
Getting Started with Raspberry Pi Pico and CircuitPython
Created by Kattni Rembor

Last updated on 2021-06-28 11:24:07 AM EDT

2
4
7

10
10
11
11
11
13
13
16
16
16
17
17
17
18
18
18
20
20
21
22
22
22
24
25
27
30
30
30
31
32
33
34
35
35
38
40
43
46
46
46
47
49
49
50
55
55

Guide Contents

Guide Contents
Overview

Other Required Hardware
Pinouts

No Default board Devices
I2C Example
SPI Example
UART Example

Using Adafruit AR with Raspberry Pi Pico
To get started:

MicroPython or CircuitPython?
CircuitPython is a 'fork' based on MicroPython
So what's different?
Why Use MicroPython?
It's great to know both!
To get started quick:

What is CircuitPython?
CircuitPython is based on Python

Why would I use CircuitPython?
Installing CircuitPython

CircuitPython Quickstart
Flash Resetting UF2

Installing Mu Editor
Download and Install Mu
Using Mu
CircuitPython Programming Basics

Indentation and Code Loops
Conditionals and Variables

CircuitPython Pins and Modules
CircuitPython Pins

import board
I2C, SPI, and UART
What Are All the Available Names?
Microcontroller Pin Names

CircuitPython Built-In Modules
Blinky and a Button

The Built-In LED
An External LED
Using a Button as an Input
Control an External LED with a Button

Traffic Light and Pedestrian Crossing
Parts Used
Wiring the Traffic Light
Programming the Traffic Light

Traffic Light and Pedestrian Crossing
Wiring the Pedestrian Crossing
Programming the Traffic Light and Pedestrian Crossing

Reaction Game
Parts Used

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 2 of 99

55
56
58
59
59
62
62
63
64
64
65
68
69
71
72
76
76
76
77
79
79
80

82
83
83
84
86
88
88
89
90
95
95
95
95
95
96
97

Wiring the Reaction Game
Programming the Reaction Game
Two Players Makes It More Fun
Wiring the Two Player Reaction Game
Programming the Two Player Reaction Game

Burglar Alarm
Wiring the Basic Motion Sensor
Programming the Basic Motion Sensor

Burglar Alarm
Wiring the Burglar Alarm with Light
Programming the Burglar Alarm with Light
Wiring the Burglar Alarm with Light and Sound
Programming the Burglar Alarm with Light and Sound
Wiring the Extended Burglar Alarm with Light and Sound
Programming the Extended Burglar Alarm

Potentiometer and PWM LED
Reading a Potentiometer

Wiring the Potentiometer
Programming to Read the Potentiometer

Using PWM to Fade an LED
Wiring the LED
Programming to Fade the LED

Temperature Gauge
Data Logger

Data Logger Wiring
Programming the Temperature Data Logger
Data Logger Without Wiring

NeoPixel LEDs
Wiring the NeoPixel LED Strip
Installing the Adafruit CircuitPython NeoPixel Library
Programming NeoPixel LEDs

FAQ and Troubleshooting
FAQ

board.I2C(), board.SPI(), and board.UART() do not exist. What should I do?
Should I use pin GP15?
Is pulseio supported?

CircuitPython Essentials
Downloads

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 3 of 99

Overview

The Raspberry Pi foundation changed single-board computing when they released the Raspberry Pi

computer (https://adafru.it/Qa1), now they're ready to do the same for microcontrollers with the release of

the brand new Raspberry Pi Pico. This low-cost microcontroller board features a powerful new chip,

the RP2040, and all the fixin's to get started with embedded electronics projects at a stress-free price.

The Pico is 0.825" x 2" and can have headers soldered in for use in a breadboard or perfboard, or can be

soldered directly onto a PCB with the castellated pads. There's 20 pads on each side, with groups of

general purpose input-and-output (GPIO) pins interleaved with plenty of ground pins. All of the GPIO pins

are 3.3V logic, and are not 5V-safe so stick to 3V! You get a total of 25 GPIO pins (technically there are 26

but IO #15 has a special purpose and should not be used by projects), 3 of those can be analog inputs (the

chip has 4 ADC but one is not broken out). There are no true analog output (DAC) pins.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 4 of 99

https://www.raspberrypi.org/archives/723

On the slim green board is minimal circuitry to get you going: A 5V to 3.3V power supply converter, single

green LED on GP25, boot select button, RP2040 chip with dual-core Cortex M0+, 2 MegaBytes of QSPI

flash storage, and crystal.

Inside the RP2040 is a 'permanent ROM' USB UF2 bootloader . What that means is when you want to

program new firmware, you can hold down the BOOTSEL button while plugging it into USB (or pulling

down the RUN/Reset pin to ground) and it will appear as a USB disk drive you can drag the firmware onto.

Folks who have been using Adafruit products will find this very familiar - we use the technique on all our

native-USB boards. Just note you don't double-click reset, instead hold down BOOTSEL during boot to

enter the bootloader!

The RP2040 is a powerful chip, which has the clock speed of our M4 (SAMD51), and two cores that are

equivalent to our M0 (SAMD21). Since it is an M0 chip, it does not have a floating point unit, or DSP

hardware support - so if you're doing something with heavy floating point math, it will be done in software

and thus not as fast as an M4. For many other computational tasks, you'll get close-to-M4 speeds!

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 5 of 99

For peripherals, there are two I2C controllers, two SPI controllers, and two UARTs that are multiplexed

across the GPIO - check the pinout for what pins can be set to which. There are 16 PWM channels, each

pin has a channel it can be set to (ditto on the pinout).

You'll note there's no I2S peripheral, or SDIO, or camera, what's up with that? Well instead of having

specific hardware support for serial-data-like peripherals like these, the RP2040 comes with the PIO state

machine system which is a unique and powerful way to create custom hardware logic and data processing
blocks that run on their own without taking up a CPU. For example, NeoPixels - often we bitbang the

timing-specific protocol for these LEDs. For the RP2040, we instead use a PIO object that reads in the data

buffer and clocks out the right bitstream with perfect accuracy. Same with I2S audio in or out, LED matrix

displays, 8-bit or SPI based TFTs, even VGA (https://adafru.it/Qa2)! In MicroPython and CircuitPython you

can create PIO control commands to script the peripheral and load it in at runtime. There are 2 PIO

peripherals with 4 state machines each.

At the time of launch, there is no Arduino core support for this board. There is great C/C++

support (https://adafru.it/Qa3), an official MicroPython port (https://adafru.it/Sjc), and a CircuitPython

port (https://adafru.it/Em8)! We of course recommend CircuitPython because we think it's the easiest way

to get started (https://adafru.it/cpy-welcome) and it has support with most our drivers, displays, sensors,

and more, supported out of the box so you can follow along with our CircuitPython projects and tutorials.

While the RP2040 has lots of onboard RAM (264KB), it does not have built in FLASH memory. Instead that

is provided by the external QSPI flash chip. On this board there is 2MB, which is shared between the

program it's running and any file storage used by MicroPython or CircuitPython. When using C/C++ you get

the whole flash memory, if using Python you will have about 1 MB remaining for code, files, images, fonts,

etc.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 6 of 99

https://github.com/raspberrypi/pico-examples/tree/master/pio
https://github.com/raspberrypi/pico-sdk
https://micropython.org/download/
https://circuitpython.org/downloads
https://learn.adafruit.com/welcome-to-circuitpython

RP2040 Chip features:

Dual ARM Cortex-M0+ @ 133MHz

264kB on-chip SRAM in six independent banks

Support for up to 16MB of off-chip Flash memory via dedicated QSPI bus

DMA controller

Fully-connected AHB crossbar

Interpolator and integer divider peripherals

On-chip programmable LDO to generate core voltage

2 on-chip PLLs to generate USB and core clocks

30 GPIO pins, 3 of which can be used as analogue inputs

Peripherals

2 UARTs

2 SPI controllers

2 I2C controllers

16 PWM channels

USB 1.1 controller and PHY, with host and device support

8 PIO state machines

Other Required Hardware

The following list of hardware, or some equivalent thereof, is required to complete this guide.

Half-size breadboard
This is a cute half size breadboard, good for small projects. It's 2.2" x 3.4" (5.5 cm x 8.5 cm) with a standard double-strip in the middle and

two power rails on both...

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 7 of 99

https://www.adafruit.com/product/64

$5.00
In Stock

Premium Male/Male Jumper Wires - 40 x 6" (150mm)
Handy for making wire harnesses or jumpering between headers on PCB's. These premium jumper wires are 6" (150mm) long and come

in a 'strip' of 40 (4 pieces of each of...

$3.95
In Stock

Premium Female/Male 'Extension' Jumper Wires - 40 x 6" (150mm)
Handy for making wire harnesses or jumpering between headers on PCB's. These premium jumper wires are 6" (150mm) long and come

in a 'strip' of 40 (4 pieces of each of ten rainbow...

$3.95
In Stock

Tactile Switch Buttons (12mm square, 6mm tall) x 10 pack
Medium-sized clicky momentary switches are standard input "buttons" on electronic projects. These work best in a PCB but

$2.50
In Stock

Diffused 5mm LED Pack - 5 LEDs each in 5 Colors - 25 Pack
Need some indicators? We are big fans of these diffused LEDs. They are fairly bright, so they can be seen in daytime, and from any

angle. They go easily into a breadboard and will add...

$4.95
In Stock

Through-Hole Resistors - 220 ohm 5% 1/4W - Pack of 25
ΩMG! You're not going to be able to resist these handy resistor packs! Well, axially, they do all of the resisting for you!This is a 25 Pack

of...

$0.75
In Stock

Any resistors with a value of 220Ω-1.0KΩ will work. The higher the value, the dimmer your LEDs will be!

Piezo Buzzer

Add to Cart

Add to Cart

Add to Cart

Add to Cart

Add to Cart

Add to Cart

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 8 of 99

https://www.adafruit.com/product/64
https://www.adafruit.com/product/758
https://www.adafruit.com/product/758
https://www.adafruit.com/product/826
https://www.adafruit.com/product/826
https://www.adafruit.com/product/1119
https://www.adafruit.com/product/1119
https://www.adafruit.com/product/4203
https://www.adafruit.com/product/4203
https://www.adafruit.com/product/2780
https://www.adafruit.com/product/2780
https://www.adafruit.com/product/160

Piezo buzzers are used for making beeps, tones and alerts. This one is petite but loud! Drive it with 3-30V peak-to-peak square wave. To

use, connect one pin to ground (either one) and...

$1.50
In Stock

Breadboard trim potentiometer
These are our favorite trim pots, perfect for breadboarding and prototyping. They have a long grippy adjustment knob and with 0.1"

spacing, they plug into breadboards or...

$1.25
In Stock

PIR (motion) sensor
PIR sensors are used to detect motion from pets/humanoids from about 20 feet away (possibly works on zombies, not guaranteed). This

one has an adjustable delay before firing (approx...

$9.95
In Stock

Adafruit NeoPixel LED Strip with 3-pin JST Connector - 1 meter
Plug in and glow, this Adafruit NeoPixel LED Strip with JST PH Connector has 30 total LEDs and is 1 meter long, in classy Adafruit...

$12.50
In Stock

Add to Cart

Add to Cart

Add to Cart

Add to Cart

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 9 of 99

https://www.adafruit.com/product/160
https://www.adafruit.com/product/356
https://www.adafruit.com/product/356
https://www.adafruit.com/product/189
https://www.adafruit.com/product/189
https://www.adafruit.com/product/4801
https://www.adafruit.com/product/4801

Pinouts

This is a top view of the pinouts on the Raspberry Pi Pico. The pin labels are on the bottom of the board.

See the Downloads (https://adafru.it/QTd) page for a paper template you can put underneath the Pico to

label the pins.

There are two I2C peripherals available, I2C0 and I2C1, two SPI peripherals, SPI0 and SPI1, and two UART

peripherals, UART0 and UART1. You can assign any of these to the pins on which they are available. So

for example, you can use GP0/GP1 for I2C0, and simultaneously use GP2/GP3 for I2C1, but you cannot

use GP0/GP1 together with GP4/GP5 for I2C use, because they are both usable only with I2C0.

In CircuitPython, you don't need to specify exactly which peripheral is used. As long you choose valid pins,

CircuitPython will choose a free peripheral.

No Default board Devices

The Pico does not label specific pins as the defaults to use for I2C, SPI, or UART connections. So

CircuitPython running on the Pico does not provide board.I2C() , board.SPI() , or board.UART() , since it's not

immediately obvious what they would correspond to. For example:

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 10 of 99

https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython/downloads

import board

i2c = board.I2C() # Does not work on the Pico.

Instead, use the busio (https://adafru.it/Qsf) module to create your bus and then specify the specific pins

you want to use. To do so, use the pinout diagram above to find available pins, for example I2C0_SDA is

on GP0 (as well as other locations). You then use the board.GPx pin name when creating the bus.

Here are some specific examples.

I2C Example

To setup an I2C bus (https://adafru.it/Qsf), you specify the SCL and SDA pins being used. You can look for

"SCL" and "SDA" in the pin names in the pinout diagram above.

I2Cx_SCL = SCL

I2Cx_SDA = SDA

For example, here is how you would setup an I2C bus to use GP1 as SCL and GP0 as SDA:

import board
import busio

i2c = busio.I2C(scl=board.GP1, sda=board.GP0)

SPI Example

To setup a SPI bus (https://adafru.it/Qsf), you specify the SCK, MOSI (microcontroller out, sensor in), and

MISO (microcontroller in, sensor out) pins. The Pico uses a different naming convention for these:

SPIx_SCK = SCK

SPIx_TX = MOSI

SPIx_RX = MISO

So use that mapping to help find available pins.

Here's an example:

import board
import busio

spi = busio.SPI(clock=board.GP2, MOSI=board.GP3, MISO=board.GP4)

UART Example

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 11 of 99

https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/index.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/index.html#busio.I2C
https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/index.html#busio.SPI

To setup a UART bus (https://adafru.it/Qsf), you specify the TX and RX pins. Be sure to use the UARTx pins

and not the similarly named SPIx ones.

Here's an example:

import board
import busio

uart = busio.UART(tx=board.GP4, rx=board.GP5)

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 12 of 99

https://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/index.html#busio.UART

Using Adafruit AR with Raspberry Pi Pico

With this new Adafruit AR update, you’re able to scan your Raspberry Pi Pico to display an overlay of the

boards pinouts and power pins. Here we'll show you how to get started.

To get started:

Before downloading this app, make sure your mobile device is running iOS 14 or greater.

Download Adafruit AR from the Apple App

Adafruit AR on the App Store (https://adafru.it/Ptb)

Once you’ve opened the app use the boards scanner mode to start.

Please note - the Adafruit AR app is currently only available for iOS.�

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 13 of 99

https://apps.apple.com/us/app/adafruit-ar/id1375722584

With your Raspberry Pi Pico, scan the front of the board.

Due to the small size of the Raspberry Pi Pico, you’ll need to scan the board a bit closely. Your device

should be ideally 3 inches away from board to be recognized.

For the best practice to scan your board - make sure you are scanning in a well lit area and avoid light

glare while scanning.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 14 of 99

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 15 of 99

MicroPython or CircuitPython?

