

Introduction

What Is Kubernetes?

Kubernetes Features

Installing Kubernetes (For Different OS)

Mac OS X Users

Windows

Kubernetes Fundamentals

Containers, Pods, and ReplicaSets	

Masters, Worker Nodes, and Clusters

Services, Ingresses, and Networking

Clusters

Cluster Configuration Options

One Cluster or Many?

Deployments

Create and Expose a Deployment

Scale and Update a Deployment

Executing Zero Downtime Deployments

Caylent & Kubernetes

Advanced Material

Stateless Applications Versus Stateful Applications

Definition

Running Stateful Applications

StatefulSet Basics

Templating Kubernetes Resources	

Helm and Helm Charts Intro

Creating Reusable Templates

Upgrading Charts and Reverting Changes with Rollbacks

Storing Reusable Templates

References

2

3

4

6

6

7

9

9

11

13

16

16

16

17

17

18

20

20

21

22

24

25

25

25

26

26

27

27

28

29

29

30

Getting Started with Kubernetes

Tools for Working with Kubernetes

Suggested Tools

To Get Started

www.caylent.com 2

Introduction

If your organization is about to embrace containers and develop microservices-type applications

then this Getting Started with Kubernetes Caylent Guide is for you. We discuss the platform

from the ground up to provide an in-depth tour of the core concepts for deploying, scaling, and

maintaining reliable containerized applications on Kubernetes.

1 Heptio. (2018). The State of Kubernetes 2018. Seattle, WA: Heptio. Retrieved from https://go.heptio.com/rs/383-ENX-437/images/Heptio_
StateOfK8S_R6.pdf

Not so long ago, software development involved

launching monolith web applications of huge

codebases that developed into hulking, hard-to-

manage behemoths. Crude container technology

had been available since the late 1970s, but the

tech wasn’t properly adopted until Docker debuted

in 2013. From then on, the use of containers

dramatically changed traditional IT processes

by transforming the way we build, ship, and

run distributed applications. However, in just

a relatively few short years following Docker’s

surge in popularity, Kubernetes entered the

container orchestration fray and laid waste to any

competitors on the field.

Kubernetes has swiftly become the most crucial

cloud-native technology in software development.

In 2018, container production usage jumped to 38%

from 22% just two years before with Kubernetes

increasingly becoming the first choice among

container users. The rate of Kubernetes adoption

is steadily growing at 8% with alternative platform

numbers falling or remaining flat. Scale is a key

factor behind this growth. When it comes to

enterprise statistics, 53% of today’s

organizations—with more than 1,000

containers—now use Kubernetes in production.

(Heptio, 20181)

www.caylent.com 3

What Is
Kubernetes?

Kubernetes was launched into the open-source GitHub stratosphere by Google in 2014 as an

independent solution for managing and orchestrating containers technologies such as Docker and

rkt. The platform is really the third iteration of a container system developed by Google called Borg.

Borg is Google’s internal “cluster manager that runs hundreds of thousands of jobs, from many

thousands of different applications, across a number of clusters each with up to tens of thousands

of machines.” (Verma et al., 20152)

After Borg came Omega, which was never publicly launched, but was used as the test bed for a lot of

innovations that were folded back into Borg and, concurrently, Kubernetes. Kubernetes is the fruition

of lessons learned from all three container management systems over the course of a decade.

Kubernetes, from the Greek term for “helmsman,” is intended to make steering container

management for multiple nodes as simple as managing containers on a single system. As the

platform is based on Docker containers, it also works perfectly with Node apps—so users can run any

kind of application on it.

2 Verma, A., Pedrosa, L., R. Korupolu, M., Oppenheimer, D., Tune, E., & Wilkes, J. (2015). Large-Scale Cluster Management At Google With Borg.
Retrieved from https://ai.google/research/pubs/pub43438

Google partnered with Linux in 2015 around the launch time of Kubernetes v1.0 to establish the

Cloud Native Computing Foundation (CNCF) as a true landing pad for the project—essentially, the

 C++ Borg rewritten in Go. The CNCF encourages the open source development and

collaboration which surrounds the broad functionality of Kubernetes, making it the extensive and

highly popular project that it is today.

www.caylent.com 4

Commonly referred to as K8s or Kube, the platform has also started taking over the DevOps scene

in the last couple of years by allowing users to implement best practices for speeding up the

development process through automated testing, deployments, and updates. Working on Kube

allows developers to manage apps and services with almost zero downtime. As well as providing

self-healing capabilities, Kubernetes can also detect and restart services if a process fails inside a

container.

