Define the separator property of the RepeatingGroup as a Marker, which performs a TextSearch for the
string Purchases by:.
 44 Chapter 4: Positional Parsing of a PDF Document

Set the separator_position to before. This is appropriate because the separator is located before each
iteration of the repeating group.

Conversion Agent highlights the Purchases by: strings in the example pane.

3. Within the RepeatingGroup, insert an offset Content anchor that maps the buyer's name, Molly, to the
data holder /Invoice/*s/Buyer/@name.

Do not forget to change the closing_marker to NewlineSearch, in case the buyer's name contains more
than five letters. We won't remind you about this any more. When you define an offset Content anchor,
you should confirm that it supports strings that are longer than the ones in the example source.
Defining the Nested Repeating Groups 45

4. On the menu, click IntelliScript > Mark Example. Check that both buyer names, Molly and Jack, are
highlighted. This confirms that the parser identifies the iterations of the RepeatingGroup correctly

If you want, you can also run the parser. Confirm that the results file contains two Buyer elements.

5. Find the three-dots symbol that is nested within the RepeatingGroup, and define another RepeatingGroup.

6. What can we use as the separator of the nested RepeatingGroup? There does not seem to be any
characteristic text between the transactions.

Instead of a text separator, we can use the fact that every transaction occupies exactly four lines of the
document. We can use the sequence of four newline characters as a separator.

To do this, set the separator property of the nested RepeatingGroup to a Marker that uses a
NewlineSearch. Click the >> symbol at the end of the Marker to display its advanced properties, and set
count = 4.

You can then click the << symbol to hide the advanced properties.
 46 Chapter 4: Positional Parsing of a PDF Document

There is no separator before the first transaction or after the last transaction. To reflect this situation, set
separator_position = between.

If you examine the original PDF document carefully, you will discover that each transaction occupies only
three lines. But we are parsing the output of the document processor. For some reason, undoubtedly
related to the binary structure of the PDF file, the processor inserts an extra line.

7. In the first line of the first transaction, which is Molly's first purchase, define the following offset Content
anchors:

When you are done, the example pane should be color-coded like this. The exact position of the colors
depends on the number of spaces that you selected to the left and right of each field.

Content Data Holder

Apr 02 /Invoice/*s/Buyer/*s/Transaction/@date

22498 /Invoice/*s/Buyer/*s/Transaction/@ref

large eggs /Invoice/*s/Buyer/*s/Transaction/*s/Product

29.07 /Invoice/*s/Buyer/*s/Transaction/*s/Total
Defining the Nested Repeating Groups 47

The IntelliScript should display the four Content anchors within the nested RepeatingGroup.

8. Click IntelliScript > Mark Example again. Confirm that the date, reference, product, and total columns are
highlighted in all the transactions.

9. Do you remember how we restricted the search scope of the outer RepeatingGroup by defining Page 2 as a
Marker? It is a good idea to define a Marker at the end of the nested RepeatingGroup, too, to make sure
that Conversion Agent does not search too far.

To do this, return to the top-level anchor list, which is the level at which the outer RepeatingGroup is
defined, and define some of the boilerplate text in the footer of page 2 as a Marker. For example, you can
define the string For your convenience:.
 48 Chapter 4: Positional Parsing of a PDF Document

10. Run the parser. You should get the following output:

11. Collapse the tree and confirm that the two Buyer elements contain 5 and 3 transactions, respectively. This
is the number of transactions in the example source.

Note: On Windows XP SP2 or higher, Internet Explorer might display a yellow information bar notifying
you that it has blocked active content in the file. If this occurs, clicking the - and + icons fails to collapse or
expand the tree. You can unblock the active content, and then collapse the tree.

As usual, examine the event log for any problems. Remember that events marked with the optional failure

icon () or the failure icon () are normal at the end of a RepeatingGroup. For more information, see
“Testing the Parser” on page 30.

Basic and Advanced Properties
When you configured the separator of the nested RepeatingGroup, we told you to click the >> symbol, which
displays the advanced properties. When you do this, the >> symbol changes to <<. Click the << symbol to hide
the advanced properties.
Defining the Nested Repeating Groups 49

Many Conversion Agent components have both basic properties and advanced properties. The basic properties
are the ones that you need to use most frequently, so they are displayed by default. The advanced properties are
needed less often, so Conversion Agent hides them. When you click the >> symbol, they are displayed in gray.

If you assign a non-default value to an advanced property, it turns black. The IntelliScript displays it like a basic
property.

The distinction between the basic and advanced properties is only in the display. The advanced properties are
not harder to understand or more difficult to use. Feel free to use them as needed.

Using an Action to Compute Subtotals

The exercise is complete except for one feature. You need to compute the subtotal for each buyer, and insert the
result in the total attribute of the Buyer elements. The desired output is:

 <Buyer name="Molly" total="217.64">

You can compute the subtotals in the following way:

♦ Before processing the transactions, initialize the total attribute to 0.

♦ After the parser processes each transaction, add the amount of the transaction to the total.

You will use a SetValue action to perform the initialization step. You will use a CalculateValue action to
perform the addition.

To compute the subtotals:

1. Expand the IntelliScript to display the nested RepeatingGroup.

2. Right-click the nested RepeatingGroup. On the pop-up menu, click Insert. This lets you insert a new
component above the RepeatingGroup.

3. Insert the SetValue action, and set its properties as follows:

quote = 0.00
data_holder = /Invoice/*s/Buyer/@total

Figure 4-1. Basic Properties

Figure 4-2. Basic and Advanced Properties
 50 Chapter 4: Positional Parsing of a PDF Document

The SetValue action assigns the quote value to the data_holder.

4. Now, expand the nested RepeatingGroup. At the three dots (...) under the fourth Content anchor, enter a
CalculateValue action.

5. Set the properties of the CalculateValue action as follows:

params =
 /Invoice/*s/Buyer/@total
 /Invoice/*s/Buyer/*s/Transaction/*s/Total
result = /Invoice/*s/Buyer/@total
expression = $1 + $2

The params property defines the parameters. You can add as many parameter lines as required to the
IntelliScript. In this case, there are two parameters: the current total attribute of the buyer and the Total
element of the current transaction.

The expression property is a JavaScript expression that the action evaluates. $1 and $2 are the parameters,
which you defined in the params property.

The result property means that the action assigns the result of the expression as the new value of the
total attribute.
Using an Action to Compute Subtotals 51

6. Run the parser. In the results file, each Buyer element should have a total attribute.

Actions
In this exercise, you used the SetValue and CalculateValue actions to compute the subtotals.

Actions are components that perform operations on data. Conversion Agent provides numerous action
components that perform operations such as:

♦ Computing values

♦ Concatenating strings

♦ Testing a condition for continued processing

♦ Running a secondary parser

♦ Running a database query

For more information about actions, see the Conversion Agent Studio User Guide.

Potential Enhancement: Handling Page Breaks
So far, we have assumed that the repeating groups have a perfectly regular structure. But what happens if the
transactions run over to another page? The new page would contain a page header, which would interrupt the
repeating structure.

One way to support page headers might be to redefine the separator between the transactions. For example, you
might use an Alternatives anchor as the separator. This lets you define multiple separators that might occur
between the transactions.

We won't give you an exercise to perform this enhancement, but we encourage you to experiment with the
features yourself.

Points to Remember

Here are useful hints that arise out of this tutorial:

♦ To parse a binary format such as a PDF file, you can use a document processor that converts the source to
text.

♦ The positional strategy is useful when the content is laid out at a fixed number of characters, called an offset,
from the margins or from Marker anchors.
 52 Chapter 4: Positional Parsing of a PDF Document

♦ When you define anchors, think about the possible variations that might occur in source documents. If you
define the content positionally, adjust the offsets in case a source document contains longer data than the
example source.

♦ The search scope is the segment of a document where Conversion Agent searches for an anchor. The
function of Marker anchors is to define the search scope for other anchors.

