
Oracle® NoSQL Database
Getting Started with Oracle NoSQL Database
Key/Value API

Release 20.1
E85379-07
April 2020

Oracle NoSQL Database Getting Started with Oracle NoSQL Database Key/Value API, Release 20.1

E85379-07

Copyright © 2011, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Conventions Used in This Book vi

1 Developing for Oracle NoSQL Database

Configuring Logging 1-2

The KVStore Handle 1-2

The KVStoreConfig Class 1-3

Using the Authentication APIs 1-4

Configuring SSL 1-4

Identifying the Trust Store 1-4

Setting the SSL Transport Property 1-5

Authentication using LoginCredentials 1-5

Renewing Expired Login Credentials 1-7

Authentication using Kerberos 1-9

Authentication using Kerberos and JAAS 1-11

Unauthorized Access 1-13

2 Introduction to Oracle KVLite

Starting KVLite 2-1

Stopping and Restarting KVLite 2-2

Verifying the Installation 2-2

kvlite Utility Command Line Parameter Options 2-3

3 Record Design Considerations

Keys 3-1

What is a Key Component? 3-2

Values 3-3

iii

4 Writing and Deleting Records

Write Exceptions 4-1

Writing Records to the Store 4-1

Other put Operations 4-3

Bulk Put Operations 4-3

Deleting Records from the Store 4-6

Using multiDelete() 4-6

5 Reading Records

Read Exceptions 5-1

Retrieving a Single Record 5-2

Using multiGet() 5-3

Using multiGetIterator() 5-4

Using storeIterator() 5-6

Specifying Subranges 5-7

Parallel Scans 5-9

Bulk Get Operations 5-10

6 Key Ranges and Depth for Multi-Key Operations

Specifying Subranges 6-1

Specifying Depth 6-3

7 Using Versions

8 Consistency Guarantees

Specifying Consistency Policies 8-1

Using Simple Consistency 8-2

Using Time-Based Consistency 8-3

Using Version-Based Consistency 8-4

9 Durability Guarantees

Setting Acknowledgment-Based Durability Policies 9-2

Setting Synchronization-Based Durability Policies 9-3

Setting Durability Guarantees 9-3

iv

10

Executing a Sequence of Operations

Sequence Errors 10-1

Creating a Sequence 10-2

Executing a Sequence 10-4

11

Index Views

Using Traditional Key/Data Pairs 11-1

Using Key-Only Records 11-3

Complex Index Names 11-4

Managing Index View Metadata 11-5

Using Index View Records and Metadata Together 11-6

Key Size Consideration 11-7

General Index Views Considerations 11-7

Additional Write Activity 11-7

Non-Atomic Updates 11-7

Decoupled Consistency 11-8

Example 11-9

A Using the Large Object API

LOB Keys A-1

LOB Key Checks A-2

LOB APIs A-2

LOB Operation Exceptions A-3

Key/Value LOB Example A-3

Table LOB Example A-5

B Third Party Licenses

v

Preface

There are two different APIs that can be used to write Oracle NoSQL Database
applications: the original Key/Value API, and the Table API. In addition, the Key/Value
API is available in Java and C. The Table API is available in Java, C, node.js
(Javascript), Python, and C#. This document describes how to write Oracle NoSQL
Database applications using the Key/Value API in Java.

Note:

Most application developers should use one of the Table drivers because the
Table API offers important features not found in the Key/Value API. The Key/
Value API will no longer be enhanced in future releases of Oracle NoSQL
Database.

This document provides the concepts surrounding Oracle NoSQL Database, data
schema considerations, as well as introductory programming examples.

This document is aimed at the software engineer responsible for writing an Oracle
NoSQL Database application.

Conventions Used in This Book
The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example:
"The KVStoreConfig() constructor returns a KVStoreConfig class object."

Variable or non-literal text is presented in italics. For example: "Go to your KVHOME
directory."

Program examples are displayed in a monospaced font on a shaded background. For
example:

import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;

...

KVStoreConfig kconfig = new KVStoreConfig("exampleStore",
 "node1.example.org:5088, node2.example.org:4129");
KVStore kvstore = null;

Preface

vi

In some situations, programming examples are updated from one chapter to the next.
When this occurs, the new code is presented in monospaced bold font. For example:

import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

...

KVStoreConfig kconfig = new KVStoreConfig("exampleStore",
 "node1.example.org:5088, node2.example.org:4129");
KVStore kvstore = null;

try {
 kvstore = KVStoreFactory.getStore(kconfig);
} catch (FaultException fe) {
 // Some internal error occurred. Either abort your application
 // or retry the operation.
}

Note:

Finally, notes of special interest are represented using a note block such as
this.

Preface

vii

1
Developing for Oracle NoSQL Database

You access the data in the Oracle NoSQL Database KVStore using Java drivers that
are provided for the product. In addition to the Java drivers, several other drivers are
also available. They are:

1. Java Table Driver

2. C Table Driver

3. C Key/Value Driver

4. Python Table Driver

5. node.js Table Driver

6. C# Table Driver

Note:

New users should use one of the Table drivers unless they require a feature
only available in the Key/Value API (such as Large Object support). The Key/
Value API will no longer be enhanced in future releases of Oracle NoSQL
Database.

The Java and C Key/Value driver provides access to store data using key/value pairs.
All other drivers provide access using tables. Also, the Java Key/Value driver provides
Large Object (LOB) support that as of this release does not appear in the other
drivers. However, users of the Java Tables driver can access the LOB API, even
though the LOB API is accessed using the Key/Value interface.

Users of the Table drivers are able to create and use secondary indexing. The Java
and C Key/Value drivers do not provide this support.

To work, the C Table, Python Table, node.js Table, and C# Table drivers require use
of a proxy server which translates network activity between the driver and the Oracle
NoSQL Database store. The proxy is written in Java, and can run on any machine that
is network accessible by both your client code and the Oracle NoSQL Database store.
However, for performance and security reasons, Oracle recommends that you run the
proxy on the same local host as your driver, and that the proxy be used in a 1:1
configuration with your drivers (that is, each instance of the proxy should be used with
just a single driver instance).

Regardless of the driver you decide to use, the provided classes and methods allow
you to write data to the store, retrieve it, and delete it. You use these APIs to define
consistency and durability guarantees. It is also possible to execute a sequence of
store operations atomically so that all the operations succeed, or none of them do.

The rest of this book introduces the Java APIs that you use to access the store, and
the concepts that go along with them.

1-1

Configuring Logging
The Oracle NoSQL Database Java drivers use standard Java logging to capture
debugging output using loggers in the "oracle.kv" hierarchy. These loggers are
configured to use a oracle.kv.util.ConsoleHandler class, and to ignore any
handlers for loggers above oracle.kv in the logger hierarchy. As a result, logging will
be performed to the console at whatever logging levels are configured for the various
loggers and for the oracle.kv.util.ConsoleHandler class. You can adjust what
console output appears for these loggers by modifying the logging levels for the
loggers and the logging handler in their application's logging configuration file.

You can also configure additional logging handlers for all loggers used by the Java
driver by specifying handlers for the oracle.kv logger.

For example, if you want to enable file output for Java driver logging at the INFO level
or above, add the following to your application's configuration file (that is, the file you
identify using the java.util.logging.config.file system property):

 # Set the logging level for the FileHandler logging handler to INFO
java.util.logging.FileHandler.level=INFO

Set the logging level for all Java driver loggers to INFO
oracle.kv.level=INFO

Specify that Java driver loggers should supply log output to the
standard file handler
oracle.kv.handlers=java.util.logging.FileHandler

For information on managing logging in a Java application, see the
java.util.logging Javadoc.

The KVStore Handle
In order to perform store access of any kind, you must obtain a KVStore handle. You
obtain a KVStore handle by using the KVStoreFactory.getStore() method.

When you get a KVStore handle, you must provide a KVStoreConfig object. This
object identifies important properties about the store that you are accessing. We
describe the KVStoreConfig class next in this chapter, but at a minimum you must use
this class to identify:

• The name of the store. The name provided here must be identical to the name
used when the store was installed.

• The network contact information for one or more helper hosts. These are the
network name and port information for nodes currently belonging to the store.
Multiple nodes can be identified using an array of strings. You can use one or
many. Many does not hurt. The downside of using one is that the chosen host may
be temporarily down, so it is a good idea to use more than one.

In addition to the KVStoreConfig class object, you can also provide a
PasswordCredentials class object to KVStoreFactory.getStore(). You do this if you
are using a store that has been configured to require authentication. See Using the
Authentication APIs for more information.

Chapter 1
Configuring Logging

1-2

For a store that does not require authentication, you obtain a store handle like this:

package kvstore.basicExample;

import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

...

String[] hhosts = {"n1.example.org:5088", "n2.example.org:4129"};
KVStoreConfig kconfig = new KVStoreConfig("exampleStore", hhosts);
KVStore kvstore = KVStoreFactory.getStore(kconfig);

The KVStoreConfig Class
The KVStoreConfig class is used to describe properties about a KVStore handle. Most
of the properties are optional; those that are required are provided when you construct
a class instance.

The properties that you can provide using KVStoreConfig are:

• Consistency

Consistency is a property that describes how likely it is that a record read from a
replica node is identical to the same record stored on a master node. For more
information, see Consistency Guarantees.

• Durability

Durability is a property that describes how likely it is that a write operation
performed on the master node will not be lost if the master node is lost or is shut
down abnormally. For more information, see Durability Guarantees.

• Helper Hosts

Helper hosts are hostname/port pairs that identify where nodes within the store
can be contacted. Multiple hosts can be identified using an array of strings.
Typically an application developer will obtain these hostname/port pairs from the
store's deployer and/or administrator. For example:

String[] hhosts = {"n1.example.org:3333", "n2.example.org:3333"};

• Request Timeout

Configures the amount of time the KVStore handle will wait for an operation to
complete before it times out.

• Store name

Identifies the name of the store.

• Password credentials and optionally a reauthentication handler

See the next section on authentication.

Chapter 1
The KVStore Handle

1-3

Using the Authentication APIs
Oracle NoSQL Database can be installed such that your client code does not have to
authenticate to the store. (For the sake of clarity, most of the examples in this book do
not perform authentication.) However, if you want your store to operate in a secure
manner, you can require authentication. Note that doing so will result in a performance
cost due to the overhead of using SSL and authentication. While best practice is for a
production store to require authentication over SSL, some sites that are performance
sensitive may want to forgo that level of security.

Authentication involves sending username/password credentials to the store at the
time a store handle is acquired.

A store that is configured to support authentication is automatically configured to
communicate with clients using SSL in order to ensure privacy of the authentication
and other sensitive information. When SSL is used, SSL certificates need to be
installed on the machines where your client code runs in order to validate that the
store that is being accessed is trustworthy.

Be aware that you can authenticate to the store in several different ways. You can use
Kerberos, or you can specify a LoginCredentials implementation instance to
KVStoreFactory.getStore(). (Oracle NoSQL Database provides the
PasswordCredentials class as a LoginCredentials implementation.) If you use
Kerberos, you can either use security properties understood by Oracle NoSQL
Database to provide necessary Kerberos information, or you can use the Java
Authentication and Authorization Service (JAAS) programming framework.

For information on using LoginCredentials, see Authentication using
LoginCredentials. For information on using Kerberos, see Authentication using
Kerberos. For information on using JAAS with Kerberos, see Authentication using
Kerberos and JAAS.

Configuring a store for authentication is described in the Oracle NoSQL Database
Security Guide.

Configuring SSL
If you are using a secure store, then all communications between your client code and
the store is transported over SSL, including authentication credentials. You must
therefore configure your client code to use SSL. To do this, you identify where the SSL
certificate data is, and you also separately indicate that the SSL transport is to be
used.

Identifying the Trust Store
When an Oracle NoSQL Database store is configured to use the SSL transport, a
series of security files are generated using a security configuration tool. One of these
files is the client.trust file, which must be copied to any machine running Oracle
NoSQL Database client code.

For information on using the security configuration tool, see the Oracle NoSQL
Database Security Guide.

Your code must be told where the client.trust file can be found because it contains
the certificates necessary to establish an SSL connection with the store. You indicate

Chapter 1
Using the Authentication APIs

1-4

where this file is physically located on your machine using the
oracle.kv.ssl.trustStore property. There are two ways to set this property:

1. Identify the location of the trust store by using a Properties object to set the
oracle.kv.ssl.trustStore property. You then use
KVStoreConfig.setSecurityProperties() to pass the Properties object to your
KVStore handle.

When you use this method, you use
KVSecurityConstants.SSL_TRUSTSTORE_FILE_PROPERTY as the property name.

2. Use the oracle.kv.security property to refer to a properties file, such as the
client.trust file. In that file, set the oracle.kv.ssl.trustStore property.

Setting the SSL Transport Property
In addition to identifying the location of the client.trust file, you must also tell your
client code to use the SSL transport. You do this by setting the oracle.kv.transport
property. There are two ways to set this property:

1. Identify the location of the trust store by using a Properties object to set the
oracle.kv.transport property. You then use
KVStoreConfig.setSecurityProperties() to pass the Properties object to your
KVStore handle.

When you use this method, you use KVSecurityConstants.TRANSPORT_PROPERTY
as the property name, and KVSecurityConstants.SSL_TRANSPORT_NAME as the
property value.

2. Use the oracle.kv.security property to refer to a properties file, such as the
client.trust file. In that file, set the oracle.kv.transport property.

Authentication using LoginCredentials
You can authenticate to the store by specifying a LoginCredentials implementation
instance to KVStoreFactory.getStore(). Oracle NoSQL Database provides the
PasswordCredentials class as a LoginCredentials implementation. If your store
requires SSL to be used as the transport, configure that prior to performing the
authentication. (See the previous section for details.)

Your code should be prepared to handle a failed authentication attempt.
KVStoreFactory.getStore() will throw AuthenticationFailure in the event of a
failed authentication attempt. You can catch that exception and handle the problem
there.

The following is a simple example of obtaining a store handle for a secured store. The
SSL transport is used in this example.

import java.util.Properties;

import oracle.kv.AuthenticationFailure;
import oracle.kv.PasswordCredentials;
import oracle.kv.KVSecurityConstants;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

Chapter 1
Using the Authentication APIs

1-5

KVStore store = null;
try {
 /*
 * storeName, hostName, port, username, and password are all
 * strings that would come from somewhere else in your
 * application.
 */
 KVStoreConfig kconfig =
 new KVStoreConfig(storeName, hostName + ":" + port);

 /* Set the required security properties */
 Properties secProps = new Properties();
 secProps.setProperty(KVSecurityConstants.TRANSPORT_PROPERTY,
 KVSecurityConstants.SSL_TRANSPORT_NAME);
 secProps.setProperty
 (KVSecurityConstants.SSL_TRUSTSTORE_FILE_PROPERTY,
 "/home/kv/client.trust");
 kconfig.setSecurityProperties(secProps);

 store =
 KVStoreFactory.getStore(kconfig,
 new PasswordCredentials(username,
 password.toCharArray(),
 null /* ReauthenticateHandler */));
} catch (AuthenticationFailureException afe) {
 /*
 * Could potentially retry the login, possibly with different
 * credentials, but in this simple example, we just fail the
 * attempt.
 */
 System.out.println("authentication failed!");
 return;
}

Another way to handle the login is to place your authentication credentials in a flat text
file that contains all the necessary properties for authentication. In order for this to
work, a password store must have been configured for your Oracle NoSQL Database
store. (See the Oracle NoSQL Database Security Guide for information on setting up
password stores).

For example, suppose your store has been configured to use a password file
password store and it is contained in a file called login.pwd. In that case, you might
create a login properties file called login.txt that looks like this:

oracle.kv.auth.username=clientUID1
oracle.kv.auth.pwdfile.file=/home/nosql/login.pwd
oracle.kv.transport=ssl
oracle.kv.ssl.trustStore=/home/nosql/client.trust

In this case, you can perform authentication in the following way:

import oracle.kv.AuthenticationFailure;
import oracle.kv.PasswordCredentials;

Chapter 1
Using the Authentication APIs

1-6

import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

/* the client gets login credentials from the login.txt file */
/* can be set on command line as well */
System.setProperty("oracle.kv.security", "/home/nosql/login.txt");

KVStore store = null;
try {
 /*
 * storeName, hostName, port are all strings that would come
 * from somewhere else in your application.
 *
 * Notice that we do not pass in any login credentials.
 * All of that information comes from login.txt
 */
 myStoreHandle =
 KVStoreFactory.getStore(
 new KVStoreConfig(storeName, hostName + ":" + port))
} catch (AuthenticationFailureException afe) {
 /*
 * Could potentially retry the login, possibly with different
 * credentials, but in this simple example, we just fail the
 * attempt.
 */
 System.out.println("authentication failed!")
 return;
}

Renewing Expired Login Credentials
It is possible for an authentication session to expire. This can happen for several
reasons. One is that the store's administrator has configured the store to not allow
session extension and the session has timed out. These properties are configured
using sessionExtendAllow and sessionTimeout. See the Oracle NoSQL Database
Security Guide for information on these properties.

Reauthentication might also be required if some kind of a major disruption has
occurred to the store which caused the authentication session to become invalidated.
This is a pathological condition which you should not see with any kind of frequency in
a production store. Stores which are installed in labs might exhibit this condition more,
especially if the stores are frequently restarted.

An application can encounter an expired authentication session at any point in its
lifetime, so robust code that must remain running should always be written to respond
to authentication session expirations.

When an authentication session expires, by default the method which is attempting
store access will throw AuthenticationRequiredException. Upon seeing this, your
code needs to reauthenticate to the store, and then retry the failed operation.

