

NX Nastran 10 Getting Started Tutorials

Contents

Proprietary & Restricted Rights Notice 5
Performing an Analysis Step-by-Step 1-1
Defining the Problem
Specifying the Type of Analysis 1-2
Designing the Model
Creating the Model Geometry 1-3
Defining the Finite Elements
Representing Boundary Conditions 1-9
Specifying Material Properties
Applying the Loads
Controlling the Analysis Output 1-12
Completing the Input File and Running the Model 1-12
NX Nastran Output
Reviewing the Results
Additional Examples
Cantilever Beam with a Distributed Load and a Concentrated Moment
The Finite Element Model
NX Nastran Results
Rectangular Plate (fixed-hinged-free) with a Uniform Lateral Pressure Load 2-9
The Finite Element Model
NX Nastran Results
Gear Tooth with Solid Elements
The Finite Element Model
NX Nastran Results

Proprietary & Restricted Rights Notice

© 2014 Siemens Product Lifecycle Management Software Inc. All Rights Reserved.

This software and related documentation are proprietary to Siemens Product Lifecycle Management Software Inc. Siemens and the Siemens logo are registered trademarks of Siemens AG. NX is a trademark or registered trademark of Siemens Product Lifecycle Management Software Inc. or its subsidiaries in the United States and in other countries.

NASTRAN is a registered trademark of the National Aeronautics and Space Administration. NX Nastran is an enhanced proprietary version developed and maintained by Siemens Product Lifecycle Management Software Inc.

MSC is a registered trademark of MSC.Software Corporation. MSC.Nastran and MSC.Patran are trademarks of MSC.Software Corporation.

All other trademarks are the property of their respective owners.

TAUCS Copyright and License

TAUCS Version 2.0, November 29, 2001. Copyright (c) 2001, 2002, 2003 by Sivan Toledo, Tel-Aviv University, stoledo@tau.ac.il. All Rights Reserved.

TAUCS License:

Your use or distribution of TAUCS or any derivative code implies that you agree to this License.

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.

Permission is hereby granted to use or copy this program, provided that the Copyright, this License, and the Availability of the original version is retained on all copies. User documentation of any code that uses this code or any derivative code must cite the Copyright, this License, the Availability note, and "Used by permission." If this code or any derivative code is accessible from within MATLAB, then typing "help taucs" must cite the Copyright, and "type taucs" must also cite this License and the Availability note. Permission to modify the code and to distribute modified code is granted, provided the Copyright, this License, and the Availability note are retained, and a notice that the code was modified is included. This software is provided to you free of charge.

Availability (TAUCS)

As of version 2.1, we distribute the code in 4 formats: zip and tarred-gzipped (tgz), with or without binaries for external libraries. The bundled external libraries should allow you to build the test programs on Linux, Windows, and MacOS X without installing additional software. We recommend that you download the full distributions, and then perhaps replace the bundled libraries by higher performance ones (e.g., with a BLAS library that is specifically optimized for your machine). If you want to conserve bandwidth and you want to install the required libraries yourself, download the lean distributions. The zip and tgz files are identical, except that on Linux, Unix, and MacOS, unpacking the tgz file ensures that the configure script is marked as executable (unpack with tar zxvpf), otherwise you will have to change its permissions manually.

Chapter 1: Performing an Analysis Step-by-Step

- Defining the Problem
- Specifying the Type of Analysis
- Designing the Model
- Creating the Model Geometry
- Defining the Finite Elements
- Representing Boundary Conditions
- Specifying Material Properties
- Applying the Loads
- Controlling the Analysis Output
- Completing the Input File and Running the Model
- NX Nastran Output
- Reviewing the Results

1.1 Defining the Problem

In this chapter, we perform a complete NX Nastran analysis step-by-step. Consider the hinged steel beam shown in Figure1-1. It has a rectangular cross section and is subjected to a 100 lb concentrated force. Determine the deflection and stresses in the beam at the point of application of the load, with and without the effects of transverse shear.

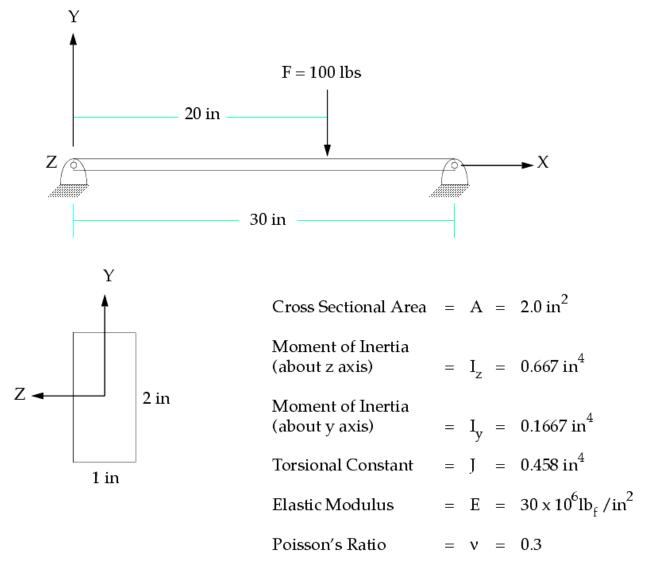


Figure 1-1. Beam Geometry and Load

1.2 Specifying the Type of Analysis

The type of analysis to be performed is specified in the Executive Control Section of the input file using the SOL (SOLution) statement. In this problem, we choose Solution 101, which is the linear static analysis solution sequence. The statement required is:

SOL 101

We will also identify the job with an ID statement and set the CPU time limit with a TIME statement as follows:

ID MPM, CH 12 EXAMPLE TIME 100 The end of the Executive Control Section is indicated by the CEND delimiter. Thus, the complete Executive Control Section is written as follows:

```
ID MPM,CH 12 EXAMPLE
SOL 101
TIME 100
CEND
```

Note

Both the TIME and ID statements are optional. The default value of TIME, however, is too small for all but the most trivial problems.

The format of the ID entry (ID i1,i2) must be adheared to or a fatal error will result.

1.3 Designing the Model

The structure is a classical hinged slender beam subjected to bending behavior from a concentrated load. The CROD element will not work since it supports only extension and torsion. The CBEAM element would work, but its special capabilities are not required for this problem and its property entry is more difficult to work with. Thus, the CBAR element is a good choice. The number of elements to use is always a crucial decision; in our case the simplicity of the structure and its expected behavior allows the use of very few elements. We will choose three CBAR elements and four evenly spaced grid points as shown in Figure1-2.

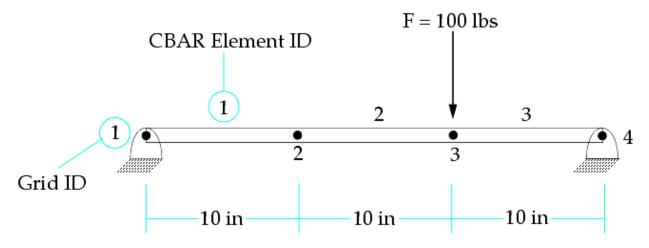


Figure 1-2. The Finite Element Model

Note that GRID points were located at the point of application of the load and at each reaction point.

1.4 Creating the Model Geometry

Coordinate System

NX Nastran has a default rectangular coordinate system called the basic system. Therefore, no special effort is required to orient our model. We will choose to define the model's coordinate system

as shown in Figure 1-3. The beam's element x-axis will be parallel to the basic system's x-axis by our choice of X1, X2, and X3 (x, y, and z) on the GRID entries.

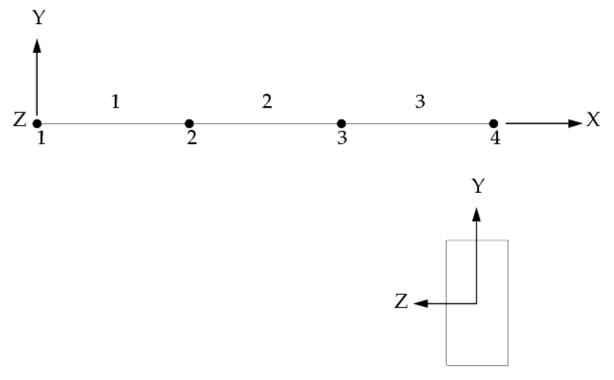


Figure 1-3. Model Coordinate System

GRID Points

GRID points are defined in the Bulk Data Section of the input file. The format of the GRID entry is:

1	2	3	4	5	6	7	8	9	10
GRID	ID	СР	X1	X2	X3	CD	PS	SEID	

Field	Contents
ID	Grid point identification number. (0 < Integer < 1000000)
СР	Identification number of coordinate system in which the location of the grid point is defined. ((Integer ≥0 or blank)
X1, X2, X3	Location of the grid point in coordinate system CP. (Real; Default = 0.0)
CD	Identification number of coordinate system in which the displacements, degrees of freedom, constraints, and solution vectors are defined at the grid point. (Integer ≥-1 or blank)
PS	Permanent single-point constraints associated with the grid point. (Any of the Integers 1 through 6 with no embedded blanks, or blank)
SEID	Superelement identification number. (Integer ≥0 ; Default = 0)

The default basic coordinate system is defined by leaving field 3 (CP) blank (the basic coordinate system's ID number is zero).

The values of X1, X2, and X3 (in our rectangular system these mean x, y, and z) in fields 4, 5, and 6 are as follows:

GRID	X	Y	Z
1	0.	0.	0.
2	10.0	0.	0.
3	20.0	0.	0.
4	30.0	0.	0.

Field 7 (CD) is left blank since we want grid point displacements and constraints to be defined in the basic coordinate system. The constraints for this problem could be defined on field 8 (PS) of grid points 1 and 4. Instead, we will use SPC1 entries and leave field 8 blank.

Finally, field 9 is left blank since superelements are not part of this problem.

The completed GRID entries are written as follows:

1	2	3	4	5	6	7	8	9	10
GRID	1		0.	0.	0.				
GRID	2		10.0	0.	0.				
GRID	3		20.0	0.	0.				
GRID	4		30.0	0.	0.				

Or, in free field format, the GRID entries are written

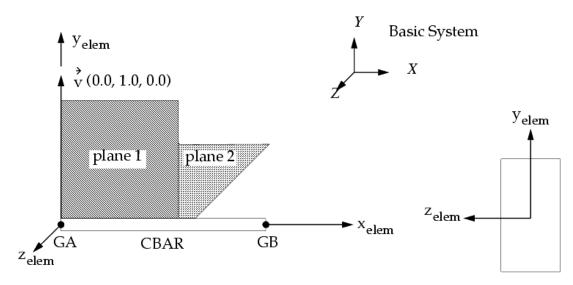
```
GRID,1,,0.,0.,0.
GRID,2,,10.,0.,0.
GRID,3,,20.,0.,0.
GRID,4,,30.,0.,0.
```

1.5 Defining the Finite Elements

The CBAR Entry

Elements are defined in the Bulk Data Section of the input file. The format of the CBAR simple beam element is as follows:

1	2	3	4	5	6	7	8	9	10
CBAR	EID	PID	GA	GB	X1	X2	X3		
	PA	PB	W1A	W2A	W3A	W1B	W2B	W3B	


Field	Contents
EID	Unique element identification number. (Integer > 0)
PID	Property identification number of a PBAR entry. (Integer > 0 or blank; Default is EID unless BAROR entry has nonzero entry in field 3)

GA, GB	Grid point identification numbers of connection points. (Integer > 0; GA ≠GB)
X1, X2, X3	Components of orientation vector \vec{v} , from GA, in the displacement coordinate system at GA. (Real)
G0	Alternate method to supply the orientation vector \vec{v} using grid point G0. Direction of \vec{v} is from GA to G0. (Integer > 0)
PA, PB	Pin flags for bar ends A and B, respectively. Used to remove connections between the grid point and selected degrees of freedom of the bar. The degrees of freedom are defined in the element's coordinate system. The bar must have stiffness associated with the PA and PB degrees of freedom to be released by the pin flags. For example, if PA = 4 is specified, the PBAR entry must have a value for J, the torsional stiffness. (Up to 5 of the unique Integers 1 through 6 anywhere in the field with no embedded blanks; Integer > 0)
W1A, W2A, W3A, W1B, W2B, W3B	Components of offset vectors \vec{w}_b and \vec{w}_b , respectively, in displacement coordinate systems at points GA and GB, respectively. (Real or blank)

The property identification number (PID) is arbitrarily chosen to be 101—this label points to a PBAR beam property entry. The same PID is used for each of the three CBAR elements.

GA and GB are entered for each beam element, starting with GA (end A) of CBAR element 1 at (0., 0., 0.). Recall that the direction of the X-element axis is defined as the direction from GA to GB.

The beam orientation vector \mathbf{V} , described by GA and the components X1, X2, and X3, is arbitrarily $\overrightarrow{\mathbf{v}}$ chosen by setting X1 = 0.0, X2 = 1.0, and X3 = 0.0. Orientation vector \mathbf{V} is shown in Figure 1-4.

→

\vec{v} and x_{elem} defines Plane 1 and the y_{elem} Axis

Plane 1 is thus formed by $\stackrel{>}{V}$ and the x-element axis. The y-element axis (y_{elem}) is perpendicular to the x-element axis and lies in plane 1.

Plane 2 is perpendicular to plane 1, and the z-element axis (z_{elem}) is formed by the cross product of the x-element and y-element axes.

The completed CBAR entries are written as follows:

1	2	3	4	5	6	7	8	9	10
CBAR	1	101	1	2	0.	1.	0.		
CBAR	2	101	2	3	0.	1.	0.		
CBAR	3	101	3	4	0.	1.	0.		

Or, in free field format, the CBAR entries appear as:

```
CBAR,1,101,1,2,0.,1.,0.
CBAR,2,101,2,3,0.,1.,0.
CBAR,3,101,3,4,0.,1.,0.
```

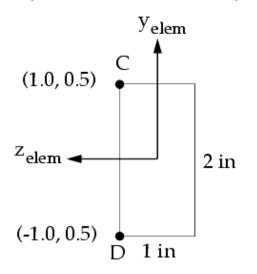
Continuations of the CBAR entries are not required since pin flags and offset vectors are not used in this model.

The PBAR Entry

The format of the PBAR entry is as follows:

1	2	3	4	5	6	7	8	9	10
PBAR	PID	MID	А	11	12	J	NSM		
	C1	C2	D1	D2	El	E2	F1	F2	
	K1	K2	l12						

Field	Contents
PID	Property identification number. (Integer > 0)
MID	Material identification number. (Integer > 0)
A	Area of bar cross section. (Real)
11, 12, 112	Area moments of inertia.
	(Real; I1≥0.0
	12≥0.0
	11 ·12>112 ²)
J	Torsional constant. (Real)
NSM	Nonstructural mass per unit length. (Real)
K1, K2	Area factor for shear. (Real)


Ci, Di, Ei, Fi Stress recovery coefficients. (Real; Default = 0.0)

For our model, the property ID (PID) is 101, as called out on the CBAR entry. The material ID (MID) is arbitrarily chosen to be 201—this label points to a MAT1 entry. The beam's cross sectional area A is entered in field 4, and the torsional constant J is entered in field 7. The beam has no nonstructural mass (NSM), so column 8 is left blank.

Now you will specify I1 and I2 in fields 5 and 6. Recall that the choice of orientation vector \mathbf{v} is arbitrary. What is not arbitrary is getting each value of I to match its correct plane. I1 is the moment of inertia for bending in plane 1 (which is the same as bending about the z axis, as it was probably called in your strength of materials class). Similarly, I2 is the moment of inertia for bending in plane 2 (about the y axis). Thus, I1 = I₇ = 0.667 in, and I2= I_y = 0.1667 in.

As a check for this model, think of plane 1 in this problem as the "stiff plane" (larger value of I) and plane 2 as the "not-as-stiff" plane (smaller value of I).

Stress recovery coefficients are user-selected coordinates located on the bar's element y-z plane at which stresses are calculated by NX Nastran. We will choose the following two points (there is no requirement that all four available points must be used):

Finally, the problem statement requires that we investigate the effect of shear deflection. To add shear deflection to the bar, we include appropriate values of K1 and K2 on the second continuation of the PBAR entry. For a rectangular cross section, K1 = K2 = 5/6.

Leaving K1 and K2 blank results in default values of infinity (i.e., transverse shear flexibility is set equal to zero). This means that no deflection due to shear will occur.

The completed PBAR entry is written as follows (no shear deflection):

1	2	3	4	5	6	7	8	9	10
PBAR	101	201	2.	.667	.1667	.458			
	1.	.5	-1.	.5					

To add shear deflection, a second continuation is added:

PBAR	101	201	2.	.667	.1667	.458			
------	-----	-----	----	------	-------	------	--	--	--

	1.	.5	-1.	.5			
	.8333	.8333					

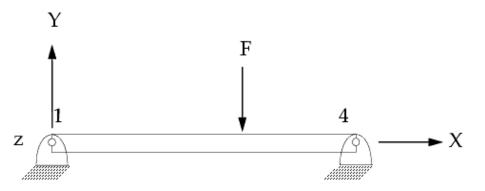
In free field format, the PBAR entry is written as follows:

PBAR,101,201,2.,.667,.1667,.458 ,1.,.5,-1.,.5 ,.8333,.8333

1.6 Representing Boundary Conditions

The beam is hinged, so we must constrain GRID points 1 and 4 to represent this behavior. We will use one SPC1 Bulk Data entry for both grid points since the constraints at each end are the same.

The format of the SPC1 entry is as follows:


1	2	3	4	5	6	7	8	9	10
SPC1	SID	С	G1	G2	G3	G4	G5	G6	
	G7	G8	G9	-etc					

Field	Contents
SID	Identification number of single-point constraint set. (Integer > 0)
С	Component numbers. (Any unique combination of the Integers 1 through 6 with no embedded blanks for grid points. This number must be Integer 0 or blank for scalar points)
Gi	Grid or scalar point identification numbers. (Integer > 0 or "THRU"; for "THRU" option, G1 < G2. NX Nastran allows missing grid points in the sequence G1 through G2)

An SPC set identification number (SID) of 100 is arbitrarily chosen and entered in field 2. To select the SPC, the following Case Control command must be added to the Case Control Section:

SPC=100

Constraints are applied in the GRID point's displacement coordinate system—in our problem this is the basic coordinate system. The required components of constraint are shown below:

Grids 1 and 4 cannot translate in the x, y, or z directions (constrain DOFs 1, 2, and 3). Grids 1 and 4 cannot rotate about the x-axis or y-axis (constrain DOFs 4 and 5). Grids 1 and 4 can rotate about the z-axis (leave DOF 6 unconstrained).

Therefore, the required SPC1 entry is written as follows:

SPC1	100	12345	1	4					
------	-----	-------	---	---	--	--	--	--	--

Or in free field format we enter:

SPC1,100,12345,1,4

1.7 Specifying Material Properties

The beam's material is steel, with an elastic modulus of

 0×10^6 lb/in

Poisson's ratio is 0.3. The format of the MAT1 entry is shown below (we will not use the optional stress limit/margin of safety capability on the MAT1 continuation line).

1	2	3	4	5	6	7	8	9	10
MAT1	MID	Е	G	NU	RHO	А	TREF	GE	

Field	Contents
MID	Material identification number. (Integer > 0)
E	Young's modulus. (Real ≥0.0 or blank)
G	Shear modulus. (Real ≥0.0 or blank)
NU	Poisson's ratio. (-1.0 < Real ≤ 0.5 or blank)
RHO	Mass density. (Real)
А	Thermal expansion coefficient. (Real)
TREF	Reference temperature for the calculation of thermal loads, or a temperature-dependent thermal expansion coefficient. (Real; Default = 0.0 if A is specified)

GE Structural element damping coefficient. (Real)

The material identification number called out on the PBAR entry is 201; this goes in field 2 of the MAT1 entry. Values for RHO, A, TREF, and GE are irrelevant to this problem and are therefore left blank. Thus, the MAT1 entry is written as follows:

MAT1 20	11 30 E6		.3				
---------	----------	--	----	--	--	--	--

In free field format,

MAT1,201,30.E6,,.3

1.8 Applying the Loads

The beam is subjected to a single concentrated force of 100 lb_f acting on GRID 3 in the negative Y direction. The FORCE Bulk Data entry is used to apply this load. Its format is described below:

1	2	3	4	5	6	7	8	9	10
FORCE	SID	G	CID	F	N1	N2	N3		

Field	Contents
SID	Load set identification number. (Integer > 0)
G	Grid point identification number. (Integer > 0)
CID	Coordinate system identification number. (Integer ≥0 ; Default = 0)
F	Scale factor. (Real)
Ni	Components of a vector measured in coordinate system defined by CID. (Real; at least one Ni ≠0.0)

A load set identification number (SID) of 10 is arbitrarily chosen and entered in field 2 of the FORCE entry. To select the load set, the following Case Control command must be added to the Case Control Section:

LOAD=10

The FORCE entry is written as follows:

FORCE 10 3	-100	0.	1.	0.		
------------	------	----	----	----	--	--

where (0., 1., 0.) is a unit vector in the positive Y direction of the displacement coordinate system.

