
Série n°6 Bis : Ateliers SQL Data Modeler (Oracle)

Getting started with data Modeler

Adding a Table to An Existing Database

Purpose

This tutorial shows you how to add a table to an existing database using Oracle SQL Developer Data Modeler.

Time to Complete

Approximately 15 minutes

Overview

Oracle SQL Developer Data Modeler offers a full spectrum of data and database modeling tools and utilities,
including Entity Relationship modeling, Relational (Schema), Data Types or Object Type modeling, and
Multidimensional modeling and DDL generation. It includes importing from and exporting to a variety of sources
and targets, provides a variety of formatting options and validates the models through a predefined set of Design
Rules.

Oracle SQL Developer Data Modeler will be released as an extension to SQL Developer and as a standalone
product, for those developers who only want to work with visual data modeling.

In this tutorial, you create an initial relational model by importing an existing script (DDL), add a new table, link the
table to an existing table, create a sub view and generate the DDL.

Importing the DDL for the HR Schema

In this section, you import the DDL from the HR sample schema to create a relational model. Perform the
following steps:

1 . Open Oracle SQL Developer Data Modeler from the icon on your desktop.

2 . Select File > Import > DDL File.

3 . You can add multiple DDL files to be imported at the same time. Click the '+' icon to add a DDL file.

4 . Select hr_cre.sql from the sqldev directory and click Open.

5 . Click OK.

6 . Select Oracle Database 11g and click OK.

7 . The Compare Model window appears. You can view the changes that will occur when the DDL file is imported. Expand Tables under hr_cre. You see that

the list of tables that will be created. Click Merge.

8 .

The relational diagram is displayed. You can zoom in and out. click the Zoom Out icon.

9 . You can now see more of the diagram. To examine the domains that were created in the browser tree, expandDomains.

10 . Note that domains are used in data type definitions - domains like VARCHAR_0_0_20 or NUMERIC_4_0_0 are created during import of DDL file. Similar

data types (used in column definitions) are aggregated into domains. These names can be changed. Double-click NUMERIC_4_0_0.

11 . For each domain you can view where it is used through the domain properties dialog. In the left navigator, selectUsed in.

12 . Click the Columns tab.

13 . You see the list of columns that use this domain. Click Close. In the next section, you create a new table to store information about an employees

dependents.

Creating a Table in the Relational Model

In this section, you create a new table called dependents and add a number of columns to the new table. Perform
the following steps:

1 . Select the New Table icon and click the white space of the diagram.

2 . Enter dependents for the Name and click Columns from the left navigator.

Note that you can click Apply on this page so that the header in the window changes from TABLE_8 to dependents.

3 .

Select the create column icon.

4 . Change the name to id.

When you import a DDL file, a domain is created for each datatype in the DDL file. You can select one of these domains if it contains the correct format and
length. Select NUMERIC_6_0_0 from the list.

5 .

You want the id column to be the Primary Key. Click the PK check box. Then click the Create Column icon to create another column.

Enter first_name for the Name, select Domain for Datatype and select VARCHAR_0_0_20. Then click the Create Column icon again.

6 .

Enter last_name for the Name, select VARCHAR_0_0_25 for Type and click the Create Column icon again.

7 .

Enter birthdate for the Name and select Date_0_0_0 for Type and click the Create Column icon again.

8 .

Enter relation for the Name and select VARCHAR_0_0_25 for Type and click the Create Column icon again.

9 . Enter gender for the Name. There is no character domain with the length of 1 so you can use logical type. SelectLogical for Datatype,

select VARCHAR from the Type drop list, enter 1 for Size and select CHAR for Units. Then click the Create Column icon to create one more column.

10 . Enter relative_id for the Name, select Domain for Datatype and select NUMERIC_6_0_0 from the drop list. Then click OK.

11 . The dependents table was created successfully. In the next section, you add a foreign key between employees anddependents.

Adding a Foreign Key Between Tables

In this section, you add a foreign key between the employees and dependents tables. Perform the following steps:

1 .
Select the New FK Relation icon.

