
Getting Started
with Rational Robot
Version 2000.02.10

ii

Getting Started with Rational Robot

Copyright 1998-2000 Rational Software Corporation. All rights reserved. The contents of this
manual and the associated software are the property of Rational Software Corporation and are
copyrighted. Any reproduction in whole or in part is strictly prohibited. For additional copies of this
manual or software, please contact Rational Software Corporation.

Rational, the Rational logo, PerformanceStudio, SiteCheck, TestFactory, TestStudio,
Object-Oriented Recording, and O bject Testing are trademarks or registered trademarks of Rational
Software Corporation in the U nited States and in other countries. Java and all Java-based marks are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U nited States and other
countries. All other names are used for identification purposes only and are trademarks or registered
trademarks of their respective companies.

U .S. GO VERMEN T RIGH TS. U se, duplication, or disclosure by the U .S. Government is subject to
restrictions set forth in the applicable Rational License Agreement and in DFARS 227.7202-1(a) and
227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR
52.227-19, or FAR 52.227-14, as applicable.

Revised 04/2000

This manual prepared by:
Rational Software Corporation
20 Maguire Road
Lexington, MA 02421
U .S.A.

Phone:
800-433-5444
408-863-4000

E-mail: support@rational.com
Web: http://www.rational.com

P/N 800-023364-000

ã ã ã Contents

1 Introduction
Take This Path to Successful Functional Testing 2

H ow Does Rational Robot Work?. 4

U sing Rational Tools for Successful Software Testing 5

What’s N ext . 11

2 U pgrade Information
Summary of Tasks . 13

N ew Terminology . 14

U sing Defect Reports. 15

U sing SQ A 6.x Repository Data in a Rational Repository. 15

3 Learning Rational Robot - a Tutoria l
What Is Automated Functional Testing?. 21

About the Sample Application . 22

About the Tutorial Examples. 22

Where to Find Other U seful Testing Tips . 23

4 Preparing to Start the Tutoria l
Before You Begin . 25

Installing Rational Robot . 25

What’s N ext . 27

5 Test Planning
Objectives . 29

Scenario . 29

Defining Test Requirements . 30

Defining a Script. 33

Summary. 34

What’s N ext . 34
ii i

Contents
6 Recording a Script
Objectives. 35

Scenario . 35

Recording a Script . 36

Viewing the Beginnings of the Script . 39

Adding Verification Points . 39

Reviewing the Verification Points You Recorded 46

About the Script You Recorded . 46

Summary . 47

What’s N ext . 48

7 Playing Back a Script
Objectives. 49

Scenario . 49

Playing Back a Script . 50

Summary . 51

What’s N ext . 51

8 Testing a N ew Build and Evaluating Results
Objectives. 53

Scenario . 53

Viewing the N ew Build . 54

Playing Back a Script Against a N ew Build . 55

Viewing the Test Results in the LogViewer . 56

Analyzing the Results in the Comparators. 57

Summary . 60

What’s N ext . 60

9 Specifying and M anaging D efects
Objectives. 61

Scenario . 61

Making Sure That Rational ClearQuest Is Available. 62

Creating a ClearQ uest Master Database . 62

Attaching a ClearQuest Database to a Repository 63

Generating a Defect from the LogViewer . 64

Accessing the Defect from the ClearQuest Database 65
iv

Contents
Sending E-mail About a Defect . 66

Summary. 69

What’s N ext . 69

10 U sing Reports to M anage Test Progress
Objectives . 71

Scenario. 71

Running a Script Summary Report. 72

Running a Defect Summary Report . 73

Summary. 74

What’s N ext . 74

1 1 Enhancing Your Scripts
Objective. 75

Scenario. 75

Deleting the N ew Record from the Database 76

Recording and Manually Customizing a Script 76

Creating a Library File . 80

Creating a H eader File . 81

Adding the H eader and Library Files to the Script. 82

Summary. 82

What’s N ext . 83
v

Contents
vi

ã ã ãIntroduction
If you’ve installed Rational Robot, you’re on your way to ensuring that your
business-critical client/server and Web applications perform exactly as you want.

With Rational Robot, you can plan, develop, and execute functional tests for your
Windows N T 4.0, Windows 2000, Windows 98, and Windows 95 applications.
Thanks to Robot’s cross-Windows technology, tests created for applications on one
Windows platform can be used to test applications on the others.

H ere are some of the things that Rational Robot’s functional testing lets you do:

ã Test the appearance and state of GU I objects and the interactions between client
applications and server databases.

ã Test Web and e-commerce applications developed using Java and Dynamic
H TML (DH TML).

ã Test client/server applications developed using Microsoft Visual Basic, Visual
C+ + , Oracle Developer/2000, and Sybase PowerBuilder.

ã Test ERP applications developed by PeopleSoft, Oracle, and SAP.
1

In troduction
Take This Path to Successful Functional Testing

1 . Install Rational Robot as part of
one of these packagesRational
Suite TestStudio, Rational
TeamTest, or Rational Robot.

2 . Create a Rational repository with
the Rational Administrator to
store your test assets.

3 . Record and play back scripts in
Rational Robot.
2

Take Th is Path to Successfu l Functiona l Testing
4 . Review the results of playback in
the Rational LogViewer and
Comparators.

5 . Create defects about any failures
in your scripts with Rational
ClearQ uest.

6 . Analyze the results of your tests
by creating reports in
TestManager, LogViewer, and
ClearQ uest.
3

In troduction
How Does Rational Robot Work?

Rational Robot lets all members of your development and testing teams implement
a complete and effective testing methodology.

Robot replaces the repetitive, often error-prone process of manual testing with the
software tools to automate your testing effort. With Robot’s automated functional
testing, you save time and ensure that your testing process produces predictable and
accurate results.

With Robot, you can start recording tests in as few as two mouse clicks. After
recording, Robot plays back the tests in a fraction of the time it would take to repeat
the steps manually.

Robot’s O bject-O riented Recording technology lets you generate scripts
quicklysimply by running and using the application-under-test. Object-O riented
Recording identifies objects by their internal object names, not by screen
coordinates. And, if objects in successive builds change locations or their text
changes, Robot still finds and tests them during playback.

Robot’s O bject Testing technology lets you test standard Windows objects and
development environment (IDE) objects, whether they are visible or hidden in the
interface. With O bject Testing, you can test hundreds, even thousands of properties
for an object as well as an object’s data.

Click here to start
record ing.

These are the
assets of the
scrip t.

The scrip t com piler
shows that no errors
occurred .

Robot creates
a scrip t as you
work.
4

U sing Rational Tools for Successfu l Software Testing
Using Rational Tools for Successful Software Testing

Rational Robot is part of a suite of integrated tools that deliver a comprehensive
solution for the entire functional testing processfrom writing and maintaining
requirements to creating effective test scripts to tracking defects and analyzing
results.

This suite of Rational Test tools includes:

Rational Adm inistrator – U se to administer Rational Test products and
components.

Rational TestM anager – U se to plan tests and manage test assets.

Rational LogViewer and Com parators – U se to review and analyze test results.

Rational TestFactory – U se to automatically generate scripts that provide extensive
application coverage.

Rational SiteCheck – U se to manage Internet and intranet Web sites.

Rational ClearQ uest – U se to track and manage change requests throughout the
development and testing process.

Rational Purify, Visual Q uantify, Visual Pure Coverage – U se to perform run-
time error-checking, determine application performance, and analyze code coverage
during playback.

Managing Repositories with the Rational Administrator
The Rational Administrator lets you create and manage Rational repositories used
for storing application testing information. Each repository consists of one or more
databases and several directories of files.

Projects in the
repository help you
organize your test ing
in form ation and
resources for easy
tracking.

Each repository consists
of a Ra tional Test
database for storing test
in form ation .

A repository can a lso
con ta in a Clea rQ uest
database for storing
defect in form ation.
5

In troduction
Planning and Managing Tests with Rational TestManager
Rational TestManager helps you plan testing strategies and manage your software
testing effort. You can use TestManager to track information through all phases of
the software development, test, and revision cycles.

If you want, you can skip using TestManager and simply start recording with Robot.
But the preferred usage model for any testing activity is to plan first. This lets you
know the size of the testing effort at the beginning of a project. You’ll also be able to
assign the development of each part of the testing project to the appropriate person.
U sing TestManager to plan ahead ensures that your testing effort will run as
smoothly as possible.

With Rational TestManager, you can do the following:

D isplay the
results of a
query.

Plan a new
scrip t or ed it
the properties
of an exist ing
scrip t.

Create, m anage, and
d isp lay queries, reports,
and bu ilds.

Create a test
requirem ents
h ierarchy to
represen t the
features and
functionality that
need to be tested in
the applicat ion.
6

U sing Rational Tools for Successfu l Software Testing
Analyzing Results in the LogViewer and Comparators
The Rational LogViewer lets you view logs that are created when you play back
scripts in Robot or run Pilots in TestFactory. (For information about TestFactory,
see page 9.)

Reviewing the playback results in the LogViewer reveals whether each script and its
components passed or failed.

To analyze each failure and then remedy it, you can use one of the LogViewer’s four
ComparatorsGrid, O bject Properties, Text, and Image. Each Comparator
graphically displays the ‘before and after’ results of playback.

If there is no failure on playback, only a baseline file displaying the recorded data or
image is displayed. If a failure occurs on playback, an actual file is displayed next to
the baseline file.

Since one of
the verif icat ion
poin ts in the
scrip t fa iled,
the en tire
scrip t fa ils.

Each scrip t produces
a log file that
d isp lays the results
of each test with in
the scrip t.

By com paring the
baseline and
actua l f iles, you
can determ ine if a
fa ilu re is an
in tentional change
or a defect.
7

In troduction
Testing Applications with Rational TestFactory
TestFactory provides a new level of automated testing as an integrated component of
Rational Robot. You can use TestFactory to:

ã Automatically create and maintain a detailed map of the application-under-test.

ã Automatically generate scripts that provide extensive product coverage and
scripts that encounter defects, without recording.

ã Track executed and unexecuted source code, and report detailed findings.