Chapter 1
Using the Authentication APIs

1-7

You can manually reauthenticate to the store by using the KVStore.login() method.
This method requires you to provide the login credentials via a LoginCredentials
class instance (such as PasswordCredentials):

try {
 ...
 /* Store access code happens here */
 ...
} catch (AuthenticationRequiredException are) {
 /*
 * myStoreHandle is a KVStore class instance.
 *
 * pwCreds is a PasswordCredentials class instance, obtained
 * from somewhere else in your code.
 */
 myStoreHandle.login(pwCreds);
}

Note that this is not required if you use the oracle.kv.auth.username and
oracle.kv.auth.pwdfile.file properties, as shown in the previous section. In that
case, your Oracle NoSQL Database client code will automatically and silently
reauthenticate your client using the values specified by those properties.

A third option is to create a ReauthenticationHandler class implementation that
performs your reauthentication for you. This option is only necessary if you provided a
LoginCredentials implementation instance (that is, PasswordCredentials) in a call to
KVStoreFactory.getStore(), and you want to avoid a subsequent need to retry
operations by catching AuthenticationRequiredException.

A truly robust example of a ReauthenticationHandler implementation is beyond the
scope of this manual (it would be driven by highly unique requirements that are
unlikely to be appropriate for your site). Still, in the interest of completeness, the
following shows a very simple and not very elegant implementation of
ReauthenticationHandler:

package kvstore.basicExample

import oracle.kv.ReauthenticationHandler;
import oracle.kv.PasswordCredentials;

public class MyReauthHandler implements ReauthenticationHandler {
 public void reauthenticate(KVStore reauthStore) {
 /*
 * The code to obtain the username and password strings would
 * go here. This should be consistent with the code to perform
 * simple authentication for your client.
 */
 PasswordCredentials cred = new PasswordCredentials(username,
 password.toCharArray());

 reauthStore.login(cred);
 }
}

Chapter 1
Using the Authentication APIs

1-8

You would then supply a MyReauthHandler instance when you obtain your store
handle:

import java.util.Properties;

import oracle.kv.AuthenticationFailure;
import oracle.kv.PasswordCredentials;
import oracle.kv.KVSecurityConstants;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

import kvstore.basicExample.MyReauthHandler;

KVStore store = null;
try {
 /*
 * storeName, hostName, port, username, and password are all
 * strings that would come from somewhere else in your
 * application. The code you use to obtain your username
 * and password should be consistent with the code used to
 * obtain that information in MyReauthHandler.
 */
 KVStoreConfig kconfig =
 new KVStoreConfig(storeName, hostName + ":" + port);

 /* Set the required security properties */
 Properties secProps = new Properties();
 secProps.setProperty(KVSecurityConstants.TRANSPORT_PROPERTY,
 KVSecurityConstants.SSL_TRANSPORT_NAME);
 secProps.setProperty
 (KVSecurityConstants.SSL_TRUSTSTORE_FILE_PROPERTY,
 "/home/kv/client.trust");
 kconfig.setSecurityProperties(secProps);

 store =
 KVStoreFactory.getStore(kconfig,
 new PasswordCredentials(username,
 password.toCharArray()));
 new MyReauthHandler());
} catch (AuthenticationFailureException afe) {
 /*
 * Could potentially retry the login, possibly with different
 * credentials, but in this simple example, we just fail the
 * attempt.
 */
 System.out.println("authentication failed!")
 return;
}

Authentication using Kerberos
You can authenticate to the store by using Kerberos. To do this, you must already
have installed Kerberos and obtained the necessary login and service information. See
the Oracle NoSQL Database Security Guide for details.

Chapter 1
Using the Authentication APIs

1-9

The following is a simple example of obtaining a store handle for a secured store, and
using Kerberos to authenticate. Information specific to Kerberos, such as the Kerberos
user name, is specified using KVSecurityConstants that are set as properties to the
KVStoreConfig instance which is used to create the store handle.

import java.util.Properties;

import oracle.kv.KVSecurityConstants;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

KVStore store = null;
/*
 * storeName, hostName, port, username, and password are all
 * strings that would come from somewhere else in your
 * application.
 */
KVStoreConfig kconfig =
 new KVStoreConfig(storeName, hostName + ":" + port);

/* Set the required security properties */
Properties secProps = new Properties();

/* Set the user name */
secProps.setProperty(KVSecurityConstants.AUTH_USERNAME_PROPERTY,
 "krbuser");

/* Use Kerberos */
secProps.setProperty(KVSecurityConstants.AUTH_EXT_MECH_PROPERTY,
 "kerberos");

/* Set SSL for the wire level encryption */
secProps.setProperty(KVSecurityConstants.TRANSPORT_PROPERTY,
 KVSecurityConstants.SSL_TRANSPORT_NAME);

/* Set the location of the public trust file for SSL */
secProps.setProperty
 (KVSecurityConstants.SSL_TRUSTSTORE_FILE_PROPERTY,
 "/home/kv/client.trust");

/* Set the service principal associated with the helper host */
final String servicesDesc =
 "localhost:oraclenosql/localhost@EXAMPLE.COM";
secProps.setProperty(
 KVSecurityConstants.AUTH_KRB_SERVICES_PROPERTY,
 servicesDesc);

/*
 * Set the default realm name to permit using a short name for the
 * user principal
 */
secProps.setProperty(KVSecurityConstants.AUTH_KRB_REALM_PROPERTY,
 "EXAMPLE.COM");

Chapter 1
Using the Authentication APIs

1-10

/* Specify the client keytab file location */
secProps.setProperty(KVSecurityConstants.AUTH_KRB_KEYTAB_PROPERTY,
 "/tmp/krbuser.keytab");

kconfig.setSecurityProperties(secProps);

store = KVStoreFactory.getStore(kconfig);

Authentication using Kerberos and JAAS
You can authenticate to the store by using Kerberos and the Java Authentication and
Authorization Service (JAAS) login API. To do this, you must already have installed
Kerberos and obtained the necessary login and service information. See the Oracle
NoSQL Database Security Guide for details.

The following is a simple example of obtaining a store handle for a secured store, and
using Kerberos with JAAS to authenticate.

To use JAAS, you create a configuration file that contains required Kerberos
configuration information. For example, the following could be placed in the file named
jaas.config:

oraclenosql {
 com.sun.security.auth.module.Krb5LoginModule required
 principal="krbuser"
 useKeyTab="true"
 keyTab="/tmp/krbuser.keytab";
};

To identify this file to your application, set the Java property
java.security.auth.login.config using the -D option when you run your
application.

Beyond that, you use KVSecurityConstants to specify necessary properties, such as
the SSL transport. You can also specify necessary Kerberos properties, such as the
Kerberos user name, using KVSecurityConstants, or you can use the
KerberosCredentials class to do this.

import java.security.PrivilegedActionException;
import java.security.PrivilegedExceptionAction;
import java.util.Properties;

import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;

import oracle.kv.KerberosCredentials;
import oracle.kv.KVSecurityConstants;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

/*
 * storeName, hostName, port, username, and password are all

Chapter 1
Using the Authentication APIs

1-11

 * strings that would come from somewhere else in your
 * application.
 */
final KVStoreConfig kconfig =
 new KVStoreConfig(storeName, hostName + ":" + port);

/* Set the required security properties */
Properties secProps = new Properties();

/* Set SSL for the wire level encryption */
secProps.setProperty(KVSecurityConstants.TRANSPORT_PROPERTY,
 KVSecurityConstants.SSL_TRANSPORT_NAME);

/* Set the location of the public trust file for SSL */
secProps.setProperty
 (KVSecurityConstants.SSL_TRUSTSTORE_FILE_PROPERTY,
 "/home/kv/client.trust");

/* Use Kerberos */
secProps.setProperty(KVSecurityConstants.AUTH_EXT_MECH_PROPERTY,
 "kerberos");

/* Set Kerberos properties */
final Properties krbProperties = new Properties();

/* Set the service principal associated with the helper host */
final String servicesPpal =
 "localhost:oraclenosql/localhost@EXAMPLE.COM";
krbProperties.setProperty(KVSecurityConstants.AUTH_KRB_SERVICES_PROPERTY,
 hostName + ":" + servicesPpal);

/* Set default realm name, because the short name
 * for the user principal is used.
 */
krbProperties.setProperty(KVSecurityConstants.AUTH_KRB_REALM_PROPERTY,
 "EXAMPLE.COM");

/* Specify Kerberos principal */
final KerberosCredentials krbCreds =
 new KerberosCredentials("krbuser", krbProperties);

try {
 /* Get a login context */
 final Subject subj = new Subject();
 final LoginContext lc = new LoginContext("oraclenosql", subj);

 /* Attempt to log in */
 lc.login();

 /* Get the store using the credentials specified in the subject */
 kconfig.setSecurityProperties(secProps);

 store = Subject.doAs(
 subj, new PrivilegedExceptionAction<KVStore>() {
 @Override

Chapter 1
Using the Authentication APIs

1-12

 public KVStore run() throws Exception {
 return KVStoreFactory.getStore(kconfig, krbCreds, null);
 }
 });
} catch (LoginException le) {
 // LoginException handling goes here
} catch (PrivilegedActionException pae) {
 // PrivilegedActionException handling goes here
} catch (Exception e) {
 // General Exception handling goes here
}

Unauthorized Access
Clients which must authenticate to a store are granted some amount of access to the
store. This could range from a limited set of privileges to full, complete access. The
amount of access is defined by the roles and privileges granted to the authenticating
user. Therefore, a call to the Oracle NoSQL Database API could fail due to not having
the authorization to perform the operation. When this happens,
UnauthorizedException will be thrown.

See the Oracle NoSQL Database Security Guide for information on how to define roles
and privileges for users.

When UnauthorizedException is seen, the operation should not be retried. Instead,
the operation should either be abandoned entirely, or your code could attempt to
reauthenticate using different credentials that would have the required permissions
necessary to perform the operation. Note that a client can log out of a store using
KVStore.logout(). How your code logs back in is determined by how your store is
configured for access, as described in the previous sections.

// Open a store handle, and perform authentication as you do
// as described earlier in this section.

...

try {
 // When you attempt some operation (such as a put or delete)
 // to a secure store, you should catch UnauthorizedException
 // in case the user credentials you are using do not have the
 // privileges necessary to perform the operation.
} catch (UnauthorizedException ue) {
 /*
 * When you see this, either abandon the operation entirely,
 * or log out and log back in with credentials that might
 * have the proper permissions for the operation.
 */
 System.out.println("authorization failed!")
 return;
}

Chapter 1
Using the Authentication APIs

1-13

2
Introduction to Oracle KVLite

KVLite is a single-node, single shard store. It usually runs in a single process and is
used to develop and test client applications. KVLite is installed when you install Oracle
NoSQL Database.

Starting KVLite
You start KVLite by using the kvlite utility, which can be found in KVHOME/lib/
kvstore.jar. If you use this utility without any command line options, then KVLite will
run with the following default values:

• The store name is kvstore.

• The hostname is the local machine.

• The registry port is 5000.

• The directory where Oracle NoSQL Database data is placed (known as KVROOT)
is ./kvroot.

• The administration process is turned on.

• Security is turned on.

This means that any processes that you want to communicate with KVLite can only
connect to it on the local host (127.0.0.1) using port 5000. If you want to communicate
with KVLite from some machine other than the local machine, then you must start it
using non-default values. The command line options are described later in this
chapter.

For example:

> java -Xmx64m -Xms64m -jar KVHOME/lib/kvstore.jar kvlite

Note:

To avoid using too much heap space, you should specify the -Xmx and -Xms
flags for Java when running administrative and utility commands.

When KVLite has started successfully, it writes one of two statements to stdout,
depending on whether it created a new store or is opening an existing store (the
following assumes security is enabled):

Generated password for user admin: password
User login file: ./kvroot/security/user.security
Created new kvlite store with args:

2-1

-root ./kvroot -store <kvstore> -host localhost -port 5000
-secure-config enable

Note:

The password is randomly generated.

or

Opened existing kvlite store with config:
-root ./kvroot -store <kvstore name> -host <localhost> -port 5000
-secure-config enable

where <kvstore name> is the name of the store and <localhost> is the name of the
local host. It takes about 10 - 60 seconds before this message is issued, depending on
the speed of your machine.

Note that you will not get the command line prompt back until you stop KVLite.

Stopping and Restarting KVLite
To stop KVLite, use ^C from within the shell where KVLite is running.

To restart the process, simply run the kvlite utility without any command line options.
Do this even if you provided non-standard options when you first started KVLite. This
is because KVLite remembers information such as the port value and the store name
in between run times. You cannot change these values by using the command line
options.

If you want to start over with different options than you initially specified, delete the
KVROOT directory (./kvroot, by default), and then re-run the kvlite utility with
whatever options you desire. Alternatively, specify the -root command line option,
making sure to specify a location other than your original KVROOT directory, as well
as any other command line options that you want to change.

Verifying the Installation
There are several things you can do to verify your installation, and ensure that KVLite
is running:

• Start another shell and run:

jps -m

The output should show KVLite (and possibly other things as well, depending on
what you have running on your machine).

• Run the kvclient test application:

1. cd KVHOME

2. java -Xmx64m -Xms64m -jar lib/kvclient.jar

Chapter 2
Stopping and Restarting KVLite

2-2

This should write the release to stdout:

12cR1.M.N.O...

• Download the examples package and unpack it so that the examples directory is
in KVHOME. You can obtain the examples package from the same place as you
obtained your server download package.

• Compile and run the example program:

1. cd KVHOME

2. Compile the example:

javac -g -cp lib/kvclient.jar:examples examples/hello/*.java

3. Run the example using all default parameters:

java -Xmx64m -Xms64m \
-Doracle.kv.security=<KVROOT>/security/user.security \
-cp lib/kvclient.jar:examples hello.HelloBigDataWorld

Or run it using non-default parameters, if you started KVLite using non-default
values:

java -Xmx64m -Xms64m \
-cp lib/kvclient.jar:examples hello.HelloBigDataWorld \
 -host <hostname> -port <hostport> -store <kvstore name>

kvlite Utility Command Line Parameter Options
This section describes the command line options that you can use with the kvlite
utility.

Note that you can only specify these options the first time KVLite is started. Most of the
parameter values specified here are recorded in the KVHOME directory, and will be
used when you restart the KVLite process regardless of what you provide as
command line options. If you want to change your initial values, either delete your
KVHOME directory before starting KVLite again, or specify the -root option (with a
different KVHOME location than you initially used) when you provide the new values.

• -help

Print a brief usage message, and exit.

• -host <hostname>

Identifies the name of the host on which KVLite is running.

If you want to access this instance of KVLite from remote machines, supply the
local host's real hostname. Otherwise, specify localhost for this option.

• -noadmin

If this option is not specified, the administration user interface is started.

• -port <port>

Chapter 2
kvlite Utility Command Line Parameter Options

2-3

Identifies the port on which KVLite is listening for client connections. Use this
option ONLY if you are creating a new store.

• -root <path>

Identifies the path to the Oracle NoSQL Database home directory. This is the
location where the store's database files are contained. The directory identified
here must exist. If the appropriate database files do not exist at the location
identified by the option, they are created for you.

• -secure-config <enable|disable>

If enabled, causes security to be enabled for the store. This means all clients
connecting to the store must present security credentials. Security is enabled by
default.

• -store <storename>

Identifies the name of a new store. Use this option ONLY if you are creating a new
store.

See Using the Authentication APIs for information on configuring your client code
to connect to a secure store.

Chapter 2
kvlite Utility Command Line Parameter Options

2-4

3
Record Design Considerations

Oracle NoSQL Database KVStores offer storage of key-value pairs. Each such pair
can be thought of as a single record in a database, where the key is used to locate the
value. Both the key and the value are application-defined, given some loose
restrictions imposed by Oracle NoSQL Database.

Every key in the KVStore is a list of strings. All keys must have one or more major
components. Keys can also optionally have one or more minor components.

The value portion of the record can be simply a byte array, or it can use Avro to
identify its schema. The value portion can be as simple or complex as you want it to
be.

Note:

Avro is deprecated. If you want a fixed schema to define the value portion of
a record, it is better to use the Table API. That API offers advantages that
the Key/Value API with Avro does not — such as secondary indexes.

As a very simple example, suppose you wanted your store to contain information
about people. You might then decide to do this:

• Key major: email address.

• Key minor: various properties, such as the user's street address, phone number,
photograph, and name.

• Value: Avro-defined information related to the combination of major and minor key
components. So, for example, the value for an email address plus a street address
might be multiple fields related to street number, street name, city, and so forth.

This is a very simple example of what you might choose to store in Oracle NoSQL
Database. However, from a performance point of view, this example might not be the
best way for you to organize your data. How you design both your keys and your
values can have important performance implications.

The remainder of this chapter describes the performance issues surrounding Oracle
NoSQL Database schema design.

Keys
Oracle NoSQL Database organizes records using keys. All records have one or more
major key components and, optionally, one or more minor key components. If minor
key components are in use, the combination of the major and minor components
uniquely identifies a single record in the store.

Keys are spread evenly using a hash across partitions based on the key's major
component(s). Every key must have at least one major component, but you can

3-1

optionally use a list of major components. This means that records that share the
same combination of major key components are guaranteed to be in the same
partition, which means they can be efficiently queried. In addition, records with
identical major key components can be operated upon using multiple operations but
under a single atomic operation.

Remember that major key components are used to identify which partition contains a
record, and that every partition is stored in a single shard. This means that major key
components are used to identify which shard stores a given record. The combination
of the major key components, plus the data access operation that you want performed
is used to identify which node within the shard will service the request. Be aware that
you cannot control which physical machine, or even which shard, will be used to store
any given piece of data. That is all decided for you by the KV driver.

However, the fact that records are placed on the same physical node based on their
major key components means that keys which share major key components can be
queried efficiently in a single operation. This is because, conceptually, you are
operating on a single physical database when you operate on keys stored together in
a single partition. (In reality, a single shard uses multiple physical databases, but that
level of complexity is hidden from you when interacting with the store.)

Remember that every partition is placed in a single shard, and that your store will have
multiple shards. This is good, because it improves both read and write throughput
performance. But in order to take full advantage of that performance enhancement,
you need at least as many different major key components as you have partitions. In
other words, do not create all your records under a single major key component, or
even under a small number of major key components, because doing so will create
performance bottle necks as the number of records in your store grow large.

