
Getting Started With TDL

The information contained in this document is current as of the date of publication and subject to change. Because Tally must respond
to changing market conditions, it should not be interpreted to be a commitment on the part of Tally, and Tally cannot guarantee the
accuracy of any information presented after the date of publication. The information provided herein is general, not according to
individual circumstances, and is not intended to substitute for informed professional advice.

This document is for informational purposes only. TALLY MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
DOCUMENT AND SHALL NOT BE LIABLE FOR LOSS OR DAMAGE OF WHATEVER NATURE, ARISING OUT OF, OR IN
CONNECTION WITH THE USE OF OR INABILITY TO USE THE CONTENT OF THIS PUBLICATION, AND/OR ANY
CONDUCT UNDERTAKEN BY PLACING RELIANCE ON THE CONTENTS OF THIS PUBLICATION.

Complying with all applicable copyright and other intellectual property laws is the responsibility of the user. All rights including
copyrights, rights of translation, etc., are vested exclusively with TALLY SOLUTIONS PRIVATE LIMITED. No part of this document
may be reproduced, translated, revised, stored in, or introduced into a retrieval system, or transmitted in any form, by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Tally
Solutions Pvt. Ltd.

Tally may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this
document. Except as expressly provided in any written licence agreement from Tally, the furnishing of this document does not give you
any licence to these patents, trademarks, copyrights, or other intellectual property.

© 2009 Tally Solutions Pvt. Ltd. All rights reserved.

Tally.Developer 9 is either registered trademarks or trademarks of Tally Solutions Pvt. Ltd. in India and/or other countries. All other
trademarks are properties of their respective owners.

Version: Getting Started With TDL/1.0/July 2009

Contents

Contents

Lesson 1: Introduction
1.1 Introduction to Tally.ERP 9 ...1

1.2 About the Product Tally.Developer 9 ...2
1.2.1 Tally Developer Installation - An Introduction .. 2
1.2.2 Pre-Installation - System Requirements ... 2
1.2.3 Steps for Installing Tally.Developer 9 .. 3
1.2.4 Uninstalling Tally.Developer 9 .. 7

1.3 Tally Definition Language ..7
1.3.1 What is TDL? .. 7
1.3.2 Configuration in Tally.ERP 9 to enable TDL ... 8

Lesson 2: Getting Started With TDL
2.1 Creating your first TDL Program ..11

2.1.1 Steps for creating TDL program using Tally.Developer 9 ... 11
2.2 Understanding the Various Components of TDL ...13

2.2.1 Definitions ... 13
2.2.2 Attributes & Modifiers .. 16
2.2.3 Data Types in TDL .. 17
2.2.4 Operators in TDL ... 18
2.2.5 Special Symbols .. 20
2.2.6 Actions in TDL .. 20
2.2.7 Functions .. 21

2.3 Variables in TDL ..22
2.3.1 Types of Variable .. 22
2.3.2 Attributes of Variable Definition .. 23

Lesson 3: Reports in TDL
3.1 Display Reports ..26

3.1.1 Understanding Dimensions & Formatting ... 27
3.1.2 Tally Data Structure- Objects, Methods and Collections ... 31

3.2 Edit Reports ...37

3.3 Designing Reports using Existing Data ..39
3.3.1 Simple Trial Balance Report .. 39
3.3.2 Tabular Reports .. 41
3.3.3 Hierarchical Report (Drill down Report) ... 43
 1

Contents

Lesson 4: Customisation – An Insight
4.1 Customising Default Screens ...47

4.1.1 User Defined Fields ..47
4.1.2 Voucher Customization ... 55
4.1.3 Customisation - Case studies .. 56

4.2 Invoice Customisation ...60
4.2.1 Invoice Customization - User defined format ... 60
4.2.2 Invoice Customization - Modifications to default format ... 64
 2

Lesson 1: Introduction
1.1 Introduction to Tally.ERP 9
For over the years, Tally's drive has been to constantly develop cutting edge technology that has
practical relevance to businesses. New features, new services, new technologies and the power
of Tally's simplicity have made Tally the most used business solution in India and earned us
worldwide acceptance.