Now that you have a Pico you're probably wondering why most Adafruit tutorials are for CircuitPython why

the official Python is called MicroPython?

Whats the difference, why use one or the other?

CircuitPython is a 'fork' based on MicroPython

CircuitPython code is gonna look a lot like MicroPython because they're based on the same Python

implementation. There are some minor differences because CircuitPython is focused on beginners,

education, and getting folks started super fast. If you already know MicroPython, 95% of what you know

will work just the same!

CircuitPython is also available for the Pico and generally RP2040 boards. You load it just like loading

MicroPython.

While CircuitPython is based on MicroPython, there are some key differences why you may want to use

CircuitPython instead of MicroPython.

So what's different?

There's a few differences and they're all documented here (https://adafru.it/tB7), however for Pico users

who have tried or are following MicroPython guides the most important are...

CircuitPython was designed to have a USB disk drive that appears when you plug in the board. That disk

drive is small (on the order of MB!) and holds your code and files. You can treat it just like a disk drive -

drag and drop files, delete and copy them. You do not need to use Thonny to 'upload' a file - simply drag

any file you want to the USB drive.

CircuitPython will restart your code when you save files to the disk drive. That means when you write

Python code, whenever you save it will auto-reload the code for you, for instant gratification. This is a little

unusual for programmers who are used to 'edit-save-compile-upload-reset-run' - we go straight to 'edit-

save-run'.

CircuitPython has a consistent API across all boards. That means that whether you're using a Pico, or an

nRF52840 or an ESP32-S2 or SAMD51 for your project, the code for your hardware is identical. (Other than

pin names which may vary depending on how many there are on the board itself and what they're called).

CircuitPython has a lot of examples and support!

There are 260+ libraries for the standard CircuitPython API. Most of these will already work. Listed

here (https://adafru.it/QaO)

Tons of guides and tutorials at https://learn.adafruit.com/category/circuitpython (https://adafru.it/Ew6)

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 16 of 99

https://github.com/adafruit/circuitpython#differences-from-micropython
https://circuitpython.readthedocs.io/projects/bundle/en/latest/drivers.html
https://learn.adafruit.com/category/circuitpython

Most CircuitPython libraries also work on Raspberry Pis via the Blinka library (https://adafru.it/BSN). That

means you can write code that works on both!

Why Use MicroPython?

You may want to use MicroPython for:

1) Advanced APIs such as interrupts and threading.

2) Complete PIO API (CircuitPython's support is incomplete)

3) Using existing MicroPython code

It's great to know both!

To get started quick:

Download CircuitPython for the Pico from circuitpython.org:

https://circuitpython.org/board/raspberry_pi_pico/ (https://adafru.it/QaP)

For now, click "Absolute Newest", then click your language code such as "en_US", and finally download

the UF2 file at the top. That will be the latest and greatest version of CircuitPython. As support matures,

the download page will stable releases. You can also choose a beta release but many features and fixes

are being added on a daily basis, so "Absolute Newest" will be the best for a while.

After dragging the CircuitPython UF2 to RPI-RP2 bootloader the chip will reset and show a CIRCUITPY

drive.

See the Welcome to CircuitPython (https://adafru.it/AlP) and CircuitPython Essentials (https://adafru.it/BX8)

guides for CircuitPython basics. API Docs are here (https://adafru.it/Bvz) though they won't include RP2040

specific modules until support is merged in. A Pico specific guide that will grow in time is

here (https://adafru.it/QaQ).

Join the Adafruit Discord () for #help-with-circuitpython and feel free to mention @tannewt for RP2040

specific questions.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 17 of 99

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://circuitpython.org/board/raspberry_pi_pico/
https://learn.adafruit.com/welcome-to-circuitpython/
https://learn.adafruit.com/circuitpython-essentials/
https://circuitpython.readthedocs.io/en/latest/README.html
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython
https://adafru.it/discord

What is CircuitPython?

CircuitPython is a programming language designed to simplify experimenting and learning to program on

low-cost microcontroller boards. It makes getting started easier than ever with no upfront desktop

downloads needed. Once you get your board set up, open any text editor, and get started editing code.

It's that simple.

CircuitPython is based on Python
Python is the fastest growing programming language. It's taught in schools and universities. It's a high-

level programming language which means it's designed to be easier to read, write and maintain. It

supports modules and packages which means it's easy to reuse your code for other projects. It has a built

in interpreter which means there are no extra steps, like compiling, to get your code to work. And of

course, Python is Open Source Software which means it's free for anyone to use, modify or improve upon.

CircuitPython adds hardware support to all of these amazing features. If you already have Python

knowledge, you can easily apply that to using CircuitPython. If you have no previous experience, it's really

simple to get started!

Why would I use CircuitPython?

CircuitPython is designed to run on microcontroller boards. A microcontroller board is a board with a

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 18 of 99

microcontroller chip that's essentially an itty-bitty all-in-one computer. The board you're holding is a

microcontroller board! CircuitPython is easy to use because all you need is that little board, a USB cable,

and a computer with a USB connection. But that's only the beginning.

Other reasons to use CircuitPython include:

You want to get up and running quickly. Create a file, edit your code, save the file, and it runs

immediately. There is no compiling, no downloading and no uploading needed.

You're new to programming. CircuitPython is designed with education in mind. It's easy to start

learning how to program and you get immediate feedback from the board.

Easily update your code. Since your code lives on the disk drive, you can edit it whenever you like,

you can also keep multiple files around for easy experimentation.

The serial console and REPL. These allow for live feedback from your code and interactive

programming.

File storage. The internal storage for CircuitPython makes it great for data-logging, playing audio

clips, and otherwise interacting with files.

Strong hardware support. There are many libraries and drivers for sensors, breakout boards and

other external components.

It's Python! Python is the fastest-growing programming language. It's taught in schools and

universities. CircuitPython is almost-completely compatible with Python. It simply adds hardware

support.

This is just the beginning. CircuitPython continues to evolve, and is constantly being updated. We

welcome and encourage feedback from the community, and we incorporate this into how we are

developing CircuitPython. That's the core of the open source concept. This makes CircuitPython better for

you and everyone who uses it!

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 19 of 99

Installing CircuitPython

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ) designed to simplify

experimentation and education on low-cost microcontrollers. It makes it easier than ever to get prototyping

by requiring no upfront desktop software downloads. Simply copy and edit files on the CIRCUITPY drive to

iterate.

CircuitPython Quickstart

Follow this step-by-step to quickly get CircuitPython working on your board.

https://adafru.it/QaP

Click the link above and download the latest UF2 file.

Download and save it to your desktop (or wherever is

handy).

Start with your Pico unplugged from USB. Hold down the

BOOTSEL button, and while continuing to hold it (don't let

go!), plug the Pico into USB. Continue to hold the

BOOTSEL button until the RPI-RP2 drive appears!

If the drive does not appear, unplug your Pico and go

through the above process again.

A lot of people end up using charge-only USB cables and

it is very frustrating! So make sure you have a USB cable

you know is good for data sync.

https://adafru.it/QaP

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 20 of 99

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/raspberry_pi_pico/
https://learn.adafruit.com//assets/98753
https://learn.adafruit.com//assets/98829

You will see a new disk drive appear called RPI-RP2.

Drag the adafruit_circuitpython_etc.uf2 file to RPI-RP2.

The RPI-RP2 drive will disappear and a new disk drive

called CIRCUITPY will appear.

That's it, you're done! :)

Flash Resetting UF2

If your Pico ever gets into a really weird state and doesn't even show up as a disk drive when installing

CircuitPython, try installing this 'nuke' UF2 which will do a 'deep clean' on your Flash Memory. You will lose

all the files on the board, but at least you'll be able to revive it! After nuking, re-install CircuitPython

https://adafru.it/QAJ

https://adafru.it/QAJ

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 21 of 99

https://learn.adafruit.com//assets/98756
https://learn.adafruit.com//assets/98758
https://learn.adafruit.com//assets/98759
https://cdn-learn.adafruit.com/assets/assets/000/099/419/original/flash_nuke.uf2?1613329170

Installing Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's written in Python and

works on Windows, MacOS, Linux and Raspberry Pi. The serial console is built right in so you get

immediate feedback from your board's serial output!

Download and Install Mu

Download Mu

from https://codewith.mu (https://adafru.it/Be6). Click

the Download or Start Here links there for downloads and

installation instructions. The website has a wealth of other

information, including extensive tutorials and and how-

to's.

Using Mu

The first time you start Mu, you will be prompted to select

your 'mode' - you can always change your mind later. For

now please select CircuitPython!

The current mode is displayed in the lower right corner of

the window, next to the "gear" icon. If the mode says

"Microbit" or something else, click the Mode button in the

upper left, and then choose "CircuitPython" in the dialog

box that appears.

Mu is our recommended editor - please use it (unless you are an experienced coder with a

favorite editor already!)
�

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 22 of 99

https://learn.adafruit.com//assets/74974
https://codewith.mu/
https://learn.adafruit.com//assets/49641

Mu attempts to auto-detect your board, so please plug in

your CircuitPython device and make sure it shows up as

a CIRCUITPY drive before starting Mu

You can now explore Mu! The three main sections of the window are labeled below; the button bar, the

text editor, and the serial console / REPL.

Now you're ready to code! Let's keep going...

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 23 of 99

https://learn.adafruit.com//assets/49642

CircuitPython Programming Basics

To get you started with how to program your Pico in CircuitPython, especially for those who may have
started out with the official MicroPython setup, we've 'ported' the Getting Started with MicroPython on Pico
book (https://adafru.it/QkD) examples to CircuitPython. The book is awesome, please download/purchase
it to support Raspberry Pi Press (https://adafru.it/QkD)!

Now that you've installed CircuitPython, it's time to begin your first program. If you haven't already, plug in

your Raspberry Pi Pico to your computer via USB. Then, open your favorite Python editor.

Click the Serial button in Mu to open the serial console. Click anywhere in the serial output window at the

bottom of Mu, and press CTRL+C on your keyboard. This will bring you to the REPL. At the REPL prompt

(>>>), type the following code followed by the ENTER key:

print("Hello, world!")

Immediately upon pressing enter, the code is executed. Python responds by printing the message.

The REPL, or the Read-Evaluate-Print-Loop, allows you to run individual lines of code, one at a time. You

can run multiple lines of code in sequence to execute a longer program. It's great for testing a program

line by line to determine where an issue might be. It's interactive, so it's excellent for testing new ideas.

It is, however, important to remember that the REPL is ephemeral. Any code you write there is not saved

anywhere. If you'd like to save your code, you can easily do so with CircuitPython and Mu.

Once installed, CircuitPython presents your Pico board as a USB drive called CIRCUITPY. Your code and

any necessary libraries live on this drive. With a fresh CircuitPython install, you'll find a code.py file

containing print("Hello World!") and an empty lib folder. If your CIRCUITPY drive does not contain a

code.py file, you can easily create one and save it to the drive. CircuitPython looks for code.py and

executes the code within the file automatically when the board starts up or resets. Following a change to

the contents of CIRCUITPY, such as making a change to the code.py file, the board will reset, and the

code will be run. You do not need to manually run the code. Note that all changes to the contents of

CIRCUITPY, such as saving a new file, renaming a current file, or deleting an existing file will trigger a reset

of the board.

In Mu, if the file currently open is not code.py, click Load in the Mu button bar, navigate to your

CIRCUITPY drive, and open code.py. If there is no code.py file, create a new file by clicking New in the Mu

button bar, then click Save, navigate to your CIRCUITPY drive, and save the file as code.py.

Note that the code in code.py is not running while you are actively in the REPL. To exit the REPL, simply

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 24 of 99

https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico

type CTRL+D at the REPL prompt (>>>).

In the code.py file, click in the Mu text editor, and add the same simple line of code as above (if it's not

already there). Save the file. The code will run automatically, and the message will be printed in the serial

console!

Indentation and Code Loops

CircuitPython runs the same as a standard Python program, typically running from top to bottom, executing

each line. However, you can control the flow of a program using indentation. Delete the current contents

of your code.py file and replace them with the following code:

"""Example of definite loop."""
print("Loop starting!")
for i in range(10):
 print("Loop number", i)
print("Loop finished!")

Loop is referring to a section of code that runs repeatedly - in this instance, the for i in range(10): . This is

called a definite loop, a loop that runs a set number of times, in this case, 10.

Your code.py should look like this:

You must exit the REPL for the code found in code.py to be run.�

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 25 of 99

Save the file, and check out the serial output.

Indentation is crucial to flow control in code, but is also a very common cause of syntax errors, which

causes the code to fail to run. If your code fails with a syntax error, be sure to check your indentation.

There are also indefinite loops in CircuitPython, that is, a loop that continues indefinitely. Update your

code.py to the following. Be sure to delete the existing code! Your code.py file should only include the

following code.

"""Example of infinite loop. Final print statement is never reached."""
print("Loop starting!")
while True:
 print("Loop running!")
print("Loop finished!")

Keep an eye on the serial console and click save. You should see the Loop Starting! message posted once

initially, and then the Loop running! message repeated indefinitely.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 26 of 99

The Loop Finished! message will never show up because it is not "inside" the loop. When there is a while
True: in Python code, everything indented under it will run repeatedly - when the end of the loop is

reached, it will begin again at the beginning of the loop.

Conditionals and Variables

In CircuitPython, like Python, you can create variables. You can think of variables as a name attached to a

specific object. To create a variable, you simply assign it and start using it. You use = to assign a variable

name to the desired object.

Update your code.py to the following.

"""Example of assigning a variable."""
user_name = input("What is your name? ")

Save the file.

Click into the serial output. Type your answer to the question and press ENTER on your keyboard.

You've saved your name to the user_name variable! Now you can do something with it.

Update code.py to the following. Note that when Mu sees that your code needs to be indented, it will do it

automatically. Therefore, if your next line of code does not need to be indented, you'll need to backspace

to remove the indentation.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 27 of 99

"""Example of assigning a variable and comparing it to a value."""
user_name = input ("What is your name? ")

if user_name == "Clark Kent":
 print("You are Superman!")
else:
 print("You are not Superman!")

Save your code.py file. Now click in the serial console, type in your name, and press ENTER on your

keyboard. Unless your name is "Clark Kent", you'll see the You are not Superman! message.

While still in the serial console, type CTRL+D to reload, and run the code again. This time, type in Clark
Kent , and press ENTER on your keyboard. Make sure you have the capitalisation exactly as shown!

You are Superman!

The == symbol tells CircuitPython to directly compare the text entered at the prompt, also known as a

string, with "Clark Kent" to see if they are the same. If they are, then it prints the first message, You are
Superman! , found under the if statement. If they are not, it prints the second message, You are not
Superman! , found under the else statement.

There are other symbols, such as > and >= , to use if you're working with numbers instead of strings. To

check if a string or value is not the same as another string or value, you would use != , which is essentially

the opposite of == . These symbols are collectively known as comparison operators.

Note that = sets a variable equal to the value following it, and == checks to see if the variable is equal to

the value following it. Don't mix them up!