In free field format, the entry is written as follows.

```
FORCE, 10, 3,, -100., 0., 1., 0.
```

1.9 Controlling the Analysis Output

The types of analysis quantities to be printed are specified in the Case Control Section. This problem requires displacements and element stresses, so the following commands are needed:

DISP=ALL	(prints all GRID point displacements)
STRESS=ALL	(prints all element stresses)

In order to help verify the model results, we will also ask for the following output quantities:

FORCE=ALL	(prints all element forces)
SPCF=ALL	(prints all forces of single point constraint; i.e., reaction forces)

The following command will yield both unsorted and sorted input file listings:

ECHO=BOTH

TITLE and SUBTITLE headings will appear on each page of the output, and are chosen as follows:

```
TITLE=HINGED BEAM
SUBTITLE=WITH CONCENTRATED FORCE
```

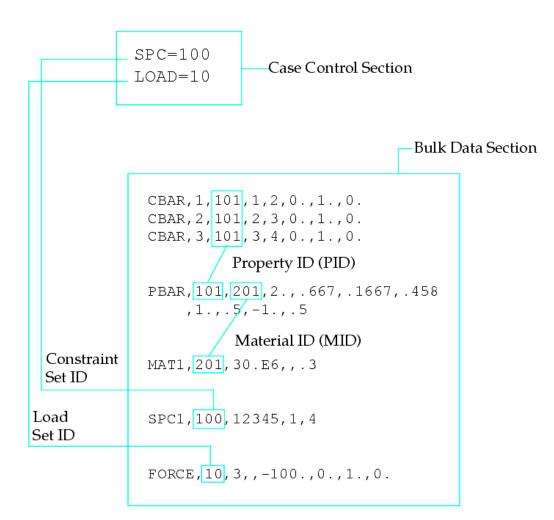
Finally, we select constraint and load sets as follows:

SPC=100 LOAD=10

The complete Case Control Section is shown below. The commands can be entered in any order after the CEND delimiter.

```
CEND
ECHO=BOTH
DISP=ALL
STRESS=ALL
FORCE=ALL
SPCF=ALL
SPC=100
LOAD=10
TITLE=HINGED
BEAM SUBTITLE=WITH
CONCENTRATED FORCE
```

1.10 Completing the Input File and Running the Model


The completed input file (model without shear deflection) is called BASICEX1.DAT, and is shown in Listing 1-1.

```
ID MPM, EXAMPLE1
SOL 101
TIME 100 CEND
ECHO=BOTH
```

```
DISP=ALL
STRESS=ALL
FORCE=ALL
SPCF=ALL
SPC=100
LOAD=10
TITLE=HINGED BEAM
SUBTITLE=WITH CONCENTRATED FORCE
Ś
BEGIN BULK
$ DEFINE GRID POINTS
GRID,1,,0.,0.,0.
GRID,2,,10.,0.,0.
GRID, 3,, 20., 0., 0.
GRID,4,,30.,0.,0.
Ś
     DEFINE CBAR ELEMENTS
Ś
CBAR,1,101,1,2,0.,1.,0.
CBAR, 2, 101, 2, 3, 0., 1., 0.
CBAR, 3, 101, 3, 4, 0., 1., 0.
Ś
     DEFINE CBAR ELEMENT CROSS SECTIONAL PROPERTIES
$
PBAR, 101, 201, 2., .667, .1667, .458
    ,1.,.5,-1.,.5
$
$
      DEFINE MATERIAL PROPERTIES
MAT1,201,30.E6,,.3
Ś
$
     DEFINE SPC CONSTRAINT SET
SPC1,100,12345,1,4
$
      DEFINE CONCENTRATED
$
FORCE FORCE, 10, 3,, -100., 0., 1., 0.
Ś
ENDDATA
```

Listing 1-1.

It is useful at this point to review "what points to what" in the model. Set and property relationships are summarized in the diagram below:

The job is submitted to NX Nastran with a system command similar to the following:

NASTRAN BASICEX1 SCR=YES

The details of the command are unique to your system; refer to the NX Nastran Installation and Operations Guide for more information.

1.11 NX Nastran Output

The results of an NX Nastran job are contained in the .f06 file.

The complete .f06 file for this problem (no shear deflection) is shown in Table 1-1.

Table 1-1. Complete .f06 Results File

NITH CONCERTENTED FORM IN P UT B ULK DATA DUCK FCHO I DELLS OF DOINTS INDIA DOINTS URID, J., 20, 00, 00 GRID, J., 20, 00, 00 GRID, J., 20, 00, 00 GRID, J., 20, 00, 00 GRID, J., 20, 00, 00 GRID, J., 20, 00, 00 GRID, J., 20, 00, 00 GRID, J., 20, 00, 00 GRID, J., 20, 00, 00 GRID, J., 20, 00, 10 GRID, J., 20, 00, 10, 00 GRID, J., 20, 00, 10 GRID, J., 20, 00, 10, 10 GRID, J., 20, 00, 10 GRID, J., 20, 00, 10, 10 GRID, J., 100, 10, 10, 10 GRID, J., 100, 10, 10, 10, 10, 10 GRID, J., 100 HINED BEAM FRIDE CONSTRAINT BET GRID, J., 100, 00, 1, 10 GRID, J., 100 GRID, J., 100, 00, 1, 10 GRID, J., 100 HINED BEAM THE CONSTRAINT BET GRID, J., 100, 00, 1, 10 GRID, J., 100 GRID, J., 100, 00, 1, 10 J. MITH CONSERTENTED FORCE JULY 10, 2003 NK MASTENN 7/10/2003 FR MITH CONSERTENTED FORCE JULY 10, 2003 NK MASTENN 7/10/2003 FR GRID 1 J. J. J. J. CARA 2 J. J. J. J. GRID 3 J. J.<				
<pre> 1 2 2 2 4 5 6 7 6 9 10 GUD 1, 0, 0, 0, 0 GUD 1, 0, 0, 0, 0, 0 GUD 1, 0, 0, 0, 0, 0, 0, 0 GUD 1, 0, 0, 0, 0, 0, 0 GUD 1, 0, 0, 0, 0, 0, 0, 0 GUD 1, 0, 0, 0, 0, 0, 0, 0 GUD 1, 0, 0, 0, 0, 0, 0, 0 GUD 1, 0, 0, 0, 0, 0, 0, 0 GUD 1, 0, 0, 0, 0, 0, 0 GUD 1, 0, 0, 0, 0, 0, 0, 0 GUD 1, 0, 0, 0, 0, 0, 0, 0 GUD 1, 0, 0, 0, 0, 0, 0, 0 GUD 1, 0, 0, 0, 0, 0, 0, 0 GUD 1, 0, 0, 0, 0, 0, 0, 0, 0 GUD 1, 0, 0, 0, 0, 0, 0, 0 GUD 1, 0, 0, 0</pre>			JULY 10, 2003 NX NASTRAN	7/10/2003 PAGE 3
<pre> 1</pre>		INPUT BUL	K DATA DECK ECHO	
<pre></pre>				10 .
<pre> will of the set of the</pre>				
<pre>DID 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,</pre>				
UNELD J.R. J.				
UNDED HEAM COMMA 1, 100 1, 2, 0, 0, 1, 0, CARA, 1, 101 1, 2, 0, 1, 0, CARA, 1, 101 1, 2, 0, 1, 0, CARA, 1, 101 1, 2, 0, 0, 1, 0, CARA, 1, 101 1, 2, 0, 0, 1, 0, CARA, 1, 101 1, 2, 0, 0, 1, 0, CARA, 1, 101 1, 1, 0, 0, 0, 1, 0, CARA, 1, 101 1, 1, 0, 0, 0, 1, 0, 0, CARA, 1, 101 1, 1, 0, 0, 0, 1, 0, 0, CARA, 1, 101 1, 1, 0, 0, 0, 1, 0, 0, CARA, 1, 101 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, CARA, 1, 101 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, CARA, 1, 101 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, CARA, 1, 101 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,				
<pre>space of the set of the set</pre>				
<pre> s</pre>				
<pre>CDAR, 1, 10, 1, 2, 0, 1, 0 CDAR, 2, 101, 2, 2, 0, 1, 0 CDAR, 2, 101, 2, 10, 0, 1, 0 FILL (10, 1, 2, 1, 1, 0) FILL (10, 1, 2, 1, 1, 1) FILL (10, 1, 2, 1, 1) FILL (10, 1)</pre>				
<pre>CRAM.2, 10, 2, 2, 0, 1, .0. (MAR.3, 10, 2, 1, 2, .667, .458, ., *PP1 PRA. 10, 10, 2, .667, .458, ., *PP1 ** UPIN MATERIAL PROPERTIES MAIL, 20, 20, 20, 40, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2</pre>				
CEAN, 3, 102, 3, 4, 0, 1, 0, 0				
<pre> imper data find the find the</pre>				
<pre></pre>				
<pre>FPAR.10.1.01.2.1.4.667458</pre>			SECTIONAL PROPERTIES	
<pre>+FB1,1,.3,-1,.5 * FB1,1,.3,-1,.5 * FB2,1,10,133,45,1,4 * BEC,1100,133,45,1,4 * BEC,1100,133,45,1,4 * BEC,1100,133,45,1,4 * BEC,1100,133,45,1,4 * BEC,1100,133,45,1,4 * BEC,1100,133,45,1,4 * BEC,1100,133,45,1,4 * BEC,1100,133,45,1,4 * BEC,1100,131,45,1,4 * BEC,1100,14,14,14,14,14,14</pre>				
<pre> subscription for the set of the se</pre>			,	
<pre>s DEFINE MATERIAL PROPERTIES % UNETLY DULY DULY DULY DULY DULY DULY DULY DU</pre>				
MATI, 201, 20, 20, 26, ., 3 § EMERINA SPC CONSTRAINT SET FPC:1.100.13245.1.4 § ENCI.100.13245.1.4 § ENCI.100.13245.1.4 § ENCI.100.13245.1.4 § ENCI.100.13245.1.4 § ENCI.100.13245.1.4 § ENCI.100.13245.1.4 S O FT E D E ULK DATA E C H O CAND CAND 1 HINT BURK DATA CAND CONT = 25 HINEL BEAM MITH CONCENTRATED FORCE 1 0. 2 CARA 2 101 2 2 0. 1. 0. 1 CARA 2 101 2 2 0. 1. 0. 2 CARA 2 101 2 2 0. 1. 0. 3 CARA 2 101 2 2 0. 1. 0. 3 CARA 2 101 2 0. 0. 0. 4 PORCE 10 2 10. 0. 1. 0. 5 CARA 2 101 2 0. 0. 0. 5 CARA 2 100 2 CARA 2 0. 5 CARA 2 100 2 CARA 2 0. 5 CARA 2 100 2 CARA 2 CARA 2 0. 5 CARA 2 CARA 2 100 2 CARA 2 0. 5 CARA 2 CARA 2 100 2 CARA 2 0. 5 CARA 2 CARA 2 100 2 CARA 2 0. 5 CARA 2 CARA 2 100 2 CARA 2 0. 5 CARA 2 CARA 2 CARA 2 0. 5 CARA 2 CARA				
# Films SPC CONSTRAINT SET SPC1,100,1245,1,4 # S # S # SUBLEXAL # S NUMBER SPC CONSTRAINTS DEPORTE SPC2,100,1245,1,4 # S # SUBLEXAL SUBLEXAL NUMBER SPC CONSTRAINTS DEPORTE SUBLEXAL JULY 10, 2003 NN MASTERN 7/10/2003 PA NUMBER SPC CONSTRAINTS AND CONT 35 INTERD REAM JULY 10, 2003 NN MASTERN 7/10/2003 PA NUMBER SPC CONSTRAINTS AND CONT 1 CONT 1 CONT 1 CONT 2 CEAR 101 2 2 CEAR 101 2 3 CONT -100.0.0.1.0.0. 3 CONT -100.0.0.0. 4 CONT -100.0.0.0.0. 5 CEED 1 0.0.0.0. 6 CEED 2 100.0.0.0.0. 7 CEAR 3 101 2.0.0.0.0.0. 8 ORED 4 200.0.0.0. 9 MAT1 201 201 2.1.667 .458 +PE1 11 - FER 1.1.5 -1.5 12 - ERCI 100 1245 1 11 - FER 1.100 201 201 MARTERESARMENT ENSITE SYSTEM WILL BE USED AS REFERENCE LOCATION. NUMER CONTINUES NUM Y 10, 2001 NN MASTERN 7/10/2003 P NUM CONTINUESARMENT ENSITE NUM Y 10, 2001 NN MASTERN 7/10/2003 P 1 0.00000000-0.0.0.0.0.0.0.0.0.0.0.0.0.0.				
<pre></pre>				
<pre> FPC1.100.12145.1.4</pre>				
<pre></pre>				
i ENTIFIE CONCENTRATED FORCE NUMBER INFORT BULK DATA CARD CONT = 25 NUMBER JULY 10, 2003 NX HASTEAN 7/10/2003 FA CARD SO R T F D B ULK D AT A H C H O CARD 1 2 3 4 5 6 7 8 9 10 1 CERA 1 101 1 2 3 0 1. 0. 2 CERA 3 101 3 4 0 1. 0. 3 -100 0. 0. 1. 0. 4 PORCH 10 300. 0. 0. 5 GRED 1 0. 0. 0. 0. 6 GRED 1 2 0. 0. 0. 0. 7 GRED 3 0.00. 0. 0. 8 GRED 4 101 201 201 0. 0. 0. 10 PEAR 101 201 12. 0. 667 .458 11 -PFG1 10. 1. 35 -15 12 EPC1 100 12245 1 11 -PFG1 1051 .5 12 EPC1 100 12245 1 11 -PFG1 151 .5 12 T T T T T T T T T T T T T T T T T T T				
PUERE BEAM NITE CONCENTRATED FORCE 11. 1. 1. 2. 1. 3. 1. 4. 5. 1. 6. 1. 7. 1. 8. 9. 1. 10. 1. CARL CARL CONT . 1. 1. 2. 1. 3. 1. 4. 5. 1. 6. 1. 7. 1. 8. 9. 1. 10. 1. CIAR 2. 101 2. 3. 0. 1. 0. 1. CIAR 2. 101 3. 4. 0. 0. 0. 1. CIAR 2. 101 3. 0. 0. 0. 1. CIAR 2. 101 3. 0. 0. 0. 1. CIAR 2. 100 1. 2				
8 NUMBAT 25 CINCED EEMA MITH CONCENTRATED FORCE SOFTEED BULK DATA CARD COUNT = 25 26 COUNT 1 1 2 1 1 2 0 1 1 0 1 1 0 0 0 0 0 0 0 0				
NUMPT JULY 10, 2003 NX NASTAN //1//2003 PA NUMEC DEAM JULY 10, 2003 NX NASTAN //1//2003 PA NUMPT CONCENTRATED FORCE SORTED BULK DATA ECHO CAND				
<pre>INFUT BULK DATA CARD COUNT = 25 INFUT DATA CARD COUNT = 25 INFUT CONCENTRATED FORCE I ULY 10, 2003 NX NASTAN 7/10/2003 PA COUNT . 1 . 2 . 3 . 4 . 5 . 6 . 7 8 9 10 . COUNT . 1 2 3 4 5 6 7 8 9 10 . COUNT . 1 2 3 4 5 6 7 8 9 10 . COUNT 1 2 3 4 5 6 7 8 9 10 . COUNT 1 2 3 4 5 6 7 8 9 10 . COUNT 1 2 3 4 5 6 7 8 9 10 . COUNT 1 2 3 4 5 6 7 8 9 10 . COUNT</pre>				
LINED EEAM WITH CONCENTRATED FORCE JULY 10, 2003 NX NASTRAN 7/10/2003 PA CAND COUNT 1 2 0 1 0 1 CEAR 2 101 1 2 0 1 0 2 CEAR 2 101 2 3 0 1 0 3 CEAR 3 101 3 4 0 1 0 3 CEAR 3 101 3 4 0 1 0 4 PORCE 10 3 -100. 0 1 0 0 4 PORCE 10 1 0 0 0 1 0 3 -100. 0 0 0 0 0 9 MAIT 201 30.E6 .3 0 0 0 0 100 12245 1 4 ENCINTA TOTAL COUNT= 1 111 +PB1 1. .5 -1 .5 1 .5 100 12245 1 SULY 10, 2003 NK NASTRAN 7/			25	
NOTE CONCENTENTED FORCE CARD CONT 1 1 2 0 1 0 0 1 0 1 1 2 0 1 0 0 2 0 1 1 2 0 1 0 0 2 0 1 0 0 1 0				
SORTED BULK DATA ECHO CAND CONT 1 1 0 1 0				

				DISPLI	A C E	MENT	VEC	TOR				
POINT ID.									R2	R3		
	G			0.0			0.0		0.0	-2.2211128		
2				-1.943473E-03			0.0		0.0	-1.388195E		
З		0.0		-2.221112E-03			0.0		0.0	1.110556E		
4	G	0.0		0.0	0.0		0.0		0.0	2.776390B	-04	
JED BEAM WITH CONCEN		obde					JULY	10, 2003	NX NASTRAN	7/10/2003	PAGE	9
VIIH CONCEN	IRAIRD P		FORCE	S OF SI	NGL	E - P O I	ΝT	CONST	RAINT			
DOT NO. TO				T2					50			
POINT ID.	G			T2 3.333333E+01			0.0		R2 0.0	R3 0.0		
4	G	0.0		6.66666E+01	0.0		0.0		0.0	0.0		
GED BEAM							JULY	10, 2003	NX NASTRAN	7/10/2003	PAGE	10
WITH CONCEN	TRATED F	ORCE										
			FORC	ES IN B	AR	ELEME	NTS	(CBAR)			
ELEMENT	BEN	D-MOMEN	IT END-A	BEND-	MOMEN	T END-B		- S	HEAR -	AXIA	AL	
ID.	PLANE	1	PLANE 2	PLANE 1		PLANE 2		PLANE 1	PLANE 2	FOR	E	TORQUE
1	0.0		0.0	3.333333	E+02	0.0				0.0		0.0
2	3.3333	33E+02	0.0	6.666667	E+02	0.0	-	3.333333E+	01 0.0	0.0		0.0
3	6.6666	67E+02	0.0	2.034505	E-05	0.0		6.66666E+	01 0.0	0.0		0.0
ED BEAM							.TIIT.V	10 2002	NX NASTRAN	7/10/2002	DAGE	11
VITH CONCEN	TRATED P	ORCE					2021	10, 1000		.,,		
								v 10 200	3 NX NASTRAN	1 7/10/200	DACE	12
NGED BEAM												

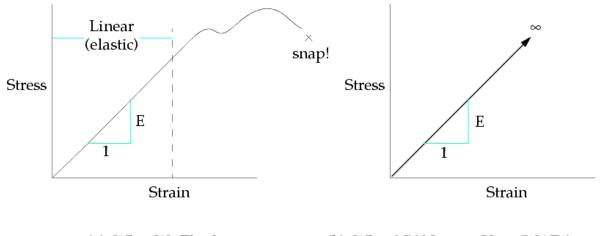
LEMENT	SA1	SA2	SA3	SA4	AXIAL	SA-MAX	SA-MIN	M.ST
ID.	SB1	SB2	SB3	SB4	STRESS	SB-MAX	SB-MIN	M.SC
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	-4.997502E+02	4.997502E+02	0.0	0.0		4.997502E+02	-4.997502E+02	
2	-4.997502E+02	4.997502E+02	0.0	0.0	0.0	4.997502E+02	-4.997502E+02	
	-9.995003E+02	9.995003E+02	0.0	0.0		9.995003E+02	-9.995003E+02	
3	-9.995003E+02	9.995003E+02	0.0	0.0	0.0	9.995003E+02	-9.995003E+02	
	-3.050233E-05	3.050233E-05	0.0	0.0		3.050233E-05	-3.050233E-05	

WITH CONCENTRATED FORCE

7/10/2 ο,

HINGED BEAM JULY 10, 2003 NX NASTRAN 7/10/2003 PAGE 1.4 WITH CONCENTRATED FORCE * * * * DBDICT PRINT * * * * SUBDMAP = PRTSUM , DMAP STATEMENT NO. 13 * * * * ANALYSIS SUMMARY TABLE * * * * SEID PEID PROJ VERS APRCH SEMG SEMR SEKR SELG SELR MODES DYNRED SOLLIN PVALID SOLNL LOOPID DESIGN CYCLE SENSITIVITY 1 ' т т т т F F т 0 F -1 च 0 0 1 т SEID = SUPERELEMENT ID. PEID = PRIMARY SUPERELEMENT ID OF IMAGE SUPERELEMENT. PROJ = PROJECT ID NUMBER. VERS = VERSION ID. APRCH = BLANK FOR STRUCTURAL ANALYSIS. HEAT FOR HEAT TRANSFER ANALYSIS. SEMG = STIFFNESS AND MASS MATRIX GENERATION STEP. SEMR = MASS MATRIX REDUCTION STEP (INCLUDES EIGENVALUE SOLUTION FOR MODES). SEKR = STIFFNESS MATRIX REDUCTION STRP. SELG = LOAD MATRIX GENERATION STEP. SELR = LOAD MATRIX REDUCTION STEP. MODES = T (TRUE) IF NORMAL MODES OR BUCKLING MODES CALCULATED. DYNRED = T (TRUE) MEANS GENERALIZED DYNAMIC AND/OR COMPONENT MODE REDUCTION PERFORMED. SOLLIN = T (TRUE) IF LINEAR SOLUTION EXISTS IN DATABASE. PVALID = P-DISTRIBUTION ID OF P-VALUE FOR P-ELEMENTS LOOPID = THE LAST LOOPID VALUE USED IN THE NONLINEAR ANALYSIS. USEFUL FOR RESTARTS. SOLNL = T (TRUE) IF NONLINEAR SOLUTION EXISTS IN DATABASE. DESIGN CYCLE = THE LAST DESIGN CYCLE (ONLY VALID IN OPTIMIZATION). SENSITIVITY = SENSITIVITY MATRIX GENERATION FLAG. * * * END OF JOB * * *

1.12 Reviewing the Results


You cannot simply move directly to the displacement and stress results and accept the answers. You are responsible for verifying the correctness of the model. Some common checks are described in this section.