2 . Select the employees table then the dependents table to create the new FK relation.

3 . Not all dependents have an assigned employee, so you want to change the relation to an optional relation. Deselect the Mandatory check box and

select Associated Columns in the left navigator.

4 . Select relative_id for the Child Column.

5 . Click OK.

6 . Since you want to use an existing column for the FK instead of the generated column, Click Yes to delete the generated FK column.

7 . Notice that the relative_id column now has an F next to it indicating that it is the foreign key column and the foreign key relation is optional (represented by

the dotted line).

In the next section, you create a subview.

Creating a SubView

In this section, you create a subview with the employees and dependents tables. Perform the following steps:

1 . There are several possible ways to create subset of the tables you are interested in. One way is to create a subview of tables that are related to one
another. Right-click the dependents table and select Select Neighbors.

2 . Accept the default of 1 zone and click OK.

3 . Notice that the FK relation and employees table are now selected because they are the neighbors of the dependents table. Right-click

the dependents table again and select Create SubView from selected.

4 . The subview is created. You can view the list of objects in the subview from the browser window by expanding the objects.

Generate the DDL for the New Table

In this section, you create and export the DDL for the dependents table. Perform the following steps:

1 . Select File > Export > DDL File.

OR, you can select the Generate DDL icon.

2 . Click Generate.

3 . Select the Tables tab.

4 . You only want to generate the DDL for dependents. Click the Deselect All icon.

5 . Select dependents. Then click the Views tab.

6 . Deselect emp_details_view and click the Sequences tab.

7 . Click the Deselect All icon and click OK to generate the DDL for your selections.

8 . View the contents of the DDL file.

You can save the DDL and run it in SQL Developer. In this tutorial, click Close and perform the next tutorial.

Annexe : hr_cre.sql

Rem
Rem $Header: hr_cre.sql 29-aug-2002.11:44:03 hyeh Exp $
Rem
Rem hr_cre.sql
Rem
Rem Copyright (c) 2001, 2002, Oracle Corporation. All rights reserved.
Rem
Rem NAME
Rem hr_cre.sql - Create data objects for HR schema
Rem
Rem DESCRIPTION
Rem This script creates six tables, associated constraints
Rem and indexes in the human resources (HR) schema.
Rem
Rem NOTES
Rem

Rem CREATED by Nancy Greenberg, Nagavalli Pataballa - 06/01/00
Rem
Rem MODIFIED (MM/DD/YY)
Rem hyeh 08/29/02 - hyeh_mv_comschema_to_rdbms
Rem ahunold 09/14/00 - Added emp_details_view
Rem ahunold 02/20/01 - New header
Rem vpatabal 03/02/01 - Added regions table, modified regions
Rem column in countries table to NUMBER.
Rem Added foreign key from countries table
Rem to regions table on region_id.
Rem Removed currency name, currency symbol
Rem columns from the countries table.
Rem Removed dn columns from employees and
Rem departments tables.
Rem Added sequences.
Rem Removed not null constraint from
Rem salary column of the employees table.

SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
SET ECHO OFF

REM **
REM Create the REGIONS table to hold region information for locations
REM HR.LOCATIONS table has a foreign key to this table.

Prompt ****** Creating REGIONS table

CREATE TABLE regions
 (region_id NUMBER
 CONSTRAINT region_id_nn NOT NULL
 , region_name VARCHAR2(25)
);

CREATE UNIQUE INDEX reg_id_pk
ON regions (region_id);

ALTER TABLE regions
ADD (CONSTRAINT reg_id_pk
 PRIMARY KEY (region_id)
) ;

REM **
REM Create the COUNTRIES table to hold country information for customers
REM and company locations.
REM OE.CUSTOMERS table and HR.LOCATIONS have a foreign key to this table.