For creating portable and scalable application deployments that can be scheduled, managed, and

maintained easily, it’s easy to see why it’s becoming the go-to technology of choice. Kubernetes

can be used on-premise in a corporate data center, but also integrated with all of the leading public

cloud offerings too. Its cross-functionality and heterogeneous cloud support are why the platform

has rapidly risen to become the standard for container orchestration.

Kubernetes Features

Kubernetes delivers a comprehensive and constantly upgraded

set of features for container orchestration. These include, but

aren’t limited to:

Containers from failed nodes are automatically replaced and

rescheduled. Based on existing rules/policy, Kube will also kill and

restart any containers which do not respond to health checks.

Using K8s allows users to roll out and roll back new versions/

configurations of an application, without risking any downtime.

Self-healing

Horizontal scaling

Automated rollouts
and rollbacks

Kubernetes can auto scale applications according to resource

usage such as CPU and memory. It can also support dynamic

scaling defined by customer metrics.

www.caylent.com 5

The platform auto schedules relevant containers according to

resource usage and constraints, without sacrificing availability.

Auto binpacking

Secrets and
configuration
management

It’s also possible to manage the secrets and configuration

details for an application without re-building corresponding

images. Through Kubernetes secrets, confidential information to

applications can be shared without exposing it to the stack

configuration, much like on GitHub.

www.caylent.com 6

MAC OS X USERS

Install Docker for Mac first. Docker is the foundation on which we will create, manage, and

run our containers. Installing Docker lets us create containers that will run in Kubernetes

Pods.

Install VirtualBox for Mac using Homebrew. Next, in your Terminal, run brew cask install

virtualbox. VirtualBox allows you to run virtual machines on a Mac (like running Windows

inside macOS, except for with a Kubernetes cluster).

Now, install kubectl for Mac, the command-line interface tool that allows you to interact

with Kubernetes. In your Terminal, run brew install kubectl.

Install Minikube according to the latest GitHub release documentation. At the time of

writing, this uses the following command in Terminal.

Everything should work! Kick off your Minikube cluster with minikube start—though bear in

mind this may take a few minutes to work. Then type kubectl api-versions. If you get a list of

versions in front of you, everything’s working!

Minikube will launch by creating a Kubernetes cluster with a single node. Or you can install

via homebrew with brew cask install minikube.

curl -Lo minikube https://storage.googleapis.com/minikube/releases/

v1.0.0/minikube-darwin-amd64 && chmod +x minikube && sudo cp minikube

/usr/local/bin/ && rm minikube

1

5

2

3

4

Installing Kubernetes
(For Different OS)

The two prerequisites for Mac users are that you need to have Homebrew and Homebrew Cask

installed. The latter can be installed after Homebrew by running brew tap caskroom/cask in your

Terminal. Now, follow these steps:

https://brew.sh/
https://caskroom.github.io/
https://docs.docker.com/docker-for-mac/install/
https://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/getting-started-guides/minikube/
https://github.com/kubernetes/minikube/releases

www.caylent.com 7

WINDOWS

Prerequisites for Kubernetes Windows installation include:

To setup local Kubernetes on a Windows machine, follow these steps:

Follow Hyper-V installation instructions here

Follow Chocolatey Package Manager installation instructions here

Hyper-V:

Chocolatey:

Your PowerShell should now read the following, enter ‘Y’ to continue running the script:

Now to test the minikube installation, just run:

Or update minikube via:

As mentioned earlier, kubectl is the command-line interface tool that allows you to interact

with Kubernetes.

1

3

4

2

##Minikube has a kubernetes-cli dependency which will get auto-installed
along with Minikube ##

choco install minikube

minikube version

minikube update-check

The package kubernetes-cli wants to run ‘chocolateyInstall.psl’

Do you want to run the script? ([Y]es/[N]o/[p]rint]): Y

The install of kubernetes-cli was successful

The install of minikube was successful

Launch Windows PowerShell with Admin Privileges (Right Click -> Run as Administrator).

Setup the package Minikube using Chocolatey.