♦ Repeating groups can be nested. You can use this feature to parse nested iterative structures.

♦ Newline characters are useful as markers and separators. You can set the count of newlines, which specifies
how many lines to skip.

♦ In the IntelliScript, you can click the >> symbol next to a component to display its advanced properties.
Advanced properties are used less frequently than basic properties, so they are hidden to avoid cluttering the
display.

♦ You can use actions to perform operations on the data, such as computing totals.
Points to Remember 53

 54 Chapter 4: Positional Parsing of a PDF Document

C H A P T E R 5

Parsing Word and HTML
Documents

This chapter includes the following topics:

♦ Overview, 55

♦ Requirements Analysis, 56

♦ Creating the Project, 59

♦ Defining a Variable, 60

♦ Parsing the Name and Address, 61

♦ Parsing the Optional Currency Line, 63

♦ Parsing the Order Table, 65

♦ Using Transformers to Modify the Output, 70

♦ Testing the Parser on Another Source Document, 73

♦ Points to Remember, 74

Overview

Many real-life documents have less structure than the ones we have described in the previous chapters. The
documents might have:

♦ Few labels and delimiters to help a parser identify the data fields

♦ Wrapped lines and flexible layout, making positional parsing difficult

♦ Repeated keywords, making it hard to define unambiguous Marker anchors

Microsoft Word documents are typical examples of these phenomena. Word documents are usually created by
hand, although they can also be generated programmatically. Even if the authors create the documents from a
fixed template, they might vary the layout from one document to another.

In such cases, you need to use the available markup or patterns to parse the documents. For example, you can
use paragraphs, tables, and italics to identify the data fields.

For a Microsoft Word document, you can expose the formatting markup by saving the document as HTML. A
parser can use the HTML tags, which are essentially format labels, to interpret the document structure.

In this chapter, you will construct a parser for a Word document. You will learn techniques such as:

♦ Using the WordToHtml document processor, which converts a Word document to an HTML document.
 55

♦ Taking advantage of the opening and closing tag structure to parse an HTML document.

♦ Identifying anchors unambiguously, in situations where the same text is repeated frequently throughout the
document.

♦ Using transformers to modify the output of anchors.

♦ Using variables to store retrieved data for later use.

♦ Defining a global component, which you configure once and use multiple times in a project.

♦ Testing a parser on source documents other than the example source.

Scope of the Exercise
This exercise is the longest and most complex in this book. It is typical of real-life parsing scenarios. You will
create a full-featured parser that can be used in a production application.

We suggest that you skim the chapter from beginning to end to understand how the parser is intended to work,
and then try the exercise. Feel free to experiment with the parser configuration. There is more than one possible
solution to this exercise.

For example, you can modify the anchor configuration to support numerous variations of the source-document
structure. You can modify the XSD schema to restrict the data types of the elements, ensuring that the parser
retrieves exactly the correct data from a complex document. We have omitted most of these refinements because
we want to keep the scope of the exercise within bounds.

Prerequisites
In order to do this exercise, you need Microsoft Word 97 or higher on the same computer as Conversion Agent
Studio.

If you do not have Word on the same computer, you can open the source document in Word on another
computer and save it as HTML. You can then transfer the HTML document back to the Conversion Agent
computer and parse it. The rest of the exercise is unchanged, except that you do not need to use the WordToHtml
processor because the document is already HTML.

We presume that you are familiar with HTML code. You can get an introduction at http://www.w3.org or
from any book on web-site development.

Requirements Analysis

Before you start configuring a parser, it is always a good idea to plan what the parser must do. In this section,
we examine the source document structure, the required XML output, and the nature of the parsing problem.

Source Document
You can view the example source in Microsoft Word. The document is stored in:
 56 Chapter 5: Parsing Word and HTML Documents

http://www.w3.org/

tutorials\Exercises\Files_for_tutorial_4\Order.doc

The document is an order form used by a fictitious organization called The Tennis Book Club. The form
contains:

♦ The name of the purchaser

♦ A one-line address

♦ An optional line specifying the currency such as $ or £

♦ A table of the items ordered

The format of the items in the table is not uniform. Although the first column heading is Books, some of the
possible items in this column, such as a video cassette, are not books. These items might be formatted in a
different font from the books.

In some of the table cells, the text wraps to a second line. Positional text parsing, using the techniques that you
learned in the previous chapter, would be difficult for these cells.

The table cells do not contain any identifying labels. The parser needs to interpret the cells according to their
location in the table.

The word Total appears three times in the table. In two of the instances, the word is in a column or row
heading; we can assume that this is the case in all similar source documents. In the third instance, Total appears
by chance in the title of the video cassette. This is significant because we want to parse the total-price row of the
table, and we need an unambiguous identifier for the row.

As a further complication, the Currency line is optional. Some of the source documents that we plan to parse
are missing this line.

XML Output
For the purpose of this exercise, we assume that the output XML format is as follows:

<Order>
 <To>Becky Handler</To>
 <Address>18 Cross Court, Down-the-Line, PA</Address>
 <Books>
 <Book>
 <Title>Topspin Serves Made Easy, by Roland Fasthitter</Title>
 <Price>$11.50</Price>
Requirements Analysis 57

 <Quantity>1</Quantity>
 <Total>$11.50</Total>
 </Book>
 <!-- Additional Book elements -->
 </Books>
 <Total>$46.19</Total>
</Order>

Notice that the prices and totals include the currency symbol ($). In the source document, the currency is stated
on the optional currency line, and not in the table.

The Parsing Problem

Processor Selection

Conversion Agent provides several document processors that can convert a Word document to a format suitable
for parsing. Among these are:

♦ WordToHtml

♦ WordToRtf

♦ WordToTxt

♦ WordToXml

We choose to use the WordToHtml processor because:

♦ The HTML code is easy to read, making it easy to configure the parser.

♦ The HTML tags expose a wealth of formatting information, that can help identify the data to retrieve.

The WordToXml and WordToRtf processors might also be good choices, but their output is more difficult to read
than that of the WordToHtml processor.

The WordToTxt processor produces plain-text output. Because the text lacks formatting information, it would
probably be much harder to parse reliably than the HTML.

HTML Structure

The WordToHtml processor uses the Save As HTML feature of Microsoft Word to generate the HTML. The
HTML is exceedingly verbose. It can run to many pages, even though the original Word document is less than
one page. This occurs because Word saves the complete document features, including the style and format
definitions. Much of this information has no significant effect on the appearance of the HTML in a web
browser, but Word uses the information if you later re-import the HTML to Word. Most of this code is in the
<header> element of the HTML document.

If you wish, you can save the example source document as HTML manually in Word. You can view the
resulting HTML file in a browser, or you can open the file in Notepad and examine the HTML code.

In a broad outline, the code looks like this:

<html>\
 <header>
 <!-- Very long header storing Word style definitions ... -->
 </header>
 <body>
 <h1>The Tennis Book Club
Order Form</h1>
 <p>Send to:</p>
 <p>Becky Handler</p>
 <p>18 Cross Court, Down-the-Line, PA</p>
 <table>
 <tr>
 <!-- Table column headers -->
 </tr>
 <tr>
 <td><i>Topspin Serves Made Easy</i>, by Roland Fasthitter</td>
 <td>$11.50</td>
 <td>1</td>
 58 Chapter 5: Parsing Word and HTML Documents

 <td>$11.50</td>
 </tr>
 <!-- Additional tr elements containing the other table rows -->
 </table>
 </body>
</html>

You will use this basic HTML tag structure to parse the document.

The actual code might be considerably more complex than shown above. The following is a typical example,
which is the first <td> element of the Topspin Serves row. The code might vary somewhat on your computer,
depending on your Word version and configuration.