Minor key components also offer performance improvements if used correctly, but in
order to understand how you need to understand performance issues surrounding the
value portion of your records. We will discuss those issues a little later in this chapter.

What is a Key Component?
A key component is a Java String. Issues of comparison can be answered by
examining how Java Strings are compared using your preferred encoding.

Because it is a String, a key component can be anything you want it to be. Typically,
some naming scheme is adopted for the application so as to logically organize
records.

It helps to think of key components as being locations in a file system path. You can
write out a record's components as if they were a file system path delimited by a
forward slash ("/"). For example, suppose you used multiple major components to
identify a record, and one such record using the following major components: "Smith",
and "Bob." Another record might use "Smith" and "Patricia". And a third might use
"Wong", and "Bill". Then the major components for those records could be written as:

/Smith/Bob
/Smith/Patricia
/Wong/Bill

Further, suppose you had different kinds of information about each user that you want
to store. Then the different types of information could be further identified using minor
components such as "birthdate", "image", "phonenumber", "userID", and so forth. The

Chapter 3
Keys

3-2

minor portion of a key component is separated by the major components by a special
slash-hyphen-slash delimiter (/-/).

By separating keys into major and minor key components, we could potentially store
and operate upon the following records. Those that share a common major component
can be operated upon in a single atomic operation:

/Smith/Bob/-/birthdate
/Smith/Bob/-/phonenumber
/Smith/Bob/-/image
/Smith/Bob/-/userID
/Smith/Patricia/-/birthdate
/Smith/Patricia/-/phonenumber
/Smith/Patricia/-/image
/Smith/Patricia/-/userID
/Wong/Bill/-/birthdate
/Wong/Bill/-/phonenumber
/Wong/Bill/-/image
/Wong/Bill/-/userID

Note that the above keys might not represent the most efficient way to organize your
data. We discuss this issue in the next section.

Values
Records in the store are organized as key-value pairs. The value is the data that you
want to store, manage and retrieve.

In simple cases, values can be organized as a byte array. (If more complexity is
required, you should use the Table API.) If so, the mapping of the arrays to data
structures (serialization and deserialization) is left entirely to the application.

There are no restrictions on the size of your values. However, you should consider
your store's performance when deciding how large you are willing to allow your
individual records to become. As is the case with any data storage scheme, the larger
your record, the longer it takes to read the information from storage, and to write the
information to storage. If your values become so large that they impact store read/write
performance, or are even too large to fit into your memory cache (or even your Java
heap space) then you should consider storing your values using Oracle NoSQL
Database's large object support. See the Using the Large Object API introduction for
details.

On the other hand, every record carries with it some amount of overhead. Also, as the
number of your records grows very large, search times may begin to be adversely
affected. As a result, choosing to store an extremely large number of very small
records can also harm your store's performance.

Therefore, when designing your store's content, you must find the appropriate balance
between a small number of very large records and a large number of very small
records. You should also consider how frequently any given piece of information will
be accessed.

For example, suppose your store contains information about users, where each user is
identified by their email address. There is a set of information that you want to
maintain about each user. Some of this information is small in size, and some of it is

Chapter 3
Values

3-3

large. Some of it you expect will be frequently accessed, while other information is
infrequently accessed.

Small properties are:

• name

• gender

• address

• phone number

Large properties are:

• image file

• public key 1

• public key 2

• recorded voice greeting

There are several possible ways you can organize this data. How you should do it
depends on your data access patterns.

Note:

The following example discusses the use of Avro, which is deprecated. While
it continues to be possible for you to use Avro to manage your data, the
Table API is the better solution.

For example, suppose your application requires you to read and write all of the
properties identified above every time you access a record. (This is unlikely, but it
does represent the simplest case.) In that event, you might create a single Avro
schema that represents each of the properties you maintain for the users in your
application. You can then trivially organize your records using only major key
components so that, for example, all of the data for user Bob Smith can be accessed
using the key /Smith/Bob.

However, the chances are good that your application will not require you to access all
of the properties for a user's record every time you access that record. While it is
possible that you will always need to read all of the properties every time you perform
a user look up, it is likely that on updates you will operate only on some properties.

Given this, it is useful to consider how frequently data will be accessed, and its size.
Large, infrequently accessed properties should use a key other than that used by the
frequently accessed properties. The different keys for these large properties can share
major key components, while differing in their minor key components. However, if you
are using large object support for your large properties, then these must be under a
major key that is different from the major key you use for the other properties you are
storing.

At the same time, there is overhead involved with every key your store contains, so
you do not want to create a key for every possible user property. For this reason, if you
have a lot of small properties, you might want to organize them all under a single key
even if only some of them are likely to be updated or read for any given operation.

For example, for the properties identified above, suppose the application requires:

Chapter 3
Values

3-4

• all of the small properties to always be used whenever the user's record is
accessed.

• all of the large properties to be read for simple user look ups.

• on user record updates, the public keys are always updated (written) at the same
time.

• The image file and recorded voice greeting can be updated independently of
everything else.

In this case, you might store user properties using four keys per user. Each key shares
the same components to identify the user, in the following way:

1. /surname/familiar name/-/contact

The value for this key is a Avro record that contains all of the small user properties
(name, phone number, address, and so forth).

2. /surname/familiar name/-/publickeys

The value for this key is an Avro record that contains the user's public keys. These
are always read and written at the same time, so it makes sense to organize them
under one key.

3. /image.lob/-/surname/familiar name

The value for this key is an image file, saved using Oracle NoSQL Database's
large object support.

4. /audio.lob/-/voicegreeting/surname/familiar name

The value for this key is an mp3 file, also saved using the large object support.

Any data organized under different keys which differ only in the minor key component
allows you to read and update the various properties all at once using a single atomic
operation, which gives you full ACID support for user record updates. At the same
time, your application does not have to be reading and writing large properties (image
files, voice recordings, and so forth) unless it is absolutely necessary. When it is
necessary to read or write these large objects, you can use the Oracle NoSQL
Database stream interface which is optimized for that kind of traffic.

Chapter 3
Values

3-5

4
Writing and Deleting Records

This chapter discusses two different write operations: putting records into the store,
and then deleting them.

Write Exceptions
There are many exceptions that you should handle whenever you perform a write
operation to the store. Some of the more common exceptions are described here. For
simple cases where you use default policies or are not using a secure store, you can
probably avoid explicitly handling these. However, as your code complexity increases,
so too will the desirability of explicitly managing these exceptions.

The first of these is DurabilityException. This exception indicates that the operation
cannot be completed because the durability policy cannot be met. For more
information, see Durability Guarantees.

The second is RequestTimeoutException. This simply means that the operation could
not be completed within the amount of time provided by the store's timeout property.
This probably indicates an overloaded system. Perhaps your network is experiencing a
slowdown, or your store's nodes are overloaded with too many operations (especially
write operations) coming in too short of a period of time.

To handle a RequestTimeoutException, you could simply log the error and move on,
or you could pause for a short period of time and then retry the operation. You could
also retry the operation, but use a longer timeout value. (There is a version of the
TableAPI.put() method that allows you to specify a timeout value for that specific
operation.)

You can also receive an IllegalArgumentException, which will be thrown if a Row that
you are writing to the store does not have a primary key or is otherwise invalid.

You can also receive a general FaultException, which indicates that some exception
occurred which is neither a problem with durability nor a problem with the request
timeout. Your only recourse here is to either log the error and move along, or retry the
operation.

Finally, if you are using a secure store that requires authentication, you can receive
AuthenticationFailureException or AuthenticationRequiredException if you do
not provide the proper authentication credentials. When using a secure store, you can
also see UnauthorizedException, which means you are attempting an operation for
which the authenticated user does not have the proper permissions.

Writing Records to the Store
Creating a new record in the store and updating an existing record are usually identical
operations (although methods exist that work only if the record is being updated, or
only if it is being created — these are described a little later in this section). In both
cases, you simply write a record to the store that uses the appropriate key. If a record
with that key does not currently exist in the store, then the record is created for you. If

4-1

a record exists that does use the specified key, then that record is updated with the
information that you are writing to the store.

In order to put an ordinary record into the store:

1. Construct a key, making sure to specify all of the key's major and minor path
components. For information on major and minor path components, see Record
Design Considerations.

2. Construct a value. This is the actual data that you want to put into the store.

3. Use one of the KVStore class's put methods to put the record to the store.

The following is a trivial example of writing a record to the store. It assumes that the
KVStore handle has already been created. For the sake of simplicity, this example
trivially serializes a string to use as the value for the put operation.

package kvstore.basicExample;

...

import oracle.kv.Key;
import oracle.kv.Value;
import java.util.ArrayList;

...

ArrayList<String> majorComponents = new ArrayList<String>();
ArrayList<String> minorComponents = new ArrayList<String>();

...

// Define the major and minor path components for the key
majorComponents.add("Smith");
majorComponents.add("Bob");

minorComponents.add("phonenumber");

// Create the key
Key myKey = Key.createKey(majorComponents, minorComponents);

String data = "408 555 5555";

// Create the value. Notice that we serialize the contents of the
// String object when we create the value.
Value myValue = Value.createValue(data.getBytes());

// Now put the record. Note that we do not show the creation of the
// kvstore handle here.

kvstore.put(myKey, myValue);

You can also load key/value pairs supplied by special purpose streams into the store.
For more information, see Bulk Put Operations.

Chapter 4
Writing Records to the Store

4-2

Other put Operations
Beyond the very simple usage of the KVStore.put() method illustrated above, there
are three other important put operations that you can use:

• KVStore.putIfAbsent()

This method will only put the record if the key DOES NOT current exist in the
store. That is, this method is successful only if it results in a create operation.

• KVStore.putIfPresent()

This method will only put the record if the key already exists in the store. That is,
this method is only successful if it results in an update operation.

• KVStore.putIfVersion()

This method will put the record only if the value matches the supplied version
information. For more information, see Using Versions .

Bulk Put Operations
Bulk put operations allow you to load records supplied by special purpose streams into
the store.

The bulk loading of the entries is optimized to make efficient use of hardware
resources. As a result, this operation can achieve much higher throughput when
compared with single put APIs.

The behavior of the bulk put operation with respect to duplicate entries contained in
different streams is thus undefined. If the duplicate entries are just present in a single
stream, then the first entry will be inserted (if it is not already present) and the second
entry and subsequent entries will result in the invocation of
EntryStream.keyExists(E) method. If duplicates exist across streams, then the first
entry to win the race is inserted and subsequent duplicates will result in
EntryStream.keyExists(E) being invoked on them.

To use bulk put, use one of the KVStore.put() methods that provide bulk put. These
accept a set of streams to bulk load data. The rows within each stream may be
associated with different tables.

When using these methods, you can also optionally specify a BulkWriteOptions class
instance which allows you to specify the durability, timeout, and timeout unit to
configure the bulk put operation.

For example, suppose you are loading 1000 key/value pairs with 3 input streams:

 import java.util.ArrayList;
 import java.util.List;
 import java.util.concurrent.atomic.AtomicLong;
 import oracle.kv.BulkWriteOptions;
 import oracle.kv.EntryStream;
 import oracle.kv.FaultException;
 import oracle.kv.KVStore;
 import oracle.kv.KVStoreConfig;
 import oracle.kv.KVStoreFactory;
 import oracle.kv.Key;

Chapter 4
Bulk Put Operations

4-3

 import oracle.kv.KeyValue;
 import oracle.kv.Value;

 ...

 // KVStore handle creation is omitted for brevity

 ...
 Integer streamParallelism = 3;
 Integer perShardParallelism = 3;
 Integer heapPercent = 30;
 // In this case, sets the amount of key/value pairs to load
 int nLoad = 1000;

 BulkWriteOptions bulkWriteOptions =
 new BulkWriteOptions(null, 0, null);
 // Set the number of streams. The default is 1 stream.
 bulkWriteOptions.setStreamParallelism(streamParallelism);
 // Set the number of writer threads per shard.
 // The default is 3 writer threads.
 bulkWriteOptions.setPerShardParallelism(perShardParallelism);
 // Set the percentage of max memory used for bulk put.
 // The default is 40 percent.
 bulkWriteOptions.setBulkHeapPercent(heapPercent);

 final List<EntryStream<KeyValue>> streams =
 new ArrayList<EntryStream<KeyValue>>(streamParallelism);
 final int num = (nLoad + (streamParallelism - 1)) /streamParallelism;
 for (int i = 0; i < streamParallelism; i++) {
 final int min = num * i;
 final int max = Math.min((min + num) , nLoad);
 streams.add(new LoadKVStream("Stream" + i, i, min, max));
 }

 store.put(streams, bulkWriteOptions);

 long total = 0;
 long keyExists = 0;
 for (EntryStream<KeyValue> stream: streams) {
 total += ((LoadKVStream)stream).getCount();
 keyExists += ((LoadKVStream)stream).getKeyExistsCount();
 }
 final String fmt = "Loaded %,d records, %,d pre-existing.";
 System.err.println(String.format(fmt, total, keyExists));
}

You should implement the stream interface that supplies the data to be batched and
loaded into the store. Entries are supplied by a list of EntryStream instances. Each
stream is read sequentially, that is, each EntryStream.getNext() is allowed to finish
before the next operation is issued. The load operation typically reads from these
streams in parallel as determined by BulkWriteOptions.getStreamParallelism().

private class LoadKVStream implements EntryStream<KeyValue> {

Chapter 4
Bulk Put Operations

4-4

 private final String name;
 private final long index;
 private final long max;
 private final long min;
 private long id;
 private long count;
 private final AtomicLong keyExistsCount;

 LoadKVStream(String name, long index, long min, long max) {
 this.index = index;
 this.max = max;
 this.min = min;
 this.name = name;
 id = min;
 count = 0;
 keyExistsCount = new AtomicLong();
 }

 @Override
 public String name() {
 return name + "-" + index + ": " + min + "~" + max;
 }

 @Override
 public KeyValue getNext() {
 if (id++ == max) {
 return null;
 }
 Key key = Key.fromString("/bulk/" + id);
 Value value = Value.createValue(("value"+ id).getBytes());
 KeyValue kv = new KeyValue(key, value);
 count++;
 return kv;
 }

 @Override
 public void completed() {
 System.err.println(name() + " completed, loaded: " + count);
 }

 @Override
 public void keyExists(KeyValue entry) {
 keyExistsCount.incrementAndGet();
 }

 @Override
 public void catchException
 (RuntimeException exception, KeyValue entry) {
 System.err.println(name() + " catch exception: " +
 exception.getMessage() + ": " +
 entry.toString());
 throw exception;
 }

 public long getCount() {

Chapter 4
Bulk Put Operations

4-5

 return count;
 }

 public long getKeyExistsCount() {
 return keyExistsCount.get();
 }
}

Deleting Records from the Store
You delete a single record from the store using the KVStore.delete() method.
Records are deleted based on a key. You can also require a record to match a
specified version before it will be deleted. To do this, use the
KVStore.deleteIfVersion() method. Versions are described in Using Versions .

When you delete a record, you must handle the same exceptions as occur when you
perform any write operation on the store. See Write Exceptions for a high-level
description of these exceptions.

package kvstore.basicExample;

...

import oracle.kv.Key;
import java.util.ArrayList;

...

ArrayList<String> majorComponents = new ArrayList<String>();
ArrayList<String> minorComponents = new ArrayList<String>();

...

// Define the major and minor path components for the key
majorComponents.add("Smith");
majorComponents.add("Bob");

minorComponents.add("phonenumber");

// Create the key
Key myKey = Key.createKey(majorComponents, minorComponents);

// Now delete the record. Note that we do not show the creation of the
// kvstore handle here.

kvstore.delete(myKey);

Using multiDelete()
You can delete multiple records at once, so long as they all share the same major path
components. Note that you must provide a complete major path component. You can
omit minor path components, or even provide partial path components.

Chapter 4
Deleting Records from the Store

4-6

To delete multiple records at once, use the KVStore.multiDelete() method.

For example:

package kvstore.basicExample;

...

import oracle.kv.Key;
import java.util.ArrayList;

...

ArrayList<String> majorComponents = new ArrayList<String>();

...

// Define the major and minor path components for the key
majorComponents.add("Smith");
majorComponents.add("Bob");

// Create the key
Key myKey = Key.createKey(majorComponents);

// Now delete the record. Note that we do not show the creation of the
// kvstore handle here.

kvstore.multiDelete(myKey, null, null);

Chapter 4
Deleting Records from the Store

4-7

5
Reading Records

There are several ways to retrieve records from the store. You can:

1. Retrieve a single record at a time using KVStore.get().

2. Retrieve records that share a complete set of major components using either
KVStore.multiGet() or KVStore.multiGetIterator().

3. Retrieve records that share a partial set of major components using
KVStore.storeIterator().

4. Retrieve and process records from each shard in parallel using a single key as the
retrieval criteria. Use one of the KVStore.storeIterator() or
KVStore.storeKeysIterator() methods that provide parallel scans.

5. Retrieve and process records from each shard in parallel using a sequence of
keys as the retrieval criteria. Use one of the KVStore.storeIterator() or
KVStore.storeKeysIterator() methods that provide bulk retrievals.

Each of these are described in the following sections.

Read Exceptions
One of three exceptions can occur when you attempt a read operation in the store.
The first of these is ConsistencyException. This exception indicates that the operation
cannot be completed because the consistency policy cannot be met. For more
information, see Consistency Guarantees.

The second exception is RequestTimeoutException. This means that the operation
could not be completed within the amount of time provided by the store's timeout
property. This probably indicates a store that is attempting to service too many read
requests all at once. Remember that your data is partitioned across the shards in your
store, with the partitioning occurring based on your shard keys. If you designed your
keys such that a large number of read requests are occurring against a single key, you
could see request timeouts even if some of the shards in your store are idle.