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v
https://chocolatey.org/docs/installation
https://kubernetes.io/docs/getting-started-guides/minikube/
https://kubernetes.io/docs/tasks/tools/install-kubectl/

www.caylent.com 8

Now, it’s time to start your new K8s local cluster. Open the PowerShell terminal and run

command:

Great! Everything is now installed and it all looks like it’s working. Let’s run through a quick

explanation of the components included in these install steps for both Mac and Windows users:

is a universal tool for running virtual machines on compatible OS

including Ubuntu, Windows, and Mac.

is Mac’s go-to package manager for installations and Homebrew Cask

extends Homebrew with support for quickly installing Mac applications

like Google Chrome, VLC, and, of course, Kubernetes as well as others.

is Microsoft’s very own virtualization software. Enable this tool to

create virtual machines on x86–64 systems on Windows 10. Formerly

known as Windows Server Virtualization, Microsoft Hyper-V is a native

hypervisor.

is a package manager like apt-get or yum but solely for Windows. It

was designed to act as a decentralized framework for quickly installing

applications and necessary tools. Chocolatey is built on the NuGet

infrastructure and currently uses PowerShell as its focus for delivering

packages.

is Kubernetes’ command line application for interacting with your

Minikube Kubernetes cluster. It sends HTTP requests from your

machine to the Kubernetes API server running on the cluster to

manage your Kubernetes environment.

VirtualBox

Homebrew

Hyper-V

Chocolatey

kubectl

6

minikube start

www.caylent.com 9

Kubernetes Fundamentals

CONTAINERS, PODS, AND REPLICASETS

are an application-centric packaged approach to launching high-performing,

scalable applications on your infrastructure of choice. Using a container

image, we confine all the application information along with all its runtime

and dependencies together in a predefined format. We leverage that image

to create an isolated executable environment known as a container. With

container runtimes such as rkt, runC or containerd, we can use those pre-

packaged images to generate one or more containers. Sometimes, Docker is

also referenced as a container runtime, but technically Docker is a platform

which uses containerd as a container runtime.

Containers can be deployed from a given image on multiple platforms of

choice, such as from desktops, in the cloud, on VMs, etc. All of these runtimes

are good at running containers on a single host. However, in practice, we

would prefer a fault-tolerant and scalable solution by connecting multiple

nodes together to create a single controller/management unit. This is where

Kubernetes comes in as the container orchestrator.

is a collected unit of containers which share a network and mount

namespace. They are also the basic unit of deployment in Kubernetes. A pod

denotes a single instance for a running process in your Kubernetes cluster.

Pods tend to contain one or more containers, such as Docker containers

and act as the scheduling unit in Kubernetes. All containers within a pod are

logically scheduled on the same node together. When a pod runs multiple

containers, the containers are run as a single entity and share the pod’s

allocated resources.

Containers

A pod

https://www.docker.com/

www.caylent.com 10

Pods’ shared networking and storage resources rules are as follows:

Pods are automatically assigned unique IP addresses on creation.

Pod containers also share the same network namespace, including

IP address and network ports. Containers within a pod communicate

with each other on localhost.

Pods can identify a set of shared storage volumes to be shared

among containers.

ensure how many versions—or replicas—of a pod should be running. It is a

Kubernetes controller which we use to define a specified number of pod

replicas determined by preconfigured values. (A controller in Kubernetes

takes care of the tasks that guarantee the desired state of the cluster

matches the observed state—one of Kubes’ self-healing features.) Without it,

we would need to create multiple manifests for the number of pods required—

which is a lot of repeat work to deploy replicas of a single application.

ReplicaSets will manage all pods according to defined labels (key-value

pair data used to describe attributes of Kube objects that are significant to

users).

ReplicaSets

NETWORK

STORAGE

www.caylent.com 11

MASTERS, WORKER NODES, AND CLUSTERS

The master node manages the state of a cluster and is essentially the entry point for all

administrative tasks. There are three ways to communicate with the master node:

Worker nodes are controlled by the master node and may be a VM or physical machine which runs

the applications using pods. Worker nodes are responsible for scheduling pods using the necessary

components to run and connect them (see below). We also connect to worker nodes and not to the

master node/s if accessing applications from the external world

Working with individual nodes can be very useful for

certain tasks, but it’s not the best way to optimize

Kubernetes. A cluster allows you to pool nodes and

their resources together to form a single more powerful

engine. Thinking about a cluster as a whole becomes

more efficient than running individual nodes.

A cluster typically comprises a master node and a set

of worker nodes that run in a distributed setup over

multiple nodes in a production environment. By using

minikube when testing, all the components can run on

the same node (physical or virtual). Clusters can be

scaled by adding worker nodes to increase the workload

capacity of the cluster, thereby providing Kube more

room to schedule containers.