<td width=168 valign=top style='width:125.9pt;border:solid windowtext
1.0pt;border-top:none;mso-border-top-alt:solid windowtext .5pt;mso-
border-alt:solid windowtext .5pt;padding:0cm 5.4pt 0cm 5.4pt'><p
class=MsoBodyText><i style='mso-bidi-font-style:normal'>Topspin Serves
Made Easy</i>, by Roland Fasthitter</p></td>

As you begin to work with the Word-generated HTML, we trust that you will quickly learn to find the
important structural tags, such as the <td>...</td> element. You can ignore the irrelevant code such as the
lengthy attributes and tags.

Creating the Project
To create the project:

1. To start the exercise, create a project called Tutorial_4.

2. In the New Project wizard, select the following options:

♦ Name the parser MyHtmlParser.

♦ Name the script file Html_ScriptFile.

♦ Select the schema TennisBookClub.xsd, which is in the tutorials\Exercises\Files_For_Tutorial_4
folder.

♦ Specify that the example source is a file on a local computer.

♦ Browse to the example source file, which is Order.doc.

♦ Select the Microsoft Word encoding.

♦ Select the document processor Microsoft Word To HTML.

♦ Select the HTML format. This format component is pre-configured with the appropriate delimiters and
other components for parsing HTML code.

♦ Click Finish to create the project.

The resulting IntelliScript has the following appearance:

Note: When the Studio opens the example source, it might display a Microsoft Internet Explorer prompt to
open or save the file. This occurs because the Studio uses Internet Explorer to display a browser view of the
file. The behavior depends on your Internet Explorer security settings. Click Open.
Creating the Project 59

Defining a Variable

Do you remember the Currency line, near the top of the example source? We need to retrieve the currency
symbol, but we do not want to map it to an output element or attribute. Instead, we want to store the currency
symbol temporarily, and prefix it to the prices in the output.

To do this, we will define a temporary data holder called a variable. You can use a variable in exactly the same
way as an element or attribute data holder, but it isn't included in the XML output.

To define the variable:

1. At the bottom of the IntelliScript, at the global level and not nested within the Parser component, select
the three dots (...) and press Enter.

2. Type the variable name, varCurrency, and press Enter.

3. At the three dots on the right side of the equals sign (=), press Enter and select Variable.

The variable appears in the IntelliScript, in the Schema view, and in the Component view.

Figure 5-1. Variable Definition in the IntelliScript

.

 60 Chapter 5: Parsing Word and HTML Documents

Notice the location of the variable in the Schema view, nested within the www.Local-Project.com/
Variables namespace. Later, you will access the variable in the Schema view.

Parsing the Name and Address

You will now define the anchors that parse the name and address, which are located at the beginning of the
example source.

To parse the name and address:

1. In the example pane, scroll past the header to the body tag, about 80% of the way down.

To scroll quickly, you can right-click in the example pane, select the Find option, and find the string
<body, with a starting < symbol but without the ending > symbol.

2. Define <body as a Marker anchor. This causes the parser to skip the header completely, just as you did
when you scrolled through the document.

Do not select the match_case property for this anchor, or for any other HTML tags that you define as
anchors in this exercise. HTML is not case sensitive. Word 2000 and higher generate HTML tags in lower
case, but Word 97 generates tags in upper case. If you select match case, the parser will not support Word
97.

3. Scroll down a few paragraphs, and define the string Send to: as a Marker anchor. The string signals the
beginning of the content that you need to retrieve.

Figure 5-2. Variable Displayed in the Schema View
Parsing the Name and Address 61

Here, you can select the match case option. This can be helpful to ensure that you match only the indicated
spelling.

4. Now, you are ready to define the first Content anchor. You will configure the anchor to retrieve the data
between specified starting and ending strings. A Content anchor that is defined in this way is similar to a
Marker Content Marker sequence, which you could also use, if you prefer.

To do this, right-click the string Becky Handler and insert a Content anchor. Make the following
assignments in the IntelliScript:

When you finish these assignments, the example pane highlights <p and </p> as markers. It highlights
Becky Handler as content.

Notice that only the string Becky Handler is highlighted in blue. The rest of the HTML code between the
opening_marker and the closing_marker, such as

class=MsoBodyText>

is not highlighted. This is because the HtmlFormat recognizes > as a delimiter character. It learns from the
example source that the desired content is located after the > delimiter.

Property Value

opening_marker Select TextSearch and type the string <p.

closing_marker Select TextSearch and type the string </p>.

data_holder Map the anchor to /Order/*s/To.
 62 Chapter 5: Parsing Word and HTML Documents

5. Move to the next paragraph of the source, and use the same technique, defining the opening_marker and
the closing_marker, to map 18 Cross Court, Down-the-Line, PA to the /Order/*s/Address data
holder.

6. Run the parser, and confirm that you get the following result:

Why the Output Contains Empty Elements
Notice that the parser inserts empty Books and Total elements. That is because the XSD schema defines Books
and Total as required elements. The parser inserts the element to ensure that the XML is valid according to the
schema. If necessary you can change this behavior in the project properties. The elements are empty because we
have not yet parsed the table of books.

Parsing the Optional Currency Line

If the source document contains a Currency line, the parser should process the line and store the result in the
varCurrency variable, which you created above. If the Currency line is missing, the parser should ignore the
omission and continue parsing the rest of the document.

You can implement this in the following way:

1. Define a Group anchor. The purpose of this anchor is to bind a set of nested anchors together, for
processing as a unit.

2. Within the group, nest Marker and Content anchors that retrieve the currency.

3. Select the optional property of the Group. This means that if the Group fails due to the Marker and/or
Content being missing, the parser continues running.
Parsing the Optional Currency Line 63

To parse the optional currency line:

1. Following the anchors that you have already defined, insert a Group anchor.

2. Select the three-dots that are nested within the Group. Define the text Currency; as a Marker anchor.

3. Continuing within the Group, define $ as a Content anchor. Map the anchor to the VarCurrency variable,
which you defined above.

4. Click the >> symbol to display the advanced properties of the Group, and select the optional property. Be
sure you select the optional property of the Group, and not the optional property of the Marker or
Content.
 64 Chapter 5: Parsing Word and HTML Documents

Parsing the Order Table

As you have seen in the preceding exercises, you can parse the order table by using a RepeatingGroup. In this
exercise, you will nest the RepeatingGroup in an EnclosedGroup anchor. The EnclosedGroup is useful for
parsing HTML code because it recognizes the opening-and-closing tag structure, which is characteristic of the
code. Specifically, you will use the EnclosedGroup to recognize the <table and </table> tags that surround an
HTML table.

To parse the table:

1. Select the three dots at the end of the top-level anchor sequence, that is, the level where the Group is
defined, and not the nested level within the Group.

2. By editing the IntelliScript, insert an EnclosedGroup anchor.

3. Under the opening property of the EnclosedGroup, assign text = <table. Under the closing property,
assign text = </table>. You can type the strings, or you can drag them from the example pane.

The example pane highlights the <table and </table> tags in the HTML code.

4. Now, start adding anchors within the EnclosedGroup. If you did the exercises in the preceding chapters,
you should be able to work out a solution. We encourage you to try it yourself before you continue
reading.

One solution is to configure the anchors by editing the IntelliScript, rather than selecting and right-
clicking in the example source. The HTML code of the example source is long and confusing, and several
of the anchors have non-default properties, which you can configure only in the IntelliScript.

Within the
EnclosedGroup
Anchor, Add

Configuration Explanation

Marker Advances to the first row of the table,
which you do not need to retrieve.

RepeatingGro
up

Starts a repeating group at the
second row of the table.
See below for the anchors to insert
within the RepeatingGroup.

Marker Terminates the repeating group and
moves to the last row of the table.
To assign count=2, display the
advanced properties. For more
information, see “Using Count to
Resolve Ambiguities” on page 70.
Parsing the Order Table 65

At this point, the EnclosedGroup looks like this:

5. Try the Mark Example command. If you scroll through the example source, you can view the color coding
for the above anchors.

6. Run the parser. The results look like this:

7. Now, expand the RepeatingGroup and insert the following anchors within it.

Marker Advances to the fourth cell in the last
row.
To assign count=3, display the
advanced properties.