A request timeout could also be indicative of a network problem that is causing the
network to be slow or even completely unresponsive.

To handle a RequestTimeoutException, you could simply log the error and move on,
or you could pause for a short period of time and then retry the operation. You could
also retry the operation, but use a longer timeout value.

You can also receive an IllegalArgumentException, which will be thrown if a Row that
you are writing to the store does not have a primary key or is otherwise invalid.

You can also receive a general FaultException, which indicates that some exception
occurred which is neither a problem with consistency nor a problem with the request
timeout. Your only recourse here is to either log the error and move along, or retry the
operation.

5-1

Finally, if you are using a secure store that requires authentication, you can receive
AuthenticationFailureException or AuthenticationRequiredException if you do
not provide the proper authentication credentials. When using a secure store, you can
also see UnauthorizedException, which means you are attempting an operation for
which the authenticated user does not have the proper permissions.

Retrieving a Single Record
To retrieve a record from the store, use the KVStore.get() method. This method
returns a ValueVersion object. Use ValueVersion.getValue() to return the Value
object associated with the key. It is then up to your application to turn the Value's byte
array into a useful form. Normally, this will require the use of an Avro binding.

For example, in Writing Records to the Store we showed a trivial example of storing a
key-value pair to the store, where the value was a simple String. The following trivial
example shows how to retrieve that record. (Again, this is not how your code should
deserialize data, because this example does not use Avro to manage the value's
schema.)

package kvstore.basicExample;

...

import oracle.kv.Key;
import oracle.kv.Value;
import oracle.kv.ValueVersion;
import java.util.ArrayList;

...

ArrayList<String> majorComponents = new ArrayList<String>();
ArrayList<String> minorComponents = new ArrayList<String>();

...

// Define the major and minor path components for the key
majorComponents.add("Smith");
majorComponents.add("Bob");

minorComponents.add("phonenumber");

// Create the key
Key myKey = Key.createKey(majorComponents, minorComponents);

// Now retrieve the record. Note that we do not show the creation of
// the kvstore handle here.

ValueVersion vv = kvstore.get(myKey);
Value v = vv.getValue();
String data = new String(v.getValue());

Chapter 5
Retrieving a Single Record

5-2

Using multiGet()
KVStore.multiGet() allows you to retrieve multiple records at once, so long as they
all share the same major path components. The major path components that you
provide must represent a complete set of components.

Use KVStore.multiGet() only if your retrieval set will fit entirely in memory.

For example, suppose you use the following keys:

/Hats/-/baseball
/Hats/-/baseball/longbill
/Hats/-/baseball/longbill/blue
/Hats/-/baseball/longbill/red
/Hats/-/baseball/shortbill
/Hats/-/baseball/shortbill/blue
/Hats/-/baseball/shortbill/red
/Hats/-/western
/Hats/-/western/felt
/Hats/-/western/felt/black
/Hats/-/western/felt/gray
/Hat/-/swestern/leather
/Hat/-/swestern/leather/black
/Hat/-/swestern/leather/gray

Then you can retrieve all of the records that use the major key component Hats as
follows:

package kvstore.basicExample;

...

import oracle.kv.ConsistencyException;
import oracle.kv.Key;
import oracle.kv.RequestTimeoutException;
import oracle.kv.Value;
import oracle.kv.ValueVersion;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.SortedMap;
import java.util.Map;

...

ArrayList<String> majorComponents = new ArrayList<String>();

...

// Define the major and minor path components for the key
majorComponents.add("Hats");

// Create the retrieval key

Chapter 5
Using multiGet()

5-3

Key myKey = Key.createKey(majorComponents);

// Now retrieve the records. Note that we do not show the creation of
// the kvstore handle here.

SortedMap<Key, ValueVersion> myRecords = null;

try {
 myRecords = kvstore.multiGet(myKey, null, null);
} catch (ConsistencyException ce) {
 // The consistency guarantee was not met
} catch (RequestTimeoutException re) {
 // The operation was not completed within the
 // timeout value
}

You can then iterate over the resulting sorted map as follows:

for (Map.Entry<Key, ValueVersion> entry : myRecords.entrySet()) {
 ValueVersion vv = entry.getValue();
 Value v = vv.getValue();
 // Do some work with the Value here
}

Using multiGetIterator()
If you believe your return set will be so large that it cannot fit into memory, use
KVStore.multiGetIterator() instead of KVStore.multiGet().

KVStore.multiGetIterator() allows you to perform an ordered traversal of a set of
keys, as defined by a key and, optionally, a key range. Use this method if you believe
your return set will not fit into memory, or if you believe the return set will be so large
that it might strain your network resources.

KVStore.multiGetIterator() does not return the entire set of records all at once.
Instead, it batches the fetching of key-value pairs in the iterator, to minimize the
number of network round trips, while not monopolizing the available bandwidth.

Note that this method does not result in a transactional operation. Because the
retrieval is batched, the return set can change over the course of the entire retrieval
operation. As a result, you lose the atomicity of the operation when you use this
method.

This method provides for an ordered traversal of records that share the same major
path components. The major path components that you provide must represent a
complete set of components.

To use this method, you must provide:

• A traversal direction.

• The suggested number of keys to fetch during each network round trip. If you
provide a value of 0, an internally determined default is used.

• The key whose child pairs are to be fetched.

Chapter 5
Using multiGetIterator()

5-4

Note that there are other possible parameters that you can provide, but this above list
represents the minimum information required to use this method.

For example, suppose the following is representative of the keys that you use:

/Hats/-/baseball
/Hats/-/baseball/longbill
/Hats/-/baseball/longbill/blue
/Hats/-/baseball/longbill/red
/Hats/-/baseball/shortbill
/Hats/-/baseball/shortbill/blue
/Hats/-/baseball/shortbill/red
/Hats/-/western
/Hats/-/western/felt
/Hats/-/western/felt/black
/Hats/-/western/felt/gray
/Hats/-/western/leather
/Hats/-/western/leather/black
/Hats/-/western/leather/gray

Then you can retrieve all of the records that use the major key component Hats as
follows:

package kvstore.basicExample;

...

import oracle.kv.Direction;
import oracle.kv.Key;
import oracle.kv.Value;
import oracle.kv.KeyValueVersion;

import java.util.ArrayList;
import java.util.Iterator;

...

ArrayList<String> majorComponents = new ArrayList<String>();

...

// Define the major and minor path components for the key
majorComponents.add("Hats");

// Create the retrieval key
Key myKey = Key.createKey(majorComponents);

// Now retrieve the records. Note that we do not show the creation of
// the kvstore handle here.

Iterator<KeyValueVersion> i =
 kvstore.multiGetIterator(Direction.FORWARD, 0,
 myKey, null, null);

Chapter 5
Using multiGetIterator()

5-5

while (i.hasNext()) {
 Value v = i.next().getValue();
 // Do some work with the Value here
}

Using storeIterator()
If you want to retrieve all the records that match only some of the major key
components, use KVStore.storeIterator(). Using this method, you can iterate over
all of the records in the store, or over all of the records that match a partial set of major
components.

KVStore.storeIterator() does not return the entire set of records all at once.
Instead, it batches the fetching of key-value pairs in the iterator, to minimize the
number of network round trips, while not monopolizing the available bandwidth. Also,
the records returned by this method are in unsorted order.

Note that this method does not result in a single atomic operation. Because the
retrieval is batched, the return set can change over the course of the entire retrieval
operation. As a result, you lose the atomicity of the operation when you use this
method.

This method provides for an unsorted traversal of records in the store. If you do not
provide a key, then this method will iterate over all of the records in the store. If you do
provide a key, you must provide only a subset of the major key components used by
your records. The key that you provide must NOT include any minor key components.

To use this method, at a minimum you must specify:

• A traversal direction.

• The suggested number of keys to fetch during each network round trip. If you
provide a value of 0, an internally determined default is used.

This minimum list would iterate over all keys in the store. You can also iterate over all
the descendants of a specified parent key. Key ranges may also be supplied.

This method performs single-threaded retrieval of records if
StoreIteratorConfig.setMaxConcurrentRequests is anything other than 1. You
might be able to achieve better performance by using parallel scans, which uses
multiple threads to retrieve data from the store. See Parallel Scans for more
information.

For example, suppose you are storing user records that use keys like this:

/Smith/Bob/-/birthdate
/Smith/Bob/-/phonenumber
/Smith/Bob/-/image
/Smith/Bob/-/userID
/Smith/Patricia/-/birthdate
/Smith/Patricia/-/phonenumber
/Smith/Patricia/-/image
/Smith/Patricia/-/userID
/Smith/Richard/-/birthdate
/Smith/Richard/-/phonenumber
/Smith/Richard/-/image
/Smith/Richard/-/userID

Chapter 5
Using storeIterator()

5-6

/Wong/Bill/-/birthdate
/Wong/Bill/-/phonenumber
/Wong/Bill/-/image
/Wong/Bill/-/userID

Then in the simplest case, you can retrieve all of the records for all users whose
surname is 'Smith' as follows:

package kvstore.basicExample;

...

import oracle.kv.Direction;
import oracle.kv.Key;
import oracle.kv.Value;
import oracle.kv.KeyValueVersion;
import java.util.ArrayList;
import java.util.Iterator;

...

ArrayList<String> majorComponents = new ArrayList<String>();

...

// Define the major and minor path components for the key
majorComponents.add("Smith");

// Create the retrieval key
Key myKey = Key.createKey(majorComponents);

// Now retrieve the records. Note that we do not show the creation of
// the kvstore handle here.

Iterator <KeyValueVersion>i =
 kvstore.storeIterator(Direction.UNORDERED, 0,
 myKey, null, null);
while (i.hasNext()) {
 Value v = i.next().getValue();
 // Do some work with the Value here
}

Specifying Subranges
When performing multi-key operations in the store, you can specify a range of records
to operate upon. You do this using the KeyRange class. This class defines a range of
String values for the key components immediately following a key that is used in a
multiple get operation.

Chapter 5
Specifying Subranges

5-7

For example, suppose you were using the following keys:

/Smith/Bob/-/birthdate
/Smith/Bobphone/-/number
/Smith/Bob/-/image
/Smith/Bob/-/userID
/Smith/Patricia/-/birthdate
/Smith/Patricia/-/phonenumber
/Smith/Patricia/-/image
/Smith/Patricia/-/userID
/Smith/Richard/-/birthdate
/Smith/Richard/-/phonenumber
/Smith/Richard/-/image
/Smith/Richard/-/userID
/Wong/Bill/-/birthdate
/Wong/Bill/-/phonenumber
/Wong/Bill/-/image
/Wong/Bill/-/userID

Given this, you could perform operations for all the records related to users Bob Smith
and Patricia Smith by constructing a KeyRange. When you do this, you must identify the
key components that defines the upper and lower bounds of the range. You must also
identify if the key components that you provide are inclusive or exclusive.

In this case, we will define the start of the key range using the string "Bob" and the end
of the key range to be "Patricia". Both ends of the key range will be inclusive.

package kvstore.basicExample;

...

import oracle.kv.KeyRange;

...

KeyRange kr = new KeyRange("Bob", true, "Patricia", true);

You then use the KeyRange instance when you perform your multi-key operation. For
example, suppose you you were retrieving records from your store using
KVStore.storeIterator():

package kvstore.basicExample;

...

import oracle.kv.Direction;
import oracle.kv.Key;
import oracle.kv.Value;
import oracle.kv.KeyRange;
import oracle.kv.KeyValueVersion;

import java.util.ArrayList;
import java.util.Iterator;

Chapter 5
Specifying Subranges

5-8

...

ArrayList<String> majorComponents = new ArrayList<String>();

...

// Define the major and minor path components for the key
majorComponents.add("Smith");

// Create the retrieval key
Key myKey = Key.createKey(majorComponents);

KeyRange kr = new KeyRange("Bob", true, "Patricia", true);

// Now retrieve the records. Note that we do not show the creation of
// the kvstore handle here.

Iterator<KeyValueVersion> i =
 kvstore.storeIterator(Direction.UNORDERED, 0,
 myKey, kr, null);
while (i.hasNext()) {
 Value v = i.next().getValue();
 // Do some work with the Value here
}

Parallel Scans
Until now the reads that we have discussed in this chapter are single-threaded. Reads
are performed one shard at a time, in sequence, until all the desired records are
retrieved. This has obvious performance implications if you are retrieving a large
number of records that span multiple shards. However, you can speed up the read
performance by using parallel scans.

That is, suppose you have a keyspace that looks like this:

/trades/<timestamp>/<symbol>/-/: <price>;<qty>

If you want to locate all trades for ORCL which are more than 10k shares, you would
have to scan all the records under /trades (this part could be done with a key prefix
restriction) and examine each record. You would use the storeIterator() call to
perform this search. The single-threaded storeIterator() retrieves records from
each shard consecutively (that is, all records from shard 1, then all from shard 2, etc.).

Parallel Scan retrieves the records from each shard in parallel and allows the client to
receive and process them in parallel. You can specify how many threads to use to
perform the retrieval. If more threads are specified on the client side, then the user can
expect better retrieval performance — until processor or network resources are
saturated.

To specify that a parallel scan is to be performed, you use StoreIteratorConfig to
identify the maximum number of client-side threads to be used for the scan. You can
also set the number of results per request, and the maximum number of result batches
that the Oracle NoSQL Database client can hold before the scan pauses. You provide

Chapter 5
Parallel Scans

5-9

this to StoreIteratorConfig, and then pass that instance to the overloaded form of
KVStore.storeIterator() which accepts it. This creates a ParallelScanIterator.
instance which you use to perform the parallel scan.

For example, to retrieve all of the records in the store using 5 threads in parallel, you
would do this:

package kvstore.basicExample;

...

import oracle.kv.Consistency;
import oracle.kv.Direction;
import oracle.kv.ParallelScanIterator;
import oracle.kv.StoreIteratorConfig;

...
 /*
 *

 /*
 * Use multi-threading for this store iteration and limit the number
 * of threads (degree of parallelism) to 5.
 */
 final StoreIteratorConfig sc = new StoreIteratorConfig().
 setMaxConcurrentRequests(5);
 ParallelScanIterator<KeyValueVersion> iter = kvstore.storeIterator
 (Direction.UNORDERED,
 0,
 null /* parentKey */,
 null /* subRange */,
 null /* Depth */,
 Consistency.NONE,
 0 /* timeout */,
 null /* timeoutUnit */,
 sc, /* New Arg: StoreIteratorConfig */);

 try {
 while (iter.hasNext()) {
 KeyValueVersion kvv = iter.next();
 ...
 }
 } finally {
 if (iter != null) {
 iter.close();
 }
 }

Bulk Get Operations
Bulk get operations allow you to retrieve and process records from each shard in
parallel, like a parallel scan, but using a set of keys instead of a single key as retrieval
criteria.

Chapter 5
Bulk Get Operations

5-10

A bulk get operation does not return the entire set of KV pairs all at once. Instead, it
batches the fetching of KV pairs in the iterator, to minimize the number of network
round trips, while not monopolizing the available bandwidth. Batches are fetched in
parallel across multiple Replication Nodes. If more threads are specified on the client
side, then the user can expect better retrieval performance – until processor or
network resources are saturated.

To use bulk get, use one of the KVStore.storeIterator() or
KVStore.storeKeysIterator() methods that provide bulk retrievals. These accept a
set of keys instead of a single key as the retrieval criteria. The set is provided using
either an Iterator<Key> or List<Iterator<Key>> value.

The methods retrieve the KV pairs or keys matching the keys supplied by the
iterator(s).

Note:

If the iterator yields duplicate keys, the KeyValueVersion associated with the
duplicate keys will be returned at least once and potentially multiple times.

The supplied parent key must contain the complete major key path. The minor key
path may be omitted or may be a partial path.

When using these methods, you can also optionally specify:

• The Depth parameter to specify how many children of the parent key to return.

• The KeyRange parameter to specify a range of records to operate on.

• MaxConcurrentRequests using a StoreIteratorConfig class instance to configure
the number of threads used to perform the bulk get operation.

Note:

If MaxConcurrentRequests is not specified, a default value is calculated
based on the available hardware.

For example, suppose you use the following keys:

/Hats/-/baseball
/Hats/-/baseball/longbill
/Hats/-/baseball/longbill/blue
/Hats/-/baseball/longbill/red
/Hats/-/baseball/shortbill
/Hats/-/baseball/shortbill/blue
/Hats/-/baseball/shortbill/red
/Hats/-/western
/Hats/-/western/felt
/Hats/-/western/felt/black
/Pants/-/western/felt/gray
/Pants/-/baseball/cotton
/Pants/-/baseball/cotton/blue

Chapter 5
Bulk Get Operations

5-11

/Pants/-/baseball/cotton/red
/Shoes/-/baseball/
/Shoes/-/baseball/blue
/Shoes/-/baseball/red

If you want to locate all the Hats and Pants used for baseball, using nine threads in
parallel, you can retrieve all of the records that use the major key component Hats and
minor key component baseball as well as the records that use the major key
component Pants and minor key component baseball as follows:

package kvstore.basicExample;

...
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.TimeUnit;
import oracle.kv.Consistency;
import oracle.kv.Key;
import oracle.kv.StoreIteratorConfig;
import oracle.kv.ParallelScanIterator;
import oracle.kv.KeyValueVersion;

...

// KVStore handle creation is omitted for brevity

...