Comparison operators can be used in loops as well. Update your code.py to the following and save.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 28 of 99

"""Example of assigning a variable, and comparing it to a value in a loop."""
user_name = input ("What is your name? ")

while user_name != "Clark Kent":
 print("You are not Superman - try again!")
 user_name = input ("What is your name? ")
print("You are Superman!")

This time, instead of the code ending following the comparison of the entered name to Clark Kent, it will

keep asking for your name until it turns out that you're Superman, at which point it will stop running.

That's only the beginning of what you can do with variables and conditionals in CircuitPython!

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 29 of 99

CircuitPython Pins and Modules

CircuitPython is designed to run on microcontrollers and allows you to interface with all kinds of sensors,

inputs and other hardware peripherals. There are tons of guides showing how to wire up a circuit, and use

CircuitPython to, for example, read data from a sensor, or detect a button press. Most CircuitPython code

includes hardware setup which requires various modules, such as board or digitalio . You import these

modules and then use them in your code. How does CircuitPython know to look for hardware in the

specific place you connected it, and where do these modules come from?

This page explains both. You'll learn how CircuitPython finds the pins on your microcontroller board,

including how to find the available pins for your board and what each pin is named. You'll also learn about

the modules built into CircuitPython, including how to find all the modules available for your board.

CircuitPython Pins
When using hardware peripherals with a CircuitPython compatible microcontroller, you'll almost certainly

be utilising pins. This section will cover how to access your board's pins using CircuitPython, how to

discover what pins and board-specific objects are available in CircuitPython for your board, how to use the

board-specific objects, and how to determine all available pin names for a given pin on your board.

import board

When you're using any kind of hardware peripherals wired up to your microcontroller board, the import list

in your code will include import board . The board module is built into CircuitPython, and is used to provide

access to a series of board-specific objects, including pins. Take a look at your microcontroller board.

You'll notice that next to the pins are pin labels. You can always access a pin by its pin label. However,

there are almost always multiple names for a given pin.

To see all the available board-specific objects and pins for your board, enter the REPL (>>>) and run the

following commands:

import board
dir(board)

Here is the output for the QT Py.

The following pins have labels on the physical QT Py board: A0, A1, A2, A3, SDA, SCL, TX, RX, SCK, MISO,

and MOSI. You see that there are many more entries available in board than the labels on the QT Py.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 30 of 99

You can use the pin names on the physical board, regardless of whether they seem to be specific to a

certain protocol.

For example, you do not have to use the SDA pin for I2C - you can use it for a button or LED.

On the flip side, there may be multiple names for one pin. For example, on the QT Py, pin A0 is labeled on

the physical board silkscreen, but it is available in CircuitPython as both A0 and D0 . For more information

on finding all the names for a given pin, see the What Are All the Available Pin

Names? (https://adafru.it/QkA) section below.

The results of dir(board) for CircuitPython compatible boards will look similar to the results for the QT Py in

terms of the pin names, e.g. A0, D0, etc. However, some boards, for example, the Metro ESP32-S2, have

different styled pin names. Here is the output for the Metro ESP32-S2.

Note that most of the pins are named in an IO# style, such as IO1 and IO2. Those pins on the physical

board are labeled only with a number, so an easy way to know how to access them in CircuitPython, is to

run those commands in the REPL and find the pin naming scheme.

I2C, SPI, and UART

You'll also see there are often (but not always!) three special board-specific objects included: I2C , SPI ,

and UART - each one is for the default pin-set used for each of the three common protocol busses they

are named for. These are called singletons.

What's a singleton? When you create an object in CircuitPython, you are instantiating ('creating') it.

Instantiating an object means you are creating an instance of the object with the unique values that are

provided, or "passed", to it.

For example, When you instantiate an I2C object using the busio module, it expects two pins: clock and

data, typically SCL and SDA. It often looks like this:

i2c = busio.I2C(board.SCL, board.SDA)

If your code is failing to run because it can't find a pin name you provided, verify that you have the

proper pin name by running these commands in the REPL.
�

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 31 of 99

https://learn.adafruit.com/circuitpython-essentials/circuitpython-pins-and-modules#what-are-all-the-available-names-3082670-14

Then, you pass the I2C object to a driver for the hardware you're using. For example, if you were using the

TSL2591 light sensor and its CircuitPython library, the next line of code would be:

tsl2591 = adafruit_tsl2591.TSL2591(i2c)

However, CircuitPython makes this simpler by including the I2C singleton in the board module. Instead of

the two lines of code above, you simply provide the singleton as the I2C object. So if you were using the

TSL2591 and its CircuitPython library, the two above lines of code would be replaced with:

tsl2591 = adafruit_tsl2591.TSL2591(board.I2C())

This eliminates the need for the busio module, and simplifies the code. Behind the scenes, the

board.I2C() object is instantiated when you call it, but not before, and on subsequent calls, it returns the

same object. Basically, it does not create an object until you need it, and provides the same object every

time you need it. You can call board.I2C() as many times as you like, and it will always return the same

object.

What Are All the Available Names?

Many pins on CircuitPython compatible microcontroller boards have multiple names, however, typically,

there's only one name labeled on the physical board. So how do you find out what the other available pin

names are? Simple, with the following script! Each line printed out to the serial console contains the set of

names for a particular pin.

On a microcontroller board running CircuitPython, connect to the serial console. Then, save the following

as code.py on your CIRCUITPY drive.

The UART/SPI/I2C singletons will use the 'default' bus pins for each board - often labeled as

RX/TX (UART), MOSI/MISO/SCK (SPI), or SDA/SCL (I2C). Check your board documentation/pinout

for the default busses.
�

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 32 of 99

"""CircuitPython Essentials Pin Map Script"""
import microcontroller
import board

board_pins = []
for pin in dir(microcontroller.pin):
 if isinstance(getattr(microcontroller.pin, pin), microcontroller.Pin):
 pins = []
 for alias in dir(board):
 if getattr(board, alias) is getattr(microcontroller.pin, pin):
 pins.append("board.{}".format(alias))
 if len(pins) > 0:
 board_pins.append(" ".join(pins))
for pins in sorted(board_pins):
 print(pins)

Here is the result when this script is run on QT Py:

Each line represents a single pin. Find the line containing the pin name that's labeled on the physical

board, and you'll find the other names available for that pin. For example, the first pin on the board is

labeled A0. The first line in the output is board.A0 board.D0 . This means that you can access pin A0 with

both board.A0 and board.D0 .

You'll notice there are two "pins" that aren't labeled on the board but appear in the list: board.NEOPIXEL
and board.NEOPIXEL_POWER . Many boards have several of these special pins that give you access to

built-in board hardware, such as an LED or an on-board sensor. The Qt Py only has one on-board extra

piece of hardware, a NeoPixel LED, so there's only the one available in the list. But you can also control

whether or not power is applied to the NeoPixel, so there's a separate pin for that.

That's all there is to figuring out the available names for a pin on a compatible microcontroller board in

CircuitPython!

Microcontroller Pin Names

The pin names available to you in the CircuitPython board module are not the same as the names of the

pins on the microcontroller itself. The board pin names are aliases to the microcontroller pin names. If you

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 33 of 99

look at the datasheet for your microcontroller, you'll likely find a pinout with a series of pin names, such as

"PA18" or "GPIO5". If you want to get to the actual microcontroller pin name in CircuitPython, you'll need

the microcontroller.pin module. As with board , you can run dir(microcontroller.pin) in the REPL to receive a

list of the microcontroller pin names.

CircuitPython Built-In Modules
There is a set of modules used in most CircuitPython programs. One or more of these modules is always

used in projects involving hardware. Often hardware requires installing a separate library from the Adafruit

CircuitPython Bundle. But, if you try to find board or digitalio in the same bundle, you'll come up lacking.

So, where do these modules come from? They're built into CircuitPython! You can find an comprehensive

list of built-in CircuitPython modules and the technical details of their functionality from CircuitPython

here (https://adafru.it/QkB) and the Python-like modules included here (https://adafru.it/QkC). However, not

every module is available for every board due to size constraints or hardware limitations. How do you find

out what modules are available for your board?

There are two options for this. You can check the support matrix (https://adafru.it/N2a), and search for your

board by name. Or, you can use the REPL.

Plug in your board, connect to the serial console and enter the REPL. Type the following command.

help("modules")

That's it! You now know two ways to find all of the modules built into CircuitPython for your compatible

microcontroller board.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 34 of 99

https://circuitpython.readthedocs.io/en/latest/shared-bindings/index.html#modules
https://circuitpython.readthedocs.io/en/latest/docs/library/index.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html#

Blinky and a Button

To get you started with how to program your Pico in CircuitPython, especially for those who may have
started out with the official MicroPython setup, we've 'ported' the Getting Started with MicroPython on Pico
book (https://adafru.it/QkD) examples to CircuitPython. The book is awesome, please download/purchase
it to support Raspberry Pi Press (https://adafru.it/QkD)!

Printing "Hello, World!" is the traditional first program to write in any language. In CircuitPython, the Hello,

World! equivalent is blinking an LED. This is easy to do with your Raspberry Pi Pico board and

CircuitPython.

The Built-In LED

Your Pico board has a built in LED, labeled "LED", located to the left of the USB port at the top of the

board. Like any other LED, it turns on when it is powered, and is otherwise off. The LED is connected to pin

GP25. GP25 is dedicated to the LED, and therefore is not available as a pin along the edge of your Pico

board. In CircuitPython, you can access this LED using board.LED .

Save the following as code.py on your CIRCUITPY drive.

"""Example for Pico. Turns on the built-in LED."""
import board
import digitalio

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True

So far, none of the examples have required importing anything. Most, if not all, hardware programming

requires you to import built-in modules or libraries. CircuitPython libraries are not included in CircuitPython

itself and require you to copy files or folders to the lib folder on your CIRCUITPY drive. The built-in

modules, however, are included, and do not require any external files or folders. To see a list of available

built-in modules for your Pico board, you can enter the REPL and type the following at the >>> prompt:

help("modules")

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 35 of 99

https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico

This example requires two modules: board and digitalio .

The first step to hardware programming is identifying the location of the hardware board. The board
module contains all of the pin names of the pins available on your Pico board. These are not the pin names

on the chip itself! They are the names of the pins provided to CircuitPython for use in your code.

One of the most basic parts of interfacing with hardware is managing digital inputs and outputs. This is

where digitalio comes in. The digitalio module allows you to digitally control IO pins, as well as set the

direction and pull of the pin.

So, you import both board and digitalio at the beginning of the file:

import board
import digitalio

Next, you set up the LED. You assign the variable led to the digitalio.DigitalInOut object. This will allow you

to manipulate the LED object using the led variable, instead of having to type out the entire object every

time you want to use it. The DigitalInOut object takes one argument - the pin object using the board
module, board.LED . Then you set the pin direction to OUTPUT to tell your Pico board that it should be

used as an output (versus an input).

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

This setup code tells your Pico board how to talk to the LED. The next step is to tell it to turn on. To do this,

you'll need to start a while True: loop. Within the loop, set the led value to True with led.value = True .

Remember, for code to be "in" a loop, it must be indented under the while True: .

while True:
 led.value = True

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 36 of 99

The green LED turns on!

It's worth noting, if you simply set the led value to True without a loop, it would flash quickly once, and

then remain turned off. This is due to the way CircuitPython works, with regard to what happens when

your program ends. When your code finishes running, CircuitPython resets your Pico board to prepare it

for the next run of code. That means the set up you did earlier no longer applies, and the LED does not

remain turned on. To that end, most CircuitPython programs involve some kind of loop, infinite or

otherwise.

You'll notice the LED stays on. This is because you have not told it to turn off. To turn the LED off, you set

led.value = False . Try adding that line of code to the end of your current code.py file.

"""Example for Pico. Turns the built-in LED on and off with no delay."""
import board
import digitalio

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 led.value = False

The LED still doesn't appear to turn off. It is turning off! Your Pico board processes code so quickly that, to

the naked eye, the LED does not appear to be turning off. However, it is rapidly flashing on and off, faster

than you are able to process. The solution is to add a delay. For that, you need to import a new module

called time . Then, you add a time.sleep() after turning the LED on, and after turning the LED off.

Update your code.py to the following and save.

"""Example for Pico. Blinks the built-in LED."""
import time
import board
import digitalio

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

The LED begins blinking!

Including a sleep() in your code tells the program to pause for the given number of seconds. In this case, it

pauses for half of one second, or 0.5 seconds. Try changing 0.5 to 1 and see what happens! The two

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 37 of 99

sleep() times do not have to be the same - try making them different to see the results.

There is a more concise but less clear way to do the same thing. Consider the following. Update your

code.py to the following and save.

"""Example for Pico. Blinks the built-in LED."""
import time
import board
import digitalio

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = not led.value
 time.sleep(0.5)

The LED blinks!

Remember that when the LED value is True , it is on, and when it is False , it is off. In this example, the not
is a logic operator that reverses the result. So, it turns a True into a False , and a False into a True . With

the 0.5 second sleep() , this causes the LED value to cycle between True and False every 0.5 seconds.

It does exactly the same thing as explicitly setting the value, but saves a couple of lines of code!

An External LED

The first step to controlling an external LED is connecting one to your Pico board. For this example, you'll

need your Pico board, a breadboard, male-to-male jumper wires, a resistor, and an LED. A 220Ω-1.0KΩ
resistor will work; a 220Ω resistor is shown in the diagram.

Half-size breadboard
This is a cute half size breadboard, good for small projects. It's 2.2" x 3.4" (5.5 cm x 8.5 cm) with a standard double-strip in the middle and

two power rails on both...

$5.00
In Stock

Premium Male/Male Jumper Wires - 20 x 3" (75mm)
Handy for making wire harnesses or jumpering between headers on PCB's. These premium jumper wires are 3" (75mm) long and come in

a 'strip' of 20 (2 pieces of each of ten rainbow...

$1.95
In Stock

Diffused 5mm LED Pack - 5 LEDs each in 5 Colors - 25 Pack

Add to Cart

Add to Cart

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 38 of 99

https://www.adafruit.com/product/64
https://www.adafruit.com/product/64
https://www.adafruit.com/product/1956
https://www.adafruit.com/product/1956
https://www.adafruit.com/product/4203

Need some indicators? We are big fans of these diffused LEDs. They are fairly bright, so they can be seen in daytime, and from any

angle. They go easily into a breadboard and will add...

$4.95
In Stock

Through-Hole Resistors - 1.0K ohm 5% 1/4W - Pack of 25
ΩMG! You're not going to be able to resist these handy resistor packs! Well, axially, they do all of the resisting for you!This is a 25 Pack

of...

$0.75
In Stock

Wire up the LED to your Pico board as shown below.

Board GND to breadboard ground rail (using a

jumper wire)

Board GP14 to 220Ω resistor

LED+ to 220Ω resistor

LED- to breadboard ground rail (using a jumper

wire)

Now that you've wired up an LED to your Pico board, it's time to light it up. The code is almost exactly the

same as the code used to turn on the built-in LED. The only change required is to update the pin provided

in setup to the pin to which you connected your external LED. You connected the external LED to GP14.

So, take the blink code from above, and change the pin to match the new pin assignment.