ã Shorten the product testing cycle by minimizing the time invested in writing
navigation code.

ã Automate distributed functional testing with TestAccelerator—an application
that drives and manages the execution of scripts on remote machines.

ã Play back Robot scripts in TestFactory to see code coverage and to create
regression suites, and play back TestFactory scripts in Robot to debug them.

TestFactory can test
the objects in the
classes and
subclasses known to
occur in GU Is.

In th is pane, view
a b itm ap of the
selected object.

In th is pane, view
in form ation about
whatever is
selected in the left
paneusually
properties for a
selected U I
ob ject.Scrip ts recorded in

Robot can be used
a long with scrip ts
created in
TestFactory.

The applicat ion
m ap lists each
window and con tro l
in the applicat ion -
under-test.
8

U sing Rational Tools for Successfu l Software Testing
Managing Intranet and Web Sites with Rational SiteCheck
Rational SiteCheck lets you test the structural integrity of your intranet or World
Wide Web site. It’s designed to help you view, track, and maintain your rapidly
changing site. You can test the content of your Web site after every revision to ensure
that changes have not resulted in defects. And you can capture a baseline of your Web
site and compare it to the Web site at another point in time.

With SiteCheck you can:

ã Visualize the structure of your Web site and display the relationship between
each page and the rest of the site.

ã Identify and analyze Web pages with active content, such as forms, Java,
JavaScript, ActiveX, and Visual Basic Script (VBScript).

ã Filter information so that you can inspect specific file types and defects,
including broken links.

ã Examine and edit the source code for any Web page, with color-coded text.

ã U pdate and repair files using the integrated editor, or configure your favorite
H TML editor to perform modifications to H TML files.

ã Perform comprehensive testing of secure Web sites with Secure Socket Layer
(SSL) support, proxy server configuration, and support for multiple password
realms.

In th is pane, view
the Web site’ s
structu re.

Incom ing links to
the W eb page

O utgoing
links from the
W eb page

Web page
being tested
9

In troduction
Managing Defects with Rational ClearQuest
Rational ClearQuest is a change-request management tool that tracks and manages
defects and change requests throughout the development process. With ClearQuest,
you can manage every type of change activity associated with software development,
including enhancement requests, defect reports, and documentation modifications.

With Robot and ClearQ uest, you can:

ã Submit defects directly from the LogViewer or SiteCheck.

ã Generate defects directly from ClearQuest.

ã Modify and track defects and change requests.

ã Analyze project progress by running queries, charts, and reports.

ã Automatically send email about a defect to its owner or to the project leader.

Collecting Diagnostic Information During Playback
As an application is developed and tested, you can use the diagnostic capabilities of
Rational Purify, Rational Visual Q uantify, and Rational Visual PureCoverage.

Rational Purify is a comprehensive C/C+ + run-time error checking tool that
automatically pinpoints run-time errors and memory leaks in all components of an
application, including third-party libraries, ensuring that code is reliable.

Rational Visual Quantify is an advanced performance profiler that provides
application performance analysis, enabling developers to quickly find, prioritize, and
eliminate performance bottlenecks within an application.

Each tab
provides
im portan t
in form ation
about the
defect.

In form ation autom atica lly
transferred to ClearQ uest
from the LogViewer.
10

What’ s N ext
Rational Visual PureCoverage is a customizable code coverage analysis tool that
provides detailed application analysis and ensures that all code has been exercised,
preventing untested code from reaching the end-user.

What’s Next

N ow that you’ve been introduced to Rational Robot and its companion products and
components, there’s still lots more to discover.

H ere’s where you can find the information you need to get started with
Rational Robot:

To find out about how to Take a look at

U pgrade from SQA Suite 6.x to
Rational Suite TestStudio,
Rational TeamTest, or Rational Robot

The information in the next chapter,
Upgrade Information.

U se each of the Rational Robot components The tutorial beginning in the chapter
Learning Rational Robot – a Tutorial on page
21.
1 1

In troduction
12

ã ã ãUpgrade Information
This chapter explains how to upgrade from SQA Suite 6.x to the current Rational
Test products. It includes the following topics:

ã Summary of tasks

ã N ew terminology

ã U sing defect reports

ã U sing SQA 6.x repository data in a Rational repository

If you’re not upgrading, you should skip this chapter and take a look at the tutorial
that begins on page 21.

Summary of Tasks

The following table lists tasks that you use to test an application, the component you
used in SQ A Suite 6.x for each task, and the component that you now use in Rational
Test products to do the same task:

Task SQA Suite 6.x
Component

Rational Test
Component

Create a repository. SQA Administrator Rational Administrator

Create test requirements. SQA Manager Rational TestManager

Create test scripts or procedures. SQA Robot Rational Robot

Check for pass/fail of test scripts or
procedures.

SQA Test LogViewer Rational LogViewer

Track defects. SQA Manager Rational ClearQ uest

Run a report on a defect. SQA Manager Rational ClearQ uest

Run a report on test coverage. SQA Manager Rational TestManager

Customize a report format. SQA Manager Rational ClearQ uest
1 3

U pgrade In form ation
New Terminology

The following table lists the terminology found in SQA Suite 6.x and the new
terminology in Rational Test products:

SQA Suite 6.x Term Rational Test Term

distributed GU I test distributed functional test

distributed regression test distributed functional test

Insert toolbar GU I Insert toolbar

log file log

SQA Administrator Rational Administrator

SQA Grid Comparator Grid Comparator

SQA Image Comparator Image Comparator

SQA Manager Rational TestManager

SQA O bject Properties Comparator Object Properties Comparator

SQA O CX Rational ActiveX Test Control

SQA Repository Rational repository

SQA Robot Rational Robot

SQA SiteCheck Rational SiteCheck

SQA Test Log Viewer Rational LogViewer

SQA Text Comparator Text Comparator

test case verification point

test log log

test procedure script

test schedule schedule

test script script
14

U sing D efect Reports
Scripting Languages
You no longer need to select a scripting language at installation. SQABasic is the
scripting language used for recording GU I scripts, and it is installed automatically.

Using Defect Reports

Your Rational Suite TestStudio or Rational TeamTest software comes with special
defect reports to help you manage your testing efforts. U se Rational ClearQuest to
run these special reports to track your defects when testing applications. When you
create a Rational repository that contains an associated ClearQuest database, you
automatically get these defect reports and report formats to use with ClearQ uest. For
more information about creating a repository with a ClearQuest database, see the
section about creating a repository in the chapter Managing a Rational Repository in the
Using the Rational Administrator manual.

You can customize a defect report or create new reports by customizing a report
format or by creating a new report format using Rational ClearQuest. To customize
a report format, you must install Crystal Reports 6.0 Professional Edition, which
comes with your Rational Suite TestStudio or Rational TeamTest software.

To install Crystal Reports:

ã U se the Crystal Reports installation directions that come with the Crystal
Reports CD-RO M.

Using SQA 6.x Repository Data in a Rational Repository

After installation, you can use data from an existing SQA Suite 6.x repository in a
Rational repository. When you create a new Rational repository, the Create
Repository wizard gives you the option of initializing a repository with data from an
existing SQA Suite 6.x repository.

For information about creating a Rational repository with SQA Suite 6.x data, see the
section about creating a repository in the chapter Managing a Rational Repository in the
Using the Rational Administrator manual.

When to Convert SQA Suite 6.x Repository Data
We recommend that you convert SQA Suite 6.x repository data to Rational
repository data after you finish a project.

For information about creating a Rational repository with SQA Suite 6.x data, see the
section about creating a repository in the chapter Managing a Rational Repository in the
Using the Rational Administrator manual.
1 5

U pgrade In form ation
The following table lists the type of data in an SQ A Suite 6.x repository and which
data converts to a Rational repository:

Type of Data

Converts from

SQA Suite 6.x data to

Rational repository

data

Custom reports and graphs

Defects (For more information about defects, see Details About
Converting Defects on the next page.)

√

E-mail rules

Filters for defects or test procedures

Groups (Privileges are not converted.) √

List reports

LoadTest schedules

Projects √

Requirements √

Test cases (called verification points in a Rational repository) √

Test logs

Test plans √

Test procedures (called scripts in a Rational repository) √

U sers (Privileges are not converted.) √

Virtual user test procedures (called virtual user scripts in a
Rational repository)
16

U sing SQ A 6 .x Repository D ata in a Rationa l Repository
Conversion Details
When you create a Rational repository with SQA Suite 6.x data, the following
conversion takes place:

ã A script file name or verification point ID with a period (.) in the name is
prefixed with _REN AMED_.

ã A period (.) in a script file name or verification point ID converts to an
underscore (_).

For example, a script named wn95.tst converts to _REN AMED_wn95_tst. A
verification point ID named alpha.b2 converts to _REN AMED_alpha_b2.

Details About Converting Defects
The Rational TeamTest and Rational Suite TestStudio products include a special
version of ClearQ uest to track your defects. For your convenience, these products
also include a specially designed defect form, the TeamTest defect form, similar to
the SQA 6.x Manager defect form. For more information about using the TeamTest
defect form, see the U sing the Rational Robot manual.

The following table lists each field of an SQA 6.x defect and the comparable Rational
TeamTest defect field. The table also describes how certain fields are converted.

The word “List” in the Description column of this table indicates that if you
customize a list in SQA 6.x, it converts to a list in the TeamTest defect form.

SQA 6.x
Defect Field

TeamTest
Defect Field

Conversion Description

ID N ew ID
generated

The SQA 6.x ID does not appear on the defect
form, but you can use the query feature of
ClearQuest to find it. For more information, see
the Rational ClearQuest H elp.

Description H eadline/
Description

Converts the first 125 characters or up to the
first carriage return and places this text in the
H eadline field. The entire SQA 6.x Description
field also appears in the Description field of the
TeamTest defect form.

Priority Priority List

Severity Severity List

Occurrences (not converted)

Keywords Keywords List

Symptoms Symptoms List
1 7

U pgrade In form ation
Build Found N otes In SQA 6.x, a Build Found field is a text

field. The text data from the Build Found

field is stored in N otes. In Rational 7.x,

Builds are objects that contain log folders

and logs. A Build object is not created for

each SQA 6.x Build Found field.