// Create the retrieval keys
Key myKey = Key.createKey("Hats","baseball");
Key myOtherKey = Key.createKey("Pants","baseball");

// Use multi-threading for this store iteration and limit the number of
// threads (degree of parallelism) to 9.
final StoreIteratorConfig storeIteratorConfig =
 new StoreIteratorConfig().setMaxConcurrentRequests(9);

// Create the parent key iterator.
List<Key> searchKeys = new ArrayList<Key>();

// Add the retrieval keys to the list.
searchKeys.add(myKey);
searchKeys.add(myOtherKey);

final ParallelScanIterator<KeyValueVersion> iterator =
 kvstore.storeIterator(searchKeys.iterator(),
 0, //BatchSize
 null, //SubRange
 null, //Depth
 Consistency.NONE_REQUIRED,
 0, //Timeout
 null,
 storeIteratorConfig);

Chapter 5
Bulk Get Operations

5-12

// Now retrieve the records.
try {
 while (iterator.hasNext()) {
 KeyValueVersion kvv = iterator.next();
 // Do some work with the Value here
 }
} finally {
 if (iterator != null) {
 iterator.close();
 }
}

Chapter 5
Bulk Get Operations

5-13

6
Key Ranges and Depth for Multi-Key
Operations

When performing multi-key operations (for example, KVStore.multiGet(),
KVStore.multiDelete(), KVStore.storeIterator()), you can limit the records that
are operated upon by specifying key ranges and depth. Key ranges allow you to
identify a subset of keys to use out of a matching set. Depth allows you to specify how
many children you want the multi-key operation to use.

Specifying Subranges
When performing multi-key operations in the store, you can specify a range of records
to operate upon. You do this using the KeyRange class. This class defines a range of
String values for the key components immediately following a key that is used in a
multiple get operation.

For example, suppose you were using the following keys:

/Smith/Bob/-/birthdate
/Smith/Bob/-/phonenumber
/Smith/Bob/-/image
/Smith/Bob/-/userID
/Smith/Patricia/-/birthdate
/Smith/Patricia/-/phonenumber
/Smith/Patricia/-/image
/Smith/Patricia/-/userID
/Smith/Richard/-/birthdate
/Smith/Richard/-/phonenumber
/Smith/Richard/-/image
/Smith/Richard/-/userID
/Wong/Bill/-/birthdate
/Wong/Bill/-/phonenumber
/Wong/Bill/-/image
/Wong/Bill/-/userID

Given this, you could perform operations for all the records related to users Bob Smith
and Patricia Smith by constructing a KeyRange. When you do this, you must identify the
key components that define the upper and lower bounds of the range. You must also
identify if the key components that you provide are inclusive or exclusive.

In this case, we will define the start of the key range using the string "Bob" and the end
of the key range to be "Patricia". Both ends of the key range will be inclusive.

package kvstore.basicExample;

import oracle.kv.KeyRange;

6-1

...

KeyRange kr = new KeyRange("Bob", true, "Patricia", true);

You then use the KeyRange instance when you perform your multi-key operation. For
example, suppose you were retrieving records from your store using
KVStore.storeIterator():

package kvstore.basicExample;

...

import oracle.kv.Direction;
import oracle.kv.Key;
import oracle.kv.Value;
import oracle.kv.KeyRange;
import oracle.kv.KeyValueVersion;
import oracle.kv.RequestTimeoutException;

import java.util.ArrayList;
import java.util.Iterator;

...

ArrayList<String> majorComponents = new ArrayList<String>();

...

// Define the major and minor path components for the key
majorComponents.add("Smith");

// Create the retrieval key
Key myKey = Key.createKey(majorComponents);

KeyRange kr = new KeyRange("Bob", true, "Patricia", true);

// Now retrieve the records. Note that we do not show the creation of
// the kvstore handle here.

try {
 Iterator<KeyValueVersion> i =
 kvstore.storeIterator(Direction.FORWARD, 0,
 myKey, kr, null);
 while (i.hasNext()) {
 Value v = i.next().getValue();
 // Do some work with the Value here
 }
} catch (RequestTimeoutException re) {
 // The operation was not completed within the
 // timeout value
}

Chapter 6
Specifying Subranges

6-2

Specifying Depth
When performing multi-key operations in the store, you can specify a depth of records
to operate upon. That is, you can indicate whether you want to operate upon:

• The specified key and all its children.

• The specified key and its most immediate children.

• Only the immediate children of the specified key. (The specified key is omitted.)

• All of the children of the specified key. (The specified key is omitted.)

By default, multi-key operations operate upon the specified key and all of its children.
To limit the operation to something else, such as just the key's immediate children,
specify Depth.CHILDREN_ONLY to the operation's Depth parameter.

For example, suppose you were using the following keys:

/Products/Hats/-/baseball
/Products/Hats/-/baseball/longbill
/Products/Hats/-/baseball/longbill/blue
/Products/Hats/-/baseball/longbill/red
/Products/Hats/-/baseball/shortbill
/Products/Hats/-/baseball/shortbill/blue
/Products/Hats/-/baseball/shortbill/red
/Products/Hats/-/western
/Products/Hats/-/western/felt
/Products/Hats/-/western/felt/black
/Products/Hats/-/western/felt/gray
/Products/Hats/-/western/leather
/Products/Hats/-/western/leather/black
/Products/Hats/-/western/leather/gray

Further, suppose you wanted to retrieve just these records:

/Products/Hats/-/baseball
/Products/Hats/-/western

Then you could do this using KVStore.multiGet() with the appropriate Depth
argument.

package kvstore.basicExample;

...

import oracle.kv.Depth;
import oracle.kv.Key;
import oracle.kv.RequestTimeoutException;
import oracle.kv.Value;
import oracle.kv.ValueVersion;

import java.util.ArrayList;
import java.util.Iterator;

Chapter 6
Specifying Depth

6-3

import java.util.SortedMap;

...

ArrayList<String> majorComponents = new ArrayList<String>();

...

// Define the major and minor path components for the key
majorComponents.add("Product");
majorComponents.add("Hats");

// Create the retrieval key
Key myKey = Key.createKey(majorComponents);

// Now retrieve the records. Note that we do not show the creation of
// the kvstore handle here.

try {
 SortedMap<Key, ValueVersion> myRecords = null;

 myRecords = kvstore.multiGet(myKey,
 null,
 Depth.CHILDREN_ONLY);
} catch (RequestTimeoutException re) {
 // The operation was not completed within the
 // timeout value
}

Chapter 6
Specifying Depth

6-4

7
Using Versions

When a record (that is, a key-value pair) is initially inserted in the store, and each time
it is updated, it is assigned a unique version token. The version is always returned by
the method that wrote to the store (for example, KVStore.put()). The version
information is also returned by methods that retrieve records from the store.

There are two reasons why versions might be important.

1. When an update or delete is to be performed, it may be important to only perform
the operation if the record's value has not changed. This is particularly interesting
in an application where there can be multiple threads or processes simultaneously
operating on the record. In this case, read the record, examining its version when
you do so. You can then perform a put operation, but only allow the put to proceed
if the version has not changed (this is often referred to as a Compare and Set
(CAS) or Read, Modify, Write (RMW) operation). You use
KVStore.putIfVersion() or KVStore.deleteIfVersion() to guarantee this.

2. When a client reads data that was previously written, it may be important to ensure
that the Oracle NoSQL Database node servicing the read operation has been
updated with the information previously written. This can be accomplished by
passing the version of the previously written data as a consistency parameter to
the read operation. For more information on using consistency, see Consistency
Guarantees.

Versions are managed using the Version class. In some situations, it is returned as
part of another encapsulating class, such as KeyValueVersion or ValueVersion.

The following code fragment retrieves a record, and then stores that record only if the
version has not changed:

package kvstore.basicExample;

...

import oracle.kv.Key;
import oracle.kv.Value;
import oracle.kv.ValueVersion;
import java.util.ArrayList;

...

ArrayList<String> majorComponents = new ArrayList<String>();
ArrayList<String> minorComponents = new ArrayList<String>();

...

// Define the major and minor path components for the key
majorComponents.add("Smith");
majorComponents.add("Bob");

7-1

minorComponents.add("phonenumber");

// Create the key
Key myKey = Key.createKey(majorComponents, minorComponents);

// Now retrieve the record. Note that we do not show the creation of
// the kvstore handle here.

ValueVersion vv = kvstore.get(myKey);
Value value = vv.getValue();
Version version = vv.getVersion();

...

///
////////////// Do work on the value here //////////////////
///

...

// Put if the version is correct. Notice that here we examine
// the return code. If it is null, that means that the put was
// unsuccessful, probably because the record was changed elsewhere.
// In this case, you could retry the entire get/putIfVersion
// operation.
Version newVersion = kvstore.putIfVersion(myKey, value, version);
if (newVersion == null) {
 // Unsuccessful. Someone else probably modified the record.
}

Chapter 7

7-2

8
Consistency Guarantees

A Oracle NoSQL Database store is built from some number of computers (generically
referred to as nodes) that are working together using a network. All data in your store
is first written to a master node. The master node then copies that data to other nodes
in the store. Nodes which are not master nodes are referred to as replicas.

Because of the nature of distributed systems, there is a possibility that, at any given
moment, a write operation that was performed on the master node will not yet have
been performed on some other node in the store.

Consistency, then, is the policy describing whether it is possible for a record on Node
A to be different from the same record on Node B.

When there is a high likelihood that a record stored on one node is identical to the
same record stored on another node, we say that we have a high consistency
guarantee. Likewise, a low consistency guarantee means that there is a good
possibility that a record on one node differs in some way from the same record stored
on another node.

You can control how high you want your consistency guarantee to be. Note that the
trade-off in setting a high consistency guarantee is that your store's read performance
might not be as high as if you use a low consistency guarantee.

There are several different forms of consistency guarantees that you can use. They
are described in the following sections.

Note that by default, Oracle NoSQL Database uses the lowest possible consistency
possible.

Specifying Consistency Policies
To specify a consistency policy, you use one of the static instances of the Consistency
class, or one of its nested classes.

Once you have selected a consistency policy, you can put it to use in one of two ways.
First, you can use it to define a default consistency policy using the
KVStoreConfig.setConsistency() method. Specifying a consistency policy in this way
means that all store operations will use that policy, unless they are overridden on an
operation by operation basis.

The second way to use a consistency policy is to override the default policy using the
Consistency parameter on the KVStore method that you are using to perform the store
read operation.

The following example shows how to set a default consistency policy for the store. We
will show the per-operation method of specifying consistency policies in the following
sections.

package kvstore.basicExample;

8-1

import oracle.kv.Consistency;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

...

KVStoreConfig kconfig = new KVStoreConfig("exampleStore",
 "node1.example.org:5088, node2.example.org:4129");

kconfig.setConsistency(Consistency.NONE_REQUIRED);

KVStore kvstore = KVStoreFactory.getStore(kconfig);

Using Simple Consistency
You can use static instances of the Consistency base class to specify certain rigid
consistency guarantees. There are three such instances that you can use:

1. Consistency.ABSOLUTE

Requires that the operation be serviced at the master node. In this way, the
record(s) will always be consistent with the master.

This is the strongest possible consistency guarantee that you can require, but it
comes at the cost of servicing all read and write requests at the master node. If
you direct all your traffic to the master node (which is just one machine for each
partition), then you will not be distributing your read operations across your
replicas. You also will slow your write operations because your master will be busy
servicing read requests. For this reason, you should use this consistency
guarantee sparingly.

2. Consistency.NONE_REQUIRED

Allows the store operation to proceed regardless of the state of the replica relative
to the master. This is the most relaxed consistency guarantee that you can
require. It allows for the maximum possible store performance, but at the high
possibility that your application will be operating on stale or out-of-date
information.

3. Consistency.NONE_REQUIRED_NO_MASTER

Requires read operations to be serviced on a replica; never the Master. When this
policy is used, the read operation will not be performed if the only node available is
the Master.

Where possible, this consistency policy should be avoided in favor of the
secondary zones feature.

For example, suppose you are performing a critical read operation that you know must
absolutely have the most up-to-date data. Then do this:

package kvstore.basicExample;

...

import oracle.kv.Consistency;
import oracle.kv.ConsistencyException;

Chapter 8
Using Simple Consistency

8-2

import oracle.kv.Key;
import oracle.kv.Value;
import oracle.kv.ValueVersion;

import java.util.ArrayList;

...

ArrayList<String> majorComponents = new ArrayList<String>();

...

// Define the major path components for the key
majorComponents.add("Smith");
majorComponents.add("Bob");

// Create the key
Key myKey = Key.createKey(majorComponents);

// Now retrieve the record. Note that we do not show the creation of
// the kvstore handle here.

try {
 ValueVersion vv = kvstore.get(myKey,
 Consistency.ABSOLUTE,
 0, // Timeout parameter.
 // 0 means use the default.
 null); // Timeout units. Null because
 // the Timeout is 0.

 Value v = vv.getValue();
 /*
 * From here, deserialize using your Avro binding.
 */
} catch (ConsistencyException ce) {
 // The consistency guarantee was not met
}

Using Time-Based Consistency
A time-based consistency policy describes the amount of time that a replica node is
allowed to lag behind the master node. If the replica's data is more than the specified
amount of time out-of-date relative to the master, then a ConsistencyException is
thrown. In that event, you can either abandon the operation, retry it immediately, or
pause and then retry it.

In order for this type of a consistency policy to be effective, the clocks on all the nodes
in the store must be synchronized using a protocol such as NTP.

In order to specify a time-based consistency policy, you use the Consistency.Time
class. The constructor for this class requires the following information:

• permissibleLag

Chapter 8
Using Time-Based Consistency

8-3

A long that describes the number of TimeUnits the replica is allowed to lag behind
the master.

• permissibleLagUnits

A TimeUnit that identifies the units used by permissibleLag. For example:
TimeUnit.MILLISECONDS.

• timeout

A long that describes how long the replica is permitted to wait in an attempt to
meet the permissible lag limit. That is, if the replica cannot immediately meet the
permissible lag requirement, then it will wait this amount of time to see if it is
updated with the required data from the master. If the replica cannot meet the
permissible lag requirement within the timeout period, a ConsistencyException is
thrown.

• timeoutUnit

A TimeUnit that identifies the units used by timeout. For example:
TimeUnit.SECONDS.

The following sets a default time-based consistency policy of 2 seconds. The timeout
is 4 seconds.

package kvstore.basicExample;

import oracle.kv.Consistency;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

import java.util.concurrent.TimeUnit;

...

KVStoreConfig kconfig = new KVStoreConfig("exampleStore",
 "node1.example.org:5088, node2.example.org:4129");

Consistency.Time cpolicy =
 new Consistency.Time(2, TimeUnit.SECONDS,
 4, TimeUnit.SECONDS);
kconfig.setConsistency(cpolicy);

KVStore kvstore = KVStoreFactory.getStore(kconfig);

Using Version-Based Consistency
Version-based consistency is used on a per-operation basis. It ensures that a read
performed on a replica is at least as current as some previous write performed on the
master.

An example of how this might be used is a web application that collects some
information from a customer (such as her name). It then customizes all subsequent
pages presented to the customer with her name. The storage of the customer's name
is a write operation that can only be performed by the master node, while subsequent

Chapter 8
Using Version-Based Consistency

8-4

page creation is performed as a read-only operation that can occur at any node in the
store.

Use of this consistency policy might require that version information be transferred
between processes in your application.

To create a version-based consistency policy, use the Consistency.Version class.
When you do this, you must provide the following information:

• version

The Version that the read must match.

• timeout

A long that describes how long the replica is permitted to wait in an attempt to
meet the version requirement. That is, if the replica cannot immediately meet the
version requirement, then it will wait this amount of time to see if it is updated with
the required data from the master. If the replica cannot meet the requirement
within the timeout period, a ConsistencyException is thrown.

• timeoutUnit

A TimeUnit that identifies the units used by timeout. For example:
TimeUnit.SECONDS.

For example, the following code performs a store write, collects the version
information, then uses it to construct a version-based consistency policy. In this
example, assume we are using a generic Avro binding to store some person
information.

package kvstore.basicExample;

...

import oracle.kv.Key;
import oracle.kv.Value;
import oracle.kv.Version;
import java.util.ArrayList;

import org.apache.avro.Schema;
import oracle.kv.avro.GenericAvroBinding;
import oracle.kv.avro.GenericRecord;

...

ArrayList<String> majorComponents = new ArrayList<String>();

...

// Define the major path components for the key
majorComponents.add("Smith");
majorComponents.add("Bob");

// Create the key
Key myKey = Key.createKey(majorComponents);

...

Chapter 8
Using Version-Based Consistency

8-5

// Binding and schema creation omitted

...

final GenericRecord person = new GenericData.Record(personSchema);
person.put("ID", 100011);
person.put("FamiliarName", "Bob");
person.put("Surname", "Smith");
person.put("PrimaryPhone", "408 555 5555");

Value myValue = binding.toValue(person);

// Now put the record. Note that we do not show the creation of the
// kvstore handle here.

Version matchVersion = kvstore.put(myKey, myValue);

At some other point in this application's code, or perhaps in another application
entirely, we use the matchVersion captured above to create a version-based
consistency policy.

package kvstore.basicExample;

...

import oracle.kv.Consistency;
import oracle.kv.ConsistencyException;
import oracle.kv.Key;
import oracle.kv.Value;
import oracle.kv.ValueVersion;
import oracle.kv.Version;

import org.apache.avro.Schema;
import oracle.kv.avro.GenericAvroBinding;
import oracle.kv.avro.GenericRecord;

import java.util.ArrayList;
import java.util.concurrent.TimeUnit;

...

ArrayList<String> majorComponents = new ArrayList<String>();

...

// Define the major path components for the key
majorComponents.add("Smith");
majorComponents.add("Bob");

// Create the key
Key myKey = Key.createKey(majorComponents);

// Create the consistency policy using the
// Version object we captured, above.

Chapter 8
Using Version-Based Consistency

8-6

Consistency.Version versionConsistency =
 new Consistency.Version(matchVersion,
 200,
 TimeUnit.NANOSECONDS);

// Now retrieve the record. Note that we do not show the creation of
// the kvstore handle here.

try {
 ValueVersion vv = kvstore.get(myKey,
 versionConsistency,
 0, // Timeout parameter.
 // 0 means use the default.
 null); // Timeout units. Null because
 // the Timeout is 0.