Update your code.py to the following and save.

Add to Cart

Add to Cart

External LEDs must have a current-limiting resistor between the LED and your board. Without it,

you can damage both the LED and your board!
�

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 39 of 99

https://www.adafruit.com/product/4203
https://www.adafruit.com/product/4294
https://www.adafruit.com/product/4294
https://learn.adafruit.com//assets/98807

"""
LED example for Pico. Blinks external LED on and off.

REQUIRED HARDWARE:
* LED on pin GP14.
"""
import time
import board
import digitalio

led = digitalio.DigitalInOut(board.GP14)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

The external LED begins blinking! That's all it takes to basically control an external LED.

Now it's time to take a look at using hardware as an input (instead of an output like an LED).

Using a Button as an Input

The IO in GPIO stands for input/output, which is to say that all GPIO pins can be used as both inputs and

outputs. For this example, you'll need your current wiring setup, a button switch, and male-to-male

jumper wires. The first step is connecting the button to your Pico board.

Wire up the button to your current setup as shown below. The button used in the diagram is a four-legged

button. The legs are connected in pairs, so the simplest way to ensure you're wired up properly is to use

the opposite legs. There are buttons that have only two legs, and in that case, you would still connect to

the opposite legs.

Tactile Button switch (6mm) x 20 pack
Little clicky switches are standard input "buttons" on electronic projects. These work best in a PCB but

$2.50
In Stock

Add to Cart

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 40 of 99

https://www.adafruit.com/product/367
https://www.adafruit.com/product/367

Board 3V3 to breadboard power rail (using jumper

wire)

Board GP13 to leg of button (using jumper wire)

Opposite leg of button to breadboard power

rail (using jumper wire)

Now that you have wired up your button, it's time to read status from it. Setup will look a lot like setting up

the LED, with a couple of important differences.

Update your code.py to the following and save.

"""
Button example for Pico. Prints button pressed state to serial console.

REQUIRED HARDWARE:
* Button switch on pin GP13.
"""
import time
import board
import digitalio

button = digitalio.DigitalInOut(board.GP13)
button.switch_to_input(pull=digitalio.Pull.DOWN)

while True:
 print(button.value)
 time.sleep(0.5)

You import the same three modules: time , board and digitalio .

import time
import board
import digitalio

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 41 of 99

https://learn.adafruit.com//assets/98808

Then, as with the LED, you assign the variable button to a digitalio.DigitalInOut object, and provide it the pin

you used to connect it to your Pico board - GP13. Then, unlike the LED, you set it to an input, and you set

the pull to DOWN.

button = digitalio.DigitalInOut(board.GP13)
button.switch_to_input(pull=digitalio.Pull.DOWN)

This type of button is called a momentary button switch. When the button is not pressed, the opposite legs

are not connected, and when you press the button, it makes a connection between the opposite legs.

Pulling the pin down registers 0V when it is not connected to anything, so connecting it to 3.3V, e.g.

pressing the button, registers a button press.

To check whether or not the button is pressed, you'll print the button.value in a loop. The sleep() is

included to keep the serial output readable - without a delay, the serial output would be incredibly fast!

while True:
 print(button.value)
 time.sleep(0.5)

Perhaps you would rather print a message only when the button is pressed.

Update your code.py to the following and save.

"""
Button example for Pico. Prints message to serial console when button is pressed.

REQUIRED HARDWARE:
* Button switch on pin GP13.
"""
import time
import board
import digitalio

button = digitalio.DigitalInOut(board.GP13)
button.switch_to_input(pull=digitalio.Pull.DOWN)

while True:
 if button.value:
 print("You pressed the button!")
 time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 42 of 99

Now, check the serial console. Nothing is happening because you a have not pressed the button. Try

pressing the button.

If you continue to press the button, it will display the message every 0.5 seconds until you let go. Now it's

time to mix things up!

Control an External LED with a Button

Most electronics examples involve multiple components, which is why your Pico board has so many GPIO

pins on it. You've learned about controlling an external LED, and reading the input from a button. You can

combine those two concepts and control the LED using the button!

Now you understand why you left the LED connected to your Pico board when the previous example

didn't involve it. You've already connected everything needed for this example!

Your hardware setup should still look like this.

Update your code.py to the following and save.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 43 of 99

https://learn.adafruit.com//assets/98809

"""
Button and LED example for Pico. Turns on LED when button is pressed.

REQUIRED HARDWARE:
* Button switch on pin GP13.
* LED on pin GP14.
"""
import board
import digitalio

led = digitalio.DigitalInOut(board.GP14)
led.direction = digitalio.Direction.OUTPUT
button = digitalio.DigitalInOut(board.GP13)
button.switch_to_input(pull=digitalio.Pull.DOWN)

while True:
 if button.value:
 led.value = True
 led.value = False

Press the button. The LED turns on! Let it go, and the LED turns off.

You only need to import two modules this time: board and digitalio .

import board
import digitalio

Setup is the same for the LED and the button as it was previous, however, this time you include both.

led = digitalio.DigitalInOut(board.GP14)
led.direction = digitalio.Direction.OUTPUT
button = digitalio.DigitalInOut(board.GP13)
button.switch_to_input(pull=digitalio.Pull.DOWN)

Finally, in your loop, you check to see if the button is pressed, and if so, you turn on the LED. Otherwise,

you turn off the LED.

while True:
 if button.value:
 led.value = True
 led.value = False

Alternatively, you can simply set the LED value equal to the button value, and you get the same results.

Remember, when the button is pressed, it returns True , and when it's not, it returns False . When the LED

is set to True , it turns on, and when it's set to False , it turns off. It's a quick way to control an LED with a

button press!

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 44 of 99

"""
Button and LED example for Pico. Turns on LED when button is pressed.

REQUIRED HARDWARE:
* Button switch on pin GP13.
* LED on pin GP14.
"""
import board
import digitalio

led = digitalio.DigitalInOut(board.GP14)
led.direction = digitalio.Direction.OUTPUT
button = digitalio.DigitalInOut(board.GP13)
button.switch_to_input(pull=digitalio.Pull.DOWN)

while True:
 led.value = button.value

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 45 of 99

Traffic Light and Pedestrian Crossing

To get you started with how to program your Pico in CircuitPython, especially for those who may have
started out with the official MicroPython setup, we've 'ported' the Getting Started with MicroPython on Pico
book (https://adafru.it/QkD) examples to CircuitPython. The book is awesome, please download/purchase
it to support Raspberry Pi Press (https://adafru.it/QkD)!

Traffic lights and pedestrian crossings are something most folks encounter on a regular basis, but perhaps

never give much consideration, especially to the fact that they use microcontrollers. At their simplest, each

of the light colors, red, amber and green, turn on and off for a predetermined period of time. More

typically, they are far more complicated, involving things like inter-system communication, and tracking

traffic flow and pedestrian crossings. While building a typical traffic management system is an incredibly

advanced project, it's easy to build a simple simulator using a microcontroller and a few components.

This example will show you how to use your Raspberry Pi Pico board to control multiple LEDs using

different timings, and how to monitor for a button press while other code is running using polling.

Parts Used

Diffused 5mm LED Pack - 5 LEDs each in 5 Colors - 25 Pack
Need some indicators? We are big fans of these diffused LEDs. They are fairly bright, so they can be seen in daytime, and from any

angle. They go easily into a breadboard and will add...

$4.95
In Stock

Through-Hole Resistors - 1.0K ohm 5% 1/4W - Pack of 25
ΩMG! You're not going to be able to resist these handy resistor packs! Well, axially, they do all of the resisting for you!This is a 25 Pack

of...

$0.75
In Stock

Wiring the Traffic Light

For this example, you'll need your Pico board, a red LED, an amber LED and a green LED, three resistors,

and a number of male-to-male jumper wires. A 220Ω-1.0KΩ resistor will work; a 220Ω resistor is shown in

the diagram.

The first step is to wire up the LEDs. Connect the LEDs to your Pico board as shown below.

Add to Cart

Add to Cart

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 46 of 99

https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico
https://www.adafruit.com/product/4203
https://www.adafruit.com/product/4203
https://www.adafruit.com/product/4294
https://www.adafruit.com/product/4294

Board GND to breadboard ground rail (using a

jumper wire)

Board GP11 to 220Ω resistor

Red LED+ to 220Ω resistor (connected to GP11)

Red LED- to breadboard ground rail (using a jumper

wire)

Board GP14 to 220Ω resistor

Amber LED+ to 220Ω resistor (connected to GP14)

Amber LED- to breadboard ground rail (using a

jumper wire)

Board GP13 to 220Ω resistor

Green LED+ to 220Ω resistor (connected to GP13)

Green LED- to breadboard ground rail (using a

jumper wire)

Programming the Traffic Light

Now that you've wired up your traffic light, you can begin programming it.

Update your code.py to the following and save.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 47 of 99

https://learn.adafruit.com//assets/98810

"""Traffic light simulator example for Pico. Turns on red, amber and green LEDs in traffic
light-like sequence.

REQUIRED HARDWARE:
* Red LED on pin GP11.
* Amber LED on pin GP14.
* Green LED on pin GP13.
"""
import time
import board
import digitalio

red_led = digitalio.DigitalInOut(board.GP11)
red_led.direction = digitalio.Direction.OUTPUT
amber_led = digitalio.DigitalInOut(board.GP14)
amber_led.direction = digitalio.Direction.OUTPUT
green_led = digitalio.DigitalInOut(board.GP13)
green_led.direction = digitalio.Direction.OUTPUT

while True:
 red_led.value = True
 time.sleep(5)
 amber_led.value = True
 time.sleep(2)
 red_led.value = False
 amber_led.value = False
 green_led.value = True
 time.sleep(5)
 green_led.value = False
 amber_led.value = True
 time.sleep(3)
 amber_led.value = False

The red LED lights up, followed by the amber LED. Both turn off as the green LED lights up. Green turns

off, and amber lights up. Amber turns off, and the cycle begins again with the red LED.

Now, a detailed look at the code. First, you import the necessary modules.

import time
import board
import digitalio

Next, you set up the LEDs. As with the single red LED, each of the three LEDs requires assigning a variable

to a digitalio object, and setting the pin direction to output.

red_led = digitalio.DigitalInOut(board.GP11)
red_led.direction = digitalio.Direction.OUTPUT
amber_led = digitalio.DigitalInOut(board.GP14)
amber_led.direction = digitalio.Direction.OUTPUT
green_led = digitalio.DigitalInOut(board.GP13)
green_led.direction = digitalio.Direction.OUTPUT

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 48 of 99

Variables should be descriptive and make it simple to figure out what they apply to. Previously, with only

one LED, it was reasonable to call the variable led . Since you are now working with three different colors

of LEDs, you should be more specific with your variables, so you know what you're working with in your

code. Therefore, the variable names were updated to red_led , amber_led , and green_led .

Next you begin an infinite loop, and use time.sleep() to control the timing of the LEDs.

while True:
 red_led.value = True
 time.sleep(5)
 amber_led.value = True
 time.sleep(2)
 red_led.value = False
 amber_led.value = False
 green_led.value = True
 time.sleep(5)
 green_led.value = False
 amber_led.value = True
 time.sleep(3)
 amber_led.value = False

This timing sequence is based on actual traffic lights in the United Kingdom, shortened significantly for this

example. Five seconds is hardly enough time for actual traffic flow!

First, you turn on the red LED, and wait 5 seconds. Then you turn on the amber LED for 2 seconds, to

signal the light is about to change. The red LED stays on because you have not yet told it to turn off. Next,

you turn off both the red and amber LEDs. Then you turn on the green LED for 5 seconds, followed by

turning off the green LED. Finally you turn on the amber LED for 3 seconds, and then turn it off. At that

point, the red LED turns on again because the loop has completed and restarted.

This example allows for traffic, but doesn't take pedestrians into account. The next example does exactly

that.

Traffic Light and Pedestrian Crossing
In the real world, traffic lights are designed not only for road vehicles, but also to allow pedestrians to

safely cross streets. Now, it's time to take a pedestrian into consideration. Adding a couple of components

can turn your traffic light into a pedestrian crossing.

Wiring the Pedestrian Crossing

This example requires your current hardware setup, plus a button switch, a piezo buzzer, and a few more

male-to-male jumper wires.

Connect the button switch and piezo to your current setup as shown below. The button is shown with

jumper wires connected to two legs on the same side. Each pair of legs is shaped a bit like a staple. You

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 49 of 99

should be able to identify the separate pairs and ensure you're connected to the opposite legs, even

though you have the wires on the same side. The direction of the piezo doesn't matter.

Board 3V3 to breadboard power rail (using jumper

wire)

Board GP16 to leg of button (using jumper wire)

Opposite leg of button to breadboard power

rail (using jumper wire)

Board GP12 to leg of piezo buzzer (using jumper

wire)

Other leg of piezo buzzer to breadboard ground

rail (using jumper wire)

Programming the Traffic Light and Pedestrian Crossing

Update your code.py to the following and save.

"""Traffic light with pedestrian crossing simulator example for Pico. Turns on red, amber and
green
LEDs in traffic light-like sequence. When button is pressed, upon light sequence completion, the
red LED turns on and the buzzer beeps to indicate pedestrian crossing is active.

REQUIRED HARDWARE:
* Red LED on pin GP11.
* Amber LED on pin GP14.
* Green LED on pin GP13.
* Button switch on pin GP16.
* Piezo buzzer on pin GP13.
"""
import time
import board
import digitalio
import pwmio

red_led = digitalio.DigitalInOut(board.GP11)
red_led.direction = digitalio.Direction.OUTPUT
amber_led = digitalio.DigitalInOut(board.GP14)
amber_led.direction = digitalio.Direction.OUTPUT
green_led = digitalio.DigitalInOut(board.GP13)
green_led.direction = digitalio.Direction.OUTPUT
button = digitalio.DigitalInOut(board.GP16)
button.switch_to_input(pull=digitalio.Pull.DOWN)
buzzer = pwmio.PWMOut(board.GP13, frequency=660, duty_cycle=0, variable_frequency=True)

button_pressed = False

def waiting_for_button(duration):
 global button_pressed # pylint: disable=global-statement
 end = time.monotonic() + duration

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 50 of 99

https://learn.adafruit.com//assets/98811

 end = time.monotonic() + duration
 while time.monotonic() < end:
 if button.value:
 button_pressed = True

while True:
 if button_pressed:
 red_led.value = True
 for _ in range(10):
 buzzer.duty_cycle = 2 ** 15
 waiting_for_button(0.2)
 buzzer.duty_cycle = 0
 waiting_for_button(0.2)
 button_pressed = False
 red_led.value = True
 waiting_for_button(5)
 amber_led.value = True
 waiting_for_button(2)
 red_led.value = False
 amber_led.value = False
 green_led.value = True
 waiting_for_button(5)
 green_led.value = False
 amber_led.value = True
 waiting_for_button(3)
 amber_led.value = False

The light sequence is the same as before. This time, however, you can press the button, and when the

light sequence completes, the red LED will stay on and the piezo will play a series of beeps. Then the light

sequence will begin again. You can repeat this as often as you like.