Content Retrieves the content of the fourth cell
in the last row.

Within the
EnclosedGroup
Anchor, Add

Configuration Explanation
 66 Chapter 5: Parsing Word and HTML Documents

Notice that the four Content anchors have very similar configurations. Optionally, you can save time by
copying one of the Content anchors, and editing the copies.

When you have finished, the EnclosedGroup and RepeatingGroup should look like this:

Within the
RepeatingGroup
Anchor, Add

Configuration Explanation

Content Retrieves the
content of the first
cell in a row.

Content Retrieves the
content of the
second cell.

Content Retrieves the
content of the third
cell.

Content Retrieves the
content of the
fourth cell.
Parsing the Order Table 67

8. Run the Mark Example command, and check the color-coding again.

9. Run the parser. The result should look like this:

Why the Output does not Contain HTML Code
Notice that the parser removed the HTML code from the retrieved text.

For example, the first Content anchor within the RepeatingGroup is configured to retrieve all the text between
the <td and </td>. You might have expected it to retrieve the text:

 width=168 valign=top style='width:125.9pt;border:solid windowtext 1.0pt;border-
top:none;mso-border-top-alt:solid windowtext .5pt;mso-border-alt:solid windowtext
.5pt;padding:0cm 5.4pt 0cm 5.4pt'><p class=MsoBodyText><i style='mso-bidi-font-
style:normal'>Topspin Serves Made Easy</i>, by Roland Fasthitter</
span></p>

In fact, this is exactly the color-coding of the IntelliScript:
 68 Chapter 5: Parsing Word and HTML Documents

The answer is that the Content anchor retrieves the entire text, including the HTML code. However, the
HtmlFormat component of the parser is configured with a set of default transformers, which modify the output
of the anchor.

One of the default transformers is RemoveTags, which removes the HTML code.

Transformers

A transformer is a component that modifies the output of an anchor. Some common uses of transformers are to
add or replace strings in the output. You will use transformers for these purposes in the next stage of the
exercise.

The format component of a parser is typically configured with a set of default transformers, which the parser
applies to the output of all anchors. The purpose of the default transformers is to clean up the output.

The HtmlFormat is configured with the following default transformers:

♦ RemoveTags, which removes HTML code from the output.

♦ HtmlEntitiesToASCII, which converts HTML entities, such as > or & to plain-text symbols, > or &.

♦ HtmlProcessor, which converts multiple whitespace characters, spaces, tabs, or line breaks, to single spaces.

♦ RemoveMarginSpace, which deletes leading and trailing space characters.

For more information about transformers, see the Conversion Agent Studio User Guide.

Why the Parser does not Use Delimiters to Remove the HTML Codes

Do you remember the Becky Handler anchor that you defined at the beginning of the exercise? We explained
that the anchor removes HTML codes because it retrieves only the data after the > delimiter. The color-coding
illustrates this:

This works because the Becky Handler anchor is configured with the LearnByExample component, whose
function is to interpret the delimiters in the example source.

In the Content anchors of the RepeatingGroup, we deliberately omitted the LearnByExample component:
Parsing the Order Table 69

The LearnByExample component would not have worked correctly here. The problem is that the number of
delimiters in the order table is not constant. In some of the table rows, the name of a book is italicized. In other
rows, the name is not italicized. In some source documents, the table might contain other formatting variations.
The formatting can change the HTML code, including the number and location of the delimiters.

That is why we left the value property empty. Instead, we relied on the default transformers to clean up the
output.

Using Count to Resolve Ambiguities
Within the EnclosedGroup, we told you to assign the count property of two Marker anchors. The purpose was
to resolve ambiguities in the example source.

In the >Total< anchor, we set count = 2. This was to avoid ending the repeating group prematurely, at the first
instance of the string >Total<, which is in the column-heading row. The count = 2 property means that the
parser looks for the second instance of >Total<, which is in the last row of the table. This resolves the
ambiguity.

Another interesting point is that we quoted the text >Total<, rather than Total. This resolves the ambiguity
with the word Total that appears in the Total Tennis (video) row of the table. If we didn't do this, the
repeating group would incorrectly end at the Total Tennis (video) row.

The other use of the count property is in the last <td marker of the EnclosedGroup, which lies within the last
table row. There, we set count = 3 to advance the parser by three table cells. The skipped cells in this row
contain no data, so we do not need to parse them.

Using Transformers to Modify the Output

At this point, the XML output still has two small problems:

♦ Some of the book titles are punctuated incorrectly. The output is

<Title>Topspin Serves Made Easy , by Roland Fasthitter</Title>

instead of

<Title>Topspin Serves Made Easy, by Roland Fasthitter</Title>

The difference is an extra space character, located before the comma.

♦ The prices and totals do not have a currency symbol. The output is

<Price>11.40</Price>
<Total>46.19</Total>

instead of

<Price>$11.40</Price>
<Total>$46.19</Total>

You will apply transformers to particular Content anchors. The transformers will modify the output of the
anchors and correct these problems.

These transformers are in addition to the default transformers, which the parser applies to all the anchors.

To define the transformers:

1. In the IntelliScript, expand the first Content anchor of the RepeatingGroup.

2. Display the advanced properties of the Content anchor, and expand the transformers property.

3. At the three dots within the transformers property, nest a Replace transformer.

4. Set the properties of the Replace transformer as follows:

find_what = TextSearch(" ,")
 70 Chapter 5: Parsing Word and HTML Documents

replace_with = ","

In other words, the transformer replaces a space followed by a comma with a comma.

5. Click the >> symbol to display the advanced properties of the Replace transformer. Select the optional
property.

This is important because the second row of the order table, “Total Tennis (Video)”, does not contain a
space followed by a comma. The transformer cannot perform the replacement on this row. If you do not
select optional, the Content anchor fails and the output omits the second row of the order.

6. You will use an AddString transformer to prefix the prices and totals with the currency symbol. You could
independently configure an independent AddString transformer in each appropriate Content anchor, but
there is an easier way. You can configure a single AddString transformer as a global component. You can
then use the global component wherever it is needed.

To configure the global component, select the three dots to the left of the equal sign, at the top level of the
IntelliScript, the level where MyHtmlParser and varCurrency are defined. This is called the global level.

Press Enter, and type AddCurrencyUnit. This is the identifier of the global component.

7. Press Enter at the second three-dots symbol on the same line, following the equals sign. Insert an
AddString transformer.

8. Select the pre property of the AddString transformer, and press Enter. At the right of the text box, click
the browse button. This displays a Schema view, where you can select a data holder.

In the Schema view, select VarCurrency.

This means that the AddString transformer prefixes its input with the value of VarCurrency, which is the
currency symbol.
Using Transformers to Modify the Output 71

9. Now, you can insert the AddCurrencyUnit component in the appropriate locations of MyHtmlParser.

For example, display the advanced properties of the last Content anchor in the EnclosedGroup, which is
the one that is mapped to /Order/*s/Total. Under its transformers property, select the three dots and
press Enter. The drop-down list displays the AddCurrencyUnit global component, which you have just
defined. Select the global component. This applies the transformer to the anchor.

The result should look like this:

In the same way, insert AddCurrencyUnit in the transformers property of the second and fourth Content
anchors in the RepeatingGroup, which are mapped to Price and Total, respectively.
 72 Chapter 5: Parsing Word and HTML Documents

10. Run the parser. The result should be:

Notice that the Title element does not contain an extra space before the comma. The Price and Total
elements contain the $ sign. These are the effects of the transformers that you defined.

Global Components
Global components are useful when you need to use the same component configuration repeatedly in a project.

You can define any Conversion Agent component as a global component, for example, a transformer, an action,
or an anchor. The identifier of the global component appears in the drop-down list at the appropriate locations
of the IntelliScript. You can use the global component just like any other component.

In this exercise, you defined three global components:

♦ The parser, called MyHtmlParser, which you defined by using the wizard.

♦ The VarCurrency variable that you defined at the beginning of the exercise.