 // Deserialize with our generic avro binding
 // (creation of this binding is not shown).

 final GenericRecord member = binding.toObject(vv.getValue());

 // Do work with the generic record here.
} catch (ConsistencyException ce) {
 // The consistency guarantee was not met
}

Chapter 8
Using Version-Based Consistency

8-7

9
Durability Guarantees

Writes are performed in the Oracle NoSQL Database store by performing the write
operation (be it a creation, update, or delete operation) on a master node. As a part of
performing the write operation, the master node will usually make sure that the
operation has made it to stable storage before considering the operation complete.

The master node will also transmit the write operation to the replica nodes in its shard.
It is possible to ask the master node to wait for acknowledgments from its replicas
before considering the operation complete.

Note:

If your store is configured such that secondary zones are in use, then write
acknowledgements are never required for the replicas in the secondary
zones. That is, write acknowledgements are only returned by replicas in
primary zones. See the Oracle NoSQL Database Administrator's Guide for
more information on zones.

The replicas, in turn, will not acknowledge the write operation until they have applied
the operation to their own database.

A durability guarantee, then, is a policy which describes how strongly persistent your
data is in the event of some kind of catastrophic failure within the store. (Examples of a
catastrophic failure are power outages, disk crashes, physical memory corruption, or
even fatal application programming errors.)

A high durability guarantee means that there is a very high probability that the write
operation will be retained in the event of a catastrophic failure. A low durability
guarantee means that the write is very unlikely to be retained in the event of a
catastrophic failure.

The higher your durability guarantee, the slower your write-throughput will be in the
store. This is because a high durability guarantee requires a great deal of disk and
network activity.

Usually you want some kind of a durability guarantee, although if you have highly
transient data that changes from run-time to run-time, you might want the lowest
possible durability guarantee for that data.

Durability guarantees include two types of information: acknowledgment guarantees
and synchronization guarantees. These two types of guarantees are described in the
next sections. We then show how to set a durability guarantee.

Note that by default, Oracle NoSQL Database uses a low durability guarantee.

9-1

Setting Acknowledgment-Based Durability Policies
Whenever a master node performs a write operation (create, update or delete), it must
send that operation to its various replica nodes. The replica nodes then apply the write
operation(s) to their local databases so that the replicas are consistent relative to the
master node.

Upon successfully applying write operations to their local databases, replicas in
primary zones send an acknowledgment message back to the master node. This
message simply says that the write operation was received and successfully applied to
the replica's local database. Replicas in secondary zones do not send these
acknowledgement messages.

Note:

The exception to this are replicas in secondary zones, which will never
acknowledge write operations. See the Oracle NoSQL Database
Administrator's Guide for more information on zones.

An acknowledgment-based durability policy describes whether the master node will
wait for these acknowledgments before considering the write operation to have
completed successfully. You can require the master node to not wait for
acknowledgments, or to wait for acknowledgments from a simple majority of replica
nodes in primary zones, or to wait for acknowledgments from all replica nodes in
primary zones.

The more acknowledgments the master requires, the slower its write performance will
be. Waiting for acknowledgments means waiting for a write message to travel from the
master to the replicas, then for the write operation to be performed at the replica (this
may mean disk I/O), then for an acknowledgment message to travel from the replica
back to the master. From a computer application's point of view, this can all take a
long time.

When setting an acknowledgment-based durability policy, you can require
acknowledgment from:

• All replicas. That is, all of the replica nodes in the shard that reside in a primary
zone. Remember that your store has more than one shard, so the master node is
not waiting for acknowledgments from every machine in the store.

• No replicas. In this case, the master returns with normal status from the write
operation as soon as it has met its synchronization-based durability policy. These
are described in the next section.

• A simple majority of replicas in primary zones. That is, if the shard has 5 replica
nodes residing in primary zones, then the master will wait for acknowledgments
from 3 nodes.

Chapter 9
Setting Acknowledgment-Based Durability Policies

9-2

Setting Synchronization-Based Durability Policies
Whenever a node performs a write operation, the node must know whether it should
wait for the data to be written to stable storage before successfully returning from the
operation.

As a part of performing a write operation, the data modification is first made to an in-
memory cache. It is then written to the filesystem's data buffers. And, finally, the
contents of the data buffers are synchronized to stable storage (typically, a hard drive).

You can control how much of this process the master node will wait to complete before
it returns from the write operation with a normal status. There are three different levels
of synchronization durability that you can require:

• NO_SYNC

The data is written to the host's in-memory cache, but the master node does not
wait for the data to be written to the file system's data buffers, or for the data to be
physically transferred to stable storage. This is the fastest, but least durable,
synchronization policy.

• WRITE_NO_SYNC

The data is written to the in-memory cache, and then written to the file system's
data buffers, but the data is not necessarily transferred to stable storage before
the operation completes normally.

• SYNC

The data is written to the in-memory cache, then transferred to the file system's
data buffers, and then synchronized to stable storage before the write operation
completes normally. This is the slowest, but most durable, synchronization policy.

Notice that in all cases, the data is eventually written to stable storage (assuming
some failure does not occur to prevent it). The only question is, how much of this
process will be completed before the write operation returns and your application can
proceed to its next operation.

See the next section for an example of setting durability policies.

Setting Durability Guarantees
To set a durability guarantee, use the Durability class. When you do this, you must
provide three pieces of information:

• The acknowledgment policy.

• A synchronization policy at the master node.

• A synchronization policy at the replica nodes.

The combination of policies that you use is driven by how sensitive your application
might be to potential data loss, and by your write performance requirements.

For example, the fastest possible write performance can be achieved through a
durability policy that requires:

• No acknowledgments.

• NO_SYNC at the master.

Chapter 9
Setting Synchronization-Based Durability Policies

9-3

• NO_SYNC at the replicas.

However, this durability policy also leaves your data with the greatest risk of loss due
to application or machine failure between the time the operation returns and the time
when the data is written to stable storage.

On the other hand, if you want the highest possible durability guarantee, you can use:

• All replicas must acknowledge the write operation.

• SYNC at the master.

• SYNC at the replicas.

Of course, this also results in the slowest possible write performance.

Most commonly, durability policies attempt to strike a balance between write
performance and data durability guarantees. For example:

• Simple majority (> 50%) of replicas must acknowledge the write.

• SYNC at the master.

• NO_SYNC at the replicas.

Note that you can set a default durability policy for your KVStore handle, but you can
also override the policy on a per-operation basis for those situations where some of
your data need not be as durable (or needs to be MORE durable) than the default.

For example, suppose you want an intermediate durability policy for most of your data,
but sometimes you have transient or easily re-created data whose durability really is
not very important. Then you would do something like this:

First, set the default durability policy for the KVStore handle:

package kvstore.basicExample;

import oracle.kv.Durability;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;

...

KVStoreConfig kconfig = new KVStoreConfig("exampleStore",
 "node1.example.org:5088, node2.example.org:4129");

Durability defaultDurability =
 new Durability(Durability.SyncPolicy.SYNC, // Master sync
 Durability.SyncPolicy.NO_SYNC, // Replica sync
 Durability.ReplicaAckPolicy.SIMPLE_MAJORITY);
kconfig.setDurability(defaultDurability);

KVStore kvstore = KVStoreFactory.getStore(kconfig);

Chapter 9
Setting Durability Guarantees

9-4

In another part of your code, for some unusual write operations, you might then want
to relax the durability guarantee so as to speed up the write performance for those
specific write operations:

package kvstore.basicExample;

...

import oracle.kv.Durability;
import oracle.kv.DurabilityException;
import oracle.kv.Key;
import oracle.kv.RequestTimeoutException;
import oracle.kv.Value;
import java.util.ArrayList;

import org.apache.avro.Schema;
import oracle.kv.avro.GenericAvroBinding;
import oracle.kv.avro.GenericRecord;

...

ArrayList<String> majorComponents = new ArrayList<String>();

...

// Define the major and minor path components for the key
majorComponents.add("Smith");
majorComponents.add("Bob");

// Create the key
Key myKey = Key.createKey(majorComponents);

...

// Binding and schema creation omitted

...

final GenericRecord person = new GenericData.Record(personSchema);
person.put("ID", 100011);
person.put("FamiliarName", "Bob");
person.put("Surname", "Smith");
person.put("PrimaryPhone", "408 555 5555");

Value myValue = binding.toValue(person);

// Create the special durability policy
Durability durability =
 new Durability(Durability.SyncPolicy.NO_SYNC, // Master sync
 Durability.SyncPolicy.NO_SYNC, // Replica sync
 Durability.ReplicaAckPolicy.NONE);

// Now put the record. Note that we do not show the creation of the
// kvstore handle here.
try {

Chapter 9
Setting Durability Guarantees

9-5

 kvstore.put(myKey, myValue,
 null, // ReturnValueVersion is null because
 // we aren't using it.
 durability, // The per-operation durability
 0, // Use the default request timeout
 null); // Use the default timeunit value
} catch (DurabilityException de) {
 // The durability guarantee was not met
} catch (RequestTimeoutException re) {
 // The operation was not completed within the
 // timeout value
}

Chapter 9
Setting Durability Guarantees

9-6

10
Executing a Sequence of Operations

You can execute a sequence of write operations as a single atomic unit so long as all
the records that you are operating upon share the same major path components. By
atomic unit, we mean all of the operations will execute successfully, or none of them
will.

Also, the sequence is performed in isolation. This means that if you have a thread
running a particularly long sequence, then another thread cannot intrude on the data in
use by the sequence. The second thread will not be able to see any of the
modifications made by the long-running sequence until the sequence is complete. The
second thread also will not be able to modify any of the data in use by the long-running
sequence.

Be aware that sequences only support write operations. You can perform puts and
deletes, but you cannot retrieve data when using sequences.

When using a sequence of operations:

• All of the keys in use by the sequence must share the same major path
components.

• Operations are placed into a list, but the operations are not necessarily executed
in the order that they appear in the list. Instead, they are executed in an internally
defined sequence that prevents deadlocks.

• You cannot create two or more operations that operate on the same key. Doing so
results in an exception, and the entire operation is aborted.

The rest of this chapter shows how to use OperationFactory and KVStore.execute()
to create and run a sequence of operations.

Sequence Errors
If any operation within the sequence experiences an error, then the entire operation is
aborted. In this case, your data is left in the same state it would have been in if the
sequence had never been run at all — no matter how much of the sequence was run
before the error occurred.

Fundamentally, there are two reasons why a sequence might abort:

1. An internal operation results in an exception that is considered a fault. For
example, the operation throws a DurabilityException. Also, if there is an internal
failure due to message delivery or a networking error.

2. An individual operation returns normally but is unsuccessful as defined by the
particular operation. (For example, you attempt to delete a key that does not exist).
If this occurs AND you specified true for the abortIfUnsuccessful parameter
when the operation was created using OperationFactory, then an
OperationExecutionException is thrown. This exception contains information
about the failed operation.

10-1

Creating a Sequence
You create a sequence by using the OperationFactory class to create Operation
class instances, each of which represents exactly one operation in the store. You
obtain an instance of OperationFactory by using KVStore.getOperationFactory().

For example, suppose you are using the following keys:

/Products/Hats/-/baseball
/Products/Hats/-/baseball/longbill
/Products/Hats/-/baseball/longbill/blue
/Products/Hats/-/baseball/longbill/red
/Products/Hats/-/baseball/shortbill
/Products/Hats/-/baseball/shortbill/blue
/Products/Hats/-/baseball/shortbill/red
/Products/Hats/-/western
/Products/Hats/-/western/felt
/Products/Hats/-/western/felt/black
/Products/Hats/-/western/felt/gray
/Products/Hats/-/western/leather
/Products/Hats/-/western/leather/black
/Products/Hats/-/western/leather/gray

And further suppose each of the following records has some information (such as a
price refresh date) that you want to update in such a fashion as to make sure that the
information is consistent for all of the records:

/Products/Hats/-/western
/Products/Hats/-/western/felt
/Products/Hats/-/western/leather

Then you can create a sequence in the following way:

package kvstore.basicExample;

...

import oracle.kv.Key;
import oracle.kv.Value;
import oracle.kv.Operation;
import oracle.kv.OperationFactory;
import java.util.ArrayList;

import org.apache.avro.Schema;
import oracle.kv.avro.GenericAvroBinding;
import oracle.kv.avro.GenericRecord;

...

// Get the operation factory. Note that we do not show the
// creation of the kvstore handle here.

Chapter 10
Creating a Sequence

10-2

OperationFactory of = kvstore.getOperationFactory();

// We need a List to hold the operations in the
// sequence.
ArrayList<Operation> opList = new ArrayList<Operation>();

...

ArrayList<String> majorComponents = new ArrayList<String>();
ArrayList<String> minorComponents1 = new ArrayList<String>();
ArrayList<String> minorComponents2 = new ArrayList<String>();
ArrayList<String> minorComponents3 = new ArrayList<String>();

...

// Define the major and minor path components for our keys
majorComponents.add("Products");
majorComponents.add("Hats");

minorComponents1.add("western");
minorComponents2.add("western");
minorComponents2.add("felt");
minorComponents3.add("western");
minorComponents3.add("leather");

// Create the three keys that we will need
Key key1 = Key.createKey(majorComponents, minorComponents1);
Key key2 = Key.createKey(majorComponents, minorComponents2);
Key key3 = Key.createKey(majorComponents, minorComponents3);

...

// Binding and schema creation omitted

...

final GenericRecord hat1 = new GenericData.Record(hatSchema);
hat1.put("randomHatData", "someRandomData");
final Value value1 = binding.toValue(hat1);

final GenericRecord hat2 = new GenericData.Record(hatSchema);
hat2.put("randomHatData", "someMoreRandomData");
final Value value2 = binding.toValue(hat2);

final GenericRecord hat3 = new GenericData.Record(hatSchema);
hat3.put("randomHatData", "someMoreRandomData");
final Value value3 = binding.toValue(hat3);

...

// Here we would perform whatever actions we need to create
// our record values. We won't show how the values get created,
// but assume it results in three Value objects: value1, value2,
// and value3.

Chapter 10
Creating a Sequence

10-3

...

// Now create our list of operations for the key pairs
// key1/value1, key2/value2, and key3/value3. In this
// trivial example we will put store all three records
// in a single atomic operation.

opList.add(of.createPut(key1, value1));
opList.add(of.createPut(key2, value2));
opList.add(of.createPut(key3, value3));

Note in the above example that we create three unique keys that differ only in their
minor path components. If the major path components were different for any of the
three keys, we could not successfully execute the sequence.

Executing a Sequence
To execute the sequence we created in the previous section, use the
KVStore.execute() method:

package kvstore.basicExample;

...

import oracle.kv.DurabilityException;
import oracle.kv.FaultException;
import oracle.kv.OperationExecutionException;
import oracle.kv.RequestTimeoutException;

...

try {
 kvstore.execute(opList);
} catch (OperationExecutionException oee) {
 // Some error occurred that prevented the sequence
 // from executing successfully. Use
 // oee.getFailedOperationIndex() to determine which
 // operation failed. Use oee.getFailedOperationResult()
 // to obtain an OperationResult object, which you can
 // use to troubleshoot the cause of the execution
 // exception.
} catch (DurabilityException de) {
 // The durability guarantee could not be met.
} catch (IllegalArgumentException iae) {
 // An operation in the list was null or empty.

 // Or at least one operation operates on a key
 // with a major path component that is different
 // than the others.

 // Or more than one operation uses the same key.
} catch (RequestTimeoutException rte) {
 // The operation was not completed inside of the

Chapter 10
Executing a Sequence

10-4

 // default request timeout limit.
} catch (FaultException fe) {
 // A generic error occurred
}

Note that if any of the above exceptions are thrown, then the entire sequence is
aborted, and your data will be in the state it would have been in if you had never
executed the sequence at all.

A richer form of KVStore.execute() is available. It allows you to specify:

• The list of operations.

• The durability guarantee that you want to use for this sequence. If you want to use
the default durability guarantee, pass null for this parameter.

• A timeout value that identifies the upper bound on the time interval allowed for
processing the entire sequence. If you provide 0, the default request timeout value
is used.

• A TimeUnit that identifies the units used by the timeout value. For example:
TimeUnit.MILLISECONDS.

For an example of using WriteOptions, see Durability Guarantees.

Chapter 10
Executing a Sequence

10-5

11
Index Views

Index views are a design pattern you use to create auxiliary records that are reflective
of information contained in your primary records. There are many ways you can create
index views. This document describes two of them.

Note:

Users of the Tables API have a built-in indexing mechanism available, and
so the material contained in this chapter is not meant for users of that API.

As described in Reading Records records are generally retrieved from the store using
their key major and minor paths. You can either retrieve a single record using its key,
or you can retrieve multiple records using part of a major path and then iterate over the
result.

For example, suppose your store contains records related to users. The key might
contain user organization information and other identifying information such as a user
ID. Each record's data, however, would likely contain additional details about people
such as names, addresses, phone numbers, and so forth. While your application may
frequently want to query a person by user ID (that is, by the information stored as a
part of the key path), it may also on occasion want to locate people by, say, their
name.

Rather than iterating through all of the records in your store, examining each in turn for
a given person's name, you can instead create application-managed index views.
There are multiple ways to implement index views, but in general they are simply key/
value pairs where the key relates to some information within your primary record, and
the value identifies the primary record where that information can be found.

That is, if you had a record which contained the name Peter, then the key for its index
view would contain Peter and the value would contain the major and minor key paths
to that record.

Using Traditional Key/Data Pairs
This method of creating index views is, intuitively, the way many developers familiar
with key/value stores will think to implement views.

For a different approach to building index views, see Using Key-Only Records.

When you use traditional key/data pair records to build index views, you create
records where:

• The record's key path is some information in your primary data records that you
want to quickly query.

11-1

• The record's data is the key path to a record which has the information contained
in the key path.