Now, a detailed look at the code. First, you import the necessary modules. This example uses the same

three as the previous example, but also requires a new module: pwmio .

import time
import board
import digitalio
import pwmio

Then you set up all of the hardware components. The LED setup is the same as before, but you are adding

in the button and the buzzer.

red_led = digitalio.DigitalInOut(board.GP11)
red_led.direction = digitalio.Direction.OUTPUT
amber_led = digitalio.DigitalInOut(board.GP14)
amber_led.direction = digitalio.Direction.OUTPUT
green_led = digitalio.DigitalInOut(board.GP13)
green_led.direction = digitalio.Direction.OUTPUT
button = digitalio.DigitalInOut(board.GP16)
button.switch_to_input(pull=digitalio.Pull.DOWN)
buzzer = pwmio.PWMOut(board.GP12, frequency=660, duty_cycle=0, variable_frequency=True)

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 51 of 99

The button is set up as it as in previous examples, however the pin it is connected to on your Pico board

has changed, so make sure you use the current pin.

The buzzer set up is different than any previous examples. You can use PWM with variable frequency to

play tones using piezo buzzers. To use PWM with CircuitPython, you use the pwmio module. You create

the buzzer variable and assign it to a pwmio.PWMOut object. This object can take up to four arguments:

pin , frequency , duty_cycle and variable_frequency . To play tones, you'll need to provide all four. pin is the

pin to which you wired the piezo. frequency is the frequency of the tone - in this case 660Hz. duty_cycle is

set to 0 when the object is created, or your piezo will play the tone constantly as long as a loop is present

in your code. Finally, variable_frequency is set to True to allow for changing the frequency later in the

code.

Then, you create a variable called button_pressed and set it to False initially, as the button is not initially

pressed.

button_pressed = False

In this example, you need a way to monitor for button presses while controlling the timing of events in the

code, such as lighting up and turning off the LEDs. In CircuitPython, this is done using polling, wherein the

program is repeatedly reading a value until it changes.

In all the previous examples, you've used time.sleep() to control the timing of events. This is an excellent

method for many use cases. However, during sleep() , the code is essentially paused. Therefore, the board

cannot accept any other inputs or perform any other functions for that period of time. This type of code is

referred to as being blocking. In many cases, this is not an issue, but in this case, you are waiting for a

button to be pressed, so you'll need to do things a little differently.

This is where another function of the time module comes in: monotonic() . At any given point in time,

time.monotonic() is equal to the number seconds since your board was last power-cycled. (The soft-reboot

that occurs with the auto-reload when you save changes to your CircuitPython code, or enter and exit the

REPL, does not start it over.) When it is called, it returns a number with a decimal, which is called a float. If,

for example, you assign time.monotonic() to a variable, and then call monotonic() again to assign into a

different variable, each variable is equal to the number of seconds that time.monotonic() was equal to at

the time the variables were assigned. You can then subtract the first variable from the second to obtain the

amount of time that passed. Here is a simple example (https://adafru.it/BlT).

For this example, you'll create a waiting_for_button() function that will "act as" the sleep() function did in

previous examples.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 52 of 99

https://learn.adafruit.com/hacking-ikea-lamps-with-circuit-playground-express/passing-time#time-dot-monotonic-example-2982241-3

def waiting_for_button(duration):
 global button_pressed # pylint: disable=global-statement
 end = time.monotonic() + duration
 while time.monotonic() < end:
 if button.value:
 button_pressed = True

The waiting_for_button() function requires a duration in seconds. Variables created outside of functions are

considered global variables. However, if you want to change a global variable within a function, you need

to use the global keyword. As this function changes the state of the button_pressed variable, the first thing

within the function is global button_pressed . Next, you create the end variable and assign it to

time.monotonic() + duration which is the current time plus the provided duration. Then, you create a loop

that checks the current value of time.monotonic() and checks to see if it is less than the end time. As long

as that is valid, it looks for the button to be pressed, in which case button.value is True, and sets the

button_pressed variable to True . Because a duration in seconds is provided every time this function is

called, the code spends that duration checking for a button press. As the code is able to register a button

press at any other time as well, the code is no longer blocking, and is able to register a button press at any

time!

The last part of the code is an infinite loop. The first thing inside the loop is an if block that is looking for

the button press.

while True:
 if button_pressed:
 red_led.value = True
 for _ in range(10):
 buzzer.duty_cycle = 2 ** 15
 waiting_for_button(0.2)
 buzzer.duty_cycle = 0
 waiting_for_button(0.2)
 button_pressed = False

The if block checks to see if the button_pressed variable is True , and if it is, executes the code within the

block. If it is True , it turns on the red LED. Then, the for _ in range(10): tells the code to loop 10 times over

the four lines of code indented below it. This section sets the duty_cycle of the piezo buzzer to half which

causes it to play a tone, pauses for 0.2 seconds, then sets the duty_cycle to 0 to stop playing the tone,

and pauses again for 0.2 seconds. This effectively causes a series of 10 beeps. And finally, it resets the

button_pressed variable to False , so the code is ready again to wait for another button press.

The last part of the infinite loop looks similar to the simple traffic light example, but instead of using

time.sleep() , it is using the waiting_for_button() function you created earlier in this example.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 53 of 99

[...]
 red_led.value = True
 waiting_for_button(5)
 amber_led.value = True
 waiting_for_button(2)
 red_led.value = False
 amber_led.value = False
 green_led.value = True
 waiting_for_button(5)
 green_led.value = False
 amber_led.value = True
 waiting_for_button(3)
 amber_led.value = False

The timing and LED color sequence are the same. Now, press the button. If the program is currently in the

middle of the loop, nothing will happen until it reaches the end of the loop and begins again. When the

loop starts over following a button press, the LED will turn red, and the buzzer will beep, indicating it is

safe for the pedestrian to cross! After that section of code is completed, the LED sequence will begin

again with the red LED lighting up for 5 seconds. This is similar to how actual pedestrian crossings work -

the light remains red after the crossing indicates it is no longer safe to ensure folks in the middle of

crossing make it to the other side safely.

Press the button again to begin the sequence again. You can do this as many times as you like, the code

will continue to run. That's what goes into creating a traffic light with pedestrian crossing!

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 54 of 99

Reaction Game

To get you started with how to program your Pico in CircuitPython, especially for those who may have
started out with the official MicroPython setup, we've 'ported' the Getting Started with MicroPython on Pico
book (https://adafru.it/QkD) examples to CircuitPython. The book is awesome, please download/purchase
it to support Raspberry Pi Press (https://adafru.it/QkD)!

Studying human reaction time is literally a science (https://adafru.it/QkE). There are many ways to test

reaction time, but turning it into a game can make it fun. It's super easy to build a simple reaction game

using a microcontroller, a few components and CircuitPython.

In this section, you'll learn how to use your Raspberry Pi Pico board to build a single-player reaction game,

including an LED and a button, that tells you your reaction time in milliseconds. Then, add a more

competitive aspect to it with the two-player version, built on the first example and including a second

button, that tells you who pressed their button first.

Parts Used

Diffused 5mm LED Pack - 5 LEDs each in 5 Colors - 25 Pack
Need some indicators? We are big fans of these diffused LEDs. They are fairly bright, so they can be seen in daytime, and from any

angle. They go easily into a breadboard and will add...

$4.95
In Stock

Through-Hole Resistors - 1.0K ohm 5% 1/4W - Pack of 25
ΩMG! You're not going to be able to resist these handy resistor packs! Well, axially, they do all of the resisting for you!This is a 25 Pack

of...

$0.75
In Stock

Tactile Button switch (6mm) x 20 pack
Little clicky switches are standard input "buttons" on electronic projects. These work best in a PCB but

$2.50
In Stock

Wiring the Reaction Game

Add to Cart

Add to Cart

Add to Cart

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 55 of 99

https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico
https://en.wikipedia.org/wiki/Mental_chronometry
https://www.adafruit.com/product/4203
https://www.adafruit.com/product/4203
https://www.adafruit.com/product/4294
https://www.adafruit.com/product/4294
https://www.adafruit.com/product/367
https://www.adafruit.com/product/367

For this example you'll need your Pico board, an LED, a resistor, a button switch, and a number of male to

male jumper wires. A 220Ω-1.0KΩ resistor will work; a 220Ω resistor is shown in the diagram.

The first step is to connect the LED and button to your Pico board. The diagram uses a red LED, but you

can choose any color, Wire them up as shown below.

Board GND to breadboard ground rail (using a

jumper wire)

Board 3V3 to breadboard power rail (using jumper

wire)

Board GP13 to 220Ω resistor

LED+ to 220Ω resistor

LED- to breadboard ground rail (using a jumper

wire)

Board GP14 to leg of button (using a jumper wire)

Opposite leg of button to breadboard power

rail (using jumper wire)

Programming the Reaction Game

Now that you've wired up your reaction game, you can begin programming it.

Update your code.py to the following and save.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 56 of 99

https://learn.adafruit.com//assets/98812

"""
Reaction game example for Pico. LED turns on for between 5 and 10 seconds. Once it turns off,
try
to press the button as quickly as possible to measure reaction timm.

REQUIRED HARDWARE:
* LED on pin GP13.
* Button switch on pin GP14.
"""
import time
import random
import board
import digitalio

led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT
button = digitalio.DigitalInOut(board.GP14)
button.switch_to_input(pull=digitalio.Pull.DOWN)

led.value = True
time.sleep(random.randint(5, 10))
led.value = False
timer_start = time.monotonic()
while True:
 if button.value:
 reaction_time = (time.monotonic() - timer_start) * 1000 # Convert to ms
 print("Your reaction time was", reaction_time, "milliseconds!")
 break

The LED will turn on for a period of time. Once it turns off, try to press the button as quickly as you can.

Your reaction time will show up in the serial console! To restart the game, click in the serial console and

press CTRL+D to reload the board.

Now, a more detailed look at the code. First you import the necessary modules.

import time
import random
import board
import digitalio

You've imported time , board and digitalio previously, but this example uses a new module as well:

random .

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 57 of 99

Next, you set up the LED and the button.

led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT
button = digitalio.DigitalInOut(board.GP14)
button.switch_to_input(pull=digitalio.Pull.DOWN)

Then, you begin the game. First, you turn on the LED. Then you use a time.sleep() to keep it on for a

random amount of time, between 5 and 10 seconds. The random module includes the randint function,

which returns a random integer between the two provided integers, in this case 5 and 10 . Provide that

function call to time.sleep() , and it will use the integer as seconds. This is followed by you turning off the

LED.

led.value = True
time.sleep(random.randint(5, 10))
led.value = False

Then you begin the timer by setting a variable, timer_start , equal to time.monotonic() .

timer_start = time.monotonic()

Now, you create a loop to check for the button press. Once the button is pressed, the code checks the

current value of time.monotonic() and subtracts from that the initial value, e.g. when the timer started. This

value is multiplied by 1000 to convert the value from seconds to milliseconds. Then, the message, Your
reaction time was ### milliseconds! is printed to the serial console, where ### is the number of milliseconds

between the time the LED turned off and the time you pressed the button.

while True:
 if button.value:
 reaction_time = (time.monotonic() - timer_start) * 1000 # Convert to ms
 print("Your reaction time was", reaction_time, "milliseconds!")
 break

The break is included because without it, the loop would continue to repeat following the button press,

and the message would be spammed to the serial console repeatedly. You want to run the calculation

once, and print the message once. The break stops the loop from continuing, and the code stops running

following the button press.

Two Players Makes It More Fun

Trying to best yourself in a reaction game can be fun, but trying to best someone else can be even better.

You can easily involve them in the game above; invite them to play and then compare reaction times to

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 58 of 99

see who is fastest. But, with a few modifications to the hardware and software, you can create a game you

can play together!

Wiring the Two Player Reaction Game

For this example, you'll need your current hardware setup , another button switch and a few more male-

to-male jumper wires.

Add the second button switch as shown below.

Board GP16 to leg of second button (using a jumper

wire)

Opposite leg of second button to breadboard

power rail (using jumper wire)

Programming the Two Player Reaction Game

This example looks quite similar to the single-player version with a few modifications.

Update your code.py to the following and save.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 59 of 99

https://learn.adafruit.com//assets/98813

"""
Two-player reaction game example for Pico. LED turns on for between 5 and 10 seconds. Once it
turns off, try to press the button faster than the other player to see who wins.

REQUIRED HARDWARE:
* LED on pin GP13.
* Button switch on pin GP14.
* Button switch on GP16.
"""
import time
import random
import board
import digitalio

led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT
button_one = digitalio.DigitalInOut(board.GP14)
button_one.switch_to_input(pull=digitalio.Pull.DOWN)
button_two = digitalio.DigitalInOut(board.GP16)
button_two.switch_to_input(pull=digitalio.Pull.DOWN)

led.value = True
time.sleep(random.randint(5, 10))
led.value = False
while True:
 if button_one.value:
 print("Player one wins!")
 break
 if button_two.value:
 print("Player two wins!")
 break

The LED still turns on for a period of time. Once it turns off, both of you can press your respective buttons.

The winner is mentioned in a message printed to the serial console! To restart the game, click in the serial

console and press CTRL+D to reload the board.

Now, a detailed look at the code. The imports are identical to the single-player version. The first

modification needed is to include the setup for the second button. As there are now two buttons, you'll

need to update the variable name for the existing button as well. Setup now looks like the following.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 60 of 99

led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT
button_one = digitalio.DigitalInOut(board.GP14)
button_one.switch_to_input(pull=digitalio.Pull.DOWN)
button_two = digitalio.DigitalInOut(board.GP16)
button_two.switch_to_input(pull=digitalio.Pull.DOWN)

The code that turns the LED on for a random number of seconds between 5 and 10 remains the same.

led.value = True
time.sleep(random.randint(5, 10))
led.value = False

This time, however, you do not start a timer as you are not recording a reaction time, you are checking for

which button is pressed first. So, the loop is significantly different. This time, you're repeatedly checking for

a button press, possible from both button one and button two.

while True:
 if button_one.value:
 print("Player one wins!")
 break
 if button_two.value:
 print("Player two wins!")
 break

Based on whichever button is pressed first, the appropriate message prints to the serial console, and the

code stops the loop.

Click in the serial console and press CTRL+D to restart the game, and play again!

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 61 of 99

Burglar Alarm

To get you started with how to program your Pico in CircuitPython, especially for those who may have
started out with the official MicroPython setup, we've 'ported' the Getting Started with MicroPython on Pico
book (https://adafru.it/QkD) examples to CircuitPython. The book is awesome, please download/purchase
it to support Raspberry Pi Press (https://adafru.it/QkD)!

Another common use of microcontrollers is in alarm systems, including home security systems. While they

can get complex with a significant number of sensors, a basic motion sensing alarm is quite easy to build

with a microcontroller and a few components.

This section will show you how to use your Raspberry Pi Pico board to build a basic motion sensor, and

then turn it into a burglar alarm by adding lights and sound.

Wiring the Basic Motion Sensor

For this example you'll need your Pico board, and a PIR sensor.

PIR (motion) sensor
PIR sensors are used to detect motion from pets/humanoids from about 20 feet away (possibly works on zombies, not guaranteed). This

one has an adjustable delay before firing (approx...