To improve fault tolerance, it’s possible to have more than one master node in the cluster in High

Availability (HA) mode. In a multiple master node setup though, only one of them will act as a leader

performing all the operations; the rest of the master nodes would be followers.

Via the CLI Via the GUI (Kubernetes Dashboard) Via APIs

https://github.com/kubernetes/minikube

www.caylent.com 12

Seven main components form a functioning master-slave architectural type cluster:

Master components (which call the shots):

Worker/slave node components (which

execute the application workloads):

etcd is a distributed key-value store

which manages the cluster state. All

the master nodes connect to it.

kubelet interacts with the underlying

container runtime engine to bring up

containers as needed and monitors

the health of pods.

kube-proxy is a network proxy/load

balancer which manages network

connectivity to the containers

through services.

The scheduler programs the work

between worker nodes and contains

the resource usage information for

each one. It works according to user/

operator configured constraints.

The API server performs all the

administrative tasks within the

master node by validating and

processing user/operator REST

commands. Cluster changes are

stored in the distributed key store

(etcd) once executed.

The controller manager instigates

the control/reconciliation loops that

compare the actual cluster state

to the desired cluster state in the

apiserver and ensure the two match.

You can run each of these components as standard Linux processes, or as Docker ones.

Container runtime, as mentioned previously such as Docker or rkt, executes the containers.

www.caylent.com 13

SERVICES, INGRESSES, AND NETWORKING

As pods are ephemeral in nature, any resources like IP addresses allocated to them are not reliable—

as pods can be rescheduled or just die abruptly. To overcome this challenge, Kubernetes offers a

higher-level abstraction known as a service, which groups pods in a logical collection with a policy to

access them via labels and selectors. On configuration, pods will launch with pre-configured labels

(key/value pairs to organize by release, deployment or tier, etc.). For example:

Users can then use selectors to tell the resource, whatever it may be (e.g., service, deployment, etc.)

to identify pods according to that label. By default, each named service is assigned an IP address,

which is routable only inside the cluster. Services then act as a common access point to pods from

the external world through a connection endpoint to communicate with the appropriate pod and

forwards traffic. The network proxy deamon kube-proxy listens to the API server for every service

endpoint creation/deletion from each worker node, then it sets up route channel accordingly.

labels:

 app: nginx

 tier: backend

By default, Kubernetes isolates pods and the outside world. Connecting with a service in a pod

means opening up a route channel for communication. The collection of routing rules which govern

how external users access services is referred to as ingress. There are three general strategies in

Kubernetes for exposing your application through ingress:

Through nodeport which exposes the application on a port across each of your nodes

Through loadbalancer which creates an external load balancer that navigates to a

Kubernetes service in your cluster

Through a Kubernetes ingress resource

www.caylent.com 14

Ingress is an integral concept in K8s as it allows simple host or URL based HTTP routing, but it is

always instigated by a third-party proxy. These third-party proxies are known as ingress controllers,

and they’re responsible for reading the ingress resource data and processing that info accordingly.

Different ingress controllers have extended the routing rules in different ways to support alternative

use cases. For an in-depth guide to managing Kubernetes ingresses, read our article here.

Since a Kubernetes cluster consists of various

components in the form of nodes and pods,

understanding how they communicate is essential.

As mentioned, Kubernetes assigns an IP address to

each pod. So, unlike the Docker networking model,

there is no need to map host ports to container ports.

Admittedly, the Kube networking implementation is a

bit more complex than Docker. But this is in order to

simplify the process of optimizing even complicated

legacy applications to run in a container environment.

Kubernetes networking—as there is no default model, all implementations must work through a

third-party network plug-in (e.g., Project Calico, Weave Net, Flannel, etc.)—is responsible for routing

all internal requests between hosts to the right pod. service, load balancer, or ingress controllers

organize external access (see above). Pods act much the same as VMs or physical hosts with regards

to naming, load balancing, port allocation, and application configuration.

When it comes to networking communication of pods, Kubernetes sets certain conditions and

requirements:

All pods can communicate with each other without the need to use network address

translation (NAT)

Nodes are also able to communicate with all pods, without the need for NAT

Each pod will see itself with the same IP address that other pods see it with

1

2

3

https://caylent.com/managing-kubernetes-ingresses/
https://www.projectcalico.org/
https://www.weave.works/oss/net/
https://github.com/coreos/flannel#flannel

www.caylent.com 15

This leaves us with three networking challenges to overcome in order to take advantage of

Kubernetes:

All the containers within a given service

will have the same IP address and

port space—as assigned by the pod’s

assigned network namespace. So,

because all the containers all reside

within the same namespace, they are able

to communicate with one another via

localhost.