For example, suppose you had records that used the following schema:

{
 "type": "record",
 "name": "PrimaryDBValue",
 "namespace": "oracle.kv.indexView",
 "fields": [
 {"name": "name", "type": "string", "default": ""},
 {"name": "email", "type": "string", "default": ""},
 {"name": "phone", "type": "string", "default": ""},
 {"name": "date", "type": "string", "default": ""},
 {"name": "org", "type": "string", "default": ""},
 {"name": "cost", "type": "long", "default": 0}
]
}

Further, suppose these records are stored using the employee's unique identifier. For
example, these records might use key paths which end with an employee unique
identifier, like this:

/Corporate/people/10012
/Corporate/people/10013
/Corporate/people/10014

In this case, in order to find all people who belong to the organization called "Support,"
you would have to iterate over every record whose key begins with /Corporate/
people, examine each in turn for the proper organization name, and construct a list of
those people who belong to that organization. Depending on the number of people
contained in your store, this could be a lengthy operation.

The alternative is to create an index view that is keyed by the organization name. For
example:

/IndexView/People/Organization/Engineering
/IndexView/People/Organization/Sales
/IndexView/People/Organization/Support

There are two ways to handle the data portion of these records. One way is for each
record to contain a list of keys corresponding to the people records belonging to that
organization. That is, the key:

/IndexView/People/Organization/Support

would return a data item with was a list of major keys for all those people entries
containing an 'org' of 'Support'. As an Avro schema, you would represent the data item
in the following way:

{
 "type": "record",

Chapter 11
Using Traditional Key/Data Pairs

11-2

 "name": "SecondaryDBValue",
 "namespace": "oracle.kv.indexView",
 "fields": [
 {"name": "arrays",
 "type": {"type" : "array", "items" : "string"},
 "default" : []}
]
}

While this approach will work for small-to-medium sized indexes, it ultimately suffers
from an inability to scale. It would be far too easy to create a view whose list of primary
keys is too large to be easily handled by your code. In fact, it could easily grow so
large that it could not fit into available memory. Given the size of the datasets for which
Oracle NoSQL Database is designed, this is a very real consideration.

A different approach would be to create index views where each record referred to one
and only one primary record. That is, the data portion of the record contains a simple
string representing the key path to a primary record. (You could also carry this
information as an array of key path components.) However, you cannot duplicate keys
in Oracle NoSQL Database, so in this case the key needs to somehow be unique,
based on the information found in the primary record. As an example, you could create
keys that contains both the organization name, as well as the user's UID:

/IndexView/People/Organization/Support/-/10012

refers to the primary record:

/Corporate/People/10012

Using Key-Only Records
Key-only index view records carry all of the record's information in the key; the data
portion of the record is set to an empty value. In this scheme, each index view record
represents a single pairing between the secondary key and the primary record key to
which it refers. Because Oracle NoSQL Database is good at scaling up to large
numbers of records, this eliminates the scalability problem described in the previous
section.

Note:

The following examples use fairly long key paths. This is done for the
purpose of clarity. However, in general, shorter key paths are desirable and
so the paths shown here should not be taken as advice for how to construct
the keys for your records.

Chapter 11
Using Key-Only Records

11-3

Essentially, key-only index view records carry the index view's key in the major portion
of the key path, and the corresponding primary record's key in the minor portion of the
key path. That is:

/Secondary/Key/Path/-/Primary/Key/Path

The minor path component here is the key path for a primary record. For example,
building on the example presented in the previous section, this might be:

/Secondary/Key/Path/-/Corporate/people/10012

The major key path portion of the record needs to carry more information:

• Index key prefix

This is simply a prefix value used to indicate that the record is an index view
record. The prefix can be anything so long as it is unique within your store; for
example, IDX.

• Index name

This is used to differentiate this index view from other types of index views. You
could use something fairly simple here that is indicative of the information indexed
by this record, such as EMPLOYEE_NAME or EMPLOYEE_LOCATION. However, it is
possible to carry more complex information if you set up your code correctly. We
discuss this further in Complex Index Names.

• Field value(s)

The remainder of the major key path is a sequence of one or more field values that
are obtained from the associated primary record. This is the actual information that
you are indexing.

In the simplest case, this portion of the key contains only one field value; for
example, an organization name if what you are doing is indexing all employees by
organization. For example:

/IDX/ORGANIZATION/Engineering/-/Corporate/people/10012

is a view entry that indicates employee record 10012 belongs to the Engineering
organization.

However, this portion of the key path can contain multiple field values, which gives
you multi-column views. An example of this is indexing by employee common and
family name, both of which would be individual fields in the primary record:

/IDX/EMP_NAME/Smith/Robert/-/Corporate/people/10012
/IDX/EMP_NAME/Smith/Patricia/-/Corporate/people/40288
/IDX/EMP_NAME/Smyth/Don/-/Corporate/people/7893

Complex Index Names
As described above, an index name can be a simple text label, especially if you have
fairly simple indexing requirements. However, it is possible to carry more information
about the view record in the index name. You can construct the index name so that it
identifies:

Chapter 11
Using Key-Only Records

11-4

• The Avro schema name used by the primary record.

• A list of the field names that this view is indexing. This information is useful for
generalizing your Avro binding code, especially as the number of fields you are
indexing grows large, and/or as the number of types of index views grows large.

One way to construct an index name that carries this information is to create a list
object that holds all the information you want in your index name, then create a one-
way hash of the information using java.security.MessageDigest. Converting the list
to a byte array can be accomplished using the Key.createKey() method. For
example:

 /**
 * Construct and return an index name representing an index type.
 */
 private String getIndexName(String schemaName,
 List<String> indexFieldNames) {

 MessageDigest md = null;
 try {
 /*
 * The implementation for digestCache is omitted
 * for brevity.
 */
 md = digestCache.get();
 List<String> minorPath = new ArrayList<String>();
 minorPath.add(schemaName);
 minorPath.addAll(indexFieldNames);
 byte[] bytes =
 Key.createKey("", minorPath).toString().getBytes();
 md.update(bytes);
 return new String(md.digest());
 } finally {
 digestCache.free(md);
 }
 }

This means that the information you are carrying in your index name is locked up in a
one-way hash. There is no way to retrieve that information from the hash, so you need
to store it somewhere. You need a separate set of records to record index view
metadata.

Managing Index View Metadata
Index view metadata is information you want to record about each index type. Mostly,
this is information you use to construct your index names (if you use complex index
names). You can also record your index state as a part of your metadata.

You can collect your index view metadata as a series of key-only records. In this case,
the keys are constructed like this:

/PREFIX/INDEX_NAME/-/SCHEMA_NAME/FNAME1/FNAME2/.../STATE

where:

Chapter 11
Using Key-Only Records

11-5

• PREFIX is a unique identifier that you use to indicate this record is an index view
metadata record. For example: META.

• INDEX_NAME is the name you are using for the type of index for which you are
collecting metadata. If you are using a simple name (for example, ORGANIZATION or
EMP_NAME), then use that. If you are using a hashed complex name, such as is
described in the previous section, then use that here.

• SCHEMA_NAME is the name of the Avro schema used by the primary record. This
must be the same schema name as you used to construct your complex index
name.

• FNAME1, FNAME2, and so forth, are the primary record field names this view type is
using. Again, these must be identical to the field names you used to construct your
complex index name. They must also appear in the same order as the field values
used to construct your index view record keys.

• STATE is the current state of the index type represented by this metadata record.
Examples of view STATE are:

– BUILDING to indicate that the index view is currently being built.

– DELETING to indicate that the index view is currently being deleted.

– READY to indicate that the index view is ready for use.

These are just some suggestions. STATE can really indicate anything that is useful
to your code. But in the example given here, your code would only use the view if
its state was READY.

Using Index View Records and Metadata Together
Putting it all together, to create an index view that uses complex index names, you
would:

1. Create the index name, using the schema and field names that you are working
with.

2. Create the metadata record, as described in the previous section, setting its state
to BUILDING.

3. Iterate over your store, creating a view record for each primary record that you
want to index. Use the index name you created in step 1 as part of the view
record's major key path. See Using Key-Only Records and Complex Index Names
for more information.

4. When you are done creating the view, change the status for the metadata record
to READY. (To do this, you delete the old record and create a new one.)

To use (read) index views, you:

1. Check the corresponding metadata record to make sure the index view is in a
READY state. If it is not, you can abort the read, or pause until the state has
changed to READY.

2. Iterate over the index view records that interest you for the search.

3. For each such record, use it to retrieve the corresponding primary record.

4. For each primary record, use the schema and field names, contained in the
corresponding metadata record, along with your Avro binding, to serialize/
deserialize the primary record's data.

Chapter 11
Using Key-Only Records

11-6

To update an existing record, you:

1. Retrieve the primary record.

2. Retrieve the index view record.

3. Modify the primary record as needed.

4. Modify the index view record to reflect the changes to the primary record.

5. Check the status of the index view to ensure that it is in a READY state. If it is,
then write the index view record back to the store.

If the index view status is not READY, then either wait for the status to change to
READY before writing the index view record, or fail the operation.

6. Write the modified primary record back to the store.

An example of performing all these operations is available in your Oracle NoSQL
Database distribution. See Example for details.

Key Size Consideration
The longer your keys, the more memory you are using at your nodes. Keys can
therefore grow so large that they harm your system's overall read/write throughput due
to an inability to maintain enough records in cache.

The key-only design pattern described here will probably result in very long keys.
Whether those key sizes are so large that they cause you a performance problem is a
function of how long your keys actually are, how many keys you need to manage, and
how much memory is available on your nodes.

If your keys are so large that they will cause an I/O throughput issue, then you need to
implement some other design approach.

General Index Views Considerations
While creating index views can vastly improve your stores read performance
(depending on the size of your data set, and the kinds of questions you want to ask of
it), there are some limitations of which you need to be aware.

Additional Write Activity
Maintaining an index view necessarily requires additional read and write activity over
and above what is required just to maintain a primary record. Whether this additional
activity will measurably affect your write throughput depends on the size of the dataset
you are indexing, and the size of your views.

For small datasets and small views, this additional activity will not be noticeable. But
as the size of the data to be indexed grows, and so your views themselves grow
larger, you might notice a reduction in throughput, particularly in write throughput.
Given this, when planning your store size, be sure to consider overhead to maintain
index views.

Non-Atomic Updates
Because index views are managed by the application, Oracle NoSQL Database
cannot insure that operations performed on the primary record are atomic with

Chapter 11
General Index Views Considerations

11-7

operations performed on the corresponding view records. This means that it is
possible to change your primary records, but have the corresponding operation(s) on
your index view(s) fail thereby causing them to be out of sync with the primary data.
The reverse can also happen, where the index view update operation is successful,
but the update to the primary record fails.

Note that for some workloads, non-atomic updates to primary records and their index
views can be desirable. This is sometimes the case for workloads that require the
maximum read and write throughput possible. For these types of applications,
consistency between the index view and the primary data is not nearly as important as
overall performance.

That said, you should still make an attempt to determine whether your indexes are out
of sync relative to your primary data, so that you can perform compensating
transactions if your code detects a problem. You may also need to flag your index
views as being in an unsafe state if some aspect of the update operations fail. The
safest way (not necessarily the fastest way) to update a primary record for which you
are maintaining an index view is:

1. Check whether your view is in a READY state. If it is, proceed with the update
operation. If it is not, either pause and wait for the state to change, or abort the
update entirely.

2. Update your primary record as necessary, but do not write the results back to the
store yet.

3. Update your index view to be reflective of the changes you have made to the
primary record.

4. Write the primary record to the store. If the write fails, perform a compensating
transaction to fix the problem. Either retry the write operation with the updated
record, or check to ensure that the record which is currently in the store is not
corrupted or altered in any way.

5. If the update to the primary record succeeds, then write the changes to the index
view to the store. If this succeeds, then you are done with your update.

6. If the update to the index view record fails, then immediately mark your index view
as being in a non-READY state. How you do this depends on how you are storing
index view state flags, but assuming you are using metadata records, that needs
to be updated before you take steps to fix your index view.

A similar algorithm is required for the creation and deletion of primary records.

Of course, this means that before you perform a read with your index view, you need
to check the view's state before you proceed. If the view's state is not READY, then
you need to either pause until the state is READY, or you need to abandon the read
entirely. In addition to this check, you also need to ensure that your index views are in
a state that is consistent with the primary records. This is described next.

Decoupled Consistency
As described above, index views can be out of sync with your primary data due to
some generic failure in the update operation. Your code needs to be robust enough to
recognize when this has happened, and take corrective action (including rebuilding the
index view, if necessary). A related, but temporary, problem is that for any given node,
changes to your views may not have caught up to changes to your primary records
due to replication delays. Note that it is also possible for views on the local node to

Chapter 11
General Index Views Considerations

11-8

have been updated when the corresponding primary data modifications have not yet
arrived.

Again, for some workloads, it might not be critically important that your views are in
sync with your primary data. However, if your workload is such that you need
assurance your views accurately reflect your primary data, you need to make use of
Oracle NoSQL Database's built-in consistency guarantees.

One way to do this is to use an absolute consistency guarantee for any reads that you
perform using your views. But this can ultimately harm your read and write
performance because absolute consistency requires the read operation to be
performed on a master node. (See Using Simple Consistency for details.) For this
reason, you should use absolute consistency only when it is truly critical that your
views are completely up-to-date relative to your primary data.

A better way to resolve the problem is to use a version-based consistency guarantee
when using your index views. You will need to check the version information on both
the primary data and the views when performing your reads in order to ensure that
they are in sync. You may also need to create a way to transfer version information
between different processes in your application, if one process is responsible for
performing store writes and other processes are performing store reads. For details on
using version-based consistency, see Using Version-Based Consistency.

Example
An example of creating and managing index views is included in the Oracle NoSQL
Database distribution. It can be found here:

<KVROOT>/examples/secondaryindex

The example exposes a command line interface that allows you to create and delete
index views, retrieve the primary data referred to by an index view record, and insert,
delete, and update new primary records. The application is a very simple application
that allows you to create views against customer billing records.

The example uses key-only index view records, with complex index names and
associated metadata records. The code that is responsible for managing the views
and associated metadata is contained in this class:

<KVROOT>/examples/secondaryindex/IndexViewService.java

Note that the example is one expression of the index view design pattern. Its
operations may not be a match for the way your code operates, but it should serve as
good design guide. Feel free to adapt, expand, or simplify the example code to match
your own design needs and goals.

Chapter 11
Example

11-9

A
Using the Large Object API

Oracle NoSQL Database provides an interface you can use to read and write Large
Objects (LOBs) such as audio and video files. As a general rule, any object greater
than 1 MB is a good candidate for representation as a LOB. The LOB API permits
access to large values, without having to materialize the value in its entirety by
providing streaming APIs for reading and writing these objects.

A LOB is stored as a sequence of chunks whose sizes are optimized for the underlying
storage system. The chunks constituting a LOB may not all be the same size.
Individual chunk sizes are chosen automatically by the system based upon its
knowledge of the underlying storage architecture and hardware. Splitting a LOB into
chunks permits low latency operations across mixed workloads with values of varying
sizes. The stream based APIs serve to insulate the application from the actual
representation of the LOB in the underlying storage system.

The LOB interface makes use of text-only keys that can be used with either the Tables
API or the Key/Value API. This document provides high-level concepts pertinent to the
LOB interface, and then provides examples of using it with both the Tables and the
Key/Value APIs.

LOB Keys
LOBs are stored and retrieved using oracle.kv.Key objects. Each such object
contains a series of strings which represent a key path. Key paths are divided into two
parts: major and (optionally) minor. The last key path component in a LOB key must
end with a trailing suffix that is .lob by default.

The LOB suffix may be defined using the KVStoreConfig.setLOBSuffix() method.

Unlike other objects stored using Key objects (such as when using the Key/Value API),
LOB data is not stored on shards driven by the major and minor key path components
in the key path. Instead, LOB data uses a hidden keyspace, and its various chunks are
distributed across partitions based on this keyspace, instead of based on the Key
which you provide.

Also, be aware that the actual key you use for your LOBs is stored on a single partition
based on its major/minor key path components, and the partition used for this storage
is selected in the same way that the store partitions any data based on the key's major
and minor key paths. However, assuming reasonably brief keys, this represents a
small amount of data and it should not substantially affect your store's data sizing
requirements.

The rest of this section provides a brief overview of Oracle NoSQL Database Keys,
which may be of interest to users of the Table API. Key/Value API users should
already be familiar with these concepts and so they can skip to the next section.

A Key object can be constructed in several different ways, depending on how you want
to represent the key path components. Most commonly, arrays are used to represent
the major and minor key path components, and these arrays are then provided to the
Key.createKey() method. Users of the Table API may find the Key.fromString()

A-1

method convenient because it is easy to store a string representation of a key path in
a table cell. Alternatively, Table API users can store key paths components as arrays
in table cells, or construct the key path array using information found in table cells.

When represented as a string, key paths begin with a forward slash ('/), which is also
used to delimit each path component. If a minor key path is used, then it is delimited
from the major key path using a dash ('-). For example, a LOB key used for an image
file might be:

/Records/People/-/Smith/Sam/Image.lob

Users of the Table API should take care to ensure that their LOB paths do not collide
with the keys used internally by their tables. In general this is easy to do because the
key paths used internally to store table data begin with a numerical representation of
the table's name.

LOB Key Checks
All of the LOB APIs verify that the key used to access LOBs meets the trailing suffix
requirement. If the trailing suffix requirement is not met, the LOB APIs throw an
IllegalArgumentException exception. This requirement permits non-LOB methods to
check for inadvertent modifications to LOB objects.

This is a summary of LOB-related key checks performed across all methods (LOB and
non-LOB):

• When using the Key/Value API, all non-LOB write operations check for the
absence of the LOB suffix as part of the other key validity checks. If the check fails
(that is, the key contains the LOB suffix), the non-LOB API throws an
IllegalArgumentException.

• When using the Key/Value API, all non-LOB read operations return the associated
opaque value used internally to construct a LOB stream.

• All LOB write and read operations check for the presence of the LOB suffix. If the
check fails it will result in an IllegalArgumentException.