Check for Error Messages, Epsilon, and Reasonable Displacements

No error or warning messages are present in the .f06 (results) file—this is certainly no guarantee of a correct run, but it's a good first step. Also, examine the value of epsilon on page 6 of the output. It is very small ($\sim 10^{-16}$), showing stable numerical behavior. Next, it is a good policy to check the displacement values, just to verify that they are not absurdly out of line with the physical problem or that a geometric nonlinear analysis is not required. For example, this beam displacing several inches might indicate that a load is orders of magnitude too high, or that a cross sectional property or an elastic modulus has been incorrectly specified. In our case, the lateral displacements (page 8 of the output) are on the order of 10-3 inches, which seems reasonable for this problem.

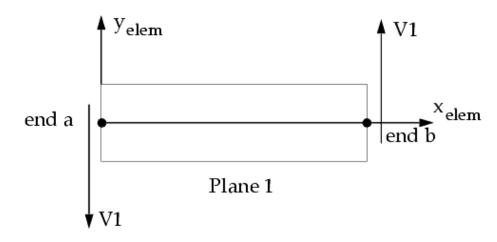
Note

Suppose you did obtain displacements of several inches—or perhaps into the next city. Shouldn't NX Nastran give some sort of engineering sanity warning? The answer is no, because the program is doing precisely what it was told to do and has no ability to judge what a reasonable displacement is. Recall that our analysis is linear and that the MAT1 material property entry thinks that the elastic modulus E is the material curve. This distinction is shown in Figure 1-5.

(a) What We Think (b) What NX Nastran Uses (MAT1)

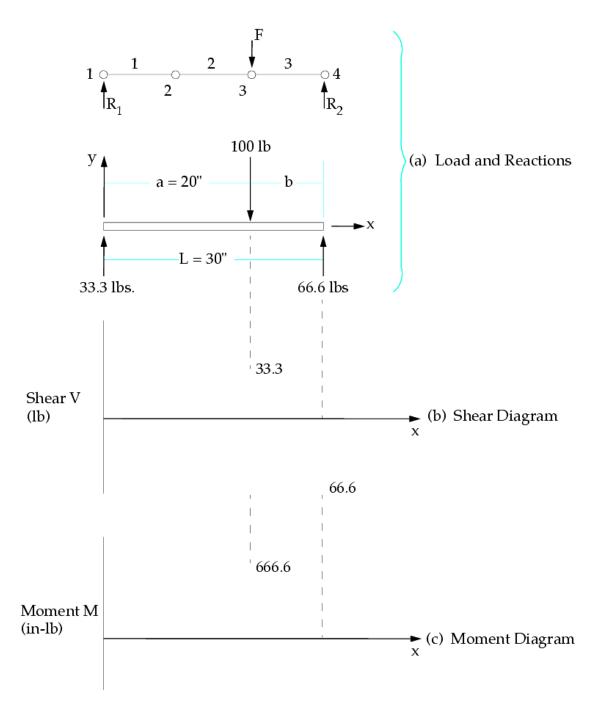
Figure 1-5. Reality versus Modeling

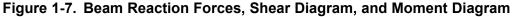
The MAT1 entry states that our material is always elastic and infinitely strong. In reality, we will violate restrictions on small displacements and material linearity given sufficient loading.


Check Reactions

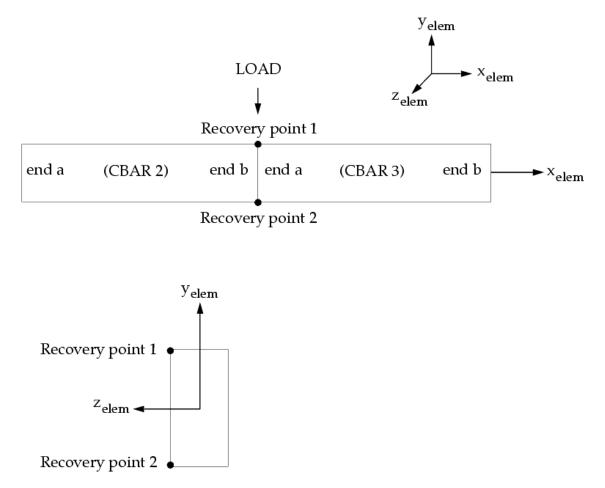
To check static equilibrium, we calculate the reaction forces at the constraints and obtain 33.3 lbs. in the +y direction at grid point 1 and 66.6 lbs. in the +y direction at grid point 4 (Figure 1-7(a)). These values match the forces of single point constraint reported on page 9 of the output (T2 in this table means forces in the Y direction). Thus, the load and resulting reactions make sense.

Check Shear Along the Beam


The shear diagram for the beam is shown in Figure 1-7(b). The output lists the shear forces across each element as -33.3 lbs. for elements 1 and 2 and +66.6 lbs. for element 3.


Note that shear occurs only in plane 1 (the plane of the applied force). The sign convention for CBAR element internal shear forces in Plane 1 ($_{elem}$ — y_{elem} plane) is shown in Figure 1-6:

Thus, the signs make sense with respect to the applied load.


Displacement and Stress Results

The displacement at the point of application of the load (GRID 3) is shown in the results:

 $u_v^3 = -2.221112\text{E}-3$ inch

The deflection is in the -y direction as expected.

The CBAR element stresses at the point of application of the load (GRID 3) are reported by end b of CBAR 2 and end a of CBAR 3. Positive stress values indicate tension and negative values indicate compression. The top of the beam is in compression and the bottom of the beam is in tension. Stress recovery point 1 is located on the top of the beam and point 2 is located at the bottom of the beam, as shown in Figure 1-8:

The NX Nastran CBAR element stress output (Figures 6-7) is interpreted as shown in Figure 1-9:

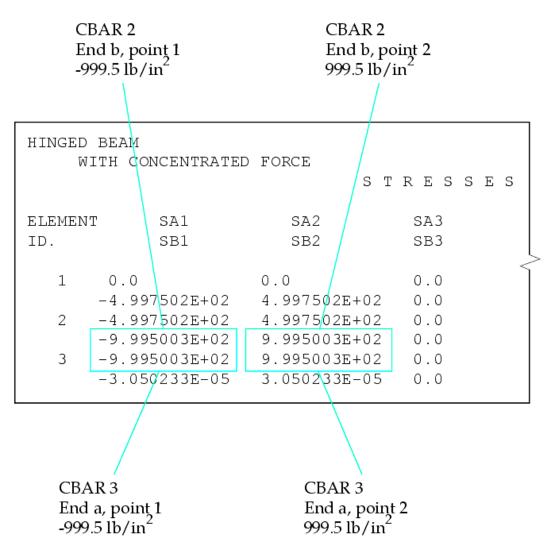
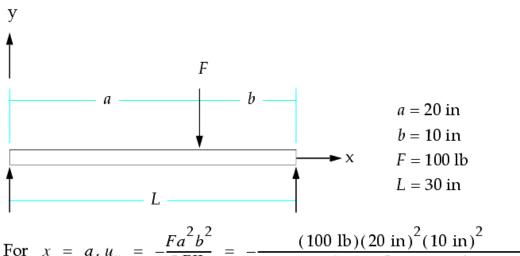



Figure 1-9. Bar Element Stress Output

Therefore, the top surface of the beam (point 1) sees –999.5 lb/in (compression) and the bottom surface sees 999.5 lb/in (tension).

Comparing the Results with Theory

First, the deflection at the point of application of the load will be determined by hand. This calculation does not include shear effects, so it can be directly compared with the NX Nastran results shown in the NX Nastran Output. The deflection due to bending only is calculated as follows:

for
$$x = a$$
, $u_y = -\frac{3EIL}{3EIL} = -\frac{3}{3(30 \times 10^6 \text{ lb/in}^2)(.667 \text{ in}^4)(30 \text{ in})}$

$$u_{y} = -2.22111 \text{ E-3 inch}$$

This value is in exact agreement with the T2 value for GRID 3 on page 8 of the NX Nastran output.

The effect of shear deflection is determined by adding the second continuation of the PBAR entry and rerunning the job. The new Bulk Data Section is shown in Listing1-2.

HINGED BEAM WITH CONCENTRATED	FORCE			JULY 10,	2003 N	X NASTRAN	7/10/2003	PAGE 4
			SOR	TED P	JULK	DATA	ЕСНО	
CARD								
COUNT	. 1 :	2 3	4	5	6	7.	. 8 9	10 .
1-	CBAR 1	101	1	2	ο.	1.	ο.	
2 -	CBAR 2	101	2	3	ο.	1.	ο.	
3 -	CBAR 3	101	з	4	ο.	1.	ο.	
4 -	FORCE 10	з		-100.	ο.	1.	ο.	
5 -	GRID 1		ο.	ο.	ο.			
6 -	GRID 2		10.	ο.	ο.			
7 -	GRID 3		20.	ο.	ο.			
8 -	GRID 4		30.	ο.	ο.			
9-	MAT1 201	30.E6		.3				
10-	PBAR 101	201	2.	.667	.1667	.458		+000001
11-	++0000011.	.5	-1.	.5				+000002
12-	++000002.83	33 .8333						
13-	SPC1 100	12345	1	4				
	ENDDATA							
TOT	AL COUNT= 14							
				Shear 1	Factor	K:		
	τ	(1 - V)	- E / 6				arcationa	
	1	XI = KZ	= 576	= .0555	for rec	langui	ar sections	

Shear Factor K: K1 = K2 = 5/6 = .8333 for rectangular sections

The deflection results are given in the output:

HINGED BEAN	М			JU	LY 10, 2003	NX NASTRAN	7/10/2003	PAGE 8
WITH	CONCENTRA	TED FORCE	р	TSPLAC	EMENT	VECTOR		
			_					
POINT ID.	TYPE	Tl	T2	Т3		Rl	R2	R3
1	G	0.0	0.0	0.0	0.0	0.0	-	2.221112E-04
2	G	0.0	-1.960807E-03	0.0	0.0	0.0	-	1.388195E-04
З	G	0.0	-2.255780E-03	0.0	0.0	0.0		1.110556E-04
4	G	0.0	0.0	0.0	0.0	0.0		2.776390E-04

Comparing deflection at GRID 3 with and without shear, we have:

```
u^{3}_{y} (without shear) = -2.221112E-3 inch
u^{3}_{y} (with shear) = -2.255780E-3 inch
```

Thus, adding shear to the model results in about 1.6% greater deflection of GRID 3.

The stresses on the top and bottom surfaces of the beam at the point of application of the load are given by

```
\sigma = bending stress = ±Mc/I
```

where:

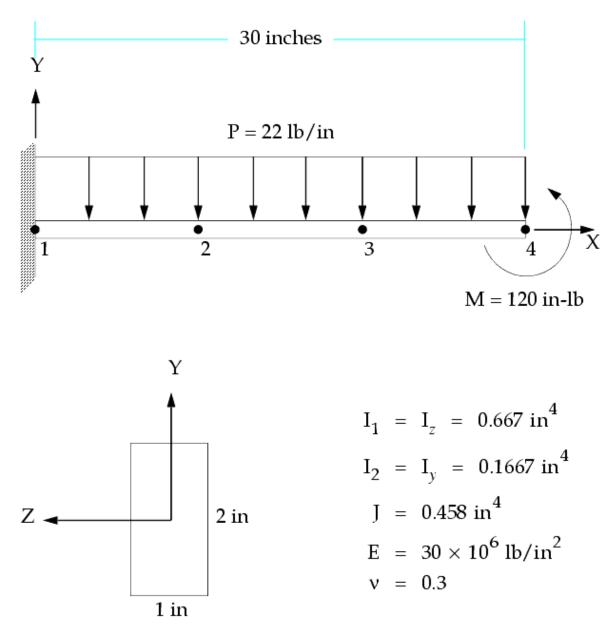
M	=	moment at GRID point 3
С	=	distance from neutral axis to outer fiber
I	=	bending moment of inertia in plane 1

From 1-7(c), the moment at GRID 3 is 666.6 in-lb. Thus,

$$\sigma = \pm \frac{(666.6 \text{ in-lb})(1.0 \text{ in})}{(.667 \text{ in}^4)} = \pm 999.4 \text{ lb/in}^2$$

which is in agreement with the NX Nastran results.

Chapter 2: Additional Examples


- Cantilever Beam with a Distributed Load and a Concentrated Moment
- Rectangular Plate (fixed-hinged-hinged-free) with a Uniform Lateral Pressure Load
- Gear Tooth with Solid Elements

2.1 Cantilever Beam with a Distributed Load and a Concentrated Moment

This problem uses the same beam as the problem from the previous chapter (i.e., the GRIDs, CBAR elements, and element properties are identical). The loads and constraints have been changed.

Problem Statement

Find the free end deflection of a rectangular cantilever beam subject to a uniform distributed load and a concentrated moment at the free end. The beam's geometry, properties, and loading are shown in Figure 2-1.

The Finite Element Model

Applying the Loads

The uniform distributed load is applied to the three CBAR elements using a PLOAD1 entry. One PLOAD1 entry is required for each element. We have chosen fractional scaling, which means that the physical length of the element is normalized to a length of 1.0. Since the distributed load runs the entire length of each element, each PLOAD1 entry will be applied from 0.0 to 1.0. Since the load is uniform, P1 = P2 = 22.0 lb/in.

The concentrated end moment is applied using a MOMENT entry. The direction of the moment (by the right hand rule) is about the +z axis. Thus,

$$\vec{m} = \vec{MN}$$

where M is the magnitude of 120.0 in-lb, and

Ň

is the vector (0., 0., 1.).

The load set ID is 10, and the loads are selected in the Case Control Section with the Command LOAD = 10.

Applying the Constraints

Grid 1 is fixed in a wall, so all six DOFs (123456) are constrained to zero. This can be done directly on the GRID entry using Field 8 (PS—permanent single point constraints associated with the grid point). No other constraints are required in this model.

Output Requests

The Case Control Command DISP = ALL is required to report displacements. In addition, it is a good idea to look at constraint forces at the wall as part of checking out the model. Thus, we will add the Case Control Command SPCF = ALL.

The Input File

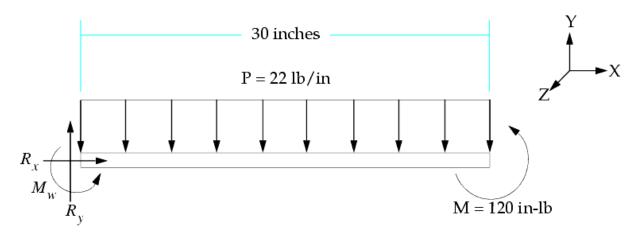
The complete input file is shown in Listing 2-1.

```
ID MPM, EXAMPLE2
SOL 101
TIME 100
CEND
ECHO=BOTH
DISP=ALL
SPCF=ALL
LOAD=10
TITLE=EXAMPLE 2
SUBTITLE=CANTILEVER BEAM
LABEL=DISTRIBUTED LOAD AND END MOMENT
Ś
BEGIN BULK
Ś
    DEFINE
GRID POINTS
GRID, 1, , 0., 0., 0., , 123456
GRID,2,,10.,0.,0.
GRID, 3, , 20., 0., 0.
GRID, 4,, 30., 0., 0.
Ś
Ś
      DEFINE CBAR ELEMENTS
CBAR, 1, 101, 1, 2, 0., 1., 0.
CBAR, 2, 101, 2, 3, 0., 1., 0.
CBAR, 3, 101, 3, 4, 0., 1., 0.
      DEFINE CBAR ELEMENT CROSS SECTIONAL PROPERTIES
PBAR, 101, 201, 2., .667, .1667, .458, ,,
+PB1 +PB1,1.,.5
Ś
$
      DEFINE MATERIAL PROPERTIES
MAT1,201,30.E6,,.3
Ś
```

```
$ DEFINE UNIFORM DISTRIBUTED LOAD
PLOAD1,10,1,FY,FR,0.,-22.,1.,-22.
PLOAD1,10,2,FY,FR,0.,-22.,1.,-22.
PLOAD1,10,3,FY,FR,0.,-22.,1.,-22.
$
$ DEFINE CONCENTRATED MOMENT AT FREE END
MOMENT,10,4,,120.,0.,0.,1.
ENDDATA
```


NX Nastran Results

The NX Nastran results are shown in Table 2-1.


```
Table 2-1. Cantilever Beam f06 Results File
          THIS PROGRAM IS CONFIDENTIAL AND A TRADE SECRET OF EDS PIM SOLUTIONS. THE RECEIPT OR
     POSSESSION OF THIS PROGRAM DOES NOT CONVEY ANY RIGHTS TO REPRODUCE OR DISCLOSE ITS CONTENTS, OR TO
    MANUFACTURE, USE, OR SELL ANYTHING HEREIN, IN WHOLE OR IN PART, WITHOUT THE SPECIFIC WRITTEN CONSENT
                                OF EDS PLM SOLUTIONS.
                      * *
                                                  * *
                      * *
                              EDS PLM SOLUTIONS
                                                  * *
                      * *
                                                  * *
                                    CORP
                      * *
                                                  * *
                      * *
                           NX Nastran
                                                  * *
                      * *
                                                  * *
                      * *
                                                  * *
                              VERSION - 1.0
                      * *
                                                  * *
                      * *
                               JUL 10, 2003
                                                  * *
                      * *
                                                  * *
                      * *
                                                  * *
                      * *
                                   Intel
                                                  * *
                      * *
                                                  . .
                      * *MODEL PentiumIII/995 (MERCED.scm)* *
                      * *
                      * * Windows 2000 5.0 (Build 2195) * *
                      . .
                      . .
                                                   . .
                      JULY 10, 2003 NX NASTRAN 7/10/2003 PAGE
                                                                                                1
    NASTRAN EXECUTIVE CONTROL DECK ECHO
 ID MPM. EXAMPLE2
 BOL 101
 TIME 100
 CEND
 EXAMPLE 2
                                                         JULY 10, 2003 NX NASTRAN 7/10/2003 PAGE
                                                                                                 2
 CANTILEVER BEAM
 DISTRIBUTED LOAD AND END MOMENT
                             CASE CONTROL DECK ECHO
           CARD
           COUNT
            1
                 ECHO=BOTH
            2
                 DISP-ALL
            з
                 SPCF=ALL
            4
                 LOAD=10
            5
                 TITLE=EXAMPLE 2
                 SUBTITLE=CANTILEVER BEAM
            6
                 LABEL-DISTRIBUTED LOAD AND END MOMENT
            7
            в
                 BEGIN BULK
            9
```