Tally.ERP 9 - It's Fast, Powerful, Scalable… And very reliable!
Tally.ERP 9 is the world's fastest and most powerful concurrent Multi-lingual business Accounting
and Inventory Management Software. Tally.ERP 9, designed exclusively to meet the needs of
small and medium businesses, is a fully integrated, affordable and highly reliable software.
Tally.ERP 9 is easy to buy, quick to install, and easy to learn and use.

Tally.ERP 9 is designed to automate and integrate all your business operations, such as sales,
finance, purchasing, inventory, and manufacturing. With Tally.ERP 9, accurate, up-to-date
business information is literally at your fingertips anywhere. The powerful new features and
blazing speed and power of Tally.ERP 9 combine with enhanced MIS, Multi-lingual, Data Synchro-
nization and Remote capabilities help you simplify all your business processes easily and cost-
effectively.

Tally Definition Language (TDL) is a proprietary language of Tally. TDL enables customisation of
Tally.ERP 9 to incorporate additional functionalities. The product Tally.Developer 9 is designed to
be an integrated development environment with intelligence for development in the TDL
language.

Lesson Objectives

On completion of this lesson, you will be able to

Know the products Tally.ERP 9 and Tally.Developer 9
Know the installation and uninstallation procedure for Tally.Developer 9
Understand the basic features of Tally Definition Language
 1

 Introduction

1.2 About the Product Tally.Developer 9
Tally.Developer 9 is a comprehensive Tally Definition Language (TDL) development environment
designed specifically for TDL programmers. TD helps to generate customised Tally applications
quickly. Tally.Developer 9 makes coding and development of TDL programs much easier
compared to any other generic text editor.

Tally.Developer 9 has the ability to compile program source codes as a Tally Compiled Programs
i.e. a .tcp file. A .tcp file is a compiled TDL project which can be executed from within Tally.ERP 9
and it is only readable by Tally. A TCP program file contains product information provided by
developers at the time of project creation. Tally.Developer 9 provides users with the capability to
code efficiently in TDL and to deliver the codes in compiled formats.
The following are the some features of Tally.Developer 9:

Syntax checking and highlighting
Hyperlink for the existing definitions
Browsing for Default TDL codes
TDL language browsers - Project browser, Definition Browser, Schema browser etc.
Tally Developer Tools like Encrypted TDL migration, Decompilation and Tally connector

1.2.1 Tally Developer Installation - An Introduction
On successful installation of Tally.Developer 9, a shortcut is placed on the desktop, a folder titled
Tally.Developer 9 is created in the selected drive and all the files required to run Tally.Developer 9
are stored in this default folder. Alternatively, one can also specify another path, if required.

1.2.2 Pre-Installation - System Requirements
Before installing Tally.Developer 9, please ensure that basic operational rights on the system i.e.,
read, write access is available. The Hardware requirements and Operating system required for a
Client-Server and a standalone computer are as listed below:

Minimum Hardware requirements for Tally Developer 9

Operating Systems Supported

Processor Intel Pentium IV or above and Equivalent
Memory 256 MB RAM (Recommended 512 MB or more)
Free Hard Disk Space 40 MB Minimum
Monitor Resolutions 800 x 600 (Recommended 1024 x 768 or Higher)

Single User Microsoft Windows 98/NT/2000/2003/2008/XP/Vista
Multi-User License Server can be installed only on Windows NT/

2000/2003/XP/Vista
 2

 Introduction

1.2.3 Steps for Installing Tally.Developer 9
You can install Tally.Developer 9 using the following method:

1. Double click the install.exe icon
Follow the instructions displayed on your screen to proceed with the installation of Tally.Devel-
oper 9.

2. The Tally.Developer 9 Setup Wizard screen is displayed as shown.

 Figure 1.1 Tally.Developer 9 Setup Wizard

3. Click Next to proceed with the installation. On clicking Next, the following screen appears:
 3

 Introduction

 Figure 1.2 Tally.Developer 9 Setup Screen

In the Programs section, ensure that Tally.Developer 9/License Server is checked. (Here
we are selecting License Server)
New Installation appears as Title for fresh installation or installation in a new folder. If
Tally.Developer 9 is already installed on the system, the header is displayed as Upgrada-
tion.
In the License Server Directory/Application Directory, you can either
 Accept the directory that appears by default i.e., C:\Tally.Developer9 OR
 Click the browse button and choose an existing directory OR
 Type in the Path as required

If the specified path is not found, Installer creates a New Folder as specified by you
 4

 Introduction

4. After specifying the required path, click Install

5. The Setup status screen appears as shown.

 Figure 1.3 Tally.Developer 9 Setup Status

6. In the installer screen, click Finish to complete the setup.
 5

 Introduction

 Figure 1.4 Installation Successful Screen

An icon named Tally.Developer 9 is found on the Desktop on completion. Double Click the same
to start working with Tally.Developer 9.