♦ The AddCurrencyUnit transformer that you added at the end of the exercise.

Testing the Parser on Another Source Document

As a final step, test the parser on the source document OrderWithoutCurrency.doc. This document is identical
to the example source (Order.doc), except that it is missing the optional currency line.

The purpose of this test is to confirm that the parser correctly processes a document when the currency line is
missing.

To perform the test:

1. Display the advanced properties of MyHtmlParser.

2. Assign the sources_to_extract property a value of LocalFile.

This means that the parser processes a file on the local computer, instead of the example source.
Testing the Parser on Another Source Document 73

3. Edit the file_name property, and browse to OrderWithoutCurrency.doc.

4. Display the advanced properties of LocalFile, and assign pre_processor = WordToHtml.

This means that Conversion Agent runs the WordToHtml processor on the document before it runs the
parser.

5. Run the parser. The output should be identical to the above, except that the prices and totals are not
prefixed with a $ sign.

6. When you finish, you can delete the sources_to_extract value. This was a temporary setting that you
needed only for testing the parser.

Points to Remember

To parse a Microsoft Word document, you can use a document processor such as WordToHtml, which converts
the document to a parser-friendly HTML format.

To parse HTML code, you can use the EnclosedGroup anchor or the opening_marker and closing_marker
properties of the Content anchor. These approaches take advantage of the characteristic opening-and-closing
tag structure of HTML. If you define an HTML tag as a Marker, it is usually best not to select the match_case
property because HTML is not case sensitive.

To resolve ambiguities between multiple instances of the same text, you can use the count property of a Marker.
 74 Chapter 5: Parsing Word and HTML Documents

Use variables to store retrieved data, which you do not want to display in the XML output of a parser. The
variables are useful as input to other components.

Use transformers to modify the output of anchors. You can apply default transformers to all the anchors, or you
can apply transformers to specific anchors.

To exclude HTML tags from the parsing output, you can either define the anchors using delimiters, or you can
rely on the default transformers to remove the code.

Global components are useful when you need to use the same component configuration repeatedly.

To test a parser on additional documents other than the example source, assign the sources_to_extract
property. Assign a document processor to the document if it needs one.
Points to Remember 75

 76 Chapter 5: Parsing Word and HTML Documents

C H A P T E R 6

Defining a Serializer

This chapter includes the following topics:

♦ Overview, 77

♦ Creating the Project, 78

♦ Configuring the Serializer, 80

♦ Calling the Serializer Recursively, 81

♦ Points to Remember, 84

Overview

In the preceding exercises, you have defined parsers, which convert documents in various formats to XML. In
this exercise, you will create a serializer that works in the opposite direction, converting XML to another
format.

Usually, it is easier to define a serializer than a parser because the input is a fully structured, unambiguous XML
document.

The serializer that you will define is very simple. It contains only four serialization anchors, which are the
opposite of the anchors that you use in parsing. Nonetheless, the serializer has some interesting points:

♦ The serializer is recursive. That is, it calls itself repetitively to serialize the nested sections of an XML
document.

♦ The output of the serializer is a worksheet that you can open in Excel.

You will define the serializer by editing the IntelliScript. It is also possible to generate a serializer automatically
by inverting the operation of a parser. For more information about defining serializers, see the Conversion Agent
Studio User Guide.

Prerequisite
The output of this exercise is a *.csv (comma separated values) file. You can view the output in Notepad, but
for the most meaningful display, you need Microsoft Excel.

You do not need Excel to run the serializer. It is recommended only to view the output.

Requirements Analysis
The input XML document is:
 77

tutorials\Exercises\Files_For_Tutorial_5\FamilyTree.xml

The document is an XML representation of a family tree. Notice the inherently recursive structure: each Person
element can contain a Children element, which contains additional Person elements.

<Person>
 <Name>Jake Dubrey</Name>
 <Age>84</Age>
 <Children>
 <Person>
 <Name>Mitchell Dubrey</Name>
 <Age>52</Age>
 </Person>
 <Person>
 <Name>Pamela Dubrey McAllister</Name>
 <Age>50</Age>
 <Children>
 <Person>
 <Name>Arnold McAllister</Name>
 <Age>26</Age>
 </Person>
 </Children>
 </Person>
 </Children>
</Person>

Our goal is to output the names and ages of the Person elements as a *.csv file, which has the following
structure:

Jake Dubrey,84
Mitchell Dubrey,52
Pamela Dubrey McAllister,50
Arnold McAllister,26

Excel displays the output as a worksheet looking like this:

Creating the Project
To create the project:

1. On the Conversion Agent Studio menu, click File > New > Project.

2. Under the Conversion Agent node, select a Serializer Project.

3. On the following wizard pages, specify the following options:

♦ Name the project Tutorial_5.

♦ Name the serializer FamilyTreeSerializer.

♦ Name the script file Serializer_Script.
 78 Chapter 6: Defining a Serializer

4. When you reach the Schema page, browse to the schema FamilyTree.xsd, which is in the tutorials\
Exercises\Files_For_Tutorial_5 folder.

The schema defines the structure of the input XML document. If you are new to XSD, you can open the
schema in an XSD editor or in Notepad, and examine how the recursive data structure is defined.

5. When you finish the wizard, the Conversion Agent Explorer displays the new project. Double click the
Serializer_Script.tgp file to edit it.

6. Unlike a parser, a serializer does not have an example source file. Optionally, you can hide the empty
example pane of the IntelliScript editor.

To do this, click IntelliScript > IntelliScript or click the toolbar button that is labeled Show IntelliScript
Pane Only. To restore the example pane, click IntelliScript > Both on click the button that is labeled Show
Both IntelliScript and Example Panes.

7. To design the serializer, you will use the FamilyTree.xml input document, whose content is presented
above.

Although not required, it is a good idea to organize all the files that you use to design and test a project in
the project folder, which is located in your Eclipse workspace. We suggest that you copy the
FamilyTree.xml file from

tutorials\Exercises\Files_For_Tutorial_5

to the project folder, which is by default

My Documents\SAP\ConversionAgent\4.0\workspace\Tutorial_5

Determining the Project Folder Location
Your project folder might be in a non-default location for either of the following reasons:

♦ In the New Project wizard, you selected a non-default location.

♦ Your copy of Eclipse is configured to use a non-default workspace location.

To determine the location of the project folder, select the project in the Conversion Agent Explorer, and click
the File > Properties command. Alternatively, click anywhere in the IntelliScript editor, and then click the
Project > Properties command. The Info tab of the properties window displays the location.
Creating the Project 79

Project Properties

The properties window displays many useful options, such as the input and output encoding that are used in
your documents and the XML validation options. For more information the project properties, see the
Conversion Agent Studio User Guide.

Configuring the Serializer

You are now ready to configure the serializer properties and add the serialization anchors. You must do this by
editing the IntelliScript. There is no analogy to the select-and-click approach that you used to configure parsers.

To configure the serializer:

1. Display the advanced properties of the serializer, and set output_file_extension =.csv, with a leading
period.

When you run the serializer in the Studio, this causes the output file to have the name output.csv. By
default, *.csv files open in Microsoft Excel.

2. Under the contains line of the serializer, insert a Content Serializer serialization anchor and configure
its properties as follows:

data_holder = /Person/*s/Name
closing_str = ","

This means that the serialization anchor writes the content of the /Person/*s/Name data holder to the
output file. It appends the closing string "," (a comma).

3. Define a second ContentSerializer as illustrated:

This ContentSerializer writes the /Person/*s/Age data holder to the output. It appends a carriage
return (ASCII code 013) and a linefeed (ASCII 010) to the output.

To type the ASCII codes:
 80 Chapter 6: Defining a Serializer

♦ Select the closing_str property and press Enter.

♦ On the keyboard, press Ctrl+a. This displays a small dot in the text box.

♦ Type 013.

♦ Press Ctrl+a again.

♦ Type 010.

♦ Press Enter to complete the property assignment.