Build Fixed N otes In SQA 6.x, a Build Fixed field is a text field.
The text data in the Build Fixed field is stored in
N otes. In Rational 7.x, Builds are objects that
contain log folders and logs. A Build object is
not created for each SQA 6.x Build Fixed field.

Proc Script

Case Verification
Point

Cycle (not converted)

Reported By Reported By
Contact

Reported By
Company

Reported By
Company

H ardware H ardware List

Operating
System

Operating
System

List

Other Other
Environment

Test Station (not converted) In SQA 6.x, a Test Station field is a text field. In
Rational 7.x, the Computers field replaces the
Test Station field and is an object. A Computer
object is not created for each SQA 6.x Test
Station field.

Log (not converted)

Custom 1 Custom 1 List

If you customized the label for this field in SQA
6.x, the label is not converted. U se the
ClearQuest Designer to customize this label.
18

U sing SQ A 6 .x Repository D ata in a Rationa l Repository
Troubleshooting
The convert.txt file in the converted project directory contains the conversion status
of each verification point and script. U se this file as a diagnostic tool if you have any
problems with your data after conversion.

Custom 2 Custom 2 List

If you customized the label for this field in SQA
6.x, the label is not converted. U se the
ClearQuest Designer to customize this label.

Custom 3 Custom 3 If you customized the label for this field in SQA
6.x, the label is not converted. U se the
ClearQuest Designer to customize this label.

Attachment Attachments You can attach more than one file after you
convert to a 7.x Rational repository.

Requirement Requirement

Status H istory H istory

Resolution Resolution List

Resolution
Description

Resolution N ote

Modified
Software

(not converted)
1 9

U pgrade In form ation
20

ã ã ãLearning Rational Robot - a Tutorial
This tutorial takes you through a typical software testing cycle in which you’ll use the
functional testing capabilities of Rational Robot to test a sample client/server
application.

As you follow the examples in this tutorial, you’ll quickly realize how easy it is to use
Rational Robot to identify changes or unintentional errors in an application. You’ll
understand how Robot lets you cover all phases of functional testing and how to best
use Robot for your own testing projects.

What Is Automated Functional Testing?

Automated testing uses software tools to replace repetitive and often error-prone
manual testing. Automated testing saves time and enables a reliable, predictable, and
accurate testing process.

With automated functional testing, you validate the behavior of an application.
Functional testing lets you exercise the application’s GU I to verify that the
application responds appropriately to user and system input, and that it conforms to
project requirements.

Functional testing focuses on:

ã The ability of the application to address requirements—for example, verifying
that the application logic functions as designed.

ã The appearance and state of GU I objects for example, verifying that changes to
the GU I are correct from one build to another.

ã The operation of the application—for example, verifying that an application
accurately processes server requests and responses.
2 1

Learn ing Rational Robot - a Tu toria l
About the Sample Application

The sample application that you’ll use with this tutorial is called Classics Online,
developed using Microsoft Visual Basic.

The intent of the Classics O nline application is to allow customers to browse
through an online catalog and place orders. When the Classics Online application is
completed, tested, and successfully deployed, it will provide automated order- entry
and fulfillment capabilities for customers.

About the Tutorial Examples

This tutorial contains seven examples. Each is based on a scenario in which you’re
an employee of Classics, Inc., working in the Quality Assurance (QA) department.
Your department is responsible for testing the new application—making sure defects
are discovered and fixed before the application is deployed.

As you go through the examples in this tutorial, you’ll become familiar with the six
general phases that occur in most testing projects and the Rational Test products
used in each phase:

For this testing phase Use this Rational Test product

Test PlanningDefine requirements, and
plan and manage your test assets.

Rational TestManager

See Example 1.

Test D evelopmentRecord, verify, and
enhance your scripts.

Rational Robot

See Examples 2, 3, and 7.

Test ExecutionPlay back the scripts against
different builds of your application.

Rational Robot

See Example 4.

Test ResultsReview and analyze the results
of the tests.

Rational LogViewer and Comparator

See Examples 3 and 4.

D efect TrackingSpecify defects and assign
them to the appropriate person for resolution.

Rational ClearQuest

See Example 5.

Summary Reporting and Analysis Run
reports to determine test coverage and the state
of defects.

Rational TestManager and ClearQuest

See Example 6.
22

W here to Find O ther U sefu l Testing T ips
Where to Find Other Useful Testing Tips

In addition to this tutorial, you can learn about Rational Robot by using the testing
tips in the Rational Robot Try it! cards. Each card shows you—in a minimal amount of
steps—how to use Robot to test the controls specific to one of the following
development environments: Visual Basic, Oracle, PowerBuilder, Java, and H TML.

When you use the testing tips in a Try it! card on the corresponding sample applet,
you’ll discover, in just minutes, how to record tests that verify the controls specific
to the environment you select.
2 3

Learn ing Rational Robot - a Tu toria l
24

ã ã ãPreparing to Start the Tutorial

Before You Begin

Before you can test the Classics Online sample application, you need to complete
these tasks:

ã Install Rational Robot.

ã Install the Classics Online sample application.

ã Connect to a sample Rational repository.

Each task is described in the sections that follow.

Installing Rational Robot

Rational Robot is available in three different Rational product packages. To install
your version of Rational Robot, see one of the following manuals:

To install Rational Robot as part of Take a look at

Rational Robot package Installing Rational TeamTest and

Rational Robot

Rational TeamTest package Installing Rational TeamTest and

Rational Robot

Rational Suite TestStudio package Installing Rational Suite
2 5

Installing the Sample Application
After you’ve installed Rational Robot, you need to install the Classics O nline sample
application.

1 . Click Start → Program s → Rat iona l program group → Rational Test →
Setup Rational Test Sam ples.

2 . Select Classics O nline.

3 . Click N ext, and then click Finish.

The sample application appears on the Windows Start menu under Program s →
Rational Test Sam ples.

Connecting to the Sample Repository
When you use a Rational Test application, you need to connect to a Rational
repository. The Rational repository stores information about your software testing
and development efforts. When you test an application, you can create as many
repositories as needed. And you can use the repository as a single user, or you can
share it as a member of a team.

For this tutorial, we’ve provided you with a sample Rational repository, installed
when you installed the sample application.

To connect to the sample repository:

1 . Click Start → Program s → Rational program group → Rational Test →
Rational Adm inistrator.

2 . Click File → Connect.

3 . Select the ClassicsRepository path and click O K .

N O TE: If you want to use the testing tips in the Rational Robot Try it! cards,
select some or all of the other samples.
26

What ’s N ext
4 . Accept adm in as the user ID, with no password, and click O K .

5 . Minimize the Rational Administrator window.

What’s Next

You’re ready to begin the tutorial by following the examples in this guide.

A pro ject
helps you
organ ize your
test ing
in form ation
and
resources for
easy
tracking .

The
database
stores your
test assets.
2 7

28

ã ã ãTest Planning

Objectives

ã Define two test requirements that identify the functionality to test.

ã Add the test requirements to the requirements hierarchy.

ã Define a script to verify the requirements.

ã Associate the script with the test requirements.

Scenario

To help you with your test planning activities, you’ll use Rational TestManager. Like
other Rational Test products, TestManager accesses a Rational repository. The
repository maintains test assets—all of the information about your testing project.

For this tutorial, we assume that you’ve already created a test plan. The test plan
describes the features and functionality that you’re going to test and how you’re
going to test them. Often, the test plan describes resource requirements and defines
schedules.

As part of the test planning phase for this tutorial, you’ll define test requirem ents—
the features and functionality that you plan to test in the application.

You’ll use TestManager to build a test requirem ents hierarchy. Each level in the
hierarchy will represent a specific functional characteristic or feature that’s found in
the application or expected to be in the application. By defining these test
requirements before you begin to test, you’ll have a good idea about what you have
to test.

After you’ve defined the test requirements, you’ll plan a script that you can use to
verify each requirement that you’ve created.
2 9

Defining Test Requirements

As part of the test planning phase, you need to define the requirements for your
testing project. The requirements will help you ensure that you provide full test
coverage for your application.

Since testing is usually an iterative process that tests one level of the application, then
the next, and then goes back to repeat the process, TestManager lets you create a test
requirements hierarchy to easily define and display your requirements.

A test requirements hierarchy is a graphical tree structure. The root is the name of
the testing project—for example, Classics. The branches define the test
requirements for each phase of the project.

Requirements in TestManager are stored in a Rational RequisitePro database.
RequisitePro is a requirements management tool that helps project teams control the
development process by organizing, managing, and tracking the changing
requirements of their testing project.

The nam e of the
test ing pro ject

Requ irem ents defined
for test ing
30

D efin ing Test Requ irem ents
Defining and Inserting a Requirement in the Hierarchy
As you define and insert requirements, you can view the evolving hierarchy in
TestManager. This ensures that the requirements that appear in the hierarchy reflect
the functionality you want to test. You can add requirements to the hierarchy at any
time in the testing cycle, and you can delete them at any time.

To define and insert a test requirement:

1 . Click Start → Program s → Rational product nam e → Rational
TestM anager.

2 . Click File → O pen Requirem ents.

Because you’re connected to the sample repository, ClassicsRepository and to
the project Classics, the requirements hierarchy for that project appears.

3 . To insert a child requirement at the same level as U ser Activities, select U ser
Activities.

M ake su re that ClassicsRepositor
selected .

Type adm in as your ID .

M ake sure the pro ject is Classics

Click O K.

The tit le bar d isp lays t
nam e of the pro ject y
selected during log in

Click here to d isp lay
the four m ain
requirem ents from
the test p lan .

Click here to d isp lay
the Functional
Requirem ents.
3 1

4 . Click Edit → Insert Requirem ent.

5 . To insert a child requirement under D evelopment Activities, select it.

6 . Click Edit → Insert Child Requirem ent.

7 . Type Check O rder Entry Logic and click O K .

You’ve just inserted a requirement. Later on, a member of the development team will
check the order-entry logic as part of the testing process for the Classics Online
application.