CAMPLE 2 CANTILEVER BEAM					30	LY 10,	2003	NX NASTRAL	7/10/2003	PAGE	З
DISTRIBUTED LOAD AND EN	D MOMENT										
DISTRIBUTED INDE DED AND AN	D ROUBERT	INP	ит в	ULK	DATA	DEC	ск в	сно			
	. 1	2 3	4	5	6	7		8 9	10 .		
	\$ DEFI	E GRID PO	INTS								
	GRID,1,,0.		3456								
	GRID,2,,10										
	GRID,3,,20										
	, , ,	30.,0.,0.									
	\$ \$ DEFII	E CBAR EL									
	CBAR, 1, 101,										
	CBAR, 2, 101										
	CBAR, 3, 101										
	\$	-,-,-,	,								
	\$ DEFI	E CBAR EL	EMENT CR	OBS SECTI	ONAL PRO	PERTIES					
	PBAR, 101, 2	1,2.,.667		458,,,+PB	31						
	+PB1,1.,.5										
	\$										
	\$ DEFI	E MATERIA	L PROPER	TIES							
	MAT1,201,3).E6,,.3									
	\$										
	,	E UNIFORM)						
	PLOAD1,10,										
	PLOAD1,10,2										
	PLOAD1,10,: ŝ	,FY,FR,O.	,-22.,1.	,-22.							
	,	E CONCENT	RATED NO	MENT AT P	TNR RND						
	MOMENT, 10,4				ALL LUD						
	ENDDATA	.,,120.,0.	, ,								
	INPUT BULK	DATA CARD	COUNT -	26							
CAMPLE 2					30	LY 10,	2003	MX NASTR	AN 7/10/200	3 PAGE	4
CANTILEVER BEAM											
	D MOMENT										
	D MOMENT	s	ORTE	р ви	LK D	АТА	Е⊂н	0			
CARD											
CARD COUNT	. 1	2 3	4	5	6	:			10 .		
CARD COUNT 1-	. 1 CBAR 1	2 3 101	4 1	5 2	б о.	? 1.	, a.		10 .		
CARD CARD COUNT 1- 2-	. 1 CBAR 1 CBAR 2	2 3 101 101	4 1 2	2 3	6 0. 0.	7 1. 1.	, a. a.		10 .		
CARD COUNT 1- 2- 3-	. 1 CBAR 1 CBAR 2 CBAR 3	2 3 101	4 1 2 3	2 3 4	б а. а. а.	? 1.	a. a. a.	a 9	10 .		
CARD COUNT 2- 3- 4-	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1	2 3 101 101	4 1 2 3 0.	2 2 3 4 0.	6 0. 0. 0. 0.	7 1. 1.	, a. a.	a 9	10 .		
CARD COUNT 1- 2- 3- 4- 5-	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 2	2 3 101 101	4 1 2 3 0. 10.	2 3 4 0. 0.	6 0. 0. 0. 0.	7 1. 1.	a. a. a.	a 9	10 .		
CARD COUNT 1- 2- 3- 4- 5- 6-	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 1 GRID 2 GRID 3	2 3 101 101	4 1 2 3 0. 10. 20.	2 3 4 0. 0. 0.	6 0. 0. 0. 0. 0. 0.	7 1. 1.	a. a. a.	a 9	10 .		
CARD CONT 1- 2- 3- 4- 5- 6- 7-	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 1 GRID 3 GRID 4	2 3 101 101 101	1 2 3 0. 10. 20. 30.	2 3 4 0. 0. 0.	6 0. 0. 0. 0.	7 1. 1.	a. a. a.	a 9	10 .		
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8-	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 2 GRID 3 GRID 4 MAT1 201	2 3 101 101 101 30.E6	1 2 3 0. 10. 20. 30.	2 3 4 0. 0. 0. 0. 3	6 0. 0. 0. 0. 0. 0. 0.	1. 1. 1.	0. 0. 0. 123	a 9	10 .		
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9-	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 2 GRID 3 GRID 4 MAT1 201 MOMENT 10	2 3 101 101 101 30.E6 4	4 1 2 0. 10. 20. 30.	2 3 4 0. 0. 0. 0. 0. 3 12D.	6 a. a. a. a. a. a. a. a.	1. 1. 1.	a. a. a.	a 9			
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10-	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 2 GRID 3 GRID 4 MAT1 201 MCMENT 10 PBAR 101	2 3 101 101 101 30.E6 4 201	1 2 3 0. 10. 20. 30.	2 3 4 0. 0. 0. 0. 3	6 0. 0. 0. 0. 0. 0. 0.	1. 1. 1.	0. 0. 0. 123	a 9	10 . +FB1		
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11-	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 2 GRID 3 GRID 3 GRID 4 MAT1 201 MCMENT 10 PBAR 101 +PB1 1.	2 3 101 101 101 30.E6 4 201 .5	4 1 2 3 0. 10. 20. 30. 2.	2 3 4 0. 0. 0. 0. 0. 120. .667	6 0. 0. 0. 0. 0. 0. 0. 0. 1667	, 1. 1. 1. 0.	, 0. 0. 123	89 456			
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12-	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 2 GRID 3 GRID 4 MAT1 201 MCMENT 10 PBAR 101 +FB1 1. PLOAD1 10	2 3 101 101 30.E6 4 201 .5 1	4 1 2 0. 10. 20. 30. 2. FY	2 3 4 0. 0. 0. 3 12D. 667 FR	6 0. 0. 0. 0. 0. 0. .1667 0.	1. 1. 1. 0. .458	, 0. 0. 123 1.	a 9 456 -22.			
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11-	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 3 GRID 3 GRID 4 MAT1 201 MCMENT 10 PBAR 101 +PB1 1. PLOAD1 10	2 3 101 101 101 30.E6 4 201 .5	4 1 2 3 0. 10. 20. 30. 2.	2 3 4 0. 0. 0. 0. 0. 120. .667	6 0. 0. 0. 0. 0. 0. 0. 0. 1667	, 1. 1. 1. 0.	, 0. 0. 123	89 456			
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13-	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 2 GRID 3 GRID 4 MAT1 201 MOMENT 10 FBAR 101 +FB1 1. FLOAD1 10 FLOAD1 10 FLOAD1 10	2 3 101 101 101 30.E6 4 201 .5 1 2	4 1 2 3 0. 10. 20. 30. 2. FY	2 3 4 0. 0. 0. 0. 3 120. 667 FR	6 0. 0. 0. 0. 0. 0. 1667 0. 0.	7 1. 1. 1. 0. .458 -22. -22.	, o. o. 123 1. 1.	8 9 456 -22. -22.			
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14-	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 3 GRID 3 GRID 4 MAT1 201 MCMENT 10 PBAR 101 +PB1 1. PLOAD1 10	2 3 101 101 101 30.E6 4 201 .5 1 2	4 1 2 3 0. 10. 20. 30. 2. FY	2 3 4 0. 0. 0. 0. 3 120. 667 FR	6 0. 0. 0. 0. 0. 0. 1667 0. 0.	7 1. 1. 1. 0. .458 -22. -22.	, o. o. 123 1. 1.	8 9 456 -22. -22.			
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14-	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 2 GRID 3 GRID 4 MAT1 201 MAT1 201 MANT 10 PBAR 101 +PB1 1. PLOAD1 10 PLOAD1 10 PLOAD1 10 PLOAD1 10	2 3 101 101 101 30.E6 4 201 .5 1 2 3	4 1 2 3 0. 10. 20. 30. 2. FY	2 3 4 0. 0. 0. 0. 3 120. 667 FR	6 0. 0. 0. 0. 0. 0. 1667 0. 0.	7 1. 1. 1. 0. .458 -22. -22.	, o. o. 123 1. 1.	8 9 456 -22. -22.			
COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- TOTA	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 2 GRID 3 GRID 4 MAT1 201 MAT1 201 MANT 10 PBAR 101 +PB1 1. PLOAD1 10 PLOAD1 10 PLOAD1 10 PLOAD1 10	2 3 101 101 101 30.E6 4 201 .5 1 2 3	4 1 2 3 0. 10. 20. 30. 2. FY	2 3 4 0. 0. 0. 0. 3 120. 667 FR	6 0. 0. 0. 0. 0. 0. 1667 0. 0.	1. 1. 1. .458 -22. -22. -22.	, 0. 123 1. 1. 1.	8 9 456 -22. -22. -22. -22.	+PB1	03 PAGE	5
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- TOTA EXAMPLE 2	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 2 GRID 3 GRID 4 MAT1 201 MAT1 201 MANT 10 PBAR 101 +PB1 1. PLOAD1 10 PLOAD1 10 PLOAD1 10 PLOAD1 10	2 3 101 101 101 30.E6 4 201 .5 1 2 3	4 1 2 3 0. 10. 20. 30. 2. FY	2 3 4 0. 0. 0. 0. 3 120. 667 FR	6 0. 0. 0. 0. 0. 0. 1667 0. 0.	1. 1. 1. .458 -22. -22. -22.	, 0. 123 1. 1. 1.	8 9 456 -22. -22. -22. -22.		003 PAGE	5
DISTRIBUTED LOAD AND EN COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- TOTA	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 3 GRID 4 MAT1 201 MOMENT 10 PBAR 101 +PB1 1. PLOAD1 10 PLOAD1 10 PLOAD1 10 ENDDATA L COUNT=	2 3 101 101 101 30.E6 4 201 .5 1 2 3	4 1 2 3 0. 10. 20. 30. 2. FY	2 3 4 0. 0. 0. 0. 3 120. 667 FR	6 0. 0. 0. 0. 0. 0. 1667 0. 0.	1. 1. 1. .458 -22. -22. -22.	, 0. 123 1. 1. 1.	8 9 456 -22. -22. -22. -22.	+PB1	003 PAGR	5
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- TOTA EXAMPLE 2 CANTILEVER BEAM DISTRIBUTED LOAD AND	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 2 GRID 3 GRID 4 MAT1 201 MOMENT 10 FBAR 101 +FB1 1. FLOAD1 10 FLOAD1 10 FLOAD1 10 ENDDATA L COUNT= END MOMENT	2 3 101 101 101 30.E6 4 201 .5 1 2 3	4 1 2 3 0. 10. 20. 30. 2. FY	2 3 4 0. 0. 0. 0. 3 120. 667 FR	6 0. 0. 0. 0. 0. 0. 1667 0. 0.	1. 1. 1. .458 -22. -22. -22.	, 0. 123 1. 1. 1.	8 9 456 -22. -22. -22. -22.	+PB1	003 PAGR	5
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- TOTA EXAMPLE 2 CANTILEVER BEAM DISTRIBUTED LOAD AND EER INFORMATION MESSAGE	. 1 CEAR 1 CEAR 2 CBAR 3 GRID 1 GRID 3 GRID 4 MAT1 201 MCMENT 101 PEAR 101 +PB1 1. PLOAD1 10 PLOAD1 10 PLOAD1 10 PLOAD1 10 ENDDATA L COUNT=	2 3 101 101 101 30.E6 4 201 .5 1 2 3 15	4 1 2 3 0. 10. 20. 30. 2. FY FY	2 3 4 0. 0. 0. 0. 3 12D. .667 FR FR FR	6 0. 0. 0. 0. 0. 0. .1667 0. 0. 0.	1. 1. 1. 1. 0. .458 -22. -22. -22. JULY	, 0. 0. 123 1. 1. 1. 1. 1. 1.	8 9 456 -22. -22. -22. -22.	+PB1	003 PAGE	5
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- TOTA EXAMPLE 2 CANTILEVER BEAM DISTRIBUTED LOAD AND DISTRIBUTED LOAD AND SEE INFORMATION MESSAGE IGIN OF SUPERELEMENT BJ	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 2 GRID 3 GRID 4 MAT1 201 MCMENT 10 PBAR 100 PLOAD1 10 PLOAD1 10 PLOA	2 3 101 101 101 30.E6 4 201 .5 1 2 3 15 E SYSTEM M	4 1 2 3 0. 10. 20. 30. 2. FY FY FY	5 5 2 3 4 0. 0. 0. .3 120. .667 FR FR FR FR	6 0. 0. 0. 0. 0. 1667 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		, 0. 0. 123 1. 1. 1. 1. 1. 1. 1. 1.	8 9 456 -22. -22. -22. 3 NX NAST	+PB1 RAN 7/10/20	003 PAGE	5
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- TOTA EXAMPLE 2 CANTILEVER BEAM DISTRIBUTED LOAD AND DISTRIBUTED LOAD AND SEE INFORMATION MESSAGE IGIN OF SUPERELEMENT BJ	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 2 GRID 3 GRID 4 MAT1 201 MCMENT 10 PBAR 100 PLOAD1 10 PLOAD1 10 PLOA	2 3 101 101 101 30.E6 4 201 .5 1 2 3 15 E SYSTEM M	4 1 2 3 0. 10. 20. 30. 2. FY FY FY	2 3 4 0. 0. 0. .3 120. .667 FR FR FR FR FR	6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		, 0. 0. 123 1. 1. 1. 1. 1. 1. 1. 1.	8 9 456 -22. -22. -22. 3 NX NAST	+PB1 RAN 7/10/20	003 PAGE	15
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- TOTA EXAMPLE 2 CANTILEVER BEAM DISTRIBUTED LOAD AND DISTRIBUTED LOAD AND SEE INFORMATION MESSAGE IGIN OF SUPERELEMENT BJ	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 2 GRID 3 GRID 4 MAT1 201 MCMENT 10 PBAR 100 PLOAD1 10 PLOAD1 10 PLOA	2 3 101 101 101 30.E6 4 201 .5 1 2 3 15 E SYETEM M NT BASIC C	4 1 2 3 0. 10. 20. 30. 2. FY FY FY FY	2 3 4 0. 0. 0. .3 120. .667 FR FR FR FR FR	6 0. 0. 0. 0. 0. 1667 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		, 0. 0. 123 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 7 BASIC	8 9 456 -22. -22. -22. 3 NX NAST	+PB1 RAN 7/10/20	003 PAGR	5
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- TOTA EXAMPLE 2 CANTILEVER BEAM DISTRIBUTED LOAD AND SEE INFORMATION MESSAGE IGIN OF SUPERELEMENT BJ ESULTANTS ABOUT ORIGIN	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 3 GRID 4 MAT1 201 MOMENT 10 PBAR 101 +PB1 1. FLOAD1 10 FLOAD1 10 FLOAD1 10 FLOAD1 10 ENDDATA L COUNT=	2 3 101 101 101 30.E6 4 201 .5 1 2 3 15 E SYSTEM W NT BASIC C	4 1 2 3 0. 10. 20. 30. 2. FY FY FY FY TY TY TY TY TY TY TY TY TY T	5 5 2 3 4 0. 0. 0. 0. 3 120. .667 FR FR FR FR FR FR FR FR FR FR FR FR FR	6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		7 0. 0. 123 1. 1. 1. 1. 1. 1. 1. 1. 1. 7 BASIC	8 9 456 -22. -22. -22. 3 NX NAST 3 NX NAST 5 EYSTEM CO R3	+PB1 TRAN 7/10/20 ORDINATES.	003 PAGR	5
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- TOTA EXAMPLE 2 CANTILEVER BEAM DISTRIBUTED LOAD AND SEE INFORMATION MESSAGE IGIN OF SUPERELEMENT BJ ESULTANTS ABOUT ORIGIN	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 3 GRID 4 MAT1 201 MOMENT 10 PBAR 101 +PB1 1. FLOAD1 10 FLOAD1 10 FLOAD1 10 FLOAD1 10 ENDDATA L COUNT=	2 3 101 101 101 30.E6 4 201 .5 1 2 3 15 E SYSTEM W NT BASIC C	4 1 2 3 0. 10. 20. 30. 2. FY FY FY FY TY TY TY TY TY TY TY TY TY T	5 5 2 3 4 0. 0. 0. 0. 3 120. .667 FR FR FR FR FR FR FR FR FR FR FR FR FR	6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		7 0. 0. 123 1. 1. 1. 1. 1. 1. 1. 1. 1. 7 BASIC	8 9 456 -22. -22. -22. 3 NX NAST 3 NX NAST 5 EYSTEM CO R3	+PB1 TRAN 7/10/20 ORDINATES.	003 PAGE	5
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- TOTA EXAMPLE 2 CANTILEVER BEAM DISTRIBUTED LOAD AND SER INFORMATION MESSAGE LIGIN OF SUPERELEMENT BA LESULTANTS ABOUT ORIGIN T1 1 0.000D000DE+00	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 3 GRID 4 MAT1 201 MOMENT 10 PBAR 101 +PB1 1. FLOAD1 10 FLOAD1 10 FLOAD1 10 FLOAD1 10 ENDDATA L COUNT=	2 3 101 101 101 30.E6 4 201 .5 1 2 3 15 E SYSTEM W NT BASIC C	4 1 2 3 0. 10. 20. 30. 2. FY FY FY FY TY TY TY TY TY TY TY TY TY T	5 5 2 3 4 0. 0. 0. 0. 3 120. .667 FR FR FR FR FR FR FR FR FR FR FR FR FR	6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	 1. 1. 1. 	 0. 0. 0. 123 1. 	 8 9 456 -22. -22. -22. -3 NX NAST 3 NX NAST 3 SYNK NAST 3 SYNK NAST 	+FB1 TRAN 7/10/20 ORDINATES. E+03		
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- TOTA EXAMPLE 2 CANTILEVER BEAM DISTRIBUTED LOAD AND DISTRIBUTED LOAD AND SEER INFORMATION MESEAS IGIN OF SUPERELEMENT BJ ESULTANTS ABOUT ORIGIN T1 1 0.000D000DE+00 EXAMPLE 2	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 3 GRID 4 MAT1 201 MOMENT 10 PBAR 101 +PB1 1. FLOAD1 10 FLOAD1 10 FLOAD1 10 FLOAD1 10 ENDDATA L COUNT=	2 3 101 101 101 30.E6 4 201 .5 1 2 3 15 E SYSTEM W NT BASIC C	4 1 2 3 0. 10. 20. 30. 2. FY FY FY FY TY TY TY TY TY TY TY TY TY T	5 5 2 3 4 0. 0. 0. 0. 3 120. .667 FR FR FR FR FR FR FR FR FR FR FR FR FR	6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	 1. 1. 1. 	 0. 0. 0. 123 1. 	8 9 456 -22. -22. -22. 3 NX NAST 3 NX NAST -9.7800000	+PB1 TRAN 7/10/20 ORDINATES.		5
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- TOTA EXAMPLE 2 CANTILEVER BEAM DISTRIBUTED LOAD AND SER INFORMATION MESSAGE IGIN OF SUPERELEMENT BJ ESULTANTS ABOUT ORIGIN T1 1 0.00000000E+00 EXAMPLE 2 CANTILEVER BEAM	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 2 GRID 3 GRID 4 MAT1 201 MOMENT 10 PBAR 101 +PB1 1. PLOAD1 10 PLOAD1 10 PLOAD1 10 PLOAD1 10 ENDDATA ENDDATA SIC COORDINAT OF SUPERELEME T2 0 -6.6000000E+	2 3 101 101 101 30.E6 4 201 .5 1 2 3 15 E SYSTEM W NT BASIC C	4 1 2 3 0. 10. 20. 30. 2. FY FY FY FY TY TY TY TY TY TY TY TY TY T	5 5 2 3 4 0. 0. 0. 0. 3 120. .667 FR FR FR FR FR FR FR FR FR FR FR FR FR	6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	 1. 1. 1. 	 0. 0. 0. 123 1. 	8 9 456 -22. -22. -22. 3 NX NAST 3 NX NAST -9.7800000	+FB1 TRAN 7/10/20 ORDINATES. E+03		
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- TOTA EXAMPLE 2 CANTILEVER BEAM DISTRIBUTED LOAD AND SEE INFORMATION MESSAGE IGIN OF SUPERELEMENT BJ ESULTANTS ABOUT ORIGIN 1 0.0000000E401 EXAMPLE 2 CANTILEVER BEAM DISTRIBUTED LOAD AND EXAMPLE 2 CANTILEVER BEAM DISTRIBUTED LOAD AND	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 2 GRID 3 GRID 4 MAT1 201 MOMENT 10 PBAR 101 +PB1 1. PLOAD1 10 PLOAD1 10 PLOAD1 10 PLOAD1 10 PLOAD1 10 ENDDATA L COUMT- END MOMENT E COUNT- END MOMENT E COUNDERLEME COUNDENT	2 3 101 101 101 30.E6 4 201 .5 1 2 3 15 E SYETEM M NT BASIC C 1 02 D.00000	4 1 2 3 0. 10. 20. 30. 2. FY FY FY FY FY SOLUTION 0LOAD 3 0000E+00	5 5 2 3 4 0. 0. 0. 0. 3 120. .667 FR FR FR FR FR FR FR FR FR FR FR FR FR	6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	 1. 1. 1. 	 0. 0. 0. 123 1. 	8 9 456 -22. -22. -22. 3 NX NAST 3 NX NAST -9.7800000	+FB1 TRAN 7/10/20 ORDINATES. E+03		
CAMPLE 2 CANTILEVER BEAM DISTRIBUTED LOAD AND EN COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- TOTA EXAMPLE 2 CANTILEVER BEAM DISTRIBUTED LOAD AND SEE INFORMATION MESSAGE IGIN OF SUPERELEMENT BJ ESULTANTS ABOUT ORIGIN T1 1 0.0000000E+00 EXAMPLE 2 CANTILEVER BEAM DISTRIBUTED LOAD AND EXAMPLE 2 CANTILEVER BEAM	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 3 GRID 4 MAT1 201 MOMENT 101 PBAR 101 +PB1 1. PLOAD1 10 PLOAD1 00 END MOMENT E SAGE 5293 FOR	2 3 101 101 101 30.E6 4 201 .5 1 2 3 15 E SYETEM M NT BASIC C 1 02 D.00000	4 1 2 3 0. 10. 20. 30. 2. FY FY FY FY SY 11LL BE (COORDINAT OLOAD 3 000E+00	Second Se	6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	 1. 1. 1. 0. .458 -22. -22. -22. JULY ELEMEN R2 JULY JULY	 0. 0. 0. 123 1. 	8 9 456 -22. -22. -22. 3 NX NAST 5 EYSTEM CO R3 -9.7800000 R3 NX NASTH	+PB1 TRAN 7/10/20 ORDINATES. E+03 ZAN 7/10/200	D3 PAGE	6
CARD COUNT 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- TOTA EXAMPLE 2 CANTILEVER BEAM DISTRIBUTED LOAD AND ESULTANTS ABOUT ORIGIN T1 1 0.0000000E400 EXAMPLE 2 CANTILEVER BEAM DISTRIBUTED LOAD AND ESULTANTS ABOUT ORIGIN T1 1 0.0000000E400 EXAMPLE 2 CANTILEVER BEAM DISTRIBUTED LOAD AND SER INFORMATION MESSION LOAD SEQ. NO.	. 1 CBAR 1 CBAR 2 CBAR 3 GRID 1 GRID 2 GRID 3 GRID 4 MAT1 201 MOMENT 10 PBAR 101 +PB1 1. PLOAD1 10 PLOAD1 10 PLOAD1 10 PLOAD1 10 PLOAD1 10 ENDDATA L COUMT- END MOMENT E COUNT- END MOMENT E COUNDERLEME COUNDENT	2 3 101 101 101 30.E6 4 201 .5 1 2 3 15 E SYETEM W NT BASIC C 02 D.00D00 DATA BLOCK	4 1 2 3 0. 10. 20. 30. 2. FY FY FY FY SY 11LL BE (COORDINAT OLOAD 3 000E+00	Section 2 Sectio	6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	 1. 1. 1. 0. .458 -22. -22. -22. JULY ELEMEN R2 JULY JULY	 0. 0. 0. 123 1. 	8 9 456 -22. -22. -22. 3 NX NAST 5 EYSTEM CO R3 -9.7800000 R3 NX NASTH	+FB1 TRAN 7/10/20 ORDINATES. E+03	D3 PAGE	6