Each pod exists in its own Ethernet

namespace. This namespace then needs

to communicate with other network

namespaces that are located on the

same node. Linux provides a mechanism

for connecting namespaces using a

virtual Ethernet device (VED or ‘veth

pair’). The VED comprises of a pair of

virtual interfaces.

In order to connect two Pod namespaces,

one side of the VED is assigned to the

root network namespace. The other

member of the veth pair is then assigned

to the Pod’s network namespace. The

VED then acts like a virtual cable that

connects the root network namespace to

that of the Pod’s network namespace and

allowing them to exchange data.

Services act as an abstraction layer on

top of pods, assigning a single virtual IP

address to a specified group. Once these

pods are associated with that virtual IP

address, any traffic which is addressed

to it will be routed to the corresponding

group. The set of pods linked to a service

can be changed at any time, but the

service IP address will remain static.

Container-to-container networking: Pod-to-pod networking:

Pod-to-service networking:

www.caylent.com 16

Tools for Working
with Kubernetes

SUGGESTED TOOLS

Due to its rising popularity and open-source nature, the list of in-built and external tools for

enhancing Kubernetes usage is extensive and far too widespread to cover here. For a glimpse into the

top 50 + tools that Caylent suggest to begin with for improving your work with the platform, check

out our curated list here.

TO GET STARTED

As pods are ephemeral in nature, any resources like IP addresses allocated to them are not reliable—

as pods can be rescheduled or just die abruptly. To overcome this challenge, Kubernetes offers a

higher-level abstraction known as a service, which groups pods in a logical collection with a policy to

access them via labels and selectors. On configuration, pods will launch with pre-configured labels

(key/value pairs to organize by release, deployment or tier, etc.). For example:

MiniKube, as mentioned previously, is the easiest and most recommended way to initiate

an all-in-one Kubernetes cluster locally.

Bootstrap a minimum viable Kubernetes cluster that conforms to best practices with

kubeadm—a first-class citizen of the Kubernetes ecosystem. As well as a set of building

blocks to setup clusters, it is easily extendable to provide more functionality.

https://caylent.com/50-useful-kubernetes-tools/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/kubeadm

www.caylent.com 17

Using KubeSpray means we can install Highly Available Kubernetes clusters on GCE, Azure,

AWS, OpenStack or bare metal machines. The Kubernetes Incubator project tool is based

on Ansible, and it’s available on most Linux distributions.

Kops allows us to create, destroy, upgrade, and maintain highly available, production-grade

Kubernetes clusters from the CLI. It can also provision the machines too.

Clusters

CLUSTER CONFIGURATION OPTIONS

With Kubernetes, users can leverage different

configurations through four major installation types as

presented below:

With an all-in-one configuration, both the master and worker components are run on a single node.

This setup is beneficial for development, testing, and training and can be run easily on Minikube. Do

not use this setup in production.

For this installation, there is a single master node that runs a single-node etcd instance and is

connected to multiple worker nodes.

All-in-One Single-Node Configuration

A Single-Node etcd, Single-Master, and Multi-Worker Configuration

https://github.com/kubernetes-incubator/kubespray
https://github.com/kubernetes-incubator/kargo
https://github.com/kubernetes/kops

www.caylent.com 18

In this high-availability setup, there are multiple master nodes but only a single-node etcd instance.

Multiple worker nodes are connected to the multiple master nodes. One master will be the leader.

In this installation, etcd is configured outside the Kubernetes cluster in a clustered mode with many

master and worker nodes connected. This is considered the most sophisticated and recommended

production setup.

Single-Node etcd, Multi-Master, and Multi-Worker Configuration

Multi-Node etcd, Multi-Master, and Multi-Worker Configuration

ONE CLUSTER OR MANY?

One of Kubernetes’ major strengths is just how

much flexibility can be gained for deploying and

operating containerized workloads on the platform.

Every variable from the number of pods, containers,

and nodes per cluster as well as a host of other

parameters can be customized to your singular

configuration.