4. Run the serializer. To do this:

♦ Set the serializer as the startup component.

♦ On the menu, click Run > Run.

♦ At the prompt, browse to the test input file, FamilyTree.xml.

♦ When the serializer has completed, examine the Events view for errors.

♦ In the Conversion Agent Explorer view, under Results, double-click output.csv to view the output.

Assuming that Excel is installed on the computer, Conversion Agent displays an Excel window, like this:

If Excel is not installed on the computer, you can view the output file in Notepad. Alternatively, you can
copy the file to another computer where Excel is installed, and open it there.

Calling the Serializer Recursively

So far, the results contain only the top-level Person element. You need to configure the serializer to move
deeper in the XML tree and process the child Person elements.
Calling the Serializer Recursively 81

To call the serializer recursively:

1. Insert a RepeatingGroupSerializer.

You can use this serialization anchor to iterate over a repetitive structure in the input, and to generate a
repetitive structure in the output. In this case, the RepeatingGroupSerializer will iterate over all the
Person elements at a given level of nesting.

2. Within the RepeatingGroupSerializer, nest an EmbeddedSerializer. The purpose of this serialization
anchor is to call a secondary serializer.

3. Assign the properties of the EmbeddedSerializer as illustrated.

The properties have the following meanings:

♦ The assignment serializer = FamilyTreeSerializer means that the secondary serializer is the same as
the main serializer. In other words, the serializer calls itself recursively.

♦ The schema_connections property means that the secondary serializer should process /Person/*s/
Children/*s/Person as though it were a top-level /Person element. This is what lets the serializer move
down through the generations of the family tree.

♦ The optional property means that the secondary serializer does not cause the main serializer to fail
when it runs out of data.
 82 Chapter 6: Defining a Serializer

4. Run the serializer again. The result should be:

Defining Multiple Components in a Project
None of the exercises in this book contain multiple components. In the exercises throughout this book, each
project contains a single parser, serializer, or mapper. We did this for simplicity.

It is quite possible for a single project to contain multiple components, for example:

♦ Multiple parsers, serializers, or mappers

♦ Multiple script (TGP) files

♦ Multiple XSD schemas

The following paragraphs are a brief summary of some possible project configurations involving multiple
components. For more information, see the Conversion Agent Studio User Guide.

Multiple Transformation Components

To define multiple transformation components such as parsers, serializers, or mappers, insert them at the global
level of the IntelliScript. Here is an example:

To run one of the components, set it as the startup component and use the commands on the Run menu.

The startup component can call secondary parsers, serializers, or mappers to process portions of a document.
That is what you did in this exercise, with the interesting twist that the main and secondary serializers were the
same—a recursive call.

Multiple Script Files

You can use multiple script files to organize your work.

To create a script file,

1. Right-click the Scripts node in the Conversion Agent Explorer, and click New > Script.

To add a script that you created in another project, click Add File.

2. To open a script file for editing, double-click the file in the Conversion Agent Explorer.

Multiple XSD Schemas

To add multiple schemas to a project, right-click the XSD node in the Conversion Agent Explorer and click Add
File. To create an empty XSD schema that you can edit in any editor, click New > XSD.
Calling the Serializer Recursively 83

Points to Remember

A serializer is the opposite of a parser: it converts XML to other formats. You can design a serializer that outputs
to any data format, for example, Microsoft Excel.

You can create a serializer either by generating it from an existing parser or by editing the IntelliScript. A
serializer contains serialization anchors that are analogous to the anchors that you use in a parser, but work in
the opposite direction.

In an IntelliScript editor, you can hide or display the panes by choosing the commands on the IntelliScript
menu or on the toolbar.

We recommend that you store all files associated with a project in the project folder, located in your Eclipse
workspace. You can determine the folder location by clicking File > Properties or Project > Properties.

A single project can contain multiple transformation components such as parsers, serializers, and mappers. The
startup component can call secondary serializers, parsers, or mappers, which are defined in the same project.
Secondary components can process portions of a document. Recursion, a component calling itself, is supported.
 84 Chapter 6: Defining a Serializer

C H A P T E R 7

Defining a Mapper

This chapter includes the following topics:

♦ Overview, 85

♦ Creating the Project, 86

♦ Configuring the Mapper, 87

♦ Points to Remember, 88

Overview

So far, you have worked with two major components. With parsers, you converted documents of any format to
XML. With serializers, you changed XML documents to other formats.

In this chapter, you will work with a mapper, which performs XML to XML conversions. The purpose is to
change the XML structure or vocabulary of the data.

The mapper design is similar to that of parsers and serializers. Within the main Mapper component, you can
nest mapper anchors, Map actions, and other components that perform the mapping operations.

The exercise presents a simple mapper that generates an XML summary report. Among other features, the
exercise demonstrates how to configure an initially empty project, which you create by using the Blank Project
wizard. You can use a blank project to configure any kind of transformation, in addition to mappers.

Requirements Analysis
The goal of this exercise is to use an existing XML file to generate a new XML file that has a modified data
structure. The files are provided in the following folder:

tutorials\Exercises\Tutorial_6

Input XML

The input of the mapper is an XML file (Input.xml) that records the identification numbers and names of
several persons. The input conforms to the schema Input.xsd.

<Persons>
 <Person ID="10">Bob</Person>
 <Person ID="17">Larissa</Person>
 <Person ID="13">Marie</Person>
</Persons>
 85

Output XML

The expected output XML (ExpectedOutput.xml) is a summary report listing the names and IDs separately.
The output conforms to the schema Output.xsd:

<SummaryData>
 <Names>
 <Name>Bob</Name>
 <Name>Larissa</Name>
 <Name>Marie</Name>
 </Names>
 <IDs>
 <ID>10</ID>
 <ID>17</ID>
 <ID>13</ID>
 </IDs>
</SummaryData>

Creating the Project

To create the mapper, you will start with a blank project.

To create the project:

1. On the Conversion Agent Studio menu, click File > New > Project.

2. Under the Conversion Agent node, select a Blank Project.

3. In the wizard, name the project Tutorial_6, and click Finish.

4. In the Conversion Agent Explorer, expand the project. Notice that it contains a default TGP script file, but
it contains no XSD schemas or other components.

5. Right-click the XSD node and click Add File. Add the schemas Input.xsd and Output.xsd. Both schemas
are necessary because you must define the structure of both the input and output XML.
 86 Chapter 7: Defining a Mapper

6. The Schema view displays the elements that are defined in both schemas. You will work with the Persons
branch of the tree for the input, and with the SummaryData branch for the output.

7. We recommend that you copy the test documents, Input.xml and ExpectedOutput.xml, into the project
folder. By default, the folder is:

My Documents\SAP\ConversionAgent\4.0\workspace\Tutorial_6

Configuring the Mapper
To configure the mapper:

1. Open the script file, which has the default name Tutorial_6.tgp, in an IntelliScript editor.

2. Optionally, use the commands on the IntelliScript menu or the toolbar to display the IntelliScript pane
only. A mapper does not use an example source, so you do not need the example pane.

3. Define a global component called Mapper1, and give it a type of Mapper. For more information, see “Global
Components” on page 73.

4. Assign the source and target properties of the mapper as illustrated. The properties define the schema
branches where the mapper will retrieve its input and store its output.
Configuring the Mapper 87

5. Under the contains line of the mapper, insert a RepeatingGroupMapping component. You will use this
mapper anchor to iterate over the repetitive XML structures in the input and output.

6. Within the RepeatingGroupMapping, insert two Map actions. The purpose of these actions is to copy the
data from the input to the output.

Configure the source property of each Map action to retrieve a data holder from the input. Configure the
target property to write the corresponding data holder in the output.

7. Set the mapper as the startup component and run it. Check the Events view for errors.

8. Compare the results file, which is called output.xml, with ExpectedOutput.xml. If you have configured
the mapper correctly, the files should be identical, except perhaps for the <?xml?> processing declaration,
which depends on options in the project properties.