Type
D evelopm ent
Activities

Click O K.

Inserted paren t
requirem ent.

Inserted ch ild
requirem ent.
32

D efin ing a Script
Defining a Script

The next step in the planning process is to define scripts that you’ll use to validate
your test requirements. A script is a specific sequence of actions and tests recorded
against the application-under-test. When you define a script, it becomes a place-
holder for the script that you’ll actually record later using Rational Robot.

If you want, you can skip this test planning phase and simply start recording with
Robot. But the preferred usage model for any testing activity is to plan first. This lets
you know at the beginning of a project the size of the testing effort. You’ll also be able
to assign the development of each script to the appropriate person. And, you’ll be
able to develop logical and consistent naming conventions for all of your scripts.

Defining a Script and Attaching It to a Requirement
To define a script and attach it to a requirements:

1 . Make sure that the test requirements hierarchy for the Classics project is open
and the U ser Activities branch expanded.

2 . Click Place an O rder and expand it to view the requirements under it.

3 . Right-click the requirement Single Item - Place an order for a single a lbum .

4 . Click Plan Script .

5 . Fill in the fields of the General tab.

Select your W indows environm ent.

Click O K.

Select Functional as the test type.

Select BRABKIN .

N am e the scrip t SIN GLE O RD ER.

Select Functional as the test type.

Type M ake su re a lbum in form ation is
retrieved correctly from database.
3 3

The script SIN GLE O RD ER appears under the requirement Single Item in the
hierarchy. SIN GLE O RD ER is the placeholder for the script that you’ll record later
to test the Single Item requirement.

6 . To confirm that the script is attached to the requirement, select SIN GLE O RD ER
and right-click. Since one of the options is D etach, you can assume that the
script is attached to the requirement.

Summary

You’ve just had a quick introduction to some of the test planning functionality in
TestManager. And, you’ve started to plan your test suite by using TestManager to:

ã Define test requirements and insert them in the Requirements hierarchy.

ã Define a script for recording later in Rational Robot.

ã Attach the script to a specific test requirement to track the progress of your
testing efforts.

What’s Next

You’re now ready to begin recording with Rational Robot.
34

ã ã ãRecording a Script

Objectives

ã Record a script that validates specific test requirements.

ã Test the album data displayed in the tree control.

ã Test the text property of a pushbutton.

ã Test the data retrieved from the order-entry database.

ã Test the properties of a hidden data control.

Scenario

In the last example, you used Rational TestManager to develop a test strategy. By
planning ahead, you’ve already defined a script called SIN GLE O RDER that you can use
in this example.

When you record scripts for an early build of an application, you’re investing in
future testing efforts. As soon as the next build becomes available, you can play back
the scripts you recorded and test the new build in a fraction of the time it would take
to perform the tests manually.
3 5

Record ing a Script
Recording a Script

The script that you’ll record is the SIN GLE O RDER script that you defined in
TestManager.

When you record a script, Robot uses its O bject-O riented Recording technology to
record both the actions as you navigate through the application-under-test and the
tests that you insert to verify controls and data in the application.

Navigating Through the Application
To start recording the script SIN GLE O RDER:

1 . Before you begin to record, minimize all open windows except TestManager.

2 . Start Robot by clicking the Rational Robot button on the TestManager toolbar.

N otice how easy it is to switch from one Rational Test product to another. Since
you’ve already logged in to the Rational repository from TestManager, you can
access Robot and other Rational Test products without logging in again.

3 . Minimize TestManager.

4 . From Robot, choose File → Record GU I.

N O TE: If you were testing your own Visual Basic, Oracle Forms, Java, or any
other application containing ActiveX controls, you would install one of the
Rational Test Enablers before you began to test. Each enabler is non-intrusive and
allows Rational Robot to thoroughly test the controls specific to your application’s
development environment. For more information about the Rational Test
Enablers, see the Using Rational Robot manual.

Type an S for the
Sing le O rder scrip t.

N otice that the scrip t
Single O rder is a lready
defined and ready to be
recorded.

Click O K .
36

Recording a Script
The GU I Record toolbar appears in the upper-left corner after Robot is minimized.
You’re about to begin recording by inserting different testing capabilities into the
script. To begin:

5 . Click the Start Application button.

6 . Click Browse and select the following default path for Build A of the Classics
Online sample application:

C:\Program Files\Rational\Rational Test 7\Sample Applications\ClassicsOnline\ClassicsA.exe

7 . Click O pen, and then click O K.

8 . Click O K to log in as Trent Culpito and to open the Classics Online application.

Click the D isp lay GU I Insert Toolbar bu tton to d isp lay the GU I Insert
toolba r.

Point to (don’ t click)
each bu tton to view
its ToolT ip.

N O TE: Starting the application-under-test while you’re recording lets you
start an application without using the Start menu or the Windows desktop.
This gives you more precise control over your test environment and ensures
that during playback, testing begins with the application in the same state that
it was in during recording. It also lets you run tests unattended.
3 7

Record ing a Script
9 . Scroll down until you see M ozart .

ouble-click M ozart to
isp lay the a lbum s you
an order.

Select
Sym phony N o. 3 4 .

N O TE: It’s important to know that as you follow this tutorial, you can make
mistakes—add or repeat steps—without interfering with the script you’re
recording. As long as you don’t close the Classics application before the script
is complete or open different application windows, you should be all set.
38

Viewing the Beginn ings of the Script
Viewing the Beginnings of the Script

You’ve just navigated through the sample application and clicked a few objects.
Robot captured each of your user actions in the SIN GLE O RDER script. You’ll
continue to do some more recording, but now’s a good time to take a look at the
developing script.

To view the script:

1 . On the GU I Record toolbar, click the O pen Robot W indow button. N one of
these actions are recorded in the script.

2 . Maximize the script to view the actions that you’ve taken so far.

3 . After you’ve looked at the recorded actions in the script, minimize the Robot
window.

You’re now ready to begin to insert verification points in the script to test specific
parts of the Classics Online application.

Adding Verification Points

During recording, you can insert one or more verification points in a script to
capture and store information about the objects that you’re testing. The information
becomes the baseline for your testing. You can then play back the script against
future builds to check the progress of your application. If there are any changes,
you’ll be able to compare the baseline to the actual and decide which changes are
enhancements and which are defects.

Start ing the
applicat ion
Logging in

Record ing the
in terna l VB nam e
of the tree con trol,
t reM a in, not just
the screen
coord inates.

Scro lling
3 9

Record ing a Script
Robot provides various types of verification points. Two of the most powerful—
O bject Properties and O bject D ata—support Robot’s in-depth Object Testing
technology.

O bject Testing inspects and verifies all the properties and data in the visible and
non-visible objects in an application. Object Testing records objects by their internal
object names, not just by the text that appears externally on the object nor by the
object’s location in a window or dialog box.

Capturing Data in a Tree Control – Verification Point 1
The first verification point that you’ll insert into the single order script is an O bject
Data verification point. This type of test captures and verifies data inside standard
Windows objects. It also provides specialized support for environment-specific
objects such as Visual Basic data controls, ActiveX controls, O racle Forms base-table
blocks, and PowerBuilder DataWindows.

To create the first verification point:

1 . If necessary, click the D isplay GU I Insert Toolbar button.

2 . If necessary, minimize the TestManager window.

3 . Click the O bject D ata button on the right side of the GU I Insert toolbar. ICON

Robot automatically names the verification point with its autonaming feature.
Autonam ing automatically inserts a verification point name for you. You could
use your own naming conventions, but for this tutorial you’ll use the
autonaming feature.

4 . Click O K to accept O bject D ata as the name of the first verification point.

N O TE:

D rag the O b ject Finder tool
around the contro ls in the Classics
O n line window. N otice that it
iden tif ies each contro l.

Press the SH IFT key as you drag
the too l to see the nam e Robot
uses to recogn ize each contro l
(N am e=).
40

Adding Verifica tion Poin ts
5 . Drag the O bject Finder tool to the list of composers and albums at the top of
the application and release the mouse button.

6 . Scroll through the captured data in the Object Data Verification Point dialog box
to see what Robot captured.

7 . Click O K to complete the verification point.

In the next sections, you’ll continue recording the single order script by adding two
Object Properties verification points and another Object Data verification point.

The selected object should be
TreeView (O CX) Visua l Basic. If
it isn ’ t , repeat step 5 .

Click O K .

Robot captured a ll o f the data
in the tree contro leven in
branches that are not
expanded.

You can select and deselect
the cells. Robot tests only the
cells that are selected before
you continue.

M ake sure a ll the cells are
selected.
4 1

Record ing a Script
Capturing the Properties of a Pushbutton – Verification Point 2
The next verification point that you’ll insert into the single order script is an Object
Properties verification point. Capturing and testing an object’s properties is an
extremely important capability in real-world testing situations.

An object’s properties describe its appearance (width, height, color, etc.), state
(enabled, disabled, etc.), behavior, and non-visible properties (SQL statements,
computed fields, etc.).

In the sample application, you’ll record a verification point to verify the text on the
pushbutton press here to order. In the next build of Classics (Build B), the text on
this button will change, and Robot will catch this change. At that point, you’ll decide
whether it’s a defect or an intentional change.

To create the second verification point:

1 . Click the D isplay GU I Insert Toolbar button on the GU I Record toolbar.

2 . Click the O bject Properties button.

3 . Accept the autonamed verification point and click O K .

4 . Drag the O bject Finder tool and release over the press here to order button.

5 . Make sure that the selected object is PushButton Visual Basic and click O K.

Robot captures all of the button’s properties, but you’ll edit the captured
properties so that Robot tests only the text on the button.

Robot captures a ll
o f the bu tton’s
propert ies.
42

Adding Verifica tion Poin ts
6 . Click Edit List.

7 . Click O K again to complete the verification point.

Capturing Data in a Databound Control - Verification Point 3
N ow you’re ready to make sure that Classics Online is adding new orders correctly
to the order-entry database and retrieving the correct information from the database.

The object that you’re going to test is a databound control.

A databound ActiveX consists of two objects:

ã The visible ActiveX control that displays the retrieved data on screen.