On the successful installation of Tally.Developer 9 following documents
are available in the Tally.Developer 9 folder: Extending Tally.ERP9 using
TDL, TDL Enhancements for Tally.ERP 9 and corresponding sample
codes are available in folder Samples.
 6

 Introduction

1.2.4 Uninstalling Tally.Developer 9
To uninstall Tally.Developer 9 click the icon Uninstall from the Tally.Developer 9 folder. Select the
option for uninstall and click ok.

1.3 Tally Definition Language
A programming language is usually a series of commands, used as instructions, to a computer,
specifying the task to be accomplished. Programming languages can be of two different types,
namely, Procedural Language and Definition Language. Procedural language provides
commands that can be used to define the task to be performed. The commands are executed in
the order specified by the user. C is an example of procedural language.

Definition language provides users with 'Definitions' that can be used to specify the task to be per-
formed. The user can specify the task to be performed, but has no control over the sequence of
events that occur while performing the specified task. The sequence of events is implicit to the
language and cannot be changed by the user.

The most powerful and important technical capability which is available in Tally.ERP 9 is the Tally
Definition Language (TDL). This is a rapid business application development language using
which Tally.ERP 9 itself has been developed. Almost anything in Tally.ERP 9 can be altered, cus-
tomised, extended using this language.

Tally Definition Language (TDL) enables customisation of Tally to incorporate additional func-
tionalities. TDL is platform independent, which means TDL programs remain the same, irrespec-
tive of the Operating System/ Network Environment one uses. TDL also allows the sharing of data
across different platforms.

1.3.1 What is TDL?
TDL is a proprietary language used in Tally. It is very specific to Tally and not suitable for any
other environment. It is a language based on Definitions, which is non-procedural by concepts.
As a definition language, TDL allows the user to define the required tasks, but it has a set of
implicit events that occur by default over which the user has no control.

The following image gives the structure of Tally - Application Development Platform. There are
three different layers: Hardware Layer, Platform Layer and TDL Layer
Any user of Tally.ERP 9 can learn TDL and develop extensions for the product. The entire source
code of the product is available as part of the Tally Development Environment i.e. with our product
Tally.Developer9.

Tally Definition Language provides a development platform for the TDL programmer. TDL
provides flexibility & power to extend the default capabilities of Tally and integrate with external
applications

The capabilities of TDL language are:
Rapid Development: TDL definition is possible to reuse the existing definitions and deploy
them. It is possible to develop complex reports with a short span of time.
Multiple Output Capability: TDL language can be used to send the output to multiple out-
put devices and formats
 7

 Introduction

Data Management Capability: Everything in TDL is an object. The data stored and
retrieved as objects. By using TDL the user can create a new field and store a value into it
which can be persisted in the Tally.ERP 9 database
Integration Capability: The Tally.ERP 9 platform has a built in capability of integrating
data with other data sources: Different data sources possible in Tally.ERP 9 are XML,
ODBC, DLL, EXCEL etc.

Using the capabilities listed above, we can achieve the following
Invoice Printing, Payment Advice Printing, Voucher Printing, etc. in user desired pre-pre-
printed or plain formats
Various Columnar reports like Batchwise Itemwise Reports, Itemwise Partywise Outward
and Inward Movement Analysis
Various security related controls like Voucher Type wise Entry Control, control the table of
selection based on users like Sales persons can view only Debtors Ledgers, etc.
Customization of Synchronization i.e., One way sync, Masters Only, Voucher Type wise
Sync between various branches and HO
Creation of multiple Approval Levels
Labels and Bar Code Printing
Auto creation of Masters/ Transactions as required

As discussed earlier, TDL is a definition language which provides the users with 'Definitions'
that can be specified the task to be performed. And it has no control over the sequence of events,
which is implicit to the language, that occur while performing the specified task

TDL is a non procedural language because the TDL programmer cannot control the sequence
of events. The platform provides a set of functions for the TDL programmer

TDL is an Action Driven Language, the programmer can only control as to what happens when
a particular event takes place. While interaction, the user can select any sequence of action.
Based on his/her action a particular code gets executed.