By default, when you create a cluster, the master and its nodes are launched in a single compute

or availability zone that you pre-configure. It’s possible to improve the availability and resilience of

your clusters by establishing regional clusters. A regional cluster supplies a single static endpoint

for the whole cluster and distributes your cluster’s pods across multiple zones of a given region. It’s

your choice whether a cluster is zonal or regional when you create it. It’s important to note too that

existing zonal cluster can’t be converted to regional or vice versa.

www.caylent.com 19

When it comes to the question of how many clusters though, there are a number of considerations

to take into account. The Kubernetes documentation offers the following advice:

“The selection of the number of Kubernetes clusters may be a relatively static choice, only revisited

occasionally. By contrast, the number of nodes in a cluster and the number of pods in a service may

change frequently according to load and growth.”

One of the biggest considerations needs to be the impact on internal and external customers when

Kubernetes is running in production. For example, an enterprise environment may require a multi-

tenant cluster for distinct teams within the organization to run effectively. A multi-tenant cluster can

be divided across multiple users and/or workloads—these are known as tenants. Operating multiple

clusters can assist to:

While it is feasible to run multiple clusters per availability zones, it is advisable to run fewer clusters

with more VMs per availability zone. Choosing fewer clusters per availability zone can help with the

following:

Separate tenants

and workloads

Improved pod binpacking thanks

to more nodes in one cluster

(lower resource fragmentation).

Lower

operational

overheads

Reduced per-cluster

costs for ongoing

resources

Improve high

availability

Establish maintenance

lifecycles to match

particular workloads

https://kubernetes.io/docs/concepts/cluster-administration/federation/

www.caylent.com 20

Regional clusters, however, replicate cluster masters and nodes across more than one zone within in

a single region. Choosing this option can help with:

Improved resilience from single zone

failure so your control plane and

resources aren’t impacted

Reduced downtime from master

failures as well as zero downtime for

master upgrades, and resizing

CREATE AND EXPOSE A DEPLOYMENT

When you have a cluster up and running with Minikube,

it’s then possible to deploy your containerized app on

top of it. In K8s, a deployment is the recommended way

to deploy pod or ReplicaSet. Simply define a deployment

configuration to tell K8s how to create and update your

app instances. Once the deployment configuration is

defined, the Kube master will schedule the appropriate app

instances onto your cluster nodes.

If you want to revise a deployment, describes the state that you want in a ReplicaSet. Then during a

rollout, the deployment controller will adapt the current state to match the described state that you

want at a controlled rate. All deployment revisions can also be rolled back and scaled too.

Deployments

www.caylent.com 21

Use the CLI Kubectl terminal to create and manage a deployment. To create a deployment, specify

the application’s container image and the number of replicas that you want to run. Run your first app

with the kubectl run command to create a new deployment. Here’s an example of the output

which creates a ReplicaSet to bring up 3 pods.

apiVersion: v1
kind: Deployment
metadata:
 name: example-deployment # Name of our deployment

spec:
 replicas: 3
 selector:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 status: serving
 spec:
 containers:
 - image: nginx:1.9.7
 name: nginx
 ports:
 - containerPort: 80

$ kubectl rollout status deployment example-deployment

deployment “example-deployment” successfully rolled out

SCALE AND UPDATE A DEPLOYMENT

Before anything else, first check to see if the deployment was created successfully by running the

kubectl rollout status and kubectl get deployment command. The first will show if it failed or not

and the second will indicate how many replicas are available, have been updated, and how many are

open to end users.

www.caylent.com 22

$ kubectl get deployment

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE

example-deployment 3 3 3 3

kubectl scale deployment.v1.apps/nginx-deployment --replicas=10

deployment.apps/nginx-deployment scaled

kubectl --record deployment.apps/nginx-deployment set image deployment.v1.apps/
nginx-deployment nginx=nginx:1.9.1

To scale a deployment, use the following command:

If you have changed your mind about the image number and want to update the nginx Pods to use

the nginx:1.9.1 image instead of the nginx:1.7.9 image. use the kubectl command --record as

follows:

EXECUTING ZERO DOWNTIME DEPLOYMENTS

Remove any downtime from your production environment so that users don't feel let down when they

need your app the most. To do that, simply run a readiness probe. This is essentially a check that

Kubernetes implements to ensure that your pod is ready to send traffic to it. If it’s not ready, then

Kubernetes won’t use that pod. Easy!

readinessProbe:
 httpGet:
 path: /
 port: 80
 initialDelaySeconds: 5
 periodSeconds: 5
 successThreshold: 1

www.caylent.com 23

This tells Kubernetes to send an http get request down the path every five seconds. If the

readinessprobe is successful, then Kube will mark the pod as ready and start sending traffic to it.