ã A non-visible data control bound to the ActiveX. The data control retrieves the
data from the database when an SQ L (software query language) call is made
from the application.

To capture the visible data displayed on screen in the ActiveX:

1 . Log in as a new customer by selecting File → Login As N ew U ser.

2 . Select Susan Flontly and click O K.

3 . To view Susan’s existing orders, select O rder → View Existing O rder Status.
N otice that Susan has placed one order.

4 . Click Close.

First, click < < to
m ove a ll the
Selected propert ies
to the A vailab le list.

Scro ll down until
you see Text .

Select Text .

With Text
selected, click
> to m ove it
to the
Selected list
by itself.

Click O K .

N O TE: Throughout this tutorial, ActiveX and OCX are used interchangeably.
4 3

Record ing a Script
5 . With M ozart’s Sym phony N o. 3 4 selected, click press here to order.

6 . Select O rder → View Existing O rder Status and notice that a new order has
been entered for Susan.

7 . Keep the dialog box open and begin an Object Data verification point.

8 . Accept the autonamed verification point (O bjectD ata2) and click O K .

9 . Drag the O bject Finder to the grid and release the mouse button.

1 0 . Make sure that the selected object is Generic (O CX) Visual Basic and
click O K .

1 1 . Click O K again to complete the verification point.

 Type 2 /0 0

Type 1 2 3 4 5

Click Place O rder and
then click O K to
confirm the order.

Robot will captu re a ll o f the
data d isp layed in the grid .

Click O K to d isp lay the captured
data.
44

Adding Verifica tion Poin ts
Capturing Properties of a Non-Visible Data Control - Verification
Point 4
With this verification point, you’ll test the application even more deeply than you did
when you verified the visible data retrieved from the database. You’ll capture the
properties of the non-visible data control that makes SQL calls to the database to
retrieve and update information.

To capture the properties of a non-visible object:

Move the pointing-hand over the objects in the window. N otice how SQA Robot
displays the object type in the TestTip that appears under the pointing hand.

1 . Make sure that the View Existing O rders window is open.

2 . Begin an Object Properties verification point.

3 . Accept the autonamed verification point and click O K. Instead of dragging the
Object Finder to the grid, click the Browse button. This tells Robot to find and
list all of the visible and non-visible objects on the Windows desktop.

4 . Click O K again to capture the properties of the control.

N O TE: If necessary, you can resize the O bject List dialog box to make it
larger.

f necessary, double-
lick Window
am e= frm Exist ing to

xpand it . Each
ranch represents an
b ject in the View
xist ing O rders d ia log
ox.

Clear, and then select
th is to see a ll o f the
h idden con tro ls that
Robot captu red.

With Show h idden
checked , select
Generic N am e=
da taExist inga
non-visib le data
con trol tha t
in teracts with the
order-en try
da tabase.

Click O K to capture
a ll of the propert ies
of the non-visib le
data con trol.
4 5

Record ing a Script
5 . In the Object Properties Verification Point dialog box, scroll to the Visible
property and notice that its value is False, indicating that the data control is non-
visible but has been captured by Robot’s Object Testing technology.

6 . Click O K to complete the test.

7 . Click Close.

8 . Close Classics Online.

9 . Press the Stop Recording button.

Reviewing the Verification Points You Recorded

After you stop recording, the Robot window appears.

About the Script You Recorded

The GU I script you recorded consists of commands written in is written in a high-
level language. SQ ABasic, Robot’s scripting language. SQ ABasic provides most of
the syntax rules and core commands that are contained in the Microsoft Basic
Language.

D ouble-click each
verif icat ion point to
view what you just
recorded in one of
the Com parators.

The scrip t

N O TE: To print the script, from Robot click File → Print.
46

Sum m ary
What the Script Commands Mean
Every action begins as a W indow SetContext command followed by the action.
Comments begin with a single quote (’).

Each verification point appears as a single line in the recorded script that begins with
Result =

The following commands appear in the script:

ã Sub Main - Indicates the beginning of the script.

ã Dim Result as Integer - Declares the variable Result for verification
point return values. The Result variable is local to the Main sub procedure.

ã ‘Initially Recorded: - A comment that automatically shows the date
and time when the script was recorded.

ã ‘Script Name: - A comment that identifies the script.

ã Window SetContext - Specifies the window where user actions occurred.

ã Window SetTestContext - Specifies the window where a verification point
was inserted.

ã Result = Specifies that a verification point was recorded as part of the script.
The verification point identifies the control by its internal object name and the
script command recognition method.

ã Name = Identifies all of the objects that were tested by their internal object
names.

ã Pushbutton Click - Indicates a user action command.

Summary

You’ve just recorded a script and inserted four verification points that check:

ã The album data displayed in the tree control

ã The text property of a pushbutton

ã The data retrieved from the order-entry database

ã The properties of a hidden data control

By developing scripts for an early build of an application, you’ll be able to verify that
future builds of the application perform as intended.
4 7

Record ing a Script
What’s Next

N ow that you’ve recorded a script, you’re ready to play it back against the same build
to verify that the script contains no errors and to establish a baseline for future
testing.
48

ã ã ãPlaying Back a Script

Objectives

ã Play back the script on the same build to verify that all verification points pass.

ã View the playback results in the LogViewer.

Scenario

In the previous example, you recorded a script using Build A of the Classics Online
application. In this example, you’ll play back the script using the same build of the
application to ensure that the script works as intended.

During playback, Robot compares the recorded data to the application-under-test.
Since no changes have been made to the build, all verification points should pass. A
verification point fails only if there are differences between the recorded baseline data
and the current build of the application.
4 9

Playing Back a Script
Playing Back a Script

To play back the SIN GLE O RDER script against Build A:

1 . Make sure that Robot is open.

2 . From Robot, click File → Playback.

3 . Select SIN GLE O RDER and click O K .

The rest is automatic. Sit back and relax!

Robot plays back the sequence of recorded actions and verification points. The
windows of the sample application are displayed on the screen as Robot plays back
what you’ve recorded.

At the completion of playback, Robot updates the Rational repository and starts the
LogViewer, another integrated Rational Test component.

The LogViewer shows the test results.

Click here. Type Bu ild A and
click O K .

Click O K .

Click here. Type Bu ild A and
click O K .

D ouble-click to view
the verifica tion poin t.

N am e of scrip t and
each item inserted
in to the scrip t

D a te and tim e of
record ing
50

Sum m ary
4 . Click File → Exit to close the LogViewer and return to Robot.

Summary

You’ve just played back your recorded script against the same build of the application
to verify that the script works as intended.

During playback, Robot compared the recorded data to the application-under-test.
All verification points passed.

What’s Next

Since the script passed, you’ll use it as the baseline for future builds. When the script
is played back and differences are found, you’ll be able to use the LogViewer and its
Comparators to decide whether the differences are intentional changes or defects in
the build. And you’ll be able to use Rational ClearQuest to track the defects until
they are resolved.
5 1

Playing Back a Script
52

ã ã ãTesting a New Build and Evaluating

Results

Objectives

ã Play back the SIN GLE O RDER script to test a new build of the application.

ã U se the LogViewer to review the playback results.

ã U se the Comparators to analyze enhancements or defects in the application.

Scenario

In the previous example, you played back a script using Build A of the Classics
Online application. In this example, there’s a new build of the application that needs
testing. You’ll play back the recorded SIN GLE O RDER script on the new build.
Playback will take a fraction of the time that it would take to repeat the procedure
manually.
5 3

Testing a N ew Bu ild and Evalua ting Resu lts
Viewing the New Build

Before you play back the script against the new build, take a look at how much the
Classics main window has changed from Build A to Build B.

Build A

Build B

The text and location of the
pushbutton change.

The layou t changes a lo t
from Build A to Build B.

The look of the tree contro l
changes in Bu ild B. The data
rem ains the sam e.
54

Playing Back a Script Aga inst a N ew Bu ild
Even though objects in the new build are moved, rearranged, and renamed, you will
be able to reuse the recorded script to test the objects. Robot’s O bject-O riented
Recording insulates scripts from changes and guarantees that you can play back
scripts across builds.

With Object-Oriented Recording, Robot identifies objects by their internal object
names. This ensures that even if the layout of the GU I changes and the objects in the
GU I change locations, Robot will find the objects and test them against the baseline.
If there are changes, Robot will flag them, and you’ll decide whether they are
enhancements or defects in the application.

Playing Back a Script Against a New Build

Before you can play back the SIN GLE O RDER script against a new build, you need to
edit the Start Application path in the script so that Build B of the Classics application
begins on playback.

To play back a script against a new build:

1 . In Robot, click File → O pen Script if the script is not open.

2 . Select SIN GLE O RDER and click O K.

3 . You’ll edit the script at the end of the Start Application line to change the build
letter.

4 . Click File → Save.

5 . To begin playback, select the Playback button.

hange ClassicsA .exe
o ClassicsB.exe.
5 5

Testing a N ew Bu ild and Evalua ting Resu lts
6 . Select SIN GLE O RD ER and click O K.

Robot compiles the script and plays back the sequence of recorded actions and
verification points. The windows of the sample application are displayed on the
screen as Robot plays back what you’ve recorded.

Viewing the Test Results in the LogViewer

When playback is completed, Robot automatically opens the LogViewer so you can
see the results of playing back the script against the new build. And, for some reason,
two of the SIN GLE SCRIPT verification points failed when played back against the new
build. Read on to find out why.

Click here. Type Bu ild B and

click O K .

Click O K .

Click here. Type Bu ild B and
click O K .

If any verif icat ion point in a
scrip t fa ils, the status for
the en tire scrip t is Fa il.

The test o f the p ress
here to order
pushbutton fa iled, as
d id the test o f the
retrieval o f data from
the order-entry
database.
56

Analyzing the Resu lts in the Com para tors
Analyzing the Results in the Comparators

To let you analyze each failure and then remedy it, the LogViewer provides four
Comparators:

ã Grid - Displays data files for text and numeric verification points that Robot
displays in a grid.

ã O bject Properties - Displays the properties of objects captured using the Object
Properties verification point.

ã Text - Displays data files for text and numeric verification points in any format
except grids.