Prompt ****** Creating COUNTRIES table

CREATE TABLE countries
 (country_id CHAR(2)
 CONSTRAINT country_id_nn NOT NULL
 , country_name VARCHAR2(40)
 , region_id NUMBER

 , CONSTRAINT country_c_id_pk
 PRIMARY KEY (country_id)
)
 ORGANIZATION INDEX;

ALTER TABLE countries
ADD (CONSTRAINT countr_reg_fk
 FOREIGN KEY (region_id)
 REFERENCES regions(region_id)
) ;

REM **
REM Create the LOCATIONS table to hold address information for company departments.
REM HR.DEPARTMENTS has a foreign key to this table.

Prompt ****** Creating LOCATIONS table

CREATE TABLE locations
 (location_id NUMBER(4)
 , street_address VARCHAR2(40)
 , postal_code VARCHAR2(12)
 , city VARCHAR2(30)
 CONSTRAINT loc_city_nn NOT NULL
 , state_province VARCHAR2(25)
 , country_id CHAR(2)
) ;

CREATE UNIQUE INDEX loc_id_pk
ON locations (location_id) ;

ALTER TABLE locations
ADD (CONSTRAINT loc_id_pk
 PRIMARY KEY (location_id)
 , CONSTRAINT loc_c_id_fk
 FOREIGN KEY (country_id)
 REFERENCES countries(country_id)
) ;

Rem Useful for any subsequent addition of rows to locations table
Rem Starts with 3300

CREATE SEQUENCE locations_seq
 START WITH 3300
 INCREMENT BY 100
 MAXVALUE 9900
 NOCACHE
 NOCYCLE;

REM **
REM Create the DEPARTMENTS table to hold company department information.
REM HR.EMPLOYEES and HR.JOB_HISTORY have a foreign key to this table.

Prompt ****** Creating DEPARTMENTS table

CREATE TABLE departments
 (department_id NUMBER(4)
 , department_name VARCHAR2(30)
 CONSTRAINT dept_name_nn NOT NULL

 , manager_id NUMBER(6)
 , location_id NUMBER(4)
) ;

CREATE UNIQUE INDEX dept_id_pk
ON departments (department_id) ;

ALTER TABLE departments
ADD (CONSTRAINT dept_id_pk
 PRIMARY KEY (department_id)
 , CONSTRAINT dept_loc_fk
 FOREIGN KEY (location_id)
 REFERENCES locations (location_id)
) ;

Rem Useful for any subsequent addition of rows to departments table
Rem Starts with 280

CREATE SEQUENCE departments_seq
 START WITH 280
 INCREMENT BY 10
 MAXVALUE 9990
 NOCACHE
 NOCYCLE;

REM **
REM Create the JOBS table to hold the different names of job roles within the company.
REM HR.EMPLOYEES has a foreign key to this table.

Prompt ****** Creating JOBS table

CREATE TABLE jobs
 (job_id VARCHAR2(10)
 , job_title VARCHAR2(35)
 CONSTRAINT job_title_nn NOT NULL
 , min_salary NUMBER(6)
 , max_salary NUMBER(6)
) ;

CREATE UNIQUE INDEX job_id_pk
ON jobs (job_id) ;

ALTER TABLE jobs
ADD (CONSTRAINT job_id_pk
 PRIMARY KEY(job_id)
) ;

REM **
REM Create the EMPLOYEES table to hold the employee personnel
REM information for the company.
REM HR.EMPLOYEES has a self referencing foreign key to this table.