LOB APIs
Due to their representation as a sequence of chunks, LOBs must be accessed
exclusively using the LOB APIs. If you use a LOB key with the family of
KVStore.getXXX Key/Value methods, you will receive a value that is internal to the
KVS implementation and cannot be used directly by the application.

The LOB API is declared in the KVLargeObject interface. This is a superinterface of
KVStore, so you create a KVStore handle in the usual way and then use that to access
the LOB methods.

The LOB methods are:

• KVLargeObject.deleteLOB()

Deletes a LOB from the store.

• KVLargeObject.getLOB()

Retrieves a LOB from the store.

Appendix A
LOB Key Checks

A-2

• KVLargeObject.putLOB(), KVLargeObject.putLOBIfAbsent(), and
KVLargeObject.putLOBIfPresent().

Writes a LOB to the store.

LOB Operation Exceptions
The methods used to read and insert LOBs are not atomic. This relaxing of the
atomicity requirement permits distribution of LOB chunks across the entire store. It is
therefore the application's responsibility to coordinate concurrent operations on a LOB.
The LOB implementation will make a good faith effort to detect concurrent modification
of a LOB and throw ConcurrentModificationException when it detects conflicts, but
there is no guarantee that the API will detect all such conflicts. The safe course of
action upon encountering this exception is to delete the LOB and replace it with a new
value after fixing the application level coordination issue that provoked the exception.

Failures during a LOB modification operation result in the creation of a partial LOB.
The LOB value of a partial LOB is in some intermediate state, where it cannot be read
by the application; attempts to getLOB() on a partial LOB will result in a
PartialLOBException. A partial LOB resulting from an incomplete putLOB() operation
can be repaired by retrying the operation. Or it can be deleted and a new key/value
pair can be created in its place. A partial LOB resulting from an incomplete delete
operation must have the delete retried. The documentation associated with individual
LOB methods describes their behavior when invoked on partial LOBs in greater detail.

Key/Value LOB Example
The following example writes and then reads a LOB value using the Key/Value API.
Notice that the object is never actually materialized within the application; instead, the
value is streamed directly from the file system to the store. On reading from the store,
this simple example merely counts the number of bytes retrieved.

Also, this example only provides bare-bones exception handling. In production code,
you will probably want to do more than simply report the exceptions caught by this
example.

package kvstore.lobExample;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.FileInputStream;
import java.io.InputStream;
import java.util.Arrays;
import java.util.concurrent.TimeUnit;

import oracle.kv.Consistency;
import oracle.kv.Durability;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;
import oracle.kv.Key;
import oracle.kv.RequestTimeoutException;
import oracle.kv.Version;

Appendix A
LOB Operation Exceptions

A-3

import oracle.kv.lob.InputStreamVersion;
import oracle.kv.lob.PartialLOBException;

public class LOBKV {

 private String[] hhosts = {"localhost:5000"};

 public static void main(String args[]) {
 LOBKV lobkv = new LOBKV();
 lobkv.run(args);
 System.out.println("All done.");
 }
 private void run(String args[]) {

 KVStoreConfig kconfig = new KVStoreConfig("kvstore", hhosts);
 KVStore kvstore = KVStoreFactory.getStore(kconfig);

 // Use key "/test/lob/1.lob" to store the jpeg object.
 // Note that we are not using a minor key in this
 // example. As required, the final key component
 // uses a ".lob" suffix.
 final Key key =
 Key.createKey(Arrays.asList("test", "lob", "1.lob"));

 File lobFile = new File("test.jpg");
 try {
 FileInputStream fis = new FileInputStream(lobFile);

 // The image file is streamed from the filesystem into
 // the store without materializing it within the
 // application. A medium level of durability is
 // used for this put operation. A timeout value
 // of 5 seconds is set in which each chunk of the LOB
 // must be written, or the operation fails with a
 // RequestTimeoutException.
 kvstore.putLOB(key, fis,
 Durability.COMMIT_WRITE_NO_SYNC,
 5, TimeUnit.SECONDS);

 // Now read the LOB. It is streamed from the store,
 // without materialization within the application code.
 // Here, we only count the number of bytes retrieved.
 //
 // We use the least stringent consistency policy
 // available for the read. Each LOB chunk must be read
 // within a 5 second window or a RequestTimeoutException
 // is thrown.
 InputStreamVersion istreamVersion =
 kvstore.getLOB(key,
 Consistency.NONE_REQUIRED,
 5, TimeUnit.SECONDS);

 InputStream stream = istreamVersion.getInputStream();
 int byteCount = 0;

Appendix A
Key/Value LOB Example

A-4

 while (stream.read() != -1) {
 byteCount++;
 }
 System.out.println(byteCount);
 } catch (FileNotFoundException fnf) {
 System.err.println("Input file not found.");

 System.err.println("FileNotFoundException: " +
 fnf.toString());
 fnf.printStackTrace();
 System.exit(-1);
 } catch (RequestTimeoutException rte) {
 System.err.println("A LOB chunk was either not read or");
 System.err.println("not written in the alloted time.");

 System.err.println("RequestTimeoutException: " +
 rte.toString());
 rte.printStackTrace();
 System.exit(-1);
 } catch (PartialLOBException ple) {
 System.err.println("Retrieval (getLOB()) only retrieved");
 System.err.println("a portion of the requested object.");

 System.err.println("PartialLOBException: " + ple.toString());
 ple.printStackTrace();
 System.exit(-1);
 } catch (IOException e) {
 System.err.println("IO Exception: " + e.toString());
 e.printStackTrace();
 System.exit(-1);
 }
 }

 protected LOBKV() {}
}

Table LOB Example
The following example writes and then reads a LOB value using the Table API. Notice
that the object is never actually materialized within the application; instead, the value is
streamed directly from the file system to the store. On reading from the store, this
simple example merely counts the number of bytes retrieved.

When you use LOBs with the Table API, you must still use a Key to identify the LOB
object. In other words, you cannot directly store the LOB in a table row. Typically you
will construct the Key using information stored in your table. For example, you can
simply store the LOB's key as a text string in one of your table cells. Or you could store
the key's values as an array in a table cell (or two arrays, if you are using minor key
components). Finally, you can construct the key based on values retrieved from one or
more cells in the row.

Also, this example only provides bare-bones exception handling. In production code,
you will probably want to do more than simply report the exceptions caught by this
example.

Appendix A
Table LOB Example

A-5

Before beginning, we must define and create the table in the store. The following table
definition describes a very minimal table of user information. It then uses a child table
to identify one or more image files associated with the user.

table create -name userTable
add-field -type STRING -name userid
add-field -type STRING -name familiarname
add-field -type STRING -name surname
primary-key -field userid -field familiarname -field surname
shard-key -field userid
exit
plan add-table -name userTable -wait

table create -name userTable.images
add-field -type STRING -name imageFileName
add-field -type STRING -name imageVersion
add-field -type STRING -name imageDescription
primary-key -field imageFileName
exit
plan add-table -name userTable.images -wait

Add the table definition to the store:

> java -Xmx64m -Xms64m \
-jar KVHOME/lib/kvstore.jar runadmin -host <hostName> \
-port <port> -store <storeName>
kv-> load -file createLOBTable.txt
Table userTable built.
Executed plan 5, waiting for completion...
Plan 5 ended successfully
Table userTable.images built.
Executed plan 6, waiting for completion...
Plan 6 ended successfully

Now we can write and read table data. In the following example, we create two users
that between them have three associated images. First the table rows are created
(written), and then the BLOB data is saved to the store. The example then iterates
over the tables, showing relevant information, and along the way showing the images
associated with each user. In this case, we limit the BLOB display to merely reporting
on the BLOB's byte count.

package kvstore.lobExample;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.FileInputStream;
import java.io.InputStream;
import java.util.Arrays;
import java.util.concurrent.TimeUnit;

import oracle.kv.Consistency;
import oracle.kv.Durability;
import oracle.kv.KVStore;

Appendix A
Table LOB Example

A-6

import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;
import oracle.kv.Key;
import oracle.kv.RequestTimeoutException;
import oracle.kv.Version;
import oracle.kv.lob.InputStreamVersion;
import oracle.kv.lob.PartialLOBException;

import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;
import oracle.kv.table.TableIterator;
import oracle.kv.table.MultiRowOptions;

public class LOBTable {

 private String[] hhosts = {"localhost:5000"};

 // Store handles
 private KVStoreConfig kconfig;
 private KVStore kvstore;

 // Table handles
 private TableAPI tableH;
 private Table userTable;
 private Table userImageTable;
 private Row row;

 private static String blobPfx = "blobpfx";
 private static String imgSfx = "userimage.lob";

 public static void main(String args[]) {
 LOBTable lobtable = new LOBTable();
 lobtable.run(args);
 System.out.println("All done.");
 }

 private void run(String args[]) {

 // Open a store handle
 kconfig = new KVStoreConfig("kvstore", hhosts);
 kvstore = KVStoreFactory.getStore(kconfig);
 tableH = kvstore.getTableAPI();

 // Obtain table handles
 userTable = tableH.getTable("userTable");
 userImageTable = tableH.getTable("userTable.images");

 // populate the tables, and load LOBs into the store
 addData();

 // retrieve tables, and retrieve LOBs from the store
 // and show some details about the tables and LOBs.

Appendix A
Table LOB Example

A-7

 retrieveData();
 }

 // Creates some table rows and loads images into the store
 private void addData() {

 // Load up a couple of rows in the user (parent) table.
 row = userTable.createRow();
 row.put("userid","m.beckstrom.3267");
 row.put("familiarname","Mary");
 row.put("surname","Beckstrom");
 tableH.put(row, null, null);

 row = userTable.createRow();
 row.put("userid","h.zwaska.9140");
 row.put("familiarname","Harry");
 row.put("surname","Zwaska");
 tableH.put(row, null, null);

 // Now populate each row's image (child) table
 // and stream in a BLOB as each row is created.
 row = userImageTable.createRow();
 row.put("userid","m.beckstrom.3267");
 row.put("imageFileName","IMG_2581.jpg");
 row.put("imageDescription","Highrise sunset");
 tableH.put(row, null, null);
 loadBlob("m.beckstrom.3267", "IMG_2581.jpg");

 row = userImageTable.createRow();
 row.put("userid","m.beckstrom.3267");
 row.put("imageFileName","IMG_2607.jpg");
 row.put("imageDescription","Swing set at dawn");
 tableH.put(row, null, null);
 loadBlob("m.beckstrom.3267", "IMG_2607.jpg");

 row = userImageTable.createRow();
 row.put("userid","h.zwaska.9140");
 row.put("imageFileName","mom1.jpg");
 row.put("imageDescription","Mom's 89th birthday");
 tableH.put(row, null, null);
 loadBlob("h.zwaska.9140", "mom1.jpg");
 }

 // Loads a blob of data into the store
 private void loadBlob(String userid, String filename) {

 // Construct the key.
 // userid and filename are information saved in the
 // table, so later we can recreate the key by table
 // examination. blobPfx is a constant that we use for
 // all BLOB data. imgSfx ends the key path with the
 // required suffix. We use a fixed constant partially
 // to meet the BLOB suffix requirement, but in a
 // larger system this could also be used to
 // differentiate the type of data contained in the

Appendix A
Table LOB Example

A-8

 // BLOB (image data versus an audio file, for example).

 final Key key = Key.createKey(
 Arrays.asList(blobPfx, userid, filename, imgSfx));

 File lobFile = new File(filename);
 try {
 FileInputStream fis = new FileInputStream(lobFile);
 // The image file is streamed from the filesystem into
 // the store without materializing it within the
 // application. A medium level of durability is
 // used for this put operation. A timeout value
 // of 5 seconds is set in which each chunk of the LOB
 // must be written, or the operation fails with a
 // RequestTimeoutException.
 kvstore.putLOB(key, fis,
 Durability.COMMIT_WRITE_NO_SYNC,
 5, TimeUnit.SECONDS);
 } catch (FileNotFoundException fnf) {
 System.err.println("Input file not found.");

 System.err.println("FileNotFoundException: " +
 fnf.toString());
 fnf.printStackTrace();
 System.exit(-1);
 } catch (RequestTimeoutException rte) {
 System.err.println("A LOB chunk was either not read or");
 System.err.println("not written in the alloted time.");

 System.err.println("RequestTimeoutException: " +
 rte.toString());
 rte.printStackTrace();
 System.exit(-1);
 } catch (IOException e) {
 System.err.println("IO Exception: " + e.toString());
 e.printStackTrace();
 System.exit(-1);
 }
 }

 // Retrieves the user (parent) table, as well as the images
 // (child) table, and then iterates over the user table,
 // displaying each row as it is retrieved.
 private void retrieveData() {

 PrimaryKey key = userTable.createPrimaryKey();
 // Iterate over every row in the user table including
 // images (child) table in the result set.
 MultiRowOptions mro = new MultiRowOptions(null, null,
 Arrays.asList(userImageTable));
 TableIterator<Row> iter =
 tableH.tableIterator(key, mro, null);
 try {
 while (iter.hasNext()) {
 Row row = iter.next();

Appendix A
Table LOB Example

A-9

 displayRow(row);
 }
 } finally {
 iter.close();
 }
 }

 // Display a single table row. Tests to see if the
 // table row belongs to a user table or a user images
 // table, and then displays the row appropriately.
 private void displayRow(Row row) {
 if (row.getTable().equals(userTable)) {
 System.out.println("\nName: " +
 row.get("familiarname").asString().get() +
 " " +
 row.get("surname").asString().get());
 System.out.println("UID: " +
 row.get("userid").asString().get());
 } else if (row.getTable().equals(userImageTable)) {
 showBlob(row);
 }
 }

 // Retrieves and displays a BLOB of data. For this limited
 // example, the BLOB display is limited to simply reporting
 // on its size.
 private void showBlob(Row row) {
 // Build the blob key based on information stored in the
 // row, plus external constants.
 String userid = row.get("userid").asString().get();
 String filename = row.get("imageFileName").asString().get();
 final Key key = Key.createKey(
 Arrays.asList(blobPfx, userid, filename, imgSfx));

 // Show supporting information about the file which we have
 // stored in the table row:
 System.out.println("\n\tFile: " + filename);
 System.out.println("\tDescription: " +
 row.get("imageDescription").asString().get());

 try {
 // Now read the LOB. It is streamed from the store,
 // without materialization within the application code.
 // Here, we only count the number of bytes retrieved.
 //
 // We use the least stringent consistency policy
 // available for the read. Each LOB chunk must be read
 // within a 5 second window or a RequestTimeoutException
 // is thrown.
 InputStreamVersion istreamVersion =
 kvstore.getLOB(key,
 Consistency.NONE_REQUIRED,
 5, TimeUnit.SECONDS);

 InputStream stream = istreamVersion.getInputStream();

Appendix A
Table LOB Example

A-10

 int byteCount = 0;
 while (stream.read() != -1) {
 byteCount++;
 }
 System.out.println("\tBLOB size: " + byteCount);

 } catch (RequestTimeoutException rte) {
 System.err.println("A LOB chunk was either not read or");
 System.err.println("not written in the alloted time.");

 System.err.println("RequestTimeoutException: " +
 rte.toString());
 rte.printStackTrace();
 System.exit(-1);
 } catch (PartialLOBException ple) {
 System.err.println("Retrieval (getLOB()) only retrieved");
 System.err.println("a portion of the requested object.");

 System.err.println("PartialLOBException: " + ple.toString());
 ple.printStackTrace();
 System.exit(-1);
 } catch (IOException e) {
 System.err.println("IO Exception: " + e.toString());
 e.printStackTrace();
 System.exit(-1);
 }
 }

 protected LOBTable() {}
}

Appendix A
Table LOB Example

A-11

B
Third Party Licenses

All of the third party licenses used by Oracle NoSQL Database are described in the
License document.

B-1

	Contents
	Preface
	Conventions Used in This Book

	1 Developing for Oracle NoSQL Database
	Configuring Logging
	The KVStore Handle
	The KVStoreConfig Class

	Using the Authentication APIs
	Configuring SSL
	Identifying the Trust Store
	Setting the SSL Transport Property

	Authentication using LoginCredentials
	Renewing Expired Login Credentials
	Authentication using Kerberos
	Authentication using Kerberos and JAAS
	Unauthorized Access

	2 Introduction to Oracle KVLite
	Starting KVLite
	Stopping and Restarting KVLite
	Verifying the Installation
	kvlite Utility Command Line Parameter Options

	3 Record Design Considerations
	Keys
	What is a Key Component?

	Values

	4 Writing and Deleting Records
	Write Exceptions
	Writing Records to the Store
	Other put Operations

	Bulk Put Operations
	Deleting Records from the Store
	Using multiDelete()

	5 Reading Records
	Read Exceptions
	Retrieving a Single Record
	Using multiGet()
	Using multiGetIterator()
	Using storeIterator()
	Specifying Subranges
	Parallel Scans
	Bulk Get Operations

	6 Key Ranges and Depth for Multi-Key Operations
	Specifying Subranges
	Specifying Depth

	7 Using Versions
	8 Consistency Guarantees
	Specifying Consistency Policies
	Using Simple Consistency
	Using Time-Based Consistency
	Using Version-Based Consistency

	9 Durability Guarantees
	Setting Acknowledgment-Based Durability Policies
	Setting Synchronization-Based Durability Policies
	Setting Durability Guarantees

	10 Executing a Sequence of Operations
	Sequence Errors
	Creating a Sequence
	Executing a Sequence

	11 Index Views
	Using Traditional Key/Data Pairs
	Using Key-Only Records
	Complex Index Names
	Managing Index View Metadata
	Using Index View Records and Metadata Together
	Key Size Consideration

	General Index Views Considerations
	Additional Write Activity
	Non-Atomic Updates
	Decoupled Consistency

	Example

	A Using the Large Object API
	LOB Keys
	LOB Key Checks
	LOB APIs
	LOB Operation Exceptions
	Key/Value LOB Example
	Table LOB Example

	B Third Party Licenses