ã Im age - Displays image files for the Region Image and Window Image
verification points.

Each Comparator graphically displays the ‘before and after’ results of playback.

If there is no failure on playback, only a baseline file displaying the recorded data or
image is displayed. If a failure occurs on playback, an actual file is displayed next to
the baseline file. By comparing the files, you can determine whether a failure
occurred because of an intentional change in the build or because of a defect.

Actual file shows that
d ifferen t data was
retrieved from the
database. Th is
ind icates an error in
the order-entry log ic.

Baseline f ile shows
the a lbum that was
ordered.

Red ind icates an
error.
5 7

Testing a N ew Bu ild and Evalua ting Resu lts
Viewing the Test of the Tree Control
The first Object Data verification point passed even though the outward appearance
of the tree control changed. The verification point checked the data in each branch
of the tree control and found that the correct data for each branch was retrieved from
the database.

If you had recorded an O bject Properties verification point on the tree control, it
would have failed because of the changes to some of the control’s properties —lines,
buttons, height, and width—in Build B.

To view the results of the first Object Data verification point:

1 . Double-click Verification Point (O bject D ata) – O bject D ata in the Log Event
column.

Because the verification point passed, the only file displayed in the Grid Comparator
is the baseline file that contains the data tested.

2 . Choose File → Exit to close the Comparator.

Baseline f ile show
the results of the
verif icat ion poin t.
58

Analyzing the Resu lts in the Com para tors
Viewing Two Verification Points That Failed
Two verification points failed. After you review and analyze the failures in the
Comparators, you’ll discover that one of the failures is an intentional code change in
Build B. The other failure is a defect.

Viewing the Test of the Pushbutton
The first Object Properties verification point failed. It checked the text on the
pushbutton and found that it had changed in Build B. Since the development team
planned this change, it is an enhancement, not a defect. To ensure that the
verification point passes the next time the script is played back, you need to
incorporate the enhancement into the baseline script.

To view the results of the first Object Properties verification point:

1 . Double-click Verif ication Point (O bject Properties) - O bject Properties in
the Log Event column.

2 . Click File → Replace Baseline with Actual.

3 . Click Yes.

The next time you play back SIN GLE O RDER, the verification point will pass.

4 . Choose File → Exit to return to the LogViewer.

The fa ilu re appears

in red typeface.

The change is an
in ten tional, m inor
enhancem ent.
5 9

Testing a N ew Bu ild and Evalua ting Resu lts
Viewing the Test of the Data from the Order-Entry Database
The second O bject Data verification point failed. It checked the data retrieved from
the order-entry database and found that the incorrect data was retrieved.

To view the results of the second Object Data verification point:

1 . Double-click Verification Point (O bject D ata2) – O bject D ata in the Log
Event column.

Choose File → Exit to return to the LogViewer so you can report this error as a defect
in the application.

Summary

You’ve just found how to use the LogViewer and Comparators to analyze changes in
your application from build to build. And, you discovered how easy it is to update
your test when an intentional change is made in the application.

In the example, you used the LogViewer and the Comparators to:

ã View the results of the SIN GLE O RDER script.

ã Analyze each failure to determine if it was a defect or an intentional change.

ã U pdate the baseline file with the actual file when the change was intentional.

What’s Next

You’re now ready to report the defect.

The application

retrieved the wrong

record from the

database.

An order was
p laced for a M ozart
a lbum , but a Bach
a lbum was ordered
instead.

To quickly view the
fa ilu re, click each
of these, or click
View → N ext
D if ference.
60

ã ã ãSpecifying and Managing Defects

Objectives

ã U se Rational ClearQuest to generate defect information.

ã U se Rational ClearQ uest to create an email rule to send email about the defect
discovered in the sample application.

Scenario

When you played back the SIN GLE ORDER script on Build B of the Classics
application, two of the verification points failed. One of the failures was an
intentional change to Build A—the name change on the order button. The other
failure was a defect in the order-entry logic of the application. Even though an order
was placed for a Mozart album, a Bach album was ordered instead.

In this example, you’ll use Rational ClearQuest to enter the defect in the repository.
ClearQ uest lets you track defects through each phase of the development and testing
process.

N O TE: You can follow the steps in this example if you have Rational ClearQuest
installed. See the next page for instructions about verifying that ClearQ uest is
installed.
6 1

Specifying and M anaging D efects
Making Sure That Rational ClearQuest Is Available

To see if Rational ClearQ uest is available for defect tracking:

1 . Click Start → Program s → Rat iona l product nam e.

2 . Check to see if ClearQuest is listed as a program on the submenu.

3 . Do not start ClearQ uest yet.

Creating a ClearQuest Master Database

Before you can start using ClearQuest to generate defects, you need to create a
sample ClearQ uest master database. The m aster database stores the schema used
in the defect tracking form.

To create a ClearQuest master database:

1 . Start the Rational Administrator.

2 . If necessary, click File → Connect → ClassicsRepository and log in as adm in.

3 . Click Tools → Rational ClearQ uest M aintenance Tool.

4 . Click Create a new schema repository and click N ext .

5 . Keep MS Access as the database type.

6 . Type C:\M aster.mdb as the path for the database where the schema is stored.

7 . Click N ext.

8 . Click Yes because other users will not use this sample master database.

9 . Select Create sam ple database and click N ext. This creates a sample user
database that you can connect to the sample master database so you can store
your defects for this tutorial.

1 0 . Type C:\U ser.m db as the path for the database where you’ll store you defect
data.

1 1 . Click N ext.

1 2 . Click Finish.

1 3 . Click D one.
62

Attaching a ClearQ uest D atabase to a Repository
Attaching a ClearQuest Database to a Repository

In this tutorial, after you create the ClearQuest master database, you have to attach a
ClearQ uest user database called SAM PL to the sample repository. This user
database contains all the defect data that you’ll enter and the data that the
LogViewer automatically generates.

By attaching the user database to the sample repository, you can be sure that you have
access to the correct schema. The schema determines how the defect tracking form
looks.

To attach the ClearQ uest user database:

1 . From the Rational Administrator, click File → Attach ClearQ uest D atabase.

2 . Accept adm in as your temporary user ID and click N ext.

3 . Click SAM PL to select it as the database and click N ext .

4 . Click Finish.

N otice that ClearQuest database SAMPL is now in the tree under
ClassicsRepository.

The new
defect
database
6 3

Specifying and M anaging D efects
Generating a Defect from the LogViewer

When Robot discovers a change in your application, it logs the change in the
LogViewer. From the LogViewer, you can then generate a defect so that the
information is automatically transferred to the ClearQ uest defect database.

When the defect is generated, the information from the LogViewer appears in a
defect form. To enter a defect, you add information to the defect form and assign an
owner and status to it.

To generate a defect:

1 . Make sure that the LogViewer is open.

2 . In the LogViewer, select Verification Point (O bject D ata2).

3 . Click D efect → Generate to open the defect form.

N O TE: If you closed the LogViewer, open the Log Viewer and then do the
following to open the correct log: Click File → O pen. Double-click Build B.
Double-click the Build B folder. Double-click Single O rder.

Click the other tabs
to see m ore au to-
generated
in form ation .

Click O K to subm it
the defect to the
ClearQ uest
database.

You m ust type
in form ation in every
tab that has a red X
and in every f ield
that has a red label.

Type First Failure as
the headline for the
defect.

Select Average for
the Severity.
64

Accessing the D efect from the ClearQ uest D atabase
Accessing the Defect from the ClearQuest Database

After you generate a defect from the LogViewer, you can access the defect directly
from ClearQ uest.

To access the defect from ClearQuest:

1 . From the LogViewer, click the ClearQuest icon.

2 . In the left pane, double-click All D efects to view the defects in the SAM PL
database.

3 . To view the defect you just entered, double-click Keyword Search in the left
pane.

4 . Type First Fa ilure and click O K .

5 . Click File → Close to close the defect.
6 5

Specifying and M anaging D efects
Sending Email About a Defect

After a defect is generated, either you can run ClearQuest to search for the defects
assigned to you, or your project leader can configure ClearQ uest to automatically
send email about the defect to the person responsible for it.

Setting Up an Email Rule
Before ClearQ uest can automatically generate email about a defect, you must create
one or more email rules that define when and to whom the defect will be emailed.
You can create an email rule if you have Super U ser or Schema Designer privileges.
And, for this tutorial, you do!

To set up an email rule:

1 . From ClearQ uest, click Actions → N ew.

2 . Select Em ail_rule and click O K .

Type Send to O wner
as the nam e of the
ru le.

Select D efect.

Click to d isp lay
the list of
availab le f ields

Select O wner

Click Add To and
click O K.

If the owner of th
defect changes, t
em ail ru le is
triggered and the
defect is em ailed
66

Send ing Em ail About a D efect
3 . Select the D isplay Fields tab.

4 . Select the To Addressing Info tab.

Type your em ail
address.

Click here, and the
add H eadline.
Click O K .
The In form ation w
appear as the
subject of the em a

Click here, and the
add O wner, Priority
and Requ irem ent.
Click O K .
The Inform ation
and the defect ID
will appear in the
em ail.

Click here to add
your em ail
address so the
em ail can be
sent to you .
6 7

Specifying and M anaging D efects
5 . To add your email address, do this:

6 . Click O K to close the Submit Email Rule dialog box.

Enabling Email Notification
After you’ve created the email rule, you enable email notification so you can receive
email about defects.

To enable email notification:

ã From ClearQ uest, click View → Em ail O ptions.

Sending a Trial Email
N ow that you’ve set up email notification, you can have a defect mailed to you. You’ll
trigger email by changing the owner of the defect.

To send a trial email:

1 . Make sure that your email software is running.

2 . From ClearQ uest, double-click All D efects to display the defect list.

3 . U nder All D efects, double-click Keyword Search.

ype your em ail
ddress. Click Add To.

Click O K to
com plete the ru le.

Click to enable
your em a il.

Type your em ail
address.

Type the em ail
host address.

If necessary,
check with your
adm in istrator.

Click O K.
68

Sum m ary
4 . Type First Fa ilure and click O K.