TDL is a Rich language, which refers to a list of functions, attributes, and actions etc. which are
provided by the platform.

1.3.2 Configuration in Tally.ERP 9 to enable TDL
To enable TDL in Tally.ERP 9:

1. Run Tally.ERP 9 instance
2. Click F12:Configure button to display the Configuration menu
3. Select the menu item TDL Configuration
4. Press F4 or click Local TDLs
5. Set the value Yes for the option 'Load TDLs on Start up'
6. Specify the <Path\filename> with extension in List of TDLs to preload on Tally Star-

tup field
 8

 Introduction

The following image shows the TDL configuration screen. Here the user can attach either .tcp file
or .txt file.

 Figure 1.5 TDL Configuration in Tally.ERP 9

The following screen shows whether the attached TDLs are active or not allowed. The user can
comment the file using '#' key.
 9

 Introduction

 Figure 1.6 TDL Configuration
 10

Lesson 2: Getting Started With TDL
2.1 Creating your first TDL Program
2.1.1 Steps for creating TDL program using Tally.Developer 9

Create a project or file in Tally.Developer 9
Add Program Files to the project using the project properties option
To add files to the project
Using the option New File from the File menu the user can create .txt or .tdl file. The user
can enter the TDL statement in editor window.
Compile, Run and Test your program in Tally.ERP 9
Attach .tcp file in Tally configuration screen

As we discussed, TDL is a language based on definitions. When we start Tally.ERP 9 the Inter-
faces which are visible on the screen are Menu, Report, Button and Table.

A Report and Menu can exist independently. A Menu is created by adding items to it while a
Report is created using Form, Part, Line and Field. These are the definitions which cannot exist
without a Report. TDL operates through the concept of an action which is to be performed and
Definition on which the action is performed. The Report is invoked based on the action.

Lesson Objectives

On completion of this lesson, you will be able to

Understand the basic structure of a TDL program
Understand the various components of a TDL program
Understand the usage of variables in TDL
 11

 Getting Started With TDL

A basic TDL program to create a Report contains the definition Report, Form, Part, Line and Field
and an action to execute the Report. A Report can have more than one Form, Part, Line and Field
definitions but at least one has to be there. The hierarchy of these definitions is as follows:

Report uses a Form
Form uses a Part
Part uses a Line
Line uses a Field
A Field is where the contents are displayed or entered. The Report is called either from a
Menu or from a Key event.

Consider the following example to understand the creation of a basic TDL program. This TDL
program will add a new menu item, First TDL, in the Gateway of Tally menu.

[#Menu: Gateway of Tally]

Item: First TDL : Display : First TDL Report

[Report : First TDL Report]

 Form : First TDL Form

[Form : First TDL Form]

 Parts : First TDL Part

[Part : First TDL Part]

 Lines : First TDL Line

[Line : First TDL Line]

 Fields : First TDL Field

[Field : First TDL Field]

 Set as : "Welcome to the world of TDL"

The above code will add a new menu item in the Gateway of Tally menu and it displays the text
"Welcome to the world of TDL". When the Menu Item is selected the report, First TDL Report is
displayed. The report is in display mode as the action 'Display' is specified while adding the menu
item 'First TDL'. The user input is not accepted in this report.
 12

 Getting Started With TDL

Consider the following image for better understanding of a basic TDL program.

 Figure 2.1 TDL Program - At a Glance

2.2 Understanding the Various Components of TDL
TDL consists of Definitions, Attributes & Modifiers, Datatypes, Operators, Special Symbols,
Actions and Functions.

2.2.1 Definitions
TDL works on named definitions. The biggest advantage of working with TDL is its reusability of
definitions. All the definitions are reusable by themselves and can be a part of other definitions.
Example:
 [Part: FirstPart]
 13

 Getting Started With TDL

In the example mentioned above,
Part is the name of predefined definition type available in the platform. Menu, Report, Form, Part,
Line, Field etc are the examples of definition names.
All definitions start with an open square bracket and end with a closed bracket
FirstPart is the user defined name which the user provides to instantiate the definition i.e.
whenever a definition is created, a new object of a particular definition type comes into existence.