EXAMPLE 2	2				JULY	10, 2003 NX NAST	RAN 7/10/2003 PAG	E 7
CANTILEV	VER BEAM					,	,	
DISTRIBU USER INFORM		AND END MOMEN	11.					
			INATE SYSTEM WILL	BE USED AS RE	FERENCE LOCATI	ON.		
			LEMENT BASIC COORD				ORDINATES.	
				CFORCE RESULT				
	T1	T: Rado e edopi	2 T3 000E+02 D.0D000DDE	R1	R2 10€+00 0 00000		W-03	
	0.000000			+00 0.000000	0.0000	5.100000		
EXAMPLE 2 CANTILEVES	TRAM				JULY 10	, 2003 NX NASTRA	N 7/10/2003 PAGE	a
		D END MOMENT						
			DISPL	ACEMENT	VECTOR			
POINT ID.		T1	T2	Т3	Rl	R2	R3	
1		a.p a.p	D.0 -1.939863E-02	0.0	0.0 0.0	0.0	0.0 -3.421623E-03	
3	_	0.D	-6.110278E-02		D.0	0.0	-4.644345E-D3	
4		0.0	-1.086207E-01		0.0	0.0	-4.767616E-D3	
EXAMPLE 2					JULY 10,	2003 NX MASTRAN	7/10/2003 PAGE	9
CANTILEVER		END MOMENT						
		FORG	RES OF SIN	GLE - PO	INT CON	STRAINT		
POINT ID.	TYPE	т1	Τ2	тз	Rl	R2	R.3	
		0.0	6.600000E+02		D.0		9.7800DDE+D3	
CANTILEVER DISTRIBUTE		END MOMENT						
EXAMPLE : CANTILE DISTRIBU	VER BEAM	AND END NOME	ar		JULY	10, 2003 NX NASI	TRAN 7/10/2003 PA	GE 11
• • • • D B	вріст	PRINT			, DMAP STATEM			
SEID PEID	PRAT UNDE	APPCH	* * * * ANAL				D DESIGN CYCLE SENSI	*****
							Diston Cicle Sense	
	1 1		тттт	T F	F T	0 F -	1 0	F
BEID = SUPEN			IMAGE SUPERELEMENT	,				
PROJ = PROJ			INAGE SOFERELEMENT	•				
VERS = VERS								
			ISIS. HEAT FOR HEA	T TRANSFER AN	WALYSIS.			
			SENERATION STEP.					
		IX REDUCTION	(INCLUDES EIGENVAL	OF SOUDLION 1	OR MODES).			
		NERATION STE						
		DUCTION STEP						
MODES = T (7	TRUE) IF N	NORMAL MODES (OR BUCKLING MODES O	ALCULATED.				
			ED DYNAMIC AND/OR C		REDUCTION PER	FORMED.		
			ION EXISTS IN DATAB ALUE FOR P-ELEMENTS					
			ED IN THE NONLINEAR		SEFUL FOR REST	ARTS.		
BOLNL = T (TRUE) IF N	ONLINEAR SOL	UTION EXISTS IN DAT	ABASE.				
			CLE (ONLY VALID IN	OPTIMIZATION)				
SENSITIVITY	= SENSITI	VITY MATRIX (SENERATION FLAG.					
			* * * END 03	JOB * * *				

Reviewing the Results

First, we review the .f06 output file for any warning or error messages. None are present in this file. Next, look at epsilon on page 6 of the output. Its value of -7.77E-17 is indeed very small, showing no evidence of numerical difficulties. Finally, we review the reaction forces (forces of single point constraint, or SPC forces) at the wall. As a check, a free body diagram of the structure is used to solve for reaction forces as follows:

Solving for the reactions at the wall, we obtain:

Forces in x:

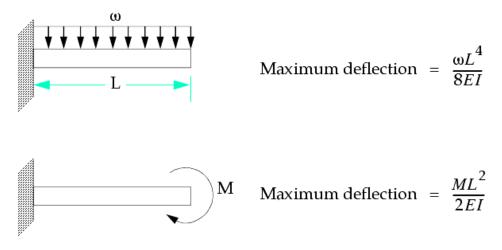
$$\begin{array}{rcl}
+ & \sum F_x &= & 0 &= & R_x \\
\hline
R_x &= & 0 \\
\end{array}$$
Forces in y:

$$\begin{array}{rcl}
+ & \sum F_y &= & 0 &= & R_y - (22 \text{ lb/in})(30 \text{ in}) \\
\end{array}$$

Forces In y:

$$R_y = 660 \text{ lbs}$$

Moment at wall: $(+ \sum M_{wall} = M_w + 120 \text{ in-lb} - (660 \text{ lbs})(15 \text{ in}))$ $M_{W} = 9780 \text{ in-lb}$


The SPC forces are listed on page 9 of the NX Nastran results. The T2 reaction (force at grid point 1 in the y direction) is +660 lbs. The R3 reaction (moment about the z axis) is +9780 lb. Thus, we can be confident that the loads were applied correctly, and at least the static equilibrium of the problem makes sense.

The displacement results are shown on page 8 of the .f06 file. Note that all displacements at the wall (GRID 1) are exactly zero, as they should be. The free end deflection in the y direction (T2 of GRID 4) is -1.086207E-1 in.

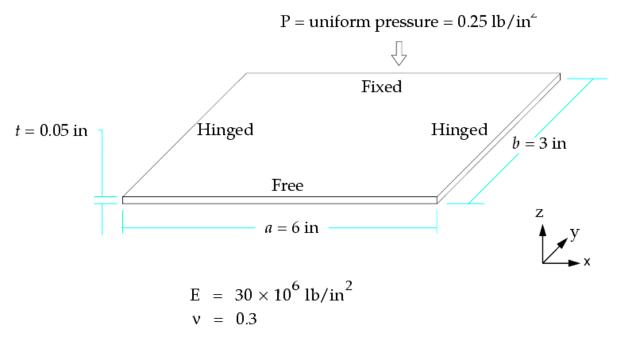
As a final observation, note that there is no axial shortening of the beam as it deflects downward (all T1s are exactly zero). This is a consequence of the simplifying small displacement assumptions built into slender beam theory and beam elements when used in linear analysis. If the load on the beam is such that large displacement occurs, nonlinear analysis must be used to update the element matrices as the structure deforms. The shortening terms will then be part of the solution.

Comparison with Theory

The theory solution to this problem is as follows:

Using superposition, the net deflection at free end is given by:

$$-\left(\frac{ML^2}{2EI} + \frac{\omega L^4}{8EI}\right) = -\frac{L^2}{2EI}\left(M + \frac{\omega L^2}{4}\right) = -0.10862 \text{ inches}$$


Thus, we are in exact agreement with the NX Nastran result.

It should be noted that simple beam bending problems such as this give exact answers, even with one element. This is a very special case and is by no means typical of real world problems.

2.2 Rectangular Plate (fixed-hinged-hinged-free) with a Uniform Lateral Pressure Load

Problem Statement

Create an NX Nastran model to analyze the thin rectangular plate shown in Figure 2-2. The plate is subject to a uniform pressure load of 0.25 lb/in² in the -z direction. Find the maximum deflection of the plate.

The Finite Element Model

Designing the Model

First, we need to examine the structure to verify that it can reasonably qualify as a thin plate. The thickness is 1/60 of the next largest dimension (3 inches), which is satisfactory.

Next, we observe by inspection that the maximum deflection, regardless of the actual value, should occur at the center of the free edge. Thus, it will be helpful to locate a grid point there to recover the maximum displacement.

As a matter of good practice, we wish to design a model with the fewest elements that will do the job. In our case, doing the job means good displacement accuracy. The model shown in Figure 2-3 contains 20 GRID points and 12 CQUAD4 elements, which we hope will yield reasonable displacement results. If we have reason to question the accuracy of the solution, we can always rerun the model with a finer mesh.

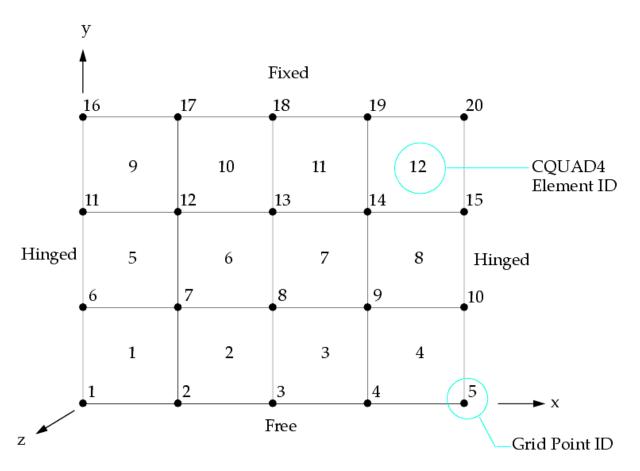


Figure 2-3. Plate Finite Element Model

Applying the Load

The uniform pressure load is applied to all plate elements using the PLOAD2 entry. Only one PLOAD2 entry is required by using the "THRU" feature (elements 1 THRU 12). The positive normal to each plate element (as dictated by the GRID point ordering sequence) is in the negative z axis direction, which is the same direction as the pressure load. Therefore, the value of pressure in Field 3 of the PLOAD2 entry is positive.

Applying the Constraints

SPC1 entries are used to model the structure's constraints. The SPC1 entries have a set ID of 10, which is selected by the Case Control command SPC = 100. The constraints on the structure are shown in Figure 2-4.

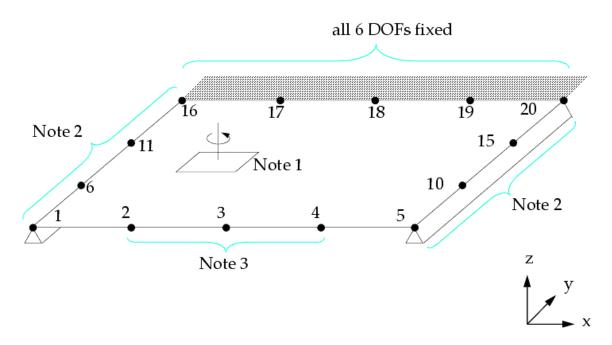


Figure 2-4. Constraints on the Plate Structure

Note

- 1. The out-of-plane rotational DOF (degree of freedom 6) is constrained for all grids in the model. This is a requirement of a CQUAD4 flat plate element, and has nothing to do with this specific problem.
- 2. Grids 16 and 20, shared with the fixed edge, are fixed—the greater constraint governs. For the remaining grids:
- 3. Displacements Allowed: Rotation about y-axis (DOF 5)
- 4. Displacements Not Allowed: Rotation about x-axis (DOF 4) Translation in x, y, or z (DOFs 1, 2, 3)
- 5. The non-corner grids of the free edge have no additional constraints.

The SPC1 entries are written as follows:

Format:

1	2	3	4	5	6	7	8	9	10
SPC1	SID	С	G1	G2	G3	G4	G5	G6	
	G7	G8	G9	-etc					

Alternate Format:

SPC1	SID	С	G1	"THRU"	G2				
------	-----	---	----	--------	----	--	--	--	--

Out-of-plane Rotations:

SPC1	100	6	1	THRU	20				
------	-----	---	---	------	----	--	--	--	--

Hinged Edges:

spc1	100	1234	1	6	11	5	10	15	
------	-----	------	---	---	----	---	----	----	--

Fixed Edge:

Note that some constraints are redundantly specified. For example, GRID 17 is constrained in all 6 DOFs with the fixed edge SPC1, and again in DOF 6 with the out-of-plane rotational constraint. This is perfectly acceptable, and keeps the constraint bookkeeping a little tidier.

SPC1 100 123456 16 THRU 20

Output Requests

The problem statement requires displacements. As a matter of good practice, we will also request SPC forces to check the model's reactions. Thus, the following output requests are included in the Case Control Section:

DISP=ALL SPCF=ALL

The Input File

The complete input file is shown in Listing 2-2.

```
ID MPM, EXAMPLE3
SOL 101
TIME 100
CEND
SPCF=ALL
DISP=ALL
TITLE=PLATE EXAMPLE
SUBTITLE=FIXED-HINGED-HINGED-FREE
LABEL=UNIFORM LATERAL PRESSURE LOAD (0.25 lb/in**2)
SPC=100
ECHO=BOTH
LOAD=5
Ś
BEGIN BULK
$ DEFINE GRID POINTS
GRID, 1, , 0., 0., 0.
GRID,2,,1.5,0.,0.
GRID, 3, , 3.0, 0., 0.
GRID,4,,4.5,0.,0.
GRID, 5,, 6.0, 0., 0.
GRID, 6, , 0. , 1. , 0.
GRID,7,,1.5,1.,0.
GRID,8,,3.0,1.,0.
GRID,9,,4.5,1.,0.
GRID,10,,6.0,1.,0.
GRID,11,,0.,2.,0.
GRID, 12, , 1.5, 2., 0.
GRID,13,,3.0,2.,0.
GRID,14,,4.5,2.,0.
GRID, 15, , 6.0, 2., 0.
GRID,16,,0.,3.,0.
GRID, 17, , 1.5, 3., 0.
GRID, 18, , 3.0, 3., 0.
GRID, 19, , 4.5, 3., 0.
```

```
GRID,20,,6.0,3.,0.
Ś
$ DEFINE PLATE ELEMENTS
CQUAD4,1,101,1,6,7,2
CQUAD4,2,101,2,7,8,3
CQUAD4,3,101,3,8,9,4
CQUAD4,4,101,4,9,10,5
CQUAD4,5,101,6,11,12,7
CQUAD4, 6, 101, 7, 12, 13, 8
CQUAD4,7,101,8,13,14,9
CQUAD4,8,101,9,14,15,10
CQUAD4,9,101,11,16,17,12
CQUAD4,10,101,12,17,18,13
CQUAD4,11,101,13,18,19,14
CQUAD4,12,101,14,19,20,15
Ś
$ DEFINE PRESSURE LOAD ON PLATES
PLOAD2, 5, 0.25, 1, THRU, 12
$ DEFINE PROPERTIES OF PLATE ELEMENTS
PSHELL,101,105,.05,105,,105
MAT1,105,30.E6,,0.3
Ś
$ DEFINE FIXED EDGE
SPC1,100,123456,16,THRU,20
Ś
$ DEFINE HINGED EDGES
SPC1,100,1234,1,6,11,5,10,15
Ś
$ CONSTRAIN OUT-OF-PLANE ROTATION FOR ALL GRIDS
SPC1,100,6,1,THRU,20
ENDDATA
```

Listing 2-2.

NX Nastran Results

The NX Nastran results are shown in Table 2-2.