Points to Remember

A mapper converts an XML source document to an XML output document conforming to a different schema.
 88 Chapter 7: Defining a Mapper

You can create a mapper by editing a blank project in the IntelliScript. A mapper contains mapper anchors,
which are analogous to the anchors that you use in a parser or to the serialization anchors in a serializer. It uses
Map actions to copy the data from the input to the output.
Points to Remember 89

 90 Chapter 7: Defining a Mapper

C H A P T E R 8

Running Conversion Agent Engine

This chapter includes the following topics:

♦ Overview, 91

♦ Deploying a Transformation as a Service, 92

♦ COM API Application, 92

♦ Running the COM API Application, 94

♦ Points to Remember, 95

Overview

After you have created and tested a transformation, you need to move it from the development stage to
production. There are two main steps to do this:

1. In Conversion Agent Studio, deploy the transformation as a service. This makes it available to run in
Conversion Agent Engine.

2. Launch an application that activates the Engine and runs the service.

In this tutorial, you will perform these steps on the HL7 parser that you already created. For more information
about the parser, see “Defining an HL7 Parser” on page 23. If you prefer, you can perform the exercise on any
other transformation that you have prepared.

The application that activates the Engine will be a Microsoft Visual Basic 6 program that calls the Conversion
Agent COM API. For the benefit of Conversion Agent users who do not have Visual Basic, we provide both the
source code and the compiled program.

As an alternative to the approach that you will learn in this tutorial, you can run Conversion Agent services:

♦ From the command line.

♦ By using the Conversion Agent Java, C, C++, .NET, or Web Service APIs.

♦ By using the CGI web interface.

For more information, see the Conversion Agent Engine Developer Guide.

In addition, you can run services by using the Conversion Agent process module for SAP PI. For more
information, see Deploying and Using Conversion Agent.
 91

Deploying a Transformation as a Service

Deploying a Conversion Agent service means making a transformation available to Conversion Agent Engine.
By default, the repository location is:

c:\Program Files\SAP\ConversionAgent\ServiceDB

Note: There is no relation between Conversion Agent services and Windows services. You cannot view or
administer Conversion Agent services in the Windows Control Panel.

To deploy a transformation as a service:

1. In the Conversion Agent Explorer, select the project. We suggest that you use the Tutorial_2 project that
you already prepared. For more information about Tutorial_2, see “Defining an HL7 Parser” on page 23.

2. Confirm that the startup component is selected and that the transformation runs correctly.

3. On the Conversion Agent menu, click Project > Deploy.

4. The Deploy Service window displays the service details. Edit the information as required.

5. Click the Deploy button.

6. At the lower right of the Conversion Agent Studio window, display the Repository view. The view lists the
service that you have deployed, along with any other Conversion Agent services that have been deployed on
the computer.

COM API Application

To illustrate how to run a Conversion Agent service from an API application, we have supplied a sample
application that calls the Conversion Agent COM API. The application is programmed in Microsoft Visual
Basic 6.0. The source code and the compiled executable file are stored in the folder:

tutorials\Exercises\CMComApiTutorial

The application is described in the following paragraphs.

Source Code
The Visual Basic application displays the following form:

Enter the source document path, an output document path, and the name of a Conversion Agent service. When
you click the Run button, the application executes the following code:

Private Sub cmdRun_Click()

 Dim objCMEngine As CM_COM3Lib.CMEngine 'Engine
 Dim objCMRequest As CM_COM3Lib.CMRequest 'Request generation
 Dim objCMStatus As CM_COM3Lib.CMStatus 'Status display

 92 Chapter 8: Running Conversion Agent Engine

 Dim strRequest As String 'Request string
 Dim strOutput As String 'Output string (not used in this sample)
 Dim strStatus As String 'Status string

 'Check for the required input
 If txtSource = "" Then
 MsgBox "Enter the path of the source document"
 Exit Sub
 End If

 If txtOutput = "" Then
 MsgBox "Enter the path of the output document"
 Exit Sub
 End If

 If txtService = "" Then
 MsgBox "Enter the name of a deployed service"
 Exit Sub
 End If

 Me.MousePointer = vbHourglass

 'Initialize Engine
 Set objCMEngine = New CM_COM3Lib.CMEngine
 objCMEngine.InitEngine

 'Generate a request string
 Set objCMRequest = New CM_COM3Lib.CMRequest
 strRequest = objCMRequest.Generate(_
 txtService.Text, _
 objCMRequest.FileInput(txtSource.Text), _
 objCMRequest.FileOutput(txtOutput.Text), _
 "", "", "")

 'Execute the request
 strStatus = objCMEngine.Exec(strRequest, "", "", strOutput)

 'Display the status
 Set objCMStatus = New CM_COM3Lib.CMStatus
 Call MsgBox(_
 "Return code = " & objCMStatus.IsGood(strStatus) & vbCr & _
 objCMStatus.GetDescription(strStatus), _
 vbOKOnly, "Service Status")

 Me.MousePointer = vbDefault

 Set objCMEngine = Nothing
 Set objCMRequest = Nothing
 Set objCMStatus = Nothing

End Sub

Explanation of the API Calls
The Visual Basic sample uses three Conversion Agent COM API objects:

The steps for using these objects, demonstrated in the sample, are as follows:

1. Define the request parameters, such as the input location, output location, and Conversion Agent service
name.

2. Use CMRequest to generate a request string.

3. Use CMEngine to execute the request.

4. Use CMStatus to confirm that the request ran successfully.

For more information, see the Conversion Agent COM API Reference.

COM API Objects Description

CMRequest Generates a request string, which specifies the service name, the input, the output, and other
details of the operations that Conversion Agent Engine should perform.

CMEngine Executes the request and generates the output.

CMStatus Displays information about the results of the Conversion Agent Engine operation, such as a
return code and error messages.
COM API Application 93

Running the COM API Application

If you have the Visual Basic 6.0 run-time library on your computer, which is true on most Windows computers,
you can run the sample Visual Basic application. Of course, if this were a production application, we would
package it in a setup file that includes the required run-time library.

To run the COM API application:

1. In your working copy of the Tutorials folder, execute the following file:

tutorials\Exercises\CMComApiTutorial\CMComApiTutorial.exe

2. Type the full path of the source document and the output document. Type the name of the Conversion
Agent service that you deployed. By default, it is the name of the project.

For example, to run the sample HL7 parser, you might copy the source document hl7-obs.txt to the c:\
temp directory, and enter the options as illustrated below:

3. Click the Run button. After a moment, the application displays a status message:

A return code of 1 means success. If an error occurred during the service operation, the application displays
an error message.

4. Open the output file in Notepad or Internet Explorer.
 94 Chapter 8: Running Conversion Agent Engine

The output should be identical to the output that you generated when you ran the application in the
Studio.

If an error occurred, the Engine stores an event log in the Conversion Agent reports location, by default

c:\Documents and Settings\<USER>\Application Data\SAP\ConversionAgent\CMReports

where <USER> is your user name. To view a log, you can drag the *.cme file to the Events view of the
Studio.

For more information about events logs, see the Conversion Agent Engine Developer Guide.

Points to Remember

To move a transformation from development to production, deploy it as a Conversion Agent service. The
services are stored in the Conversion Agent repository.