Another strategy for avoiding downtime is the rolling update technique that looks like this:

If you combine these two strategies, your deployment.yaml should look something like this in the end:

 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 0
 maxSurge: 1

strategy:
apiVersion: v1
kind: ReplicationController
metadata:
 name: webserver-rc
spec:
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 0
 maxSurge: 1
 template:
 metadata:
 labels:
 app: webserver
 status: serving
 spec:
 containers:
 - image: nginx:1.9.7
 name: nginx
 ports:
 - containerPort: 80
 readinessProbe:
 httpGet:
 path: /
 port: 80
 initialDelaySeconds: 5
 periodSeconds: 5
 successThreshold: 1

www.caylent.com 24

Summary

Congratulations! Over the course of this guide you’ve:

Covered the history and main features of the Kubernetes platform

Gotten to grips with the fundamental architecture and components of Kubernetes, including:

Installed Kubernetes on your machine of choice

Discovered the best tools to use to optimise your workload with the platform

Masters, Worker Nodes, and Clusters	

Services, Ingresses, and Networking

Caylent & Kubernetes

Caylent’s provides DevOps on demand. We

accelerate DevOps and Kubernetes adoption,

enabling engineering teams to focus on product.

LEARN MORE

Containers, Pods, and ReplicaSets

Launched, scaled, updated, and minimized the downtime on your first Kubernetes

 deployment

If you would like to know more about optimizing Kubernetes for your work loads check out our

extensive resource archive on various aspects of the platform in depth here. For anything else related

to Kubernetes (services, consulting, and more), don’t hesitate to contact us!

https://caylent.com/tag/kubernetes/
https://caylent.com/contact-us/
https://caylent.com/devops-as-a-service/

www.caylent.com 25

Advanced Material

STATELESS APPLICATIONS VERSUS STATEFUL APPLICATIONS

DEFINITION

An application’s underlying architecture is one of the most crucial factors to consider before running

a new application in production. The terms often discussed in this context is working out if the app

will be ‘stateless’ or ‘stateful.’ Both types have their own advantages and disadvantages.

One of the major factors for choosing Kubernetes in container orchestration is the capability to

harmonize stateful and stateless apps together. It’s possible to take advantage of exactly the same

compute, storage, and network resources across web and API servers, database, message queue,

cache, and file stores at the same time. The second reason is that Kubernetes provides consistent

and declarative provisioning across all environments (testing, staging, production, etc.).

A stateless application is one which requires no persistent storage. Your cluster is only responsible for

hosting the code and other static content. That’s it. No need to change databases and there are no

writes or leftover files when pods are deleted.

Alternatively, a stateful application looks after several other parameters in a cluster. Dynamic

databases, for example, which even when the app is deleted or goes offline must persist on the disk.

When deployed in a cloud, stateful applications pose a challenge as they can be hard to scale in a

distributed, virtualized environment. Also, limiting data stores to specific locations is no simple task

in an environment where VMs themselves are stateless. Which means that stateful apps can become

problematic in the cloud. On Kubernetes this can raise several issues.

www.caylent.com 26

At the heart of a stateful application are the following aspects:

RUNNING STATEFUL APPLICATIONS

Ordered operations which are covered in the sequencing needed to deploy an app. First, run

the set of operations that brings up the metadata tier, then run the second set of operations

that brings up the actual data tier.

Stable network IDs instead of IP addresses (which aren’t reliable as mentioned earlier).

Persistent volumes so that pods can access data at all times even if the data moves from

one node to another or if a pod restarts.

STATEFULSET BASICS

Bypass these challenges by using StatefulSets in Kubernetes. These are essentially workload API

objects for managing stateful applications. StatefulSets acts in the same manner as a controller. The

controller initiates the required updates to move from the current state to reach the defined desired

state in a StatefulSet object.

There are three crucial components behind a StatefulSet:

Headless services that control the network domain.

The StatefulSet component that indicates how many container replicas need to be launched

in unique pods.

The VolumeClaimTemplates that provide stable storage through PersistentVolumes delivered

by a PersistentVolume Provisioner.

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

www.caylent.com 27

With StatefulSets, developers can achieve:

Ordered pod creation with ordinal index: For a StatefulSet with n replicas, each pod will be

appointed an integer ordinal, from 0 up through n-1, which is individual over the Set.

A stable and unique hostname and network identity for pods across restarts so when re-

spawning a pod will be treated by the cluster as a new member.