Prompt ****** Creating EMPLOYEES table

CREATE TABLE employees
 (employee_id NUMBER(6)
 , first_name VARCHAR2(20)
 , last_name VARCHAR2(25)

 CONSTRAINT emp_last_name_nn NOT NULL
 , email VARCHAR2(25)
 CONSTRAINT emp_email_nn NOT NULL
 , phone_number VARCHAR2(20)
 , hire_date DATE
 CONSTRAINT emp_hire_date_nn NOT NULL
 , job_id VARCHAR2(10)
 CONSTRAINT emp_job_nn NOT NULL
 , salary NUMBER(8,2)
 , commission_pct NUMBER(2,2)
 , manager_id NUMBER(6)
 , department_id NUMBER(4)
 , CONSTRAINT emp_salary_min
 CHECK (salary > 0)
 , CONSTRAINT emp_email_uk
 UNIQUE (email)
) ;

CREATE UNIQUE INDEX emp_emp_id_pk
ON employees (employee_id) ;

ALTER TABLE employees
ADD (CONSTRAINT emp_emp_id_pk
 PRIMARY KEY (employee_id)
 , CONSTRAINT emp_dept_fk
 FOREIGN KEY (department_id)
 REFERENCES departments
 , CONSTRAINT emp_job_fk
 FOREIGN KEY (job_id)
 REFERENCES jobs (job_id)
 , CONSTRAINT emp_manager_fk
 FOREIGN KEY (manager_id)
 REFERENCES employees
) ;

ALTER TABLE departments
ADD (CONSTRAINT dept_mgr_fk
 FOREIGN KEY (manager_id)
 REFERENCES employees (employee_id)
) ;

Rem Useful for any subsequent addition of rows to employees table
Rem Starts with 207

CREATE SEQUENCE employees_seq
 START WITH 207
 INCREMENT BY 1
 NOCACHE
 NOCYCLE;

REM **
REM Create the JOB_HISTORY table to hold the history of jobs that
REM employees have held in the past.
REM HR.JOBS, HR_DEPARTMENTS, and HR.EMPLOYEES have a foreign key to this table.

Prompt ****** Creating JOB_HISTORY table

CREATE TABLE job_history
 (employee_id NUMBER(6)
 CONSTRAINT jhist_employee_nn NOT NULL
 , start_date DATE
 CONSTRAINT jhist_start_date_nn NOT NULL
 , end_date DATE
 CONSTRAINT jhist_end_date_nn NOT NULL
 , job_id VARCHAR2(10)
 CONSTRAINT jhist_job_nn NOT NULL
 , department_id NUMBER(4)
 , CONSTRAINT jhist_date_interval
 CHECK (end_date > start_date)
) ;

CREATE UNIQUE INDEX jhist_emp_id_st_date_pk
ON job_history (employee_id, start_date) ;

ALTER TABLE job_history
ADD (CONSTRAINT jhist_emp_id_st_date_pk
 PRIMARY KEY (employee_id, start_date)
 , CONSTRAINT jhist_job_fk
 FOREIGN KEY (job_id)
 REFERENCES jobs
 , CONSTRAINT jhist_emp_fk
 FOREIGN KEY (employee_id)
 REFERENCES employees
 , CONSTRAINT jhist_dept_fk
 FOREIGN KEY (department_id)
 REFERENCES departments
) ;

REM **
REM Create the EMP_DETAILS_VIEW that joins the employees, jobs,
REM departments, jobs, countries, and locations table to provide details
REM about employees.

Prompt ****** Creating EMP_DETAILS_VIEW view ...

CREATE OR REPLACE VIEW emp_details_view
 (employee_id,
 job_id,
 manager_id,
 department_id,
 location_id,
 country_id,
 first_name,
 last_name,
 salary,
 commission_pct,
 department_name,
 job_title,
 city,
 state_province,
 country_name,
 region_name)
AS SELECT

 e.employee_id,
 e.job_id,
 e.manager_id,
 e.department_id,
 d.location_id,
 l.country_id,
 e.first_name,
 e.last_name,
 e.salary,
 e.commission_pct,
 d.department_name,
 j.job_title,
 l.city,
 l.state_province,
 c.country_name,
 r.region_name
FROM
 employees e,
 departments d,
 jobs j,
 locations l,
 countries c,
 regions r
WHERE e.department_id = d.department_id
 AND d.location_id = l.location_id
 AND l.country_id = c.country_id
 AND c.region_id = r.region_id
 AND j.job_id = e.job_id

WITH READ ONLY;

	