You can run a service in Conversion Agent Engine by using the command-line interface, by API programming,
by using the CGI interface, or by using integration tools.
Points to Remember 95

I N D E X
A
Acrobat

parsing tutorial 35
transformations 3

Acrobat files
parsing 35

Acrobat Reader
PDF files 36

actions
computing totals 35
tutorial 50

Adobe Reader
PDF files 36

advanced properties 49
viewing and editing 35

Alternatives
anchor 52

ambiguities
resolving 56

ambiguous source text
resolving 70

anchor
Group 63

anchors
Alternatives 52
Content 13, 62
defining 17
defining positional 40
EnclosedGroup 65
Marker 13
RepeatingGroup 28

API
COM example 92
Engine 3
tutorial 91

attributes
XML 2

B
basic properties 49

editing 35
binary data

parsing 38
Binary Source

view 11
blank project

editing 86

boilerplate
ignoring 35

C
child elements

XML 2
CMW files

project 10
COM API

Visual Basic example 92
Visual Basic source code example 92

Component
view 11

components
global 71, 73

Content
anchor 13, 62

ContentSerializer
serialization anchor 80

count
of newlines 46
using to resolve ambiguities 70

D
data holder

meaning of 15
debugging

parser 30
default transformers

purpose 68
delimiters

LearnByExample 69
positional 35
tab 13

deploying services
tutorial 91

document processors
example 39
for Word documents 58

documents
defined 2

E
editors

Studio 10
 97

elements
XML 2

EmbeddedSerializer
serialization anchor 82

empty elements
in XML output 63

EnclosedGroup
anchor 65

Engine 3
API tutorial 91

error
events 32

errors
correcting in parser configuration 17

event log
interpreting 31

Events
view 11

example
pane 11

example source
document 10

Excel
serialization tutorial 77

Explorer
view 11

F
failure

events 31
fatal error

events 32
folder

project 79
format

positional 35
tab-delimited 18

formatting
using for parsing 55

G
global components 73

IntelliScript 71
Group

anchor 63

H
hello, world

tutorial 7
Help

view 11
HL7

background 23
message structure 24
parsing tutorial 23
transformations 3

HTML
background information 56

converting Word documents to 55
generated by Word 58
removing code from output 68

HTML documents
transformations 3

I
information

events 31
installation

procedure 4
IntelliScript

correcting errors in 17
pane 11

IntelliScript Assistant
view 11

IntelliScript editor 11
opening 12

Internet Explorer
XML editor 5

invoices
parsing 36

L
LearnByExample

interpreting delimiters 69

M
Map

action 88
mappers

creating 86
definition 1, 85
tutorial 85

Marker
anchor 13

Microsoft Word
parsing documents 55
parsing tutorial 55

N
newlines

as separator of RepeatingGroup 46
searching up to 42

O
offset

Content anchor 41
optional property

of Group 63

P
parent elements

XML 2
 98 Index

parser
running in Studio 18

parsers
definition 1
multiple in project 83
testing and debugging 30

parsing
beginner tutorial 7
by example 1
HL7 tutorial 23

PDF
parsing tutorial 35

PDF files
parsing 35
transformations 3
viewing 36

PDF to Unicode
document processor example 39

PdfToTxt_3_00
document processor example 39

perspective
resetting 8

positional
format 35

positional parsing
tutorial 35

processors
document 39
for Word documents 58
WordToHtml 55

project
determining folder location 79

project properties
in Studio 80

projects
creating 25
importing 9

properties
project 80

R
recursion

serializer calls 77
repeating groups

nested 35, 44
RepeatingGroup

anchor 28
RepeatingGroupMapping

mapper anchor 88
RepeatingGroupSerializer

serialization anchor 82
Repository view 11
requirements analysis

for parsing 36
result files

output 10

S
Schema

view 11

schema
XML 2

schema files
XSD 10

schemas
XSD 27

script files
TGP 10

search scope 43, 44
controlling 35

separator
of repeating group 29

serialization anchors 77
ContentSerializer 80
defining 80
EmbeddedSerializer 82
RepeatingGroupSerializer 82

serializers
creating 78
definition 1
multiple in project 83
tutorial 77

service
deploying 92

services 3
solutions

to Getting Started exercises 4
source

of Mapper 87
source documents

testing additional 19
testing parser on 73

startup component
setting 18

Studio 2
opening 8

system requirements
installation 4

T
tab delimiters

between text 13
tab-delimited

format 18
target

of Mapper 87
testing

parser 30
source documents 73

text files
parsing tutorial 7

TGP
script files 10

totals
computing 50

transformation
deploying as a service 92

transformers 69
configuring 70
default 68
Index 99

Tutorial_1
basic parsing techniques 7

Tutorial_2
defining a parser 23

Tutorial_3
positional parsing 35

Tutorial_4
loosely structured documents 55

Tutorial_5
defining a serializer 77

Tutorial_6
defining a mapper 85

tutorials
basic parsing techniques 7
HL7 parser 23
parsing HTML document 55
parsing Word document 55
positional PDF parsing 35
running service in the Engine 91

Tutorials folder
copying 4

V
valid XML

schema 2
variables

defining 60
views

Studio 10
Visual Basic

COM API example 92
vocabulary

XML 2

W
warning

events 32
web pages

transformations 3
welcome page

displaying in Eclipse 8
well-formed XML

rules for 2
whitespace

in XML 2
windows

Studio 10
Word

parsing documents 55
parsing tutorial 55

WordToHtml
processor 55, 58

WordToRtf
processor 58

WordToTxt
processor 58

X
XML

overview 1
standards 2
tutorial 2

XML editor
Internet Explorer 5

XPath
defining anchor mappings 15
extensions 16

XSD
reference information 27
schemas 27
 100 Index

NOTICES

This Informatica product (the “Software”) includes certain drivers (the “DataDirect Drivers”) from DataDirect Technologies, an operating company of Progress Software Corporation (“DataDirect”)
which are subject to the following terms and conditions:

1. THE DATADIRECT DRIVERS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES OF DAMAGES IN
ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH OF WARRANTY,
NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

	Table of Contents
	Preface
	Quick Reference
	Obtaining Conversion Agent Documentation

	Chapter 1: Introducing Conversion Agent
	Overview
	Introduction to XML
	How Conversion Agent Works
	Using Conversion Agent in Integration Applications

	Installation
	System Requirements
	Installation Procedure
	Default Installation Folder
	Tutorials and Workspace Folders
	Exercises and Solutions
	XML Editor

	Chapter 2: Basic Parsing Techniques
	Overview
	Opening Conversion Agent Studio
	Importing the Tutorial_1 Project
	A Brief Look at the Studio Window
	Defining the Structure of a Source Document
	Correcting Errors in the Parser Configuration
	Techniques for Defining Anchors
	Tab-Delimited Format

	Running the Parser
	Running the Parser on Additional Source Documents

	Points to Remember
	What's Next?

	Chapter 3: Defining an HL7 Parser
	Overview
	Requirements Analysis

	Creating a Project
	Using XSD Schemas in Transformations

	Defining the Anchors
	Editing the IntelliScript

	Testing the Parser
	Points to Remember

	Chapter 4: Positional Parsing of a PDF Document
	Overview
	Requirements Analysis

	Creating the Project
	Defining the Anchors
	More About Search Scope

	Defining the Nested Repeating Groups
	Basic and Advanced Properties

	Using an Action to Compute Subtotals
	Actions
	Potential Enhancement: Handling Page Breaks

	Points to Remember

	Chapter 5: Parsing Word and HTML Documents
	Overview
	Scope of the Exercise
	Prerequisites

	Requirements Analysis
	Source Document
	XML Output
	The Parsing Problem

	Creating the Project
	Defining a Variable
	Parsing the Name and Address
	Why the Output Contains Empty Elements

	Parsing the Optional Currency Line
	Parsing the Order Table
	Why the Output does not Contain HTML Code
	Using Count to Resolve Ambiguities

	Using Transformers to Modify the Output
	Global Components

	Testing the Parser on Another Source Document
	Points to Remember

	Chapter 6: Defining a Serializer
	Overview
	Prerequisite
	Requirements Analysis

	Creating the Project
	Determining the Project Folder Location

	Configuring the Serializer
	Calling the Serializer Recursively
	Defining Multiple Components in a Project

	Points to Remember

	Chapter 7: Defining a Mapper
	Overview
	Requirements Analysis

	Creating the Project
	Configuring the Mapper
	Points to Remember

	Chapter 8: Running Conversion Agent Engine
	Overview
	Deploying a Transformation as a Service
	COM API Application
	Source Code
	Explanation of the API Calls

	Running the COM API Application
	Points to Remember

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages true
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 8
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