$9.95
In Stock

The first step is to connect the PIR sensor to your board. Wire them up as shown below. If your PIR sensor

comes with a cable, you can connect the cable and push the ends of the wires directly into the

breadboard. If your PIR sensor does not have a cable, use male-to-female jumper wires to connect from

the header on the sensor to the breadboard.

Board GND to PIR sensor GND

Board VBUS to PIR sensor 5V

Board GP28 to PIR sensor data pin

Add to Cart

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 62 of 99

https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico
https://www.adafruit.com/product/189
https://www.adafruit.com/product/189
https://learn.adafruit.com//assets/98771

Programming the Basic Motion Sensor

Now that you've wired up your motion sensor, you can begin programming it.

Update your code.py to the following and save.

"""
Simple motion sensor example for Pico. Prints to serial console when PIR sensor is triggered.

REQUIRED HARDWARE:
* PIR sensor on pin GP28.
"""
import board
import digitalio

pir = digitalio.DigitalInOut(board.GP28)
pir.direction = digitalio.Direction.INPUT

while True:
 if pir.value:
 print("ALARM! Motion detected!")
 while pir.value:
 pass

Now open the serial console and wave your hand in front of the sensor. Motion detected!

If you sit still and wait a bit before waving your hand in front of the sensor, you'll see ALARM! Motion
detected! printed to the serial console again. However, you'll notice that if you keep waving your hand in

front of the sensor, it takes a while for it to print another message. There is no delay in the code, so what's

causing this behavior? The PIR sensor has a delay built in. The sensor sends a signal to your Pico board's

GPIO pin when motion is detected, and maintains that signal for a period of time before stopping it. Until

the signal stops, it cannot detect further motion, and therefore cannot trigger your motion detection code.

Many PIR sensors have a potentiometer on them you can use to adjust the length of this delay, though

there is always a minimum delay. Here is a detailed explanation (https://adafru.it/Cea).

Now, a more detailed look at the code. First import the two necessary modules.

import board
import digitalio

Next, you set up the PIR sensor using digitalio . You create the object, provide it a pin, and set the pin

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 63 of 99

https://learn.adafruit.com/pir-passive-infrared-proximity-motion-sensor/testing-a-pir#changing-pulse-time-and-timeout-length-2927247-16

direction to input.

pir = digitalio.DigitalInOut(board.GP28)
pir.direction = digitalio.Direction.INPUT

pir.value returns True when there is motion detected, and False when no motion is detected. Inside your

loop, you check whether pir.value is True . If it is, you print ALARM! Motion detected! . Then there is a

second loop checking pir.value , which runs continuously as long as the condition is True , which is a way

to say "wait until pir.value is False " and then move on. When you have a loop inside of another loop, they

are referred to as nested loops.

while True:
 if pir.value:
 print("ALARM! Motion detected!")
 while pir.value:
 pass

This code sequence helps the code only react to the initial change in signal from the PIR sensor, instead of

reporting motion detected for the entire time the signal is sent. It means ALARM! Motion detected! is only

printed once instead of being spammed to the serial console for the entire duration of the signal event.

Printing to the serial console is enough to test that your PIR sensor is working, but it doesn't amount to a

useful alarm. Actual burglar alarms have lights and sirens that notify everyone within range that something

is wrong. With a few more components, you can add the same functionality to your setup.

Burglar Alarm
Alarms are only useful if they have some way to notify you that they have been triggered. A blinking LED is

a simple way to see when the motion sensor has been triggered. So, the first thing you'll do is add an LED

to your motion sensing setup.

Wiring the Burglar Alarm with Light

This example builds on the previous. For this example, you'll need your current wiring setup, an LED of

any color, a resistor, and a number of male-to-male jumper wires. A 220Ω-1.0KΩ resistor will work; a 220Ω
resistor is shown in the diagram.

Connect the LED to your current setup as shown below. You'll need to modify your current setup slightly

by moving the PIR sensor GND. PIR signal and power do not need to be moved.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 64 of 99

Board GND to breadboard ground rail (using a

jumper wire)

Board GP13 to 220Ω resistor

LED+ to 220Ω resistor

LED- to breadboard ground rail (using a jumper

wire)

PIR sensor GND to breadboard ground rail (using a

jumper wire)

Programming the Burglar Alarm with Light

Now that you've wired up your burglar alarm with light, it's time to program it.

Update your code.py to the following and save.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 65 of 99

https://learn.adafruit.com//assets/98814

"""
A burglar alarm example for Pico. Quick flashing LED indicates alarm has been triggered.

REQUIRED HARDWARE:
* PIR sensor on pin GP28.
* LED on pin GP13.
"""
import time
import board
import digitalio

pir = digitalio.DigitalInOut(board.GP28)
pir.direction = digitalio.Direction.INPUT
led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT

motion_detected = False
while True:
 if pir.value and not motion_detected:
 print("ALARM! Motion detected!")
 motion_detected = True

 if pir.value:
 led.value = True
 time.sleep(0.1)
 led.value = False
 time.sleep(0.1)

 motion_detected = pir.value

Now when you save your hand in front of the sensor, as well as printing the message to the serial console,

the LED will blink quickly to let you know motion has been detected! Once the sensor signal stops, the

LED will stop blinking.

Now, a more detailed look at the code. First you import the same modules as before, but now you include

time as well.

import time
import board
import digitalio

Then, in addition to the PIR sensor setup, you set up the LED.

pir = digitalio.DigitalInOut(board.GP28)
pir.direction = digitalio.Direction.INPUT
led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT

You create a variable called motion_detected and set it to False before the loop.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 66 of 99

motion_detected = False

Inside the loop, you first check to see if pir.value is True AND motion_detected is False . If BOTH of these

conditions are valid, you print ALARM! Motion detected! to the serial console and set motion_detected to

True . Next, you check if pir.value is True , and if so, you blink the LED on and off every 0.1 seconds.

Finally, you set motion_detected equal to pir.value . This resets motion_detected to False once motion is no

longer detected, and allows for motion to be detected again.

while True:
 if pir.value and not motion_detected:
 print("ALARM! Motion detected!")
 motion_detected = True

 if pir.value:
 led.value = True
 time.sleep(0.1)
 led.value = False
 time.sleep(0.1)

 motion_detected = pir.value

To make your alarm even more effective, you could warn intruders that the alarm is active by making the

LED flash slowly when there is no motion detected. To do this, simply replace the last line of the example

with an else block that includes code similar to the if pir.value: block, except with a longer time.sleep() .

[...]
 else:
 motion_detected = False
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

With the above update, your code.py file should look like the following.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 67 of 99

"""
A burglar alarm example for Pico. Slow flashing LED indicates alarm is ready. Quick flashing LED
indicates alarm has been triggered.

REQUIRED HARDWARE:
* PIR sensor on pin GP28.
* LED on pin GP13.
"""
import time
import board
import digitalio

pir = digitalio.DigitalInOut(board.GP28)
pir.direction = digitalio.Direction.INPUT
led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT

motion_detected = False
while True:
 if pir.value and not motion_detected:
 print("ALARM! Motion detected!")
 motion_detected = True

 if pir.value:
 led.value = True
 time.sleep(0.1)
 led.value = False
 time.sleep(0.1)

 else:
 motion_detected = False
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

Your alarm system notifies everyone visually that it's running and lets you know when motion is detected.

Now it needs sound!

Wiring the Burglar Alarm with Light and Sound

This example builds on the previous. For this example, you'll need your current wiring setup, and a piezo

buzzer.

Connect the piezo buzzer to your current setup as shown below. Direction for the piezo buzzer does not

matter.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 68 of 99

Board GP14 to one leg of piezo buzzer

Other leg of piezo buzzer to breadboard ground rail

Programming the Burglar Alarm with Light and Sound

Now that you've wired up your burglar alarm with light and sound, it's time to program it.

Update your code.py to the following and save.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 69 of 99

https://learn.adafruit.com//assets/98815

"""
A burglar alarm example for Pico. Slow flashing LED indicates alarm is ready. Quick flashing LED
and beeping buzzer indicate alarm has been triggered.

REQUIRED HARDWARE:
* PIR sensor on pin GP28.
* LED on pin GP13.
* Piezo buzzer on pin GP14.
"""
import time
import board
import digitalio
import pwmio

pir = digitalio.DigitalInOut(board.GP28)
pir.direction = digitalio.Direction.INPUT
led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT
buzzer = pwmio.PWMOut(board.GP14, frequency=660, duty_cycle=0, variable_frequency=True)

motion_detected = False
while True:
 if pir.value and not motion_detected:
 print("ALARM! Motion detected!")
 motion_detected = True

 if pir.value:
 led.value = True
 buzzer.duty_cycle = 2 ** 15
 time.sleep(0.1)
 led.value = False
 buzzer.duty_cycle = 0
 time.sleep(0.1)

 else:
 motion_detected = False
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

Now wave your hand in front of the sensor. Motion detected, the LED blinks rapidly, and now it beeps

along with the blinking for an auditory indicator that it's been triggered!

This code will look very similar to the previous example with a few modifications. First you import the

necessary modules, this time including pwmio .

import time
import board
import digitalio
import pwmio

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 70 of 99

Next, in addition to the PIR sensor and LED setup, you set up the piezo buzzer.

pir = digitalio.DigitalInOut(board.GP28)
pir.direction = digitalio.Direction.INPUT
led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT
buzzer = pwmio.PWMOut(board.GP14, frequency=660, duty_cycle=0, variable_frequency=True)

Finally, you add two lines of code into the if block of the loop to turn the buzzer on and off along with the

LED.

while True:
 if pir.value and not motion_detected:
 print("ALARM! Motion detected!")
 motion_detected = True

 if pir.value:
 led.value = True
 buzzer.duty_cycle = 2 ** 15
 time.sleep(0.1)
 led.value = False
 buzzer.duty_cycle = 0
 time.sleep(0.1)

The rest of the loop remains the same. That's all there is to creating a burglar alarm with light and sound!

Home security systems rarely cover only one room or area. They are often made up of a network of many

sensors connected to a single alarm system. You can easily add more sensors to your setup to monitor

multiple areas at the same time.

Wiring the Extended Burglar Alarm with Light and Sound

For this example, you'll need your current wiring setup and a second PIR sensor.

Connect the second PIR sensor as shown below. Since the VBUS connection is already being used by the

first PIR sensor, you'll need to make a slight modification. Move both the Pico board's VBUS connection to

the breadboard power rail, and the 5V pin on the first PIR sensor to the breadboard power rail.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 71 of 99

Board VBUS to breadboard power rail

First PIR sensor 5V to breadboard power rail

Second PIR sensor GND to breadboard ground rail

Second PIR sensor 5V to breadboard power rail

Board GP22 to second PIR sensor data pin

Programming the Extended Burglar Alarm

Now that you've added another sensor to your setup, it's time to program it.

Update your code.py to the following, and save.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 72 of 99

https://learn.adafruit.com//assets/98816

"""
A burglar alarm with two motion sensors example for Pico. Slow flashing LED indicates alarm is
ready. Quick flashing LED and beeping buzzer indicate alarm has been triggered.

REQUIRED HARDWARE:
* PIR sensor on pin GP28.
* PIR sensor on pin GP22.
* LED on pin GP13.
* Piezo buzzer on pin GP14.
"""
import time
import board
import digitalio
import pwmio

pir_one = digitalio.DigitalInOut(board.GP28)
pir_one.direction = digitalio.Direction.INPUT
pir_two = digitalio.DigitalInOut(board.GP22)
pir_two.direction = digitalio.Direction.INPUT
led = digitalio.DigitalInOut(board.GP13)
led.direction = digitalio.Direction.OUTPUT
buzzer = pwmio.PWMOut(board.GP14, frequency=660, duty_cycle=0, variable_frequency=True)

motion_detected_one = False
motion_detected_two = False
while True:
 if pir_one.value and not motion_detected_one:
 print("ALARM! Motion detected in bedroom!")
 motion_detected_one = True

 if pir_two.value and not motion_detected_two:
 print("ALARM! Motion detected in living room!")
 motion_detected_two = True

 if pir_one.value or pir_two.value:
 led.value = True
 buzzer.duty_cycle = 2 ** 15
 time.sleep(0.1)
 led.value = False
 buzzer.duty_cycle = 0
 time.sleep(0.1)

 else:
 motion_detected_one = False
 motion_detected_two = False

 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

Wave your hand over the first sensor to see motion reported in the bedroom. Wave your hand over the

second sensor to see motion reported in the living room. Multi-area coverage!

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 73 of 99

Now a look at the code. The code will look very similar, but a number of modifications are needed to make

it both work properly and be easily understood. Imports remain the same.

Setup now includes two PIR sensors, so it makes sense to update the variable names to indicate the

presence of two sensors. Below the first PIR sensor, include another two lines of setup for the second one,

with the appropriate pins. LED and buzzer setup remain the same.

pir_one = digitalio.DigitalInOut(board.GP28)
pir_one.direction = digitalio.Direction.INPUT
pir_two = digitalio.DigitalInOut(board.GP22)
pir_two.direction = digitalio.Direction.INPUT

Before the loop, you create two variables to track whether motion has been detected, and set them to

False initially.

motion_detected_one = False
motion_detected_two = False

The loop begins with two if blocks. They each check a sensor value and the respective motion detected

variable. If the sensor value is returning True and the motion_detected variable is False , then it prints the

appropriate ALARM! message to the serial console and sets the respective motion_detected variable to

True .

while True:
 if pir_one.value and not motion_detected_one:
 print("ALARM! Motion detected in bedroom!")
 motion_detected_one = True

 if pir_two.value and not motion_detected_two:
 print("ALARM! +Motion detected in living room!")
 motion_detected_two = True

Then, the code checks whether the sensors are returning True, and if they are blink the LED and beep the

buzzer on and off every 0.1 seconds.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 74 of 99

[...]
 if pir_one.value or pir_two.value:
 led.value = True
 buzzer.duty_cycle = 2 ** 15
 time.sleep(0.1)
 led.value = False
 buzzer.duty_cycle = 0
 time.sleep(0.1)

Finally, once motion is no longer detected, the motion_detected variables are set to False, and the LED

blinks on and off more slowly, every 0,.5 seconds.

[...]
 else:
 motion_detected_one = False
 motion_detected_two = False

 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

Now you know how to extend your alarm system to cover more than one area. You can add more sensors

as needed!

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 75 of 99

Potentiometer and PWM LED

To get you started with how to program your Pico in CircuitPython, especially for those who may have
started out with the official MicroPython setup, we've 'ported' the Getting Started with MicroPython on Pico
book (https://adafru.it/QkD) examples to CircuitPython. The book is awesome, please download/purchase
it to support Raspberry Pi Press (https://adafru.it/QkD)!

The Pico's RP2040 microcontroller chip is a digital device, meaning by itself, it only understands digital

signals, which are either on or off. Digital devices cannot understand analog(ue) signals, which can range

anywhere between on and off. Therefore, included in the RP2040 is an analog(ue)-to-digital converter, or

ADC. An ADC takes analog(ue) signals and converts them to digital signals. The ADC on the Pico is

available on three pins: GP26, GP27, and GP28. To read analog(ue) signals, you must use one of these

three pins.