Table 2-2. Rectangular Plate f06 Results File

THIS PROGRAM IS CONFIDENTIAL AND A TRADE SECRET OF EDS PLM SOLUTIONS CORP. THE RECEIPT OR POSSESSION OF THIS PROGRAM DOES NOT CONVEY ANY RIGHTS TO REPRODUCE OR DISCLOSE ITS CONTENTS, OR TO MANUFACTURE, USE, OR SELL ANYTHING HERRIN, IN WHOLE OF IN PART, WITHOUT THE SPECIFIC WRITTEN CONSENT OF EDS FLM SOLUTIONS

```
* *
                      * *
* *
      EDS PLM SOLUTIONS
                     * *
* *
          CORP
                     * *
* *
* *
    NX Nastran
                     * *
. .
* *
      VERSION - 1.0
                      * *
* *
* *
      JUL:10, 2003
                      * *
* *
* *
                      . .
* *
         Intel
* *MODEL PentiumIII/995 (MERCED.scm) * *
. .
                      . .
* * Windows 2000 5.0 (Build 2195) * *
* *
                      . .
* *
* *
                      * *
```

JULY 10, 2003 NX NASTRAN 7/10/2003 PAGE 1 NASTRAN EXECUTIVE CONTROL DECK ECHO ID MPM, EXAMPLES SOL 101 TIME 100 CEND PLATE EXAMPLE JULY 10, 2003 NX MASTRAN 7/10/2003 PAGE 2 FIXED-HINGED-HINGED-FREE UNIFORM LATERAL PRESSURE LOAD (0.25 LB/IN**2) CASE CONTROL DECK ECHO CARD COUNT SPCF-ALL 1 2 DISP-ALL з TITLE-PLATE EXAMPLE SUBTITLE=FIXED-HINGED-HINGED-FREE 4 LABEL-UNIFORM LATERAL PRESSURE LOAD (0.25 LB/IN**2) 5 SPC=100 6 ECHO=BOTH 7 а LOAD=5 9 ŝ BEGIN BULK 1.0

PLATE EXAMPLE		JULY	10, 2003	NX NASTRAN	7/10/2003	PAGE	3
FIXED-HINGED-HINGED-FREE							
UNIFORM LATERAL PRESSURE :							
	INPUT BULK D						
	. 1 2 3 4 5	·· ·	7	в 9	10 .		
	\$ DEFINE GRID POINTS GRID,1,,0.,0.,0.						
	GRID,2,,1.5,0.,0.						
	GRID,3,,3.0,0.,0. GRID,4,,4.5,0.,0.						
	GRID, 4, , 4.5, 0., 0. GRID, 5, , 6.0, 0., 0.						
	GRID, 6, ,0.,1.,0.						
	GRID, 7, ,1.5,1.,0.						
	GRID,8,,3.0,1.,0.						
	GRID, 9, ,4.5,1.,0.						
	GRID, 10, , 6.0, 1., 0.						
	GRID, 11, ,0.,2.,0.						
	GRID,12,,1.5,2.,0.						
	GRID,13,,3.0,2.,0.						
	GRID, 14, ,4.5,2.,0.						
	GRID,15,,6.0,2.,0.						
	GRID, 16,,0.,3.,0.						
	GRID, 17, , 1.5, 3., 0.						
	GRID, 18, , 3.0, 3., 0.						
	GRID, 19,, 4.5, 3., 0.						
	GRID, 20, , 6.0, 3., 0.						
	\$						
	\$ DEFINE PLATE ELEMENTS						
	CQUAD4,1,101,1,6,7,2						
	CQUAD4,2,101,2,7,8,3						
	CQUAD4,3,101,3,8,9,4						
	CQUAD4,4,101,4,9,10,5						
	CQUAD4,5,101,6,11,12,7						
	CQUAD4,6,101,7,12,13,8						
	CQUAD4,7,101,8,13,14,9						
	CQUAD4,8,101,9,14,15,10						
	CQUAD4,9,101,11,16,17,12						
	CQUAD4,10,101,12,17,18,13						
	CQUAD4,11,101,13,18,19,14						
	CQUAD4,12,101,14,19,20,15						
	\$						
	\$ DEFINE PRESSURE LOAD ON PLATES						
	PLOAD2,5,0.25,1,THRU,12						
	\$ DEFINE PROPERTIES OF PLATE ELEMEN	TS					
	PSHELL, 101, 105, .05, 105,, 105						
	MAT1,105,30.E6,,0.3						
	\$						
	\$ DEFINE FIXED EDGE						
	SPC1,100,123456,16,THRU,20 \$						
	9 S DEFINE HINGED EDGES						
	•						
	SPC1,100,1234,1,6,11,5,10,15 \$						
	constrain out-of-plane rotation ;	EDE ALL S	PTTNS				
	SPC1,100,6,1,THRU,20	CAR HELL D	n.100				
	ENDDATA						
	INPUT BULK DATA CARD COUNT = 51						
	and a source of the source of the state						

4

PAGE

7/10/2003

FIXED-HINGED-HIN	SED-FREE						JOLY	,					PAGE	
MIFORM LATERAL PRE			LB/I	N**2)										
				<i>S</i> 0	RTED	BUL	K DA	ТΑ	E C	но				
CARD									_					
COUN		. 1		2 3				•••	7	в	9	10 .		
		CQUAD4		101	1 2	6 7	7 B	2						
	-	CQUAD4 CQUAD4		101	2	в	9	4						
	-	CQUAD4		101	4	9	10	5						
	5-	CQUAD4		101	6	11	12	7						
6	i -	CQUAD4		101	7	12	13	в						
7	7-	CQUAD4		101	в	13	14	9						
e	5-	CQUAD4	а	101	9	1.4	15	1.0						
5	9-	CQUAD4	9	101	11	16	17	12						
10)-	CQUAD4	10	101	12	17	1.8	13						
11		CQUAD4		101	13	18	19	14						
12		CQUAD4		101	14	19	20	15						
13		GRID	1		D.	D.	D.							
14		GRID	2		1.5	D.	D.							
15		GRID	3		3.0	D.	D.							
16		GRID GRID	4		4.5 6.0	D. D.	D. D.							
17		GRID	6		в.u D.	1.	D.							
18		GRID	7		1.5	1.	D.							
20		GRID	a		3.0	1.	D.							
21		GRID	9		4.5	1.	D.							
22		GRID	10		6.0	1.	ο.							
23	-	GRID	11		D.	2.	ο.							
24	-	GRID	12		1.5	2.	D.							
25	<u>;</u> –	GRID	13		3.0	2.	Ο.							
26	j —	GRID	14		4.5	2.	D.							
27	1-	GRID	15		6.0	2.	D.							
28		GRID	16		D.	з.	D.							
29		GRID	17		1.5	з.	ο.							
30		GRID	18		3.0	з.	D.							
31		GRID	19		4.5	3.	D.							
32		GRID MAT1	20 105	30.E6	6.0	з. D.3	D.							
34		PLOAD2	105	0.25	1	THRU	12							
35		PEHELL		105	.05	105	12	105						
36		SPC1	100	6	1	THRU	20	100						
37		SPC1	100	1234	1	6	11	5	1	D	15			
38		SPC1	100	123456		THRU	20							
		ENDDATA		113430			20							
	TOTAL			39										
	TOTAL	ENDDATA												
ATE EXAMPLE	TOTAL	ENDDATA						10,	2003	NX 1	IASTRAN	7/10/2003	PAGE	5
ATE EXAMPLE FIXED-HINGED-HIN		ENDDATA						10,	2003	NX 1	iastran	7/10/2003	PAGE	5
FIXED-HINGED-HIN	GED-FREE	ENDDATA COUNT-		39				10,	2003	NX 1	iastran	7/10/2003	PAGE	5
FIXED-HINGED-HIN UNIFORM LATERAL P	GED-FREE RESSURE I	ENDDATA COUNT-		39				10,	2003	NX 1	iastran	7/10/2003	PAGE	5
FIXED-HINGED-HIN UNIFORM LATERAL P ER INFORMATION ME	GED-FREE RESSURE I SSAGE	ENDDATA COUNT-	25 LB	39 /IN**2)	BE USED		JULY			NX 3	iastran	7/10/2003	PAGE	5
FIXED-HINGED-HIN UNIFORM LATERAL P ER INFORMATION ME GIN OF SUPERELEME	GED-FREE RESSURE I SSAGE NT BASIC	ENDDATA COUNT= LOAD (0.: COORDIN	25 LB ATE <i>S</i>	39 /IN**2) YSTEM WILL		AS REFER	JULY	CATIO	ŧ.				PAGE	5
FIXED-HINGED-HIN UNIFORM LATERAL P. SER INFORMATION ME GIN OF SUPERELEME	GED-FREE RESSURE I SSAGE NT BASIC	ENDDATA COUNT= LOAD (0.: COORDIN	25 LB ATE <i>S</i>	39 /IN**2) YSTEM WILL BASIC COOPE	INATE S	AS REFERI YSTEM IN 1	JULY ENCE LO SUPEREL	CATIO	ŧ.				PAGE	5
FIXED-HINGED-HIN UNIFORM LATERAL P ER INFORMATION ME GIN OF SUPERELEME	GED-FREE RESSURE I SSAGE NT BASIC	ENDDATA COUNT= LOAD (0.: COORDIN	25 LB ATE <i>S</i>	39 /IN**2) YSTEM WILL BASIC COOPE	INATE S	AS REFER	JULY ENCE LO SUPEREL	CATIO	ŧ.				PAGE	5
FIXED-HINGED-HIN UNIFORM LATERAL P SER INFORMATION ME GIN OF SUPERELEME SEULTANTS ABOUT OR	GED-FREE RESSURE I SSAGE NT BASIC	ENDDATA COUNT- LOAD (0.: COORDINA SUPERELED	25 LB ATE <i>S</i>	39 /IN**2) YSTEM WILL BASIC COORD OI	INATE S	AS REFER YSTEM IN (RESULTANT	JULY ENCE LO SUPEREL	CATIO	ŧ.		TEM COOR		PAGE	5
FIXED-HINGED-HIN UNIFORM LATERAL P. SER INFORMATION ME GIN OF SUPERELEME	GED-FREE RESSURE I SSAGE NT BASIC	ENDDATA COUNT= LOAD (0.: COORDIN	25 LB ATE <i>S</i>	39 /IN**2) YSTEM WILL BASIC COOPE	INATE S	AS REFERI YSTEM IN 1	JULY ENCE LO SUPEREL	CATIO	ŧ.				PAGE	5
FIXED-HINGED-HIN UNIFORM LATERAL P SER INFORMATION ME GIN OF SUPERELEME SEULTANTS ABOUT OR TI	GED-FREE RESSURE I SSAGE NT BASIC IGIN OF F	ENDDATA COUNT- LOAD (0.: COORDINA SUPERELEN	25 LB ATE <i>S</i> MENT	39 /IN**2) YSTEM WILL BASIC COORD OI T3	DINATE S	AS REFER YSTEM IN : RESULTANT R1	JULY ENCE LO SUPEREL	CATION EMENT R2	(. BASIC	8¥51	rem coor R3	dinates.	PAGE	5
FIXED-HINGED-HIN UNIFORM LATERAL P ER INFORMATION ME GIN OF SUPERELEME EULTANTS ABOUT OR TI	GED-FREE RESSURE I SSAGE NT BASIC IGIN OF F	ENDDATA COUNT- LOAD (0.: COORDINA SUPERELEN	25 LB ATE <i>S</i> MENT	39 /IN**2) YSTEM WILL BASIC COORD OI	DINATE S	AS REFER YSTEM IN : RESULTANT R1	JULY ENCE LO SUPEREL	CATION EMENT R2	(. BASIC	8¥51	rem coor R3	dinates.	PAGE	5
FIXED-HINGED-HIN UNIFORM LATERAL P SER INFORMATION ME UGIN OF SUPERELEME SEULTANTS ABOUT OR T1 1 D.000000	GED-FREE RESSURE I SSAGE NT BASIC IGIN OF F	ENDDATA COUNT- LOAD (0.: COORDINA SUPERELEN	25 LB ATE <i>S</i> MENT	39 /IN**2) YSTEM WILL BASIC COORD OI T3	DINATE S	AS REFER YSTEM IN : RESULTANT R1	JULY ENCE LO SUPEREL 00 1.3	CATION EMENT R2 S0DD00	(. BASIC DE+01	SY57	R3	dinates. Do		
FIXED-HINGED-HIN UNIFORM LATERAL P SER INFORMATION ME CGIN OF SUPERELEME SEULTANTS ABOUT OR T1 1 0.000000 PLATE EXAMPLE	GED-FREE RESSURE I SSAGE NT BASIC IGIN OF F	ENDDATA COUNT- LOAD (0.: COORDIN: SUPERELED T2	25 LB ATE <i>S</i> MENT	39 /IN**2) YSTEM WILL BASIC COORD OI T3	DINATE S	AS REFER YSTEM IN : RESULTANT R1	JULY ENCE LO SUPEREL 00 1.3	CATION EMENT R2 S0DD00	(. BASIC DE+01	SY57	R3	dinates.		5
FIXED-HINGED-HIN UNIFORM LATERAL P SER INFORMATION ME GIN OF SUPERELEME SULTANTS ABOUT OR T1 1 0.000000 PLATE EXAMPLE FIXED-HINGED-HI	GED-FREE RESSURE I ISSAGE NT BASIC IGIN OF E DE+00 0.	ENDDATA COUNT- LOAD (0.: COORDINN SUPERELEI T2 .00000000	25 LB ATE <i>S</i> MENT E+00	39 /IN**2) YSTEM WILL BASIC COORD 01 T3 -4.5000000H	DINATE S	AS REFER YSTEM IN : RESULTANT R1	JULY ENCE LO SUPEREL 00 1.3	CATION EMENT R2 S0DD00	(. BASIC DE+01	SY57	R3	dinates. Do		
FIXED-HINGED-HIN UNIFORM LATERAL P ER INFORMATION ME GIN OF SUPERELEME SULTANTS ABOUT OR T1 1 D.000000 PLATE EXAMPLE FIXED-HINGED-HI UNIFORM LATERAL	MRD-FREE RESSURE I ISSAGE INT BASIC IGIN OF E DE+00 0. INGED-FRE PRESSURE	ENDDATA COUNT- LOAD (0.: COORDIN SUPERELEI T2 .000D000D1 EE 8 LOAD (0	25 LB ATE <i>S</i> MENT E+00	39 /IN**2) YSTEM WILL BRAIC COORD 01 T3 -4.5D00D00E LB/IN**2)	2000-6.1	AS REFER YSTEM IN : RESULTANT R1	JULY ENCE LO SUPEREL 00 1.3	CATION EMENT R2 S0DD00	(. BASIC DE+01	SY57	R3	dinates. Do		
FIXED-HINGED-HIN UNIFORM LATERAL P SER INFORMATION ME USIN OF SUPERELEME SEULTANTS ABOUT OR TI 1 D.000000 PLATE EXAMPLE FIXED-HINGED-HI UNIFORM LATERAL	MRD-FREE RESSURE I ISSAGE INT BASIC IGIN OF E DE+00 0. INGED-FRE PRESSURE	ENDDATA COUNT- LOAD (0.: COORDIN SUPERELEI T2 .000D000D1 EE 8 LOAD (0	25 LB ATE <i>S</i> MENT E+00	39 /IN**2) YSTEM WILL BRAIC COORD 01 T3 -4.5D00D00E LB/IN**2)	2000-6.1	AS REFER YSTEM IN : RESULTANT R1	JULY ENCE LO SUPEREL 00 1.3	CATION EMENT R2 S0DD00	(. BASIC DE+01	SY57	R3	dinates. Do		
UNIFORM LATERAL P SER INFORMATION ME GGIN OF SUPERELEME ESULTANTS ABOUT OR T1 1 0.000000 PLATE EXAMPLE FIXED-HINGED-H:	MRD-FREE RESSURE I ISSAGE INT BASIC IGIN OF E DE+00 0. INGED-FRE PRESSURE	ENDDATA COUNT- LOAD (0.: COORDIN SUPERELEI T2 .000D000D1 EE 8 LOAD (0	25 LB ATE <i>S</i> MENT E+00 J.25 :: DR DA	39 /IN**2) YSTEM WILL BASIC COORD 01 T3 -4.50000004 LB/IN**2) TA BLOCK KL	L	AS REFER YSTEM IN : RESULTANT R1 7500000E+0	JULY ENCE LO SUPEREL OD 1.3 JUI	CATION EMENT R2 SODDOO	7. BASIC DE+01), 2003	9 SYS1	R3 000000E+ : NASTRA	dinates. Do	03 PAGE	6
FIXED-HINGED-HIN UNIFORM LATERAL P SER INFORMATION ME GIN OF SUPERELEME SULTANTS ABOUT OR TI 1 0.000000 PLATE EXAMPLE FIXED-HINGED-H: UNIFORM LATERAL * UEER INFORMATION	MRD-FREE RESSURE I ISSAGE INT BASIC IGIN OF E DE+00 0. INGED-FRE PRESSURE	ENDDATA COUNT- LOAD (0.: COORDINN SUPERELEN T2 .000D00001 EE 8 LOAD (0 8 S293 FC	25 LB ATE <i>S</i> MENT E+00 J.25 :: DR DA	39 /IN**2) YSTEM WILL BASIC COORD 01 T3 -4.50000004 LB/IN**2) TA BLOCK KL	L	AS REFER YSTEM IN : RESULTANT R1 7500000E+0	JULY ENCE LO SUPEREL OD 1.3 JUI	CATION EMENT R2 SODDOO	7. BASIC DE+01), 2003	9 SYS1	R3 000000E+ : NASTRA	DINATES. DD N 7/10/20	03 PAGE	6

JULY 10, 2003 NX MASTRAN

PLATE EXAMPLE

UNIFOR SER INFOR RIGIN OF	-HING (LAT) RMATI(SUPE)	ED-HINGE ERAL PRE ON MESEA RELEMENT	SSURE LOAD (0 BE BASIC COORDI	NATE SYSTEM WILI	. BE USED AS REFER DINATE SYSTEM IN S	RENCE LOCATION.	03 NX NASTRAN SIC SYSTEM COORI		PAGE	7
				51	CFORCE RESULTANT					
		Т1	Τ2	Т3	R1	R.2	R3			
1	D.0	00000E+	0000000.0	E+00 4.5000000	6.750DD00E+0	00 -1.3500000E+0	D.ODDOODDE+C	10		
ATE EXAD	IPLE					JULY 10, 200	3 NX MASTRAN	7/10/2003	PAGE	в
FIXED-F	INGE	D-HINGED	-FREE							
UNIFORM	LATE	RAL PRES	SURE LOAD (0.							
				DISP	LACEMENT	VECTOR				
POINT	ID.	TYPE	Τ1	T2	тз	R1	R2	R3		
	1	G	0.0	0.0	0.0	0.D	2.010781E-03	0.0		
	2	G	0.0	D.0	-2.627660E-D3	1.125413E-03	1.375545E-03	0.0		
	3	G	0.0	0.0	-3.678445E-03	1.5835328-03	-1.514721E-21	0.0		
	4	G	0.0	D.0	-2.627660E-D3	1.125413E-D3	-1.375545E-03	0.0		
	5	G	0.0	D.0	D.D	0.D	-2.010781E-03			
	6	G	0.0	D.0	D.D	0.0	1.188741E-03			
	7	G	0.0	0.0	-1.544730E-D3			0.0		
	8	G	0.0	0.0		1.469851E-03		0.0		
	9	G	0.0	0.0	-1.544730E-D3		-7.948730E-04	0.0		
	10	G	0.0	0.0	D.D	0.D	-1.188741E-03	0.0		
	11	G	0.0	0.0	D.D	0.D	4.129650E-04	0.0		
	13	G	0.D	0.0		9.315911E-04		0.0		
	14	G	0.D 0.D	0.0	-7.322498E-04 -5.316482E-04		1.553187E-21 -2.673020E-04	0.0		
	15	G	0.0	0.0	-5.310402E-04 D.D	0.D	-4.129650E-04			
	16	g	0.0	0.0	0.D	0.D	D.0	0.0		
	17	g	0.0	0.0	D.D	0.D	0.0	0.0		
	18	g	0.0	D.0	D.D	0.D	0.0	a.p		
	19	G	0.0	0.0	D.D	0.D	D.0	a.p		
	20	G	0.D	0.0	0.0	a.p	0.0	0.0		
ATE EXAN	IPLE					JULY 10, 200	3 NX NASTRAN	7/10/2003	PAGE	9
		-HINGED-								
UNIFORM	LATER	CAL PRESS	SURE LOAD (0.)							
			FOR	TRE OF S	INGLE-POI	NT CONE	TRAINT			
POINT	ID.	TYPE	т1	T2	тз	Rl	R2	R3		
	1	G	0.0	0.0		-9.891411E-02	D.0	0.0		
	5	G	0.0	0.0			0.0	0.0		
	6	G	0.0	D.0		-4.931600E-02	0.0	0.0		
	1.0	G	0.0	0.0	4.663B38E-D1	-4.931600E-02	0.0	0.0		
	11	G	0.0	0.0	3.687456E-D1	2.768068E-D1	0.0	0.0		
	15	G	0.0	0.0	3.687456E-D1	2.768068E-01	0.0	0.0		
	16	G	0.0	0.0	-4.810094E-01	1.029394E-01	2.657713E-02			
	17	G	0.0	0.0	9.980B71E-D1	-7.319196E-01	-5.360183E-03	0.0		
	18	G	0.0	0.0		-1.002403E+00	0.0	0.0		
	19	G	0.0	0.0		-7.319196E-01	5.360183E-03			
	20	G	0.0	0.0	-4.810D94E-D1	1.029394E-01	-2.657713E-02	0.0		

PLATE EXAMPLE FIXED-HINGED-HINGKD-FREE UNIFORM LATERAL PRESSURE LOAD (0.25 LB/IN**2) * * * * D B D I C T P R I N T * * * SUBDMAP	JULY 10, 2003 NX NASTRAN 7/10/2003 PAGE 11 P = PRTSUM , DMAP STATEMENT NO. 13
* * * * ANALY:	SIS SUMMARY TABLE * * * *
SEID PEID PROJ VERS APRCH SEMG SEMR SEKR SELG S	SELR MODES DYNRED SOLLIN PVALID SOLNL LOOPID DESIGN CYCLE SENSITIVITY
0 0 1 1' ' T T T T	T F F T 0 F -1 0 F
<pre>OSEID = SUPERELEMENT ID. PEID = PRIMARY SUPERELEMENT ID OF IMAGE SUPERELEMENT. PROJ = PROJECT ID NUMBER. VERE = VERSION ID. AFRCH = BLANK FOR STRUCTURAL ANALYSIS. HEAT FOR HEAT ' SEMG = STIFFINESS AND MASS MATRIX GENERATION STEP. SEMG = MASS MATRIX REDUCTION STEP (INCLUDES EIGENVALUE SEEG = LOAD MATRIX REDUCTION STEP. SELG = LOAD MATRIX GENERATION STEP. SELG = LOAD MATRIX REDUCTION STEP. MODES = T (TRUE) IF NORMAL MODES OR BUCKLING MODES CAL DYNEED = T (TRUE) IF NORMAL MODES OR BUCKLING MODES CAL DYNEED = T (TRUE) IF LINEAR SOLUTION EXISTS IN DATABASE FVALDD = T (TRUE) IF LINEAR SOLUTION EXISTS IN DATABASE LOOPID = THE LAST LOOPID VALUE USED IN THE NONLINEAR AN SOLML = T (TRUE) IF MONLINEAR SOLUTION EXISTS IN DATABASE DESIGN CYCLE = THE LAST DESIGN CYCLE (ONLY VALID IN OP SENEITIVITY = SENSITIVITY MATRIX GENERATION FLAG.</pre>	E SOLUTION FOR MODES). LCULATED. MFONENT MODE REDUCTION PERFORMED. SE. ANALYSIS. USEFUL FOR RESTARTS. BASE.