 Figure 2.2 Definitions

Types of Definition
The various definitions in TDL are categorized as follows:

Interface Definitions – Menu, Report, Form, Part, Line, Fields, Button, Table
Data Definitions – Object, Variable, Collection
Formatting Definitions – Border, Style, Color
Integration Definitions – Import Object, Import File
Action Definitions – Key
System Definitions
 14

 Getting Started With TDL

Interface Definitions
Definitions which are used in creating a user interface are referred to as an interface definition.
The definitions in this category are Menu, Report, Form, Part, Line, Fields, Button and Table.
Menu: A Menu displays a list of options. The Tally.ERP 9 application determines the action to be
performed on the basis of the Menu Item selected by the user. The 'Gateway of Tally' is an
example of a 'Menu'. A Menu can activate another Menu or Report.
Report: This is the fundamental definition of TDL. Every screen which appears in Tally.ERP 9 i.e.
the input screen or output screen is created using the report definition. A Report consists of one or
more Forms.
Form: A Form consists of one or more Parts. Part: Part consists of one or more Lines.
Line: A Line consists of one or more Fields.
Field: A field is place where the data is actually displayed or entered. The data can be a constant
or variable data.
Button: The user can perform an action in three ways i.e. by selecting a menu item, by pressing
a key and by clicking on a button. The Button definition allows the user to display a button on the
Button bar and execute an action.
Table: The Table definition displays a list of values as Tables. Data from any collection can be
displayed as a Table.

Data Definitions
Definitions which are used for storing the data are referred to as a Data Definitions. The defini-
tions in this category are Object, Variable and Collection.

Formatting Definitions
Definitions which are used in formatting a user interface are reffered as Formatting Definition.
Definitions in this category are Border, Style and Color.

Integration Definitions
Definitions which make the import of data available in SDF (Standard Data Format) are referred to
as Integration Definitions. Import Object and Import File are the two definitions classified in this
category.

Action Definitions
The action definition allows the user to define a action when a key combination is pressed. It also
associates an object on which the action is performed. The Key definition falls in this category.

System Definitions
System Definitions are viewed as being created by the administrator profile. Any items defined
under System Definitions are available globally across the application. System Definitions can be
defined any number of times in TDL. The items defined are appended to the existing list. System
Definitions cannot be modified. E.g. of System Definitions are System: Variable, System:
Formula, System: UDF and System: TDL Names
 15

 Getting Started With TDL

2.2.2 Attributes & Modifiers
An attribute is a property or characteristic for the Definition. Each definition has different
attributes. There is a predefined set of attributes provided by the platform for each definition type.
The attribute specifies the behavior of a definition. A Definition can have multiple attributes asso-
ciated with it. Each attribute has a 'Name'(predefined) and an assigned value (provided by the
programmer).

Example:
[Part: PartOne]

Line: PartOne

In the above example, Line is the name of attribute, specific for the definition type. PartOne
attribute value, it can be any constant or a formula.

 Figure 2.3 Attributes and Modifiers

Classification of Attributes
The classification of an attribute is done on the basis of the number of values it accepts and if they
can be specified multiple times under the definition i.e. based on the number of sub attributes and
the number of values. There are seven types of attributes, they are: Single and Single List, Dual
and Dual List, Triple and Triple List and The Attribute type Menu Item.
 16

 Getting Started With TDL

Modifiers are used to perform a specific action on definition or attribute. They are classified as
Definition Modifiers and Attribute Modifiers. Definition Modifiers are #, ! and *. Attribute Modifiers
are Use, Add, Delete, Replace/Change, Option, Switch and Local. They are classified into two:

Static/Load time modifiers: Use, Add, Delete, Replace/Change
Dynamic/Real time modifiers: Option, Switch and Local

2.2.3 Data Types in TDL
The Data Types in TDL specify the type of data stored in the field. TDL being the business
language supports business data types like amount, quantity, rate apart from the other basic
types. The data types are classified as Simple Data Type and Compound Data Type.

 Figure 2.4 DataTypes

Simple Data Type