5 . Click Actions and select M odify.

6 . In the M ain tab, select Q E as the new owner.

7 . Click Apply and see what happens!

You’ll receive an automatic defect notification.

Summary

You’ve just found out how easy it is to generate a defect about a failed verification
point displayed in the LogViewer. You were also able to send an email message about
the defect so it could be fixed.

What’s Next

You’ve successfully used the SIN GLE ORDER script to test a portion of the Classics
Online application. N ow it’s time to run a few reports about the testing effort to
inform management and the rest of your team about where things stand.
6 9

Specifying and M anaging D efects
70

ã ã ãUsing Reports to Manage Test Progress

Objectives

ã Run a Script Summary report from TestManager. The report lets you view all
of the scripts that are planned for the Classics O nline application.

ã Run a Defect Summary report from ClearQuest. The report lets you view the
open defects for the Classics O nline application.

Scenario

As your testing progressed from defining test requirements to creating scripts, and
from playing back the scripts to tracking defects, all of the test results were stored in
the Rational repository. You were able to review and analyze the test results in the
LogViewer. And now you’re ready to create reports about the testing effort.

TestManager and ClearQuest provide integrated report writers. You can use them to
create and customize dozens of graphs and reports that help you manage the progress
of your testing effort.

In this example, you’ll generate two reports. The first summarizes all of the scripts
in the Classics project. The second lists all of the defects that are “open.”
7 1

U sing Reports to M anage Test Progress
Running a Script Summary Report

The Script Sum mary report provides you with overview information for all of the
scripts in the Classics project.

To run the Script Summary report:

1 . From TestManager, choose Reports → Run.

2 . Select Script Listing → All Scripts → Sum m ary and click O K .

The report is generated automatically.

3 . Scroll down to view the SIN GLE O RDER script, and then close the report window.

D isplays the
pro ject nam e as
well as the date
and tim e the report
was run .

Lists the nam e of
each scrip t, its
type, and the
descrip t ion entered
when the scrip t
was defined in
TestM anager.
72

Running a D efect Sum m ary Report
Running a Defect Summary Report

ClearQ uest provides two default Defect Summary reports. The first lists all of the
defects in the database. The second filters the defects according to their states—
Submitted, Open, Resolved, Closed, or Duplicate.

In this example, you’ll generate a report that lists all of the Open defects for the
Classics project.

To run a defect report:

1 . From ClearQ uest, double-click Public Q ueries in the left pane to expand its
branches.

2 . Double-click Reports.

3 . Select D efect Sum m ary (State).

4 . Right-click, and then click Run.

5 . Select O pen and click O K .

6 . To view the report, click 1 00 % and maximize the window.

7 . To print the report, click the printer icon.

Lists each
defect
and its state,
severity, and
priority.
7 3

U sing Reports to M anage Test Progress
Summary

TestManager and ClearQuest provide integrated report writers that you can use
to create and customize dozens of graphs and reports to help you manage the
progress of your testing effort.

In this example, you ran two reports. The first listed all of the scripts that are planned
for the sample application. The second listed all of the “open” defects in the
application.

What’s Next

The first six examples have shown you how the integration between Rational Test
products ensures a successful testing effort.

You did the following:

ã U sed Rational TestManager to define test requirements and a script.

ã U sed Rational Robot to record a script and play back the script against two
different builds of the sample application.

ã U sed the Rational LogViewer and comparators to analyze test results.

ã U sed Rational ClearQuest to generate a defect.

ã U sed Rational TestManager and Rational ClearQ uest to run reports about your
testing effort.

This tight integration between products as well as their ease-of-use lets your
development and testing teams work together to ensure that the software testing
effort goes forward as planned.

If you still have time, take a look at the last section in this tutorial. It explains
advanced scripting techniques that you’ll find useful as you learn more about Robot
and automated functional testing.
74

ã ã ãEnhancing Your Scripts

Objective

ã Customize the SIN GLE ORDER script by adding a header file and a library file
that checks to make sure the order-entry database is reset before each playback
of the script.

Scenario

When you recorded the SIN GLE ORDER script, you inserted four verification
points. One of them placed a new order in the order-entry database.

If the database is not reset to its initial state with the new order deleted before each
playback of the script, the same order will be re-entered in the database, and the script
will fail on playback. To make sure that the database is reset, you have to test to make
sure that the newly entered orders are actually deleted and the database reset to its
initial state.

To accomplish this, you must do the following :

ã Delete the new record from the database.

ã Enhance the SIN GLE O RDER script by creating a procedure that checks the
state of the order-entry database. You’ll put the procedure in a library file that
the SIN GLE ORDER script calls on playback.
7 5

Enhancing Your Scripts
Deleting the New Record from the Database

To reset the database to its initial state, you have to delete the new order from the
database.

To delete the new order from the database:

1 . Make sure that the sample application is open.

2 . Log in as Susan Flontly and click O K.

3 . To view Susan’s orders, O rder → View Existing O rder Status.

4 . Select Sym phony N o. 3 4 and click Cancel Selected O rder.

5 . Make sure that the only order in the database is H aydn’s Sym phonies N os. 9 8
& 1 0 1 .

6 . Click Close.

Recording and Manually Customizing a Script

To make sure that the new order has been deleted, you’ll manually customize the
script instead of using Robot to automatically create an entire script. You’ll customize
the script by adding two SQABasic commands. And, you’ll only use Robot to record
navigational actions.

Finally, you’ll copy the contents of the new script into a library file that will be called
by the SIN GLE ORDER script. Adding the library file to the SIN GLE ORDER
script tests to make sure that the order is deleted and the database reset before each
playback of SIN GLE ORDER.

Using Robot to Record Navigational Actions
You’ll follow these steps to record navigational actions:

ã Start the Classics Online sample application.

ã Log in as Susan Flontly.

ã Open the View Existing Order dialog box. (After all the navigation is recorded,
it’s here in the script that you’ll manually add a command to test the order-entry
grid in the dialog box.)

ã Close the dialog box.

ã Close the sample application. (After all the navigation is recorded, it’s here in the
script that you’ll manually add the command to send a message to the
LogViewer.)
76

Record ing and M anually Custom izing a Script
By using Robot to record the actions, you’ll save yourself the time and energy of
manually writing the actions in the script.

To record the necessary navigational actions:

1 . From Robot, click File → Record GU I .

2 . Type Temporary Script and click O K.

3 . Click the D isplay GU I Insert Toolbar button.

4 . Click the Start Application button.

5 . Type or browse to the default location for Build A of the sample application:

C:\Program Files\Rational\Rational Test 7\Sample
Applications\Classics Online\ClassicsA.exe

6 . Click O pen and click O K .

7 . Log in as Susan Flontly and click O K .

8 . Click O rder → View Existing O rder Status.

9 . Close the dialog box and the sample application.

1 0 . Press the Stop Recording button.

Before the new
order is p laced
for Susan
Flontly, there are
two rows in
Susan ’s record
—one is the
header row and
the other is an
existing order.

O rder-entry grid
7 7

Enhancing Your Scripts
Manually Customizing the Script
N ow that you’ve recorded the actions, you’ll customize the temporary script by
adding two SQABasic commands—SQ AGetProperty and SQ ALogM essage.

The first command will capture the row property of the existing order grid to make
sure that the new order no longer appears.

The second command will write a message to the LogViewer. The message will
indicate whether the database has been returned to its initial state.

To customize the script:

1 . Make sure the Tem porary Script is open.

2 . At the top of the script after the first D im statement, add:

Dim RowCount As Variant

N O TE: To become familiar with the syntax of the commands and to view
comments about them, see the SQABasic Language Reference or the SQABasic
online H elp.

You ’ ll declare a
variab le here that will
con ta in the num ber of
rows in the g rid .

You ’ ll add a com m and here
to check for the num ber of
rows in Susan Flontly’s
record .

You ’ ll ad an If-Then
statem ent here that sends a
m essage to the LogViewer
about the database reset
78

Record ing and M anually Custom izing a Script
3 . After the MenuSelect command, add an SQABasic command. The
command retrieves the Rows property from the FlexigridOrders control. The
property contains the number of rows in the grid—the number includes the
header row and the record row—and puts the number into the RowCount
variable:

Result = SQAGetProperty (“\;Name=frmExisting;\;
Name=FlexigridOrders”, “Rows”, RowCount)

4 . At the end of the script before End Sub, add the following “If-Then-Else”
statement. If the cleanup is successful, this will send a message to the LogViewer
stating that the database is reset correctly:

If RowCount=2 Then
‘Display message in LogViewer
SQALogMessage sqaPass, “Database is reset, ready for playback”, ““
Else
SQALogMessage sqaFail, “Database is not reset”, ““
End If

5 . Click File → Save to save the additions to Temporary Script .

N O TE: Make sure that the command appears as one line in the script.
7 9

Enhancing Your Scripts
Creating a Library File

After you record the temporary script and add the SQ ABasic commands, you need
to create a library file to copy contents of the script into.

To create a library file:

1 . Make sure that Temporary Script is open.

2 . Select a portion of the script beginning with Dim Result As Integer and
ending with End Sub.

3 . Click Edit → Copy.

4 . Begin to create the library file by clicking File → N ew → SQ ABasic File.

5 . Click Library Source File and click O K .

6 . Click Edit → Paste to copy the script into the library file.

Select th is port ion o
the scrip t.
80

Creating a H eader File
7 . At the top of the library file, type this line to name the procedure that you pasted
into the file:

Sub RunTestDatabase ()

8 . Click File → Save.

9 . Type CheckD BLib and click Save.

1 0 . Click File → Com pile to compile the library file.

Creating a Header File

After you create the library file, you’ll create a header file that declares the custom
procedure you just created. And you’ll reference the header file from the SIN GLE
ORDER script.

To create the header file:

1 . From Robot, click File → N ew → SQ ABasic File.

2 . Click H eader File and click O K.

Type the nam e of
the procedure
here.
8 1

Enhancing Your Scripts
3 . Type the following line in the header file to declare the library file that contains
the subprocedure RunTestDatabase:

Declare Sub RunTestDatabase BasicLib “CheckDBLib” ()

4 . Click File → Save.