Each of the three pins can be used as an analog(ue) input, but to do that, you need an analog(ue) signal,

which you can easily get from a potentiometer. There are many types of potentiometers available, such as

the ones on the PIR sensor from the Burglar Alarm (https://adafru.it/QCa) section of this guide. The type of

potentiometer you'll use for this example is called a "rotary potentiometer".

Reading a Potentiometer

It's simple to use CircuitPython to read the analog(ue) value from a potentiometer. The built-in module

analogio does all the heavy lifting for you, and provides you with an easy way to read analog(ue) signals

on analog(ue)-capable pins.

Wiring the Potentiometer

The first step is wiring your potentiometer. Connect it to your Pico as shown below. Place the

potentiometer on the breadboard with the pins-side towards you to determine the proper left and right

pins.

Half-size breadboard
This is a cute half size breadboard, good for small projects. It's 2.2" x 3.4" (5.5 cm x 8.5 cm) with a standard double-strip in the middle and

two power rails on both...

$5.00
In Stock

Breadboard trim potentiometer
These are our favorite trim pots, perfect for breadboarding and prototyping. They have a long grippy adjustment knob and with 0.1"

spacing, they plug into breadboards or...

$1.25
In Stock

Add to Cart

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 76 of 99

https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico
https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython/burglar-alarm
https://www.adafruit.com/product/64
https://www.adafruit.com/product/64
https://www.adafruit.com/product/356

Premium Male/Male Jumper Wires - 20 x 3" (75mm)
Handy for making wire harnesses or jumpering between headers on PCB's. These premium jumper wires are 3" (75mm) long and come in

a 'strip' of 20 (2 pieces of each of ten rainbow...

$1.95
In Stock

For this example, you'll need your Pico, a potentiometer, and some male-to-male jumper wires.

Board GND to breadboard ground rail

Board 3V3 to breadboard power rail

Board GP26 to potentiometer middle leg

Potentiometer left leg to breadboard ground rail

Potentiometer right leg to breadboard power rail

Programming to Read the Potentiometer

Update your code.py to the following and save.

"""
Read the potentiometer value. Prints the value to the serial console every two seconds.

REQUIRED HARDWARE:
* potentiometer on pin GP26.
"""
import time
import board
import analogio

potentiometer = analogio.AnalogIn(board.GP26)

while True:
 print(potentiometer.value)
 time.sleep(2)

Now, connect to the serial console. You should see a value between 0 and 65535, depending on the

current rotation of the knob, being printed out to the serial console. Try turning the knob on the

Add to Cart

Add to Cart

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 77 of 99

https://www.adafruit.com/product/356
https://www.adafruit.com/product/1956
https://www.adafruit.com/product/1956
https://learn.adafruit.com//assets/99533

potentiometer. When you turn it to the left, the value goes down, and when you turn it to the right, the

value goes up.

Don't worry if your value never quite reaches 0 or 65535. Electronic components are built with what's

called a tolerance, which means the resulting values may not be precise.

This value is the analog value. While you can say to yourself that 65535 is max voltage and 0 is min

voltage, without doing some math in your head, the rest of the values aren't that useful to you. It's much

easier to let CircuitPython do the math for you.

Update your code.py to the following and save.

"""
Convert the potentiometer value to a voltage value. Prints the voltage value to the serial
console
every two seconds.

REQUIRED HARDWARE:
* potentiometer on pin GP26.
"""
import time
import board
import analogio

potentiometer = analogio.AnalogIn(board.GP26)

get_voltage = 3.3 / 65535

while True:
 voltage = potentiometer.value * get_voltage
 print(voltage)
 time.sleep(2)

The get_voltage equation provides a reasonable approximation of the voltage it represents. The first

number is the maximum voltage available from the 3V3 pin on your Pico, and the second number is the

maximum analog value. Essentially, dividing 3.3 / 65535 returns a voltage value based on the analog

value.

To use the equation, you simply multiply the raw potentiometer value by the get_voltage helper, and print

the resulting value to the serial console. Now if check the serial console, you'll see a number between 0

and 3.3, depending on the current rotation of the knob. Turn the knob to see the values change!

That's all there is to reading the values of a potentiometer as both a raw analog(ue) value and a voltage

value using CircuitPython and Pico!

If the values go the opposite direction when you turn the knob, try swapping the ground and

power connections to your potentiometer. You may have them backwards!
�

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 78 of 99

Using PWM to Fade an LED

So far, everything you've done with LEDs have involved an on or off state. This is because the digital

outputs on a microcontroller and only be on or off. Turning these outputs on and off is known as a pulse,

and depending on the speed at which you change the pin state, you can "modulate" these pulses using

Pulse Width Modulation. PWM has many uses. This example will show you how to use PWM to fade an

LED up and down.

Every pin on the Pico can do PWM, however, you cannot do PWM on every pin at the same time. Some

sets of pins on the Pico use the same PWM output, meaning they cannot be used a the same time to

create a PWM object. If you want to know which pins use the same outputs, you can read the datasheet,

or you can try to create a PWM object using CircuitPython. If you try to create a PWM object on two

conflicting pins, CircuitPython will give you a ValueError: All timers for this pin are in use error. If this happens,

choose a different pin.

Wiring the LED

The first step is to add an LED to your existing potentiometer setup.

Diffused 5mm LED Pack - 5 LEDs each in 5 Colors - 25 Pack
Need some indicators? We are big fans of these diffused LEDs. They are fairly bright, so they can be seen in daytime, and from any

angle. They go easily into a breadboard and will add...

$4.95
In Stock

Premium Male/Male Jumper Wires - 20 x 3" (75mm)
Handy for making wire harnesses or jumpering between headers on PCB's. These premium jumper wires are 3" (75mm) long and come in

a 'strip' of 20 (2 pieces of each of ten rainbow...

$1.95
In Stock

Through-Hole Resistors - 1.0K ohm 5% 1/4W - Pack of 25
ΩMG! You're not going to be able to resist these handy resistor packs! Well, axially, they do all of the resisting for you!This is a 25 Pack

of...

$0.75
In Stock

For this example, you'll need your existing wiring setup, an LED, a resistor, and a male-to-male jumper

wire. A 220Ω-1.0KΩ resistor will work; a 220Ω resistor is shown in the diagram.

Add to Cart

Add to Cart

Add to Cart

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 79 of 99

https://www.adafruit.com/product/4203
https://www.adafruit.com/product/4203
https://www.adafruit.com/product/1956
https://www.adafruit.com/product/1956
https://www.adafruit.com/product/4294
https://www.adafruit.com/product/4294

Board GP14 to 220Ω resistor

LED+ to 220Ω resistor

LED- to breadboard ground rail (using a jumper

wire)

Programming to Fade the LED

Update your code.py to the following and save.

"""
Use PWM to fade an LED up and down using the potentiometer value as the duty cycle.

REQUIRED HARDWARE:
* potentiometer on pin GP26.
* LED on pin GP14.
"""
import board
import analogio
import pwmio

potentiometer = analogio.AnalogIn(board.GP26)
led = pwmio.PWMOut(board.GP14, frequency=1000)

while True:
 led.duty_cycle = potentiometer.value

Now try turning the potentiometer. As you turn it, the LED will fade up or down depending on the direction

you're rotating the knob. When the knob is all the way to the left, the LED will be off. When it is all the way

to the right, it will be brightest.

When creating the PWM object, you provide both the pin you connected the LED to and a frequency.

Then, inside the loop, we set the duty cycle equal to the potentiometer raw analog(ue) value.

Duty cycle controls the pin's output. At 0% duty cycle, the pin is off. At 100% duty cycle, the pin is fully on.

A duty cycle of 50% means that the pin is on for half the pulses, and off for half. The reading taken from

the potentiometer is applied to the LED PWM duty cycle, so a low reading is like a low voltage on an

analog(ue) input which means the LED will be dim, and a high reading is like a high voltage which means

the LED will be bright.

That's all there is to using PWM with CircuitPython and Pico to fade an LED!

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 80 of 99

https://learn.adafruit.com//assets/99565

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 81 of 99

Temperature Gauge

To get you started with how to program your Pico in CircuitPython, especially for those who may have
started out with the official MicroPython setup, we've 'ported' the Getting Started with MicroPython on Pico
book (https://adafru.it/QkD) examples to CircuitPython. The book is awesome, please download/purchase
it to support Raspberry Pi Press (https://adafru.it/QkD)!

The Raspberry Pi Pico's CPU has a temperature sensor built into it. CircuitPython makes it super simple to

read this data from the sensor using the microcontroller module.

Plug in your Pico board, open Mu, click into the serial console, and press CTRL+C followed by ENTER to

enter the REPL. At the REPL prompt (>>>), type the following:

import microcontroller
microcontroller.cpu.temperature

This returns the temperature of the sensor in Celsius. Note that it's not exactly the ambient temperature

and it's not super precise. But it's close!

Try holding your finger over the CPU, the large black square in the middle of your Pico board. Then, check

the temperature again. The returned temperature has likely increased because you warmed the chip

slightly!

If you'd like to print it out in Fahrenheit, use this simple formula: Fahrenheit = Celsius * (9/5) + 32. It's super

easy to do math using CircuitPython. Check it out!

microcontroller.cpu.temperature * (9 / 5) + 32

That's all there is to reading the temperature data from the temperature sensor built into the CPU on your

Raspberry Pi Pico using CircuitPython!

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 82 of 99

https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico

Data Logger

To get you started with how to program your Pico in CircuitPython, especially for those who may have
started out with the official MicroPython setup, we've 'ported' the Getting Started with MicroPython on Pico
book (https://adafru.it/QkD) examples to CircuitPython. The book is awesome, please download/purchase
it to support Raspberry Pi Press (https://adafru.it/QkD)!

All of the projects in this guide have used your Raspberry Pi Pico while connected to your computer.

However, there are many microcontroller projects that work standalone, powered from the wall or a

battery pack, and your Pico is perfectly capable of doing the same.

This section will show you how to use CircuitPython to read the internal temperature data and write it to a

file on the filesystem to create a temperature data logger.

For this example, you'll need your Pico board, and if you want to use it separated from your computer, a

micro USB wall charger or a USB battery pack and a micro USB cable.

Data Logger Wiring

CircuitPython does not allow your computer to write to the filesystem at the same time as CircuitPython is

writing to the filesystem. Therefore, if you simply run storage.remount("/", readonly=False) in boot.py,

CIRCUITPY is no longer writable by your computer, which means you cannot write to or delete files from

the CIRCUITPY drive. This means you cannot modify boot.py. To return the filesystem to a state writable

by your computer, you would need to run some commands in the REPL. More information on this process

is available at the end of this page.

Alternatively, you can add a little extra code to boot.py that only runs remount if a particular pin is

connected to a ground pin. This means if you start up the board with the specified pin connected to

ground, the filesystem will be read-only to your computer (and therefore writable by CircuitPython), and if

you start up the board without the pin connected to ground, the filesystem will be writable by your

computer. If you include this extra code, you will need to have a jumper wire handy. The boot.py shown

below contains this extra code. So, when you want to begin data logging, you'll need to connect a jumper

wire as shown below before plugging the Pico into USB .

For this example, you'll need your Pico, a breadboard, and a male-to-male jumper wire.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 83 of 99

https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico

Pico GP0 to Pico GND

Programming the Temperature Data Logger

Start with the jumper wire disconnected.

First create a file called boot.py on your CIRCUITPY drive, and save it with the following contents.

"""
boot.py file for Pico data logging example. If pin GP0 is connected to GND when
the pico starts up, make the filesystem writeable by CircuitPython.
"""
import board
import digitalio
import storage

write_pin = digitalio.DigitalInOut(board.GP0)
write_pin.direction = digitalio.Direction.INPUT
write_pin.pull = digitalio.Pull.UP

If write pin is connected to ground on start-up, CircuitPython can write to CIRCUITPY
filesystem.
if not write_pin.value:
 storage.remount("/", readonly=False)

It is important to know that the boot.py file is run only when the Pico starts up, e.g. when it is plugged into

USB or power. (It is NOT run when the board soft resets, e.g, when you save a file etc.) This code sets up

pin GP0 as an input with a pull-up.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 84 of 99

https://learn.adafruit.com//assets/99564

Update your code.py to the following and save.

"""
Data logging example for Pico. Logs the temperature to a file on the Pico.
"""
import time
import board
import digitalio
import microcontroller

led = digitalio.DigitalInOut(board.LED)
led.switch_to_output()

try:
 with open("/temperature.txt", "a") as datalog:
 while True:
 temp = microcontroller.cpu.temperature
 datalog.write('{0:f}\n'.format(temp))
 datalog.flush()
 led.value = not led.value
 time.sleep(1)
except OSError as e: # Typically when the filesystem isn't writeable...
 delay = 0.5 # ...blink the LED every half second.
 if e.args[0] == 28: # If the filesystem is full...
 delay = 0.25 # ...blink the LED faster!
 while True:
 led.value = not led.value
 time.sleep(delay)

The LED should begin blinking every 0.5 seconds. This lets you know the code is running but nothing else

is happening. Since you started up the board with the wire disconnected, no data logging is occurring.

Disconnect your Pico from USB, and plug the jumper wire in as shown above. Then plug your board into

USB. The LED blinking will slow down to every 1 second. CIRCUITPY will mount, but only as a read-only

filesystem. You'll see a temperature.txt file that wasn't there before. If you view this file, you'll see the

beginning of a list of temperatures. The temperature is checked every second and added to the file.

You can now let it run to track an ambient temperature in the area. If you use a USB battery pack, you can

place it anywhere to track temperature.

If you let it run for long enough, you can fill up the filesystem. At that time, the LED will start blinking

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 85 of 99

quickly, every 0.25 seconds, to let you know.

When you're ready to work with your Pico again, you can unplug it from USB, unplug the jumper wire, and

plug the Pico into your computer's USB again. CIRCUITPY will once again be writable by your computer

and you can update code as needed.

That's all there is to logging the ambient temperature using CircuitPython and Pico!

Data Logger Without Wiring

If you want to use your Pico without a breadboard for data logging, or simply don't want to connect a wire

between a pin and ground, you would use the following boot.py file.

"""
boot.py file for Pico data logging example. If this file is present when
the pico starts up, make the filesystem writeable by CircuitPython.
"""
import storage

storage.remount("/", readonly=False)

This will make the filesystem writable by CircuitPython for the purposes of data logging every time the

board is powered up. This means you can plug your Pico into your computer's USB or a USB battery pack

with no additional wiring necessary, and the temperature logging will begin.

However, you'll notice that you cannot edit any of the files on the CIRCUITPY drive. So how do you make

the filesystem writable by your computer again? You can still get to the REPL. Connect your Pico to your

computer via USB, and connect to the serial console. Enter the REPL (>>>) and one of the following

commands.