Stable storage bound to the ordinal index/name through dynamically provisioned

PersistentVolumes. Persistent disks will then stay attached to hostname pods even if the

pods are rescheduled.

Templating Kubernetes Resources

HELM AND HELM CHARTS INTRO

As mentioned previously, we rely on YAML files to configure Kubernetes clusters. The YAML files are

there to describe everything from the way Pods need to be configured to how load balancing is done

by the cluster. Unfortunately, setting up a new Kubernetes cluster means creating a .yaml file for that

cluster every time. For many, this means copying and pasting configurations from another cluster

and making manual adjustments to it.

This iterative process is exactly what Helm can help you with. Rather than having to configure a

YAML file manually, you can simply call a Helm Chart—a Chart is the term for Helm’s package

configuration—and let Helm do the rest for you. Helm is a custom built Kubernetes package manager

similar to NPM in NodeJS and Maven in Java.

https://github.com/helm/charts

www.caylent.com 28

CREATING REUSABLE TEMPLATES

Helm Charts act as the template for Kubernetes clusters configurations. The template itself can be

customized to mimic the setup parameters of the particular cluster. There is no need to make manual

adjustments to variables such as host name or provisions since Helm will take the correct variables

and make the necessary adjustments.

Helm lends itself perfectly to the deployment of cloud-native apps. It completely reduces

deployment complexity and lets developers focus more on other more important things. On top of

that, Helm Charts also introduce standardized and reusable templates to the Kubernetes.

The great news is that there are plenty of Helm Charts that you can use straight out of the box on

GitHub. Do you need to add a MongoDB database to your setup? There’s a Chart for that. Want to

deploy a testing environment for your app? You can create a Chart to simplify that process too. Even

the most complex Kubernetes setup can be packaged into its own Helm Chart for iteration.

Pre-configured Helm Charts are handy for setting up Kubernetes clusters quickly, but you can also

create your own Charts. Use Helm to help with deploying test environments and distributing pre-

release versions of your application.

But why stop at pre-release versions? Helm Charts can further be used as a delivery method for

production apps. You can, for instance, install WordPress on an empty cluster by running the correct

Helm Chart for it; everything will be automated, and you will swiftly have a WordPress site up and

running in seconds.

Since you can use values to define variables, Helm Charts can also be used for deploying the app

onto different clusters or setups. Each variable can be adjusted on the fly as the Helm Chart is

processed, allowing for greater flexibility in general.

https://github.com/helm/charts
https://docs.helm.sh/chart_best_practices/#values

www.caylent.com 29

In order to upgrade Charts, simply make the necessary adaptations to your values.yaml

then update your Chart version number. Now push the changes to the repository, package the Helm

Chart, and double check the Chart Repository. Run sudo helm upgrade [new chart name] and supply

the release name and the chart name you want to upgrade.

To rollback a Chart to a previous revision, you only need to provide the release name and the revision

number that you want to rollback to. Execute the command sudo helm rollback [new chart name] 1.

It’s that simple.

UPGRADING CHARTS AND REVERTING CHANGES WITH ROLLBACKS

STORING REUSABLE TEMPLATES

Helm Charts maintains an official chart repository here and

welcomes participation through chart submissions. It’s also simple

to create and manage your own chart repository too in the form of

an HTTP server that will store your index.yaml files and packaged

charts too. As it can be any HTTP server that works with YAML and

tar files and answer GET requests, feel free to use an Amazon S3

bucket, a Google Cloud Storage (GCS) bucket or your own GitHub

pages as you wish. Follow the Helm best practice chart repository

structure as defined here to ensure easy location and sharing

capabilities.

For a comprehensive list of tools to make working with Helm that much simpler, don’t forget to check

out our article on 15+ Useful Helm Charts Tools here.

https://github.com/helm/charts
https://github.com/helm/helm/blob/master/docs/chart_repository.md
https://caylent.com/15-useful-helm-charts-tools/

www.caylent.com 30

References

Heptio. (2018). The State of Kubernetes 2018. Seattle, WA: Heptio. Retrieved from https://

go.heptio.com/rs/383-ENX-437/images/Heptio_StateOfK8S_R6.pdf

Verma, A., Pedrosa, L., R. Korupolu, M., Oppenheimer, D., Tune, E., & Wilkes, J. (2015). Large-Scale

Cluster Management At Google With Borg. Retrieved from https://ai.google/research/pubs/

pub43438