* * * END OF JOB * * *

Reviewing the Results

The value of epsilon, listed on page 6 of the output, is small, indicating a numerically well-behaved problem. A plot of the deformed plate is shown in Figure 2-5. As expected, the maximum displacement (-3.678445E-3 inches) occurs at grid point 3 in the -T3 direction. This deflection is approximately one-fourteenth the thickness of the plate, and is therefore a fairly reasonable "small" displacement.

It is also useful to check the applied loads against the reaction forces. We have:

Total Lateral Applied Force = $(0.25 \text{ lb/in}^2)(3 \text{ in})(6 \text{ in}) = 4.5 \text{ lbs}$

which is in agreement with the T3 direction SPCFORCE resultant listed on page 7 of the output. Note that the SPCFORCE is positive, and the applied load is in the negative z (-T3) direction.

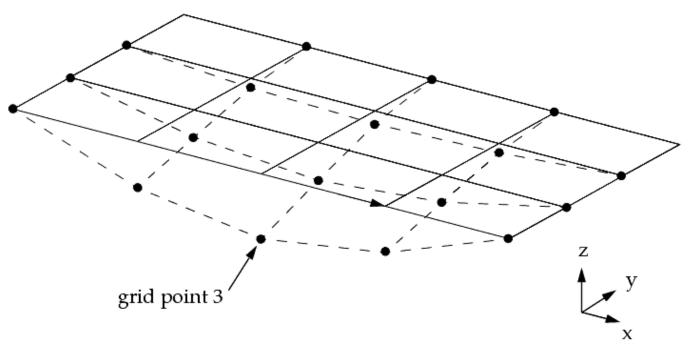


Figure 2-5. Deformed Shape

Comparison with Theory

Article 46 of Timoshenko, Theory of Plates and Shells, 2nd ed., gives the analytical solution for the maximum deflection of a fixed-hinged-free plate with a uniform lateral load as:

 $W_{max} = (0.582 \text{ qb}^4 / \text{D}) \text{ (for b/a = 1/2)}$

where:

q = lateral pressure = 0.25 lb/in²
D =
$$\frac{Et^{3}}{12(1-v^{2})} = \frac{(30 \times 10^{6} \text{ lb/in}^{2})(0.5 \text{ in})^{3}}{12(1-0.3^{2})} = 343.407$$

Therefore, the maximum deflection is:

$$W_{max} = \frac{.0582(0.25 \text{ lb/in}^2)(3 \text{ in})^4}{343.407 \text{ in-lb}} = 3.43193 \text{ E-3 in}$$

The NX Nastran solution at grid point 3 is:

W_{max} = 3.678445E-3 in

The NX Nastran result (which includes transverse shear) is 7.2% greater than the theory solution. The theory solution does not account for transverse shear deflection. Rerunning the model without shear (by eliminating MID3 in field 7of the PSHELL entry) gives a deflection of:

 W_{max} (no shear) = 3.664290E-3 in

Thus, for this thin plate, adding shear deflection results in less than half a percent difference in the total deflection.

2.3 Gear Tooth with Solid Elements

In this problem we create a very simple CHEXA solid element model of a gear tooth. In addition, NX Nastran's subcase feature is used to apply two load cases in a single run.

Problem Statement

Two spur gears are in contact as shown in Figure 2-6. The gears are either aligned or misaligned. In the aligned case, a distributed load of 600 N/mm exists across the line of contact between two teeth. The line of contact is located at a radius of 99.6 mm from the gear's center. In the misaligned case, a concentrated load of 6000 N acts at a single point of contact at the edge of a tooth. The gear teeth are 10 mm wide and 23.5 mm high (from base to tip). The gear's material properties are:

E = 2.0 x 10⁵ MPa

v = 0.3

The goal is to obtain a rough estimate of a gear tooth's peak von Mises stress for each load case. von Mises stress, a commonly used quantity in finite element stress analysis, is given by:

$$\sigma_{von} = \frac{1}{\sqrt{2}} [(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 + 6(\tau_{yz})^2 + 6(\tau_{zx})^2 + 6(\tau_{xy})^2]^{1/2}$$

Equation 2-1.

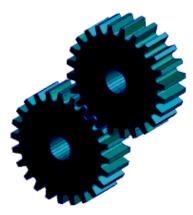


Figure 2-6. Spur Gears

The Finite Element Model

A single gear tooth is modeled using two CHEXA solid elements with midside grid points as shown in Figure 2-7. Midside grid points are useful when the shape of a structure is complex or when bending effects are important.

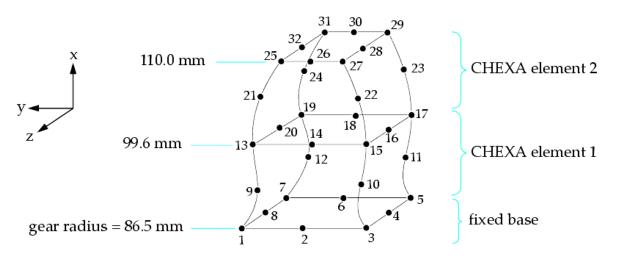


Figure 2-7. Finite Element Model of a Single Gear Tooth

Applying the Loads

Subcase 1 represents aligned gear teeth and uses the distributed load shown in Figure 2-8. The total applied load is given by:

Total Load = Distributed Load · Width of Gear Tooth = 600 N/mm · 10 mm = 6000 N

In order to approximate the "contact patch" of mating gear teeth, we distribute the total force of 6000 N across the line of contact with 1000 N on each corner grid (grid points 15 and 17) and 4000 N on the center grid (grid point 16). A load set identification number of 41 (arbitrarily chosen) is given to the three FORCE Bulk Data entries of subcase 1.

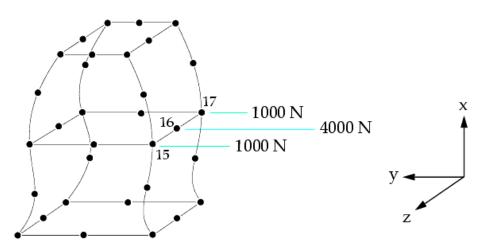


Figure 2-8. Gears in Alignment (Distributed Load)

Subcase 2 represents misaligned gear teeth and uses a single concentrated force of 6000 N as shown in Figure 2-9. A load set identification number of 42 is given to the single FORCE entry of subcase 2. Note that the total applied force (i.e., force transmitted from one tooth to the next) is the same in both subcases.

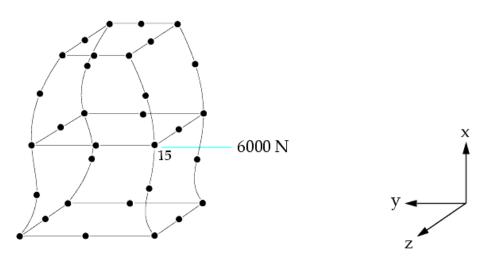


Figure 2-9. Gears Misaligned (Concentrated Load)

Applying the Constraints

The base of the tooth is assumed to be fixed as shown in Figure 2-7. Consequently, grid points 1 through 8 are constrained to zero displacement in their translational DOFs (1, 2, and 3). Recall that solid elements have only translational DOFs and no rotational DOFs. Since each grid point starts out with all six DOFs, the remaining "unattached" rotational DOFs must be constrained to prevent numerical singularities. Thus, all grid points in the model (1 through 32) are constrained in DOFs 4, 5, and 6. The constraints are applied using SPC1 Bulk Data entries.

Output Requests

Stress output is selected with the Case Control command STRESS = ALL. Note that this command appears above the subcase level and therefore applies to both subcases.

The Input File

The complete input file is shown in Listing 2-3.

```
ID SOLID, ELEMENT MODEL
SOL 101
TIME 100
CEND
TITLE = GEAR TOOTH EXAMPLE
STRESS = ALL
SPC = 30
SUBCASE 1
    LOAD = 41
    SUBTITLE = GEAR TOOTH UNDER 600 N/mm LINE LOAD
SUBCASE 2
   LOAD = 42
    SUBTITLE = GEAR TOOTH UNDER 6000 N CONCENTRATED LOAD
BEGIN BULK
                                5.0
GRID, 1,
                86.5,
                       12.7,
           1
GRID, 2,
                86.5,
                       0.0,
                               5.0
           ,
GRID, 3,
                86.5, -12.7,
                               5.0
           ,
          ,
               86.5,
                      -12.7,
                               0.0
GRID, 4,
                      -12.7,
GRID, 5,
                86.5,
                               -5.0
          ,
GRID, 6, ,
GRID, 7, ,
                       0.0, -5.0
12.7, -5.0
                86.5,
          ,
                86.5,
GRID, 8,
              86.5,
                      12.7,
                              0.0
           ,
```

<pre>GRID, 9, GRID, 10, GRID, 11, GRID, 12, GRID, 13, GRID, 14, GRID, 15, GRID, 16, GRID, 17, GRID, 18, GRID, 20, GRID, 20, GRID, 21, GRID, 22, GRID, 22, GRID, 24, GRID, 25, GRID, 25, GRID, 26, GRID, 27, GRID, 28, GRID, 29, GRID, 30, GRID, 31, GRID, 32, \$</pre>	<pre>, 99.6, , 100.0, , 99.6, , 99.6, , 100.0, , 99.6, , 105.0, , 105.0, , 105.0, , 105.0, , 105.0, , 105.0, , 110.0, , 110.0, , 110.0, , 110.0,</pre>	-8.7, -8.7, 8.7, 7.8, 0.0, -7.8, -7.8, -7.8, 0.0, 7.8, 5.7, -5.7, 5.7, 5.7, 5.7, -3.5, 0.0, -3.5, -3.5, 0.0, -3.5, -3.5, 0.0, -3.5, -3.5, 0.0, -3.5, -3.5, 0.0, -3.5, 0.0, -3.5, -3.5, 0.0, -3.5, -3.5, 0.0, 0.0, -3.5, 0.0, 0.0, -3.5, 0.0, 0.0, -3.5, 0.0, 0.0, -3.5, 0.0, 0.0, -3.5, 0.0, 0.0, -3.5, 0.0, 0.0, -3.5, 0.0, 0.0, -3.5, 0.0, 0.0, -3.5, 0.0, 0.0, -3.5, 0.0, 0.0, -3.5, 0.0, 0.0, -3.5, 0.0, 0.0, 0.0, -3.5, 0.0, 0.0, 0.0, -3.5, 0.0, 0.0, 0.0, -3.5, 0.0, 0	5.0 5.0 -5.0 5.0 5.0 -5.0 -5.0 -5.0 -5.0 5.0 5.0 -5.0 5.0 5.0 -5.0 5.0 -5.0			
CHEXA, 1, , 19, , 12,	10, 3, 5 13, 4, 6 9, 16,	, 8,	1, 15, 2, 10, , 20,			
	10, 15, 25, 16, 21, 28,	18,	19, 20, 32,	13, 14, 26		
\$ PSOLID, 10, MAT1, 20, SPC1, 30, SPC1, 30, \$ DISTRI FORCE, 41, FORCE, 41, FORCE, 41,	2.+5, , 456, 123, BUTED LOAD 15, 16, 17, TRATED LOAD	1, 1, FOR SUB ,	THRU, BCASE 1 1000., 4000., 1000.,	8 0., 0., 0.,	1., 1., 0 1., 0	•

Listing 2-3. Gear Tooth Input File

NX Nastran Results

The NX Nastran results are shown in Table 2-3.

Table 2-3. Gear Tooth f06 Results File

THIS PROGRAM IS CONFIDENTIAL AND A TRADE SECRET OF EDS PLM SOLUTIONS CORP. THE RECEIPT OR POSSESSION OF THIS PROGRAM DOES NOT CONVEY ANY RIGHTS TO REPRODUCE OR DISCLOSE ITS CONTENTS, OR TO MANUFACTURE, USE, OR SELL ANYTHING HEREIN, IN WHOLE OR IN PART, WITHOUT THE SPECIFIC WRITTEN CONSENT OF EDS PLM SOLUTIONS CORPORATION. * * * * * * EDS PLM SOLUTIONS * * * * CORP * * * * * * * * NX Nastran * * * * * * * * VERSION - 1.0 * * * * * * * * * * JUL 10, 2003 * * * * * * . . * * * * Intel * * . . * *MODEL PentiumIII/995 (MERCED.scm) * * * * * * * * Windows 2000 5.0 (Build 2195) * * * * JULY 10, 2003 NX NASTRAN 7/10/2003 PAGE 1 NASTRAN EXECUTIVE CONTROL DECK ECHO ID SOLID, ELEMENT MODEL BOL 101 TIME 100 CEND GEAR TOOTH EXAMPLE JULY 10, 2003 NX MASTRAN 7/10/2003 PAGE 2 CASE CONTROL DECK ECHO CARD COUNT 1 TITLE - GEAR TOOTH EXAMPLE 2 STRESS = ALL 3 SPC = 3D 4 SUBCASE 1 5 LOAD - 41 SUBTITLE = GEAR TOOTH UNDER 600 N/MM LINE LOAD 6 SUBCASE 2 7 - 42 LOAD в 9 SUBTITLE - GEAR TOOTH UNDER 6000 N CONCENTRATED LOAD BEGIN BULK 10 INPUT BULK DATA CARD COUNT -52

EAR TOOTH EXAMPLE						JOPJ	10,	2003	NX NASTRAN	7/10/2003	PAGE	3
			s o	RTED	BULI	к ра	та	всн	0			
CARD												
COUNT	. 1	2	2 3	4	5	6		7	в., 9	10 .		
1-	CHEXA	1	1.0	3	5	7	1	15		+D00001		
2 -	++00000		13	4	6	в	2	1.0	11	+D00DD2		
3-	++00000		9	16	18	20	14			+D00DD3		
4-	CHEXA	2	10	15	17	19	13	27		+D00DD4		
5-	++00000		25	16	1.8	20	14	22	23	+000005		
6- 7-	++00000		21	28	30	32 D.	26			+D00006		
р- В-	FORCE	41 41	15 16		1000. 4000.	D.	1. 1.	D. D.				
9-	FORCE	41	17		1000.	D.	1.	D.				
10-	FORCE	42	15		6000.	D.	1.	D.				
11-	GRID	1		86.5	12.7	5.0						
12-	GRID	2		86.5	D.0	5.0						
13-	GRID	3		86.5	-12.7	5.0						
14-	GRID	4		86.5	-12.7	0.0						
15-	GRID	5		86.5	-12.7	-5.0						
16-	GRID	6		86.5	0.0	-5.0						
17-	GRID	7		86.5	12.7	-5.0						
1B-	GRID	а		86.5	12.7	0.0						
19-	GRID	9		93.D	в.7	5.0						
20-	GRID	10		93.D	-8.7	5.0						
21-	GRID	11		93.D	-8.7	-5.0						
22-	GRID	12		93.D 99.6	B.7	-5.0						
23-	GRID GRID	13 14		99.6 100.D	7.8 D.0	5.0 5.0						
25-	GRID	15		99.6	-7.8	5.0						
26-	GRID	16		99.6	-7.8	D.0						
27-	GRID	17		99.6	-7.8	-5.0						
28-	GRID	18		100.0	D.0	-5.0						
29-	GRID	19		99.6	7.8	-5.0						
30-	GRID	20		99.6	7.8	0.0						
31-	GRID	21		105.0	5.7	5.0						
32-	GRID	22		105.0	-5.7	5.0						
33-	GRID	23		105.0	-5.7	-5.0						
34-	GRID	24		105.0	5.7	-5.0						
35-	GRID	25		110.0	3.5	5.0						
36-	GRID	26		110.0	D.0	5.0						
37- 38-	GRID GRID	27 28		110.0	-3.5	5.0 D.0						
39-	GRID	29		110.D 110.D	-3.5	-5.0						
40-	GRID	30		110.D	0.0	-5.0						
41-	GRID	31		110.0	3.5	-5.0						
42-	GRID	32		110.0	3.5	D.0						
43-	MAT1	20	2.+5		D.3							
44-	PSOLID	10	20									
45-	SPC1	30	123	1	THRU	в						
46-	SPC1	30	456	1	THRU	32						
	ENDDATA	,										
TOTA	L COUNT-		47									
SEAR TOOTH EXAMPLE						JU	LY 10	0. 2003	NX MASTRAN	7/10/2003	PAGE	4
								.,		.,,		-
ER INFORMATION MESSAGE			SYSTEM WI	LL BE USE	KD AS REF	REENCE	LOCATI	CON.				
ER INFORMATION MESSAGE IGIN OF SUPERELEMENT BA	SIC COORD	INATE				N SUPER	ELEMEI	T BAST	C SVETEM COO	RDINATES.		
IGIN OF SUPERELEMENT BA				ORDINATE	SYSTEM 1				C BIBIAN COU			
IGIN OF SUPERELEMENT BA			BASIC CO	ORDINATE DLOAD				ar mar	C SISIMN COU			
IGIN OF SUPERELEMENT BA ESULTANTS ABOUT ORIGIN	OF SUPERE	LEMENT	BASIC CO	DLOAD	RESULTAN							
IGIN OF SUPERELEMENT BA BEULTANTS ABOUT ORIGIN T1	OF SUPERE	LEMENT	BASIC CO	DLOAD	resultan Ri	T	R	2	R3			
IGIN OF SUPERELEMENT BA ESULTANTS ABOUT ORIGIN T1 1 0.0000000E+00	OF EUPERE T2 6.00000	LEMENT	BASIC CO T3 0.00000	DLOAD	RESULTAN R1 0.0000000	7T 0E+0D 0	R:	2 000E+00	R3 5.9760000E			
IGIN OF SUPERELEMENT BA BEULTANTS ABOUT ORIGIN T1	OF EUPERE T2 6.00000	LEMENT	BASIC CO T3 0.00000	DLOAD	RESULTAN R1 0.0000000	7T 0E+0D 0	R:	2 000E+00	R3 5.9760000E			
IGIN OF SUPERELEMENT BA ESULTANTS ABOUT ORIGIN T1 1 0.0000000E+00	OF EUPERE T2 6.00000	LEMENT	BASIC CO T3 0.00000	DLOAD	RESULTAN R1 0.0000000	7T DE+0D 0 DE+04 0	R: .00000	2 000E+00 000E+00	R3 5.9760000K 5.9760000K			5
IGIN OF SUPERELEMENT BA ESULTANTS ABOUT ORIGIN T1 1 0.0D000D0E+D0 2 0.0D000D0E+D0 GEAR TOOTH EXAMPLE	T2 6.00000 6.00000	LEMENT 00E+03 00E+03	BASIC CO (T3 0.00000 0.00000	00E+00 0 00E+00 -3	RESULTAN R1 0.0000000	7T DE+0D 0 DE+04 0	R: .00000	2 000E+00 000E+00	R3 5.9760000K 5.9760000K	+05		5
IGIN OF SUPERELEMENT BA ESULTANTS ABOUT ORIGIN TI 1 D.GDDGGDDE+DD 2 D.GDDGGDDE+DD 3EAR TOOTH EXAMPLE * USER INFORMATION MESE	OF EUPERE: T2 6.000000 6.000000	LEMENT 00E+03 00E+03 FOR DA	TA BLOCK 1	00E+00 0 00E+00 -3	RESULTA) R1 0.00000000 0.0000000	nr DE+0D 0 DE+04 0 JU	R: .00000 .00000	2 000E+00 000E+00 0, 2003	R3 5.9760DDDE 5.9760DDDE NX NASTRAN	+05 7/10/2003 SUBCA	SE 1	
IGIN OF SUPERELEMENT BA ESULTANTS ABOUT ORIGIN T1 1 D.ODDOODDE+DD 2 D.ODDOODDE+DD GEAR TOOTH EXAMPLE * USER INFORMATION MESS LOAD EEQ. NO.	OF SUPERE: T2 6.00D00 6.00D00 AGE 5293 : EPSIL	DDE+03 0DE+03 0DE+03 FOR DA	TA BLOCK	SLOAD DOE+DO C DOE+DO -3 KLL EXTERNAI	RESULTAN R1 0.0000000 0.0000000	nr DE+0D 0 DE+04 0 JU	R: .00000 .00000	2 000E+00 000E+00 0, 2003	R3 5.9760DDDE 5.9760DDDE NX NASTRAN	+05	SE 1	
IGIN OF SUPERELEMENT BA ESULTANTS ABOUT ORIGIN T1 1 D.ODOGODDE+DD 2 D.ODOGODDE+DD GEAR TOOTH EXAMPLE * USER INFORMATION MESE LOAD EEQ. NO. 1	OF EUPERE: T2 6.000000 6.000000	DOE+03 0DE+03 POE DA ON 6E-16	TA BLOCK	00E+00 0 00E+00 -3	RESULTAN R1 0.0000000 0.0000000 0.0000000 0.0000000	nr DE+0D 0 DE+04 0 JU	R: .00000 .00000	2 000E+00 000E+00 0, 2003	R3 5.9760DDDE 5.9760DDDE NX NASTRAN	+05 7/10/2003 SUBCA	SE 1	