5 . Type CheckD BH eader as the .sbh header file.

6 . Click Save.

7 . Click File → Close.

Adding the Header and Library Files to the Script

Finally, you’ll reference the header file in the SIN GLE ORDER script. And, you’ll
call the procedure (RunTestDatabase) from the script. Calling the procedure will
check whether the database is reset and will send a message to the LogViewer.

To reference the header file and call the procedure:

1 . Click File → O pen Script .

2 . Select Single O rder and click O K .

3 . At the top of the script above Sub Main, type:

‘$Include “CheckDBHeader.sbh”.

4 . At the end of the script above the line End Sub, type:

Call RunTestDatabase()

5 . Play back the script and see what happens!

The script will play back, check to make sure that the database is reset, and then write
a Log Message to the LogViewer.

Summary

You’ve just discovered how easy it is to edit and customize a Robot script to make it
do exactly what you want it to do.

You found out how to:

ã Add SQABasic commands to a script.

ã Create a header file.

ã Create a library file.
82

What ’s N ext
What’s Next

Congratulations on completing the tutorial!

You’re now ready to use Rational Robot to test your own application. But before you
begin, you need to create a new Rational repository to store your testing data.

H ere’s a quick procedure for creating a repository. For more detailed instructions
and information about repositories, see the Using the Rational Administrator manual.

To create a Rational repository:

1 . Close all Rational Test products.

2 . Click Start → Program s → Rat iona l program nam e → Rational
Adm inistrator.

3 . Click File → Create Repository.

4 . Type the drive, directory, and name for the new repository—for example,
C:\repo1 .

5 . Click N ext.

6 . Accept M S Access as the database type and click N ext .

7 . Accept D o not initia lize the new repository with data from an existing
repository and click N ext.

8 . If you created a ClearQuest master database as part of this tutorial, accept Create
or Attach ClearQ uest D atabase and click N ext. O therwise, clear it, click N ext,
and skip to step 10.

9 . Enter a database name—a limit of five alphanumeric characters beginning with
a letter. Click N ext .

1 0 . Accept the defaults and click Finish.

Remember, if you want to find out more about Rational Robot, you can follow the
testing tips in the Rational Robot Try it! cards. Also, for more complete information
and instructions about using Rational Robot and its companion products, take a look
at the user’s guide and online H elp for each product.
8 3

Enhancing Your Scripts
84

ã ã ã Index
A
ActiveX 36, 43

actual file 7, 57

analyzing test results 3, 7
automated functional testing 4, 21

automated testing 21

autonaming 40

B
baseline file 7, 57, 58

Build B 54

C
Classics O nline sample application

about 22

main window, Build A 37, 54

main window, Build B 54

comparator

actual file in 57

baseline file in 57, 58

Grid 57

Image 57

Object Properties 57

Text 57, 58

converting

defects 17

repository from SQA Suite 6.x 15

Crystal Reports

installing 15

using to customize report format 15

customizing

defect report 15

report format 15

D
data control 43

database

in Rational repository 27

databound OCX/ActiveX 43

defect

converting 17

tracking 10, 22

defect report

customizing 15

running 71

using ClearQuest 15

Defect Summary report 73

E
editing

object properties 43

Start Application path 55

enhancement, incorporating into script 59

examples in tutorial, about 22
Index-1

Index
F
functional testing 4, 21

G
Grid comparator 57

GU I Insert toolbar 37

GU I Record toolbar 37

I
Image comparator 57

installing

Crystal Reports 15

Rational Robot 2, 25

sample application 26

N
non-visible object 45

O
Object Data verification point 40, 43

Object Finder tool 40

Object Properties

editing 43

verification point 42, 45

Object Properties comparator 57

Object Testing 4, 40

Object-Oriented Recording 4, 36, 55

P
phases in testing projects 22

playback results

analyzing 57

viewing 57

playing back script 2, 50, 55

R
Rational Administrator 5
Rational ClearQuest 3, 5, 10

using to run defect reports 15

Rational LogViewer and Comparators 3, 5, 7, 50, 56

Rational Purify 5, 10

Rational repository 2, 5, 26

converting defects from SQA Suite 6.x 17

converting script file name 17

converting verification point ID 17

data converted 16

initializing data from SQ A Suite 6.x 15

troubleshooting conversion from SQA Suite 6.x
19

upgrading from SQA Suite 6.x 15

when to convert from SQA Suite 6.x 15

Rational Robot

functional testing 4
installing 25

key features 1
running on these Windows platforms 1

Rational Robot Try It! card 23, 26

Rational SiteCheck 5, 9
Rational Test Enabler 36

Rational Test product packages 2
Rational TestFactory 5, 8
Rational TestManager 5, 6, 29

Rational Visual PureCoverage 5, 11

Rational Visual Quantify 5, 10

recording

a script 36

navigational actions 36

Object Data verification point 40, 43

Object Properties verification point 45

script 2
Index-2

Index
report

customizing format 15

Defect Summary 73

in ClearQuest 3, 71, 73

in LogViewer 3
in TestManager 3, 71, 72

running 22

Script Summary 72

repository

converting script file name 17

converting verification point ID 17

create 5
data converted 16

initializing data from a SQA Suite 6.x 15

manage 5
troubleshooting conversion from SQA Suite 6.x

19

upgrading from SQA Suite 6.x 15

when to convert from SQA Suite 6.x 15

S
sample applet 23

sample application

about Classics O nline 22

installing 26

sample repository 26

script

adding verification point to 39

attaching to requirement 33

defining in TestManager 33

incorporating enhancement into 59

playing back 50, 55

printing 46

recording 36

report about 71

verifying 50

viewing 46

viewing user actions in 39

script file name

converting 17

Script Summary report 72

scripting language

SQABasic 15, 46

SQA Suite 6.x upgrade information 13

SQABasic

command definitions 47

scripting language 46

Start Application functionality 37, 55

T
test analysis 22

test development 22

test execution 22

test planning 6, 22, 29

defining a script 33

defining a test requirement 30

test requirement

defining 30

hierarchy 30

test results 22

analyzing 3, 7
viewing 50, 56

viewing failed 59, 60

viewing passed 58

testing project

phases in 22

Text comparator 57, 58

troubleshooting conversion from SQA Suite 6.x 19

tutorial examples, about 22
Index-3

Index
U
upgrading

components to use 13

from SQA Suite 6.x 13

new terminology 14

repository from SQA Suite 6.x 15

scripting language 15

V
verification point

adding 39

converting ID 17

failed 59, 60

Object Data 40, 43

Object Properties 45

passed 58

viewing 46

viewing test results 50, 56

failed 59, 60

passing 58

W
Web site testing 9
Index-4

	Contents
	Introduction
	Take This Path to Successful Functional Testing
	How Does Rational Robot Work?
	Using Rational Tools for Successful Software Testing
	Managing Repositories with the Rational Administrator
	Planning and Managing Tests with Rational TestManager
	Analyzing Results in the LogViewer and Comparators
	Testing Applications with Rational TestFactory
	Managing Intranet and Web Sites with Rational SiteCheck
	Managing Defects with Rational ClearQuest
	Collecting Diagnostic Information During Playback

	What’s Next

	Upgrade Information
	Summary of Tasks
	New Terminology
	Scripting Languages

	Using Defect Reports
	Using SQA 6.x Repository Data in a Rational Repository
	When to Convert SQA Suite 6.x Repository Data
	Conversion Details
	Details About Converting Defects
	Troubleshooting

	Learning Rational Robot - a Tutorial
	What Is Automated Functional Testing?
	About the Sample Application
	About the Tutorial Examples
	Where to Find Other Useful Testing Tips

	Preparing to Start the Tutorial
	Before You Begin
	Installing Rational Robot
	Installing the Sample Application
	Connecting to the Sample Repository

	What’s Next

	Test Planning
	Objectives
	Scenario
	Defining Test Requirements
	Defining and Inserting a Requirement in the Hierarchy

	Defining a Script
	Defining a Script and Attaching It to a Requirement

	Summary
	What’s Next

	Recording a Script
	Objectives
	Scenario
	Recording a Script
	Navigating Through the Application

	Viewing the Beginnings of the Script
	Adding Verification Points
	Capturing Data in a Tree Control – Verification Point 1
	Capturing the Properties of a Pushbutton – Verification Point 2
	Capturing Data in a Databound Control - Verification Point 3
	Capturing Properties of a Non-Visible Data Control - Verification Point 4

	Reviewing the Verification Points You Recorded
	About the Script You Recorded
	What the Script Commands Mean

	Summary
	What’s Next

	Playing Back a Script
	Objectives
	Scenario
	Playing Back a Script
	Summary
	What’s Next

	Testing a New Build and Evaluating Results
	Objectives
	Scenario
	Viewing the New Build
	Build A
	Build B

	Playing Back a Script Against a New Build
	Viewing the Test Results in the LogViewer
	Analyzing the Results in the Comparators
	Viewing the Test of the Tree Control
	Viewing Two Verification Points That Failed
	Viewing the Test of the Pushbutton
	Viewing the Test of the Data from the Order-Entry Database

	Summary
	What’s Next

	Specifying and Managing Defects
	Objectives
	Scenario
	Making Sure That Rational ClearQuest Is Available
	Creating a ClearQuest Master Database
	Attaching a ClearQuest Database to a Repository
	Generating a Defect from the LogViewer
	Accessing the Defect from the ClearQuest Database
	Sending Email About a Defect
	Setting Up an Email Rule
	Enabling Email Notification
	Sending a Trial Email

	Summary
	What’s Next

	Using Reports to Manage Test Progress
	Objectives
	Scenario
	Running a Script Summary Report
	Running a Defect Summary Report
	Summary
	What’s Next

	Enhancing Your Scripts
	Objective
	Scenario
	Deleting the New Record from the Database
	Recording and Manually Customizing a Script
	Using Robot to Record Navigational Actions
	Manually Customizing the Script

	Creating a Library File
	Creating a Header File
	Adding the Header and Library Files to the Script
	Summary
	What’s Next

	Index