To rename boot.py to something else so your Pico no longer sees it, run the following.

import os
os.rename("boot.py", "boot1.py")

To remove boot.py entirely, run the following.

import os
os.remove("boot.py")

If you add this file to CIRCUITPY, your board will always be read-only to your computer when it is

plugged into USB.
�

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 86 of 99

That's all there is to data logging with CircuitPython and Pico without needing a jumper wire!

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 87 of 99

NeoPixel LEDs

To get you started with how to program your Pico in CircuitPython, especially for those who may have
started out with the official MicroPython setup, we've 'ported' the Getting Started with MicroPython on Pico
book (https://adafru.it/QkD) examples to CircuitPython. The book is awesome, please download/purchase
it to support Raspberry Pi Press (https://adafru.it/QkD)!

It's easy to control addressable RGB NeoPixel LEDs with the Raspberry Pi Pico, CircuitPython and the

Adafruit CircuitPython NeoPixel (https://adafru.it/yew) library. Simply connect the LEDs to your Pico board,

copy the library to your CIRCUITPY drive, and update your code.py file. That's all there is to it.

This section will show you how to wire up a NeoPixel LED strip to your Pico board, install the NeoPixel

library, and walk through a few examples of controlling the LEDs.

Adafruit NeoPixel LED Strip w/ Alligator Clips - 60 LED/m
Adding glowy color to your projects has never been easier: no more soldering or stripping wires, clip 'em on and glow! This Adafruit

NeoPixel LED Strip with Alligator...

Out of Stock

Wiring the NeoPixel LED Strip

The first step is to connect the NeoPixel LEDs to your Pico board. Wire them as shown below.

Note that while your Pico board can control a considerable number of NeoPixel LEDs, the power you can

draw from the 5V VBUS pin on your Pico board is limited. The examples below assume a strip of 30

NeoPixel LEDs, which the Pico board is capable of handling. However, if you want to control more than

that, it is suggested that you use an external power supply to power your LEDs. Check out the NeoPixel

guide (https://adafru.it/dhw) for everything there is to know about NeoPixel LEDs, including power

requirements and suggestions.

Your browser does not support the video tag.

Out of
Stock

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 88 of 99

https://hackspace.raspberrypi.org/books/micropython-pico
https://hackspace.raspberrypi.org/books/micropython-pico
https://github.com/adafruit/Adafruit_CircuitPython_NeoPixel
https://www.adafruit.com/product/3811
https://www.adafruit.com/product/3811
https://learn.adafruit.com/adafruit-neopixel-uberguide

Board GND to NeoPixel GND

Board VBUS to NeoPixel 5V (power)

Board GP0 to NeoPixel signal

Installing the Adafruit CircuitPython NeoPixel Library

You'll need to install the Adafruit CircuitPython NeoPixel (https://adafru.it/yew) library on your CircuitPython

board.

Next you'll need to install the necessary library to use the NeoPixels -- carefully follow the steps to find and

install this library from Adafruit's CircuitPython library bundle (https://adafru.it/ENC). Our CircuitPython

starter guide has a great page on how to install the library bundle (https://adafru.it/ABU).

Copy the following file from the bundle to the lib folder on your CIRCUITPY drive:

neopixel.mpy

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 89 of 99

https://learn.adafruit.com//assets/98790
https://github.com/adafruit/Adafruit_CircuitPython_NeoPixel
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Before continuing make sure your board's lib folder or

root filesystem has the neopixel.mpy file copied over.

Programming NeoPixel LEDs

Now that you've wired up your NeoPixel LEDs and loaded the NeoPixel library onto your CIRCUITPY drive,

it's time to begin programming.

Update your code.py to the following. You should verify that num_pixels matches the number of NeoPixel

LEDs you have connected to your board, if you connected a different form factor or strip length to your

Pico board.

"""
NeoPixel example for Pico. Turns the NeoPixels red.

REQUIRED HARDWARE:
* RGB NeoPixel LEDs connected to pin GP0.
"""
import board
import neopixel

Update this to match the number of NeoPixel LEDs connected to your board.
num_pixels = 30

pixels = neopixel.NeoPixel(board.GP0, num_pixels)
pixels.brightness = 0.5

while True:
 pixels.fill((255, 0, 0))

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 90 of 99

https://learn.adafruit.com//assets/99291

The NeoPixels light up red!

Now a quick look at the code. First, you import the necessary module and library.

import board
import neopixel

Next you create a variable to set the number of pixels, which defaults to 30 .

num_pixels = 30

Then, you set up the NeoPixels. The neopixel object requires two things: the pin the NeoPixels are

connected to, and the number of NeoPixels connected. In this case, you connected the strip to GP0 on

your Pico board, and you set the number of pixels in the previous line of code.

pixels = neopixel.NeoPixel(board.GP0, num_pixels)

Following that, you set the brightness of the NeoPixels to 0.5 , or 50%. brightness expects a float between

0.0 and 1.0, where 0 is off, and 1 is 100% brightness. Point the NeoPixels away from you, or put a sheet of

paper over them to diffuse them a bit, and try setting brightness to 1. They can get really bright! That's why

we set the brightness to half, which is still quite bright. You can set it even lower if you like.

pixels.brightness = 0.5

LED colors are set using a combination of red, green, and blue, often in the form of an (R, G, B) tuple. Each

member of the tuple is set to a number between 0 and 255 that determines the amount of each color

present. Red, green and blue in different combinations can create all the colors in the rainbow! So, for

example, to set the LED to red, the tuple would be (255, 0, 0) , which has the maximum level of red, and no

green or blue. Green would be (0, 255, 0) , etc. For the colors between, you set a combination, such as

cyan which is (0, 255, 255) , with equal amounts of green and blue.

Inside your loop, you use the fill() function to "fill", or turn on, the NeoPixels a specified color. The fill()
function works with both RGB tuple colors, and hex colors. This example turns them on red.

while True:
 pixels.fill((255, 0, 0))

Modules are built into CircuitPython. Libraries are separate files or groups of files saved to the

CIRCUITPY drive. Regardless, you import them both the same way.
�

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 91 of 99

Note the double parentheses - this is specific to setting the color using an RGB tuple. The fill() function

expects one argument, and the entire tuple, including its parentheses, is that single argument. Without the

parentheses around the tuple, fill() will see it as three arguments separated by commas, and your code

will not run.

Now, try turning them green. Update the loop to the following:

while True:
 pixels.fill((0, 255, 0))

Green!

Now try blue.

while True:
 pixels.fill((0, 0, 255))

Easy!

What if you wanted to make them light up the three colors in sequence without manually updating your

code each time? For that, you'll need time .

Update your code.py to the following.

"""
NeoPixel example for Pico. Turns the NeoPixels red, green, and blue in sequence.

REQUIRED HARDWARE:
* RGB NeoPixel LEDs connected to pin GP0.
"""
import time
import board
import neopixel

Update this to match the number of NeoPixel LEDs connected to your board.
num_pixels = 30

pixels = neopixel.NeoPixel(board.GP0, num_pixels)
pixels.brightness = 0.5

while True:
 pixels.fill((255, 0, 0))
 time.sleep(0.5)
 pixels.fill((0, 255, 0))
 time.sleep(0.5)
 pixels.fill((0, 0, 255))
 time.sleep(0.5)

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 92 of 99

You can change the colors by editing the color tuples, and the timing by updating the number of seconds

given to time.sleep() .

For example, update the loop to the following for three new colors and a slower change.

while True:
 pixels.fill((255, 255, 0))
 time.sleep(1)
 pixels.fill((0, 255, 255))
 time.sleep(1)
 pixels.fill((255, 0, 255))
 time.sleep(1)

And finally, what about rainbows? Rainbows involve using colorwheel and some math.

Update your code.py to the following.

"""
NeoPixel example for Pico. Displays a rainbow on the NeoPixels.

REQUIRED HARDWARE:
* RGB NeoPixel LEDs connected to pin GP0.
"""
import time
import board
import neopixel
from _pixelbuf import colorwheel

Update this to match the number of NeoPixel LEDs connected to your board.
num_pixels = 30

pixels = neopixel.NeoPixel(board.GP0, num_pixels, auto_write=False)
pixels.brightness = 0.5

def rainbow(speed):
 for j in range(255):
 for i in range(num_pixels):
 pixel_index = (i * 256 // num_pixels) + j
 pixels[i] = colorwheel(pixel_index & 255)
 pixels.show()
 time.sleep(speed)

while True:
 rainbow(0)

In addition to the three previous imports, we also import colorwheel from the built-in _pixelbuf module.

from _pixelbuf import colorwheel

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 93 of 99

Then, there's a change to the pixel setup. Note, that in the neopixel object, you now set auto_write=False .

This means that when you tell the pixels to do something, nothing will happen unless you call

pixels.show() . This is necessary for the rainbow function to work. Be aware that if you add in some of the

code from above, you'll have to call pixels.show() after filling the pixels a given color or they won't turn on!

pixels = neopixel.NeoPixel(board.GP0, num_pixels, auto_write=False)

Next comes the rainbow() function. This function takes one argument, speed in seconds.

def rainbow(speed):
 for j in range(255):
 for i in range(num_pixels):
 pixel_index = (i * 256 // num_pixels) + j
 pixels[i] = colorwheel(pixel_index & 255)
 pixels.show()
 time.sleep(speed)

Finally, you call the rainbow() function in a loop. For fast rainbows, set it to 0 . To slow it down, increase

the number.

while True:
 rainbow(0)

Rainbows!

That's all there is to basic NeoPixel LED control.

If you want to get really fancy and take it further, you can check out the guide on the Adafruit

CircuitPython LED Animation library (https://adafru.it/LZF), which shows how the library makes displaying

animations on RGB LEDs super simple.

If you write some NeoPixel code, and your pixels aren't lighting up, check that auto_write isn't set

to False, or make sure you call pixels.show()!
�

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 94 of 99

https://learn.adafruit.com/circuitpython-led-animations

FAQ and Troubleshooting

FAQ

board.I2C(), board.SPI(), and board.UART() do not exist. What should I
do?

The Pico does not have specific pins labeled on the board as the default I2C, SPI, or UART pins. See the

Pinouts (https://adafru.it/Qsd) page for more details.

Should I use pin GP15?

If you are using CircuitPython 6.2.0-beta.1 or earlier, avoid using this pin in CircuitPython. Pin GP15 is used

briefly by the internal USB peripheral on startup, and was not reset to the proper value after use. The

"Absolute Newest builds" fix this problem. Please see this issue comment (https://adafru.it/Qe-) for more

details.

Is pulseio supported?

pulseio is not yet supported. Please subscribe to this CircuitPython issue (https://adafru.it/Qfx) to be

notified when it's been added.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 95 of 99

https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython/pinouts
https://github.com/adafruit/circuitpython/issues/4034#issuecomment-769695664
https://github.com/adafruit/circuitpython/issues/4111

CircuitPython Essentials
CircuitPython Essentials (https://adafru.it/Bfr)

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 96 of 99

https://learn.adafruit.com/circuitpython-essentials

Downloads

Raspberry Pi: Getting Started with your Pico (https://adafru.it/QTe)

RP2040 Datasheet (https://adafru.it/QTf)

Hardware Design with RP2040 (https://adafru.it/QTA)

Raspberry Pi Pico Datasheet (https://adafru.it/QTB)

Getting Started with Raspberry Pi Pico (https://adafru.it/QTC)

Pico C/C++ SDK (https://adafru.it/QTD)

Pico Python SDK (https://adafru.it/QTE) (MicroPython, not CircuitPython)

Here's a paper template (https://adafru.it/QTF) to cut out and use under your Pico to see the pinouts. Print

this PDF out at exact size (do not use Shrink to Fit or Fit to Page options). Punch holes in the template

using jumpers as needed. To punch the pins through initially, try placing the paper underneath the Pico on

top of some anti-static foam.

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 97 of 99

https://raspberrypi.org/documentation/pico/getting-started/
https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf
https://datasheets.raspberrypi.org/rp2040/hardware_design_with_rp2040.pdf
https://datasheets.raspberrypi.org/pico/pico_datasheet.pdf
https://datasheets.raspberrypi.org/pico/getting_started_with_pico.pdf
https://datasheets.raspberrypi.org/pico/sdk/pico_c_sdk.pdf
https://datasheets.raspberrypi.org/pico/sdk/pico_python_sdk.pdf
https://cdn-learn.adafruit.com/assets/assets/000/100/354/original/pico6.pdf

© Adafruit Industries https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython Page 98 of 99

© Adafruit Industries Last Updated: 2021-06-28 11:24:07 AM EDT Page 99 of 99

	Guide Contents
	Overview
	Other Required Hardware

	Pinouts
	No Default board Devices
	I2C Example
	SPI Example
	UART Example

	Using Adafruit AR with Raspberry Pi Pico
	To get started:

	MicroPython or CircuitPython?
	CircuitPython is a 'fork' based on MicroPython
	So what's different?
	Why Use MicroPython?
	It's great to know both!
	To get started quick:

	What is CircuitPython?
	CircuitPython is based on Python
	Why would I use CircuitPython?

	Installing CircuitPython
	CircuitPython Quickstart
	Flash Resetting UF2

	Installing Mu Editor
	Download and Install Mu
	Using Mu
	CircuitPython Programming Basics
	Indentation and Code Loops
	Conditionals and Variables

	CircuitPython Pins and Modules
	CircuitPython Pins
	import board
	I2C, SPI, and UART
	What Are All the Available Names?
	Microcontroller Pin Names

	CircuitPython Built-In Modules
	Blinky and a Button
	The Built-In LED
	An External LED
	Using a Button as an Input
	Control an External LED with a Button

	Traffic Light and Pedestrian Crossing
	Parts Used
	Wiring the Traffic Light
	Programming the Traffic Light

	Traffic Light and Pedestrian Crossing
	Wiring the Pedestrian Crossing
	Programming the Traffic Light and Pedestrian Crossing

	Reaction Game
	Parts Used
	Wiring the Reaction Game
	Programming the Reaction Game
	Two Players Makes It More Fun
	Wiring the Two Player Reaction Game
	Programming the Two Player Reaction Game

	Burglar Alarm
	Wiring the Basic Motion Sensor
	Programming the Basic Motion Sensor

	Burglar Alarm
	Wiring the Burglar Alarm with Light
	Programming the Burglar Alarm with Light
	Wiring the Burglar Alarm with Light and Sound
	Programming the Burglar Alarm with Light and Sound
	Wiring the Extended Burglar Alarm with Light and Sound
	Programming the Extended Burglar Alarm

	Potentiometer and PWM LED
	Reading a Potentiometer
	Wiring the Potentiometer
	Programming to Read the Potentiometer

	Using PWM to Fade an LED
	Wiring the LED
	Programming to Fade the LED

	Temperature Gauge
	Data Logger
	Data Logger Wiring
	Programming the Temperature Data Logger
	Data Logger Without Wiring

	NeoPixel LEDs
	Wiring the NeoPixel LED Strip
	Installing the Adafruit CircuitPython NeoPixel Library
	Programming NeoPixel LEDs

	FAQ and Troubleshooting
	FAQ
	board.I2C(), board.SPI(), and board.UART() do not exist. What should I do?
	Should I use pin GP15?
	Is pulseio supported?

	CircuitPython Essentials
	Downloads