GEAR TOOTH	EXAMPLE						JULY	10.	2003 NX MASTRA	N 7/10/2003	PAGE 6
		60	0 N/MM LINE LOA	Ð				,		.,	
											SUBCASE 1
		з т	RESSES	ΙМ	неханер	RO	N SOLID	E	LEMENTS	(H E X A)	
D	CORNE	R	CEN	TER	AND CORNER POINT	r st	RESSES		DIR. COSINE	S MEAN	
ELEMENT-ID	GRID-I	D	NORMAL		SHEAR		PRINCIPAL		-ABC	 PRESSURE 	VON MISES
1	DG	RID	CS 20 GP								
	CENTER	х	3.259422E+D0	XY	3.291709E+01	А	3.381539E+01	ΓX	D.73-D.6B 0.00	-1.145106E+00	5.718108E+01
		Y	-1.645274E+D0	ΥZ	-1.774964E-15	в	-3.220124E+01	$\Gamma \Lambda$	D.68 D.73 O.DD		
		z	1.821169E+D0	ZΧ	1.720846E-15	С	1.821169E+00	LZ	D.00 D.0D-1.0D		
	3		9.586081E+01		1.681114E+01	д	1.038217E+02	ΓX	0.94-0.33-0.01	-5.882202E+01	6.854695E+01
		Y	3.988232E+D1	ΥZ	2.886330E+00	в	2.943023E+01	$\Gamma \Lambda$	D.24 D.7D-0.67		
		z	4.072294E+01	ZΧ	-1.569083E+01	C	4.321412E+01	LZ	-0.22-0.63-0.74		
	5		9.586081E+01		1.681114E+01				D.94-D.33 0.D1	-5.882202E+01	6.854695E+01
		Y	3.988232E+D1	ΥZ	-2.886330E+00	в	2.943023E+01	ΓÅ	D.24 D.7D 0.67		
		z	4.072294E+01	ZΧ	1.569083E+01	С	4.321412E+01	LZ	0.22 0.63-0.74		
	7		-1.049563E+02		3.525449E+01				D.43 D.9D-0.06	6.616337E+01	B.762088E+01
					-2.680735E+00						
		z	-4.580541E+D1	ZΧ	-1.339709E+01	C	-4.808340E+D1	LZ	-0.42 0.14-0.89		
	1		-1.049563E+02		3.525449E+01				D.43 D.9D 0.D6	6.616337E+01	B.762088E+01
			-4.772841E+01						D.80-D.41 0.44		
		z	-4.580541E+01	ZΧ	1.339709E+01	C	-4.808340E+01	LZ	0.42-0.14-0.89		
	15		3.247527E+01						D.90-D.39 0.18	2.277133E+01	1.725774E+02
			-1.019971E+02						0.37 0.92 0.12		
		z	1.207B83E+D0	ZX	1.5005958+01	C	-1.633868E+DO	LZ	D.22 D.04-0.98		
	1.77		3.247527E+01		6 00000000.01		C 4001000.00		D.90-D.39-0.1B		1.725774E+02
	17		-1.019971E+02						D.37 D.92-0.12	2.2771338+01	1.7257748+02
		z	1.207B83E+D0	ZA	-1.500595E+01	C	-1.633B68E+D0	LZ	-0.22-0.04-0.98		
	10		-4.222647E+D1	~~~	1.067942E+01		- B - D14685 B. D0		D.36 D.93 0.D6	2.293951E+01	3.672278E+01
	19				-8.758508E-01				D.66-D.3D 0.6B	2.2333518+01	3.0722708+01
		z	-1.241265E+D1	ZA	7.4117058+00	C	-1.224508E+01	12	0.66-0.20-0.73		
	12	v	-4.222647E+01	xv	1.067942E+01	n	-9 214685E-00	1.7	D.36 D.93-0.D6	2.293951E+01	3.672278E+01
	13		-1.417941E+01						D.66-D.3D-0.6B	z.z555512+01	3.0122105+01
					-7.411705E+00						
		2	-1.2412658+01	24	-7.4117058+00	0	-1.2245088+01	12	-0.66 0.20-0.73		
2	0/3	RID	CS 20 GP								
•	54										
	CENTER	y	4.8822968100	xv	-4.862728E-01	n	4.904797E+00	1.8	1.00 0.05 0 00	-7.4784738-01	9.70B314E+00
	CHARTER.		-5.604282E+D0				-5.626782E+D0				2.10021444400
			2.965527E+D0				2.965527E+D0				
		-	A		211101000-10	-	A 1 A 14+00		1.00 0.00 4.00		
	15	x	-6.527560R-01	xv	-3.658327E+01	,n	1.3379058+03	Ŀz	D.92 D.33-0.23	3.3869068+01	1.117319E+02
					-3.515887E+00		-1.073635E+02				
					-6.853597E+00						
		_				-					

SEAR TOOTH										JOLY	10,	2003	NX NASTRA	IN 7/10/2003	PAGE	7
GEAR TOO	TH UNDER	600	N/MM LINS	E LOA	D										SUBCASE	1
														в (нех		-
							L A A							D (ABA	~)	
	CORNER		(CENTE	R AN	D CORME	R POIN	r stre	ESES-			DIR	. COBINES	MEAN		
LEMENT-ID	GRID-I	D	NORM	AL			SHEAR			PRINCIP	AL	-1	АBC	- PRESSUR	E	VON MISES
	17	х	-6.5275603	E-D1	XY	-3.658	327E+0	1 A	1.3	337905E+0	LX LX	0.92	D.33 0.23	3.386906E+0	1 1.1	17319E+02
		Y	9.4479283	E+D1	ΥZ	3.515	887E+0	о в	-1.0	073635E+0	2 LY	-D.30	D.94-0.14			
		z	6.4751663	E+D0	Zπ	6.853	597E+0	0 C	-7.6	522752E+0	O LZ	D.26	-0.06-0.96			
	19													B.570051E+0	0 5.9	89574E+0
													0.72 0.14			
		z	-2.4645653	E+D0	ZΧ	3.459	682E+0	0 C	-3.9	948429E+0	0 LZ	D.24	-0.04-0.97			
	13	x	-1.0648643	E+01	XY	3.353	643E+0	1 A	2.3	346755E+0	1 LX	D.69	-0.69-0.20	8.570051E+0	0 5.9	89574E+0
		Y	-1.2596953	E+D1	YΖ	-5.501	396E+0	о в	-4.5	522928E+0	1 LY	D.68	0.72-0.14			
		z	2.4645653	E+D0	ZΧ	-3.459	682E+0	0 C	-3.9	948429E+0	0 LZ	-D.24	D.04-0.97			
	37		4 6050501	2.00	~~	1 4 9 4	C 8 7 8 . 0					0 21	0 85 0 01	-1.087944E+0	1 4 2	87141E-0
	27												-0.31 0.03	-1.00/3445+0	4.2	37141E+01
													D.0D-1.0D			
		2	3.2203751	8+00	24	3.455	2778-0	1 0	3.1	1995218+0	10 12	0.03	0.00-1.00			
	29	х	4.6059583	E+D0	ХҮ	1.404	592E+0	1 A	з.в	862373E+0	LX	D.31	0.95-0.01	-1.087944E+0	1 4.2	97141E+0
		Y	3.4017903	E+D1	ΥZ	-1.107	342E+0	0 B	-9.1	173705E+0	00 LY	D.95	-0.31-0.03			
		z	3.2263753	E+D0	ZΧ	-3.496	277E-0	1 C	3.1	L88291E+0	00 LZ	-0.03	0.00-1.00			
	31	x	-3.3063851	E+D1	XY	-1.294	417E+0	1 A	-1.6	547081E+0)1 LX	-0.24	D.44-0.87	3.483593E+0	1 4.0	06144E+0
													D.89 0.46			
		-											0.15-0.19			
							13 88 . 0									
	25													3.483593E+0	4.0	09166810;
		r	-5.3637513	s+01	12	4.772	249840	υB	-6.0	291128E+C	VI DA	0.04	D.89 0.46			

GEAR TOOTH	EXAMPLE						JULY	10, 2003	NX MASTRAN	7/10/2003	PAGE 8
		2 60	00 N CONCENTRAT	TED L	OAD					.,,	
										1	SUBCASE 2
		з т	RESSES	IN	неханер	RO	N SOLID	ELEM	ENTS	(неха)	
	CORNER			ER AN	D CORNER POINT	STRE					
ELEMENT-ID	GRID-I				SHEAR		PRINCIPAL	L -A	BC-	PRESSURE	VON MISES
1	DG	RID	CS 20 GP								
	CENTER				3.291783E+01					-1.679391E+00	5.933091E+01
					5.886761E+0D						
		z	-6.757360E+D0	ZХ	-7.090083E-02	C	-6.324505E+00	LZ 0.09	D.19-0.9B		
	з									-1.143677E+01	4.453531E+01
		Y	6.5376D6E+D0	ΥZ	-1.615572E+01	в	-1.800151E+D1	LY 0.09	D.63-0.77		
		z	7.917767E+D0	ZΧ	1.433615E+01	C	2.281349E+01	LZ 0.50	D.64 0.5B		
	5									-1.037578E+02	1.308156E+02
					-2.795475E+01						
		z	7.183234E+01	ZΧ	3.914438E+01	С	9.918353E+D1	LZ 0.31	0.72 0.63		
		-				-					
	7									9.001753E+01	1.143501E+02
					1.136970E+01						
		z	-6.231984E+01	ZΧ	-3.968795E+01	C	-6.160725E+D1	LZ D.84	0.37 0.39		
	1									4.375712E+01	1.177515E+02
					1.234834E+01						
		z	-3.029339E+01	ZΧ	-1.599290E+01	C	-2.569135E+D1	LZ-0.01	0.22-0.97		
					-						4
	15				2.190359E+02					1.4378448+02	6.305996E+02
					1.0B3072E+02						
		z	2.662374E+D1	ZX	5.490842E+01	C	-3.455194E+D1	LZ D.62-	D.14-0.7B		
	17	~	E PRABCER.01	~~	-7 5700638.01		3 1866638.03	17-0-44	0 77 0 47	- D 227714P.01	1.919590E+02
	17				-6.093703E+01					-9.227718E+01	1.9195908+02
		Z	0.972133E+01	žЛ	2.121105E+01	C	4.548441E+D1	12-0.39	0.31-0.86		
	10	v	-4 RE73E4E.03	vv	1 4720038.01		5 5008388.03	LX-0.10	0 80-0 58	1.0561048.03	1.095192E+02
	13				3.695835E+01					1.00010#1+01	1.0351325+02
					-2.810862E+01						
		24	3.1008436+01	24	-2.0100028+01	6	-1.0304416+01	14 0.03	0.35 0.26		
	13	x	-4.758395E±01	xv	1.2831938+00	n	1.204274E+01	LX-0.61	0.23-0.76	5.867738R+01	1.085369E+02
					-1.684200E+01						
					-4.637775E+01						
		2	-2.6630616+01	24	-4.03///56+01	~	-0.0700405+01	114 0.70	0.33-0.53		
2	DG	BID	CS 20 GP								
-											
	CENTER	x	4.884711E+00	XY	-4.8640168-01	А	5.807430E+D0	LX-0.41-	0.03-0.91	-2.043858E+00	9.684574E+00
					4.776686E+0D						
					-3.765759E-02						
		_				-					
	15	х	-2.824835E+01	XY	-1.569827E+02	Д	7.118480E+01	LX-0.43	0.35-0.84	1.191875E+02	4.959504E+02
					8.750310E+01						
					9.658312E+00						
						-					

GRAR TOOTH	EXAMPLE						JULY	10, 200	3 NX NASTRAN	7/10/2003	PAGE	9
GEAR TOO	TH UNDER	60	00 N CONCENTRAT	ED I	OAD					SUE	BCASE 2	
			STRESES	1	м нехан	ЕD	RON BOL	ID E	LEMENTS			
	CORNER		CENTE	R AN	D CORNER POINT	STRE	SSES	DI	R. COSINES	MEAN		
ELEMENT-ID	GRID-II	D	NORMAL		SHEAR		PRINCIPA			PRESSURE	vo	N MIERS
	17	х	3.985225E+01	XY	8.883585E+01	А	1.923506E+D2	LX D.4	5 0.70-0.56	-7.316022E+01	2.038	985E+02
			1.231419E+02									
		z	5.648651E+01	ZX	2.036191E+01	C	7.016407E+01	LZ-0.3	0-0.47-0.83			
	19	х	2.995373E+D0	XY	-4.761217E+01	А	1.047138E+02	LX-D.3	8 D.68-0.63	-2.687507E+01	1.271	617E+02
		Y	1.995684E+01	ΥZ	4.607714E+01	в	-4.112845E+01	LY D.6	0 0.70 0.39			
		z	5.7673D0E+D1	ZX	-1.472099E+01	C	1.703989E+01	LZ 0.7	0-0.22-0.67			
	13	х	-3.080114E+01	XY	1.097670E+02	А	4.568690E+01	LX D.8	1-0.55-0.21	6.197749E+01	2.154	415E+02
		Y	-1.260158E+02	ΥZ	-1.312900E+01	в	-1.981381E+D2	LY D.5	4 0.84-0.11			
		z	-2.911551E+01	ZΧ	-1.319591E+01	С	-3.348130E+D1	LZ-0.2	4 D.02-0.97			
	27	x	1.384408E+01	XY	6.899274E+01	А	2.069963E+02	LX D.3	4 D.06-0.94	-5.168850E+01	2.342	441E+02
		Y	1.735428E+D2	YZ	-4.039832E+01	в	-4.009761E+01	LY 0.93	2 0.17 0.35			
		z	-3.232135E+D1	ZΧ	-1.512994E+01	С	-1.183315E+01	LZ-D.1	8 D.98 O.DD			
	29	x	4.168195E+01	xy	-3.819234E+01	д	8.848639E+01	LX-D.6	2 0.35-0.70	-2.957272E+01	9.502	836E+01
			3.132346E+D1									02011701
		z	1.571276E+D1	ZΧ	-8.393348E+00	С	2.029048E+01	LZ 0.43	1-0.63-0.67			
	- 1		8.506B35E+01		1 0176758.01		1 3440148-03		0-0-00-0-00	- B ECRECATION	a	613 P .01
			1.283673E+D2							-0.300004+01	0.235	10+4610
			4.362441E+D1									
			-1.289453E+02 -1.184131E+02							1.001211E+02	1.037	033E+02
			-5.300490E+D1									
SEAR TOOTH	EXAMPLE						JULY	10, 2003	3 NX NASTRAN	7/10/2003	PAGE	11
* * * DB	ріст	P	RINT * * *		SUBDMAP = P	RTSU	M , DMAP STAT	FEMENT NO	 13 			
				*	ANALYEIE	g	UMMARY T	ABLE	* * * *			
ID PEID PR	OJ VERS A	APR	CH BEMG SE	MR S	ekr selg <i>s</i> elr m	ODES	DYNRED BOLLIN	PVALID S	SOLNL LOOPID	DESIGN CYCLE S	ENSITIVI	TY
			, т									
D 0	1 1	-	· 1	т	ттт		в в .	r u	F -1	u		F
ID = SUPERE												
			ENT ID OF IMAGE	SUP	ERELEMENT.							
OJ = PROJEC RE = VERSIO		BER										
		uen	URAL ANALYSIS.	HEA	T FOR HEAT TRAN	SFER	ANALYSIS.					
			S MATRIX GENERA									
			FION STEP (INCL		EIGENVALUE SOL	UTIO	N FOR MODES).					
			REDUCTION STEP. ATION STEP.									
LR = LOAD M												
			AL MODES OR BUC						_			
			SENERALIZED DYN. EAR SOLUTION EX		P	NT M	ODE REDUCTION I	PERFORME				
			ID OF P-VALUE F									
			VALUE USED IN			SIS.	USEFUL FOR RE	estarte.				
			INEAR SOLUTION									
			DESIGN CYCLE (O MATRIX GENERA			ZATI	ON).					
				* *	* END OF JOB *	* *						

Stress Results

First we examine the output for error or warning messages—none are present—and find epsilon, which is reported for each subcase (page 5 of the output). Epsilon is very small in both cases.

CHEXA stress results are reported at each element's center and corner grid points. Stresses at midside grid points are not available. For gear teeth in alignment (subcase 1), the peak von Mises stress is 1.73E2 MPa at grid points 15 and 17 of CHEXA element 1 (page 6 of the output shown in Table 2-3.) For misaligned gear teeth (subcase 2), the peak von Mises stress is 6.31E2 MPa at grid point 15 (see output).

Observe that for both subcases the von Mises stresses at grid points shared by two adjacent elements differ. Solid element stresses are calculated inside the element and are interpolated in toward the element's center and extrapolated outward to its corners. The numerical discrepancy between shared grid points is due to interpolation and extrapolation differences between adjoining elements in regions where high stress gradients exists (which is often the case in a model with an inadequate number of elements). This discrepancy between neighboring element stresses can be reduced by refining the element mesh.

Note also that solid elements result in a considerable volume of printed output. If printed output is desired for larger solid element models, you may want to be somewhat selective in requesting output using the Case Control Section of the input file.

Siemens Industry Software

Headquarters

Granite Park One 5800 Granite Parkway Suite 600 Plano, TX 75024 USA +1 972 987 3000

Americas

Granite Park One 5800 Granite Parkway Suite 600 Plano, TX 75024 USA +1 314 264 8499

Europe

Stephenson House Sir William Siemens Square Frimley, Camberley Surrey, GU16 8QD +44 (0) 1276 413200

Asia-Pacific

Suites 4301-4302, 43/F AIA Kowloon Tower, Landmark East 100 How Ming Street Kwun Tong, Kowloon Hong Kong +852 2230 3308

About Siemens PLM Software

Siemens PLM Software, a business unit of the Siemens Industry Automation Division, is a leading global provider of product lifecycle management (PLM) software and services with 7 million licensed seats and 71,000 customers worldwide. Headquartered in Plano, Texas, Siemens PLM Software works collaboratively with companies to deliver open solutions that help them turn more ideas into successful products. For more information on Siemens PLM Software products and services, visit www.siemens.com/plm. © 2014 Siemens Product Lifecycle Management Software Inc. Siemens and the Siemens logo are registered trademarks of Siemens AG. D-Cubed, Femap, Geolus, GO PLM, I-deas, Insight, JT, NX, Parasolid, Solid Edge, Teamcenter, Tecnomatix and Velocity Series are trademarks or registered trademarks of Siemens Product Lifecycle Management Software Inc. or its subsidiaries in the United States and in other countries. All other trademarks, registered trademarks or service marks belong to their respective holders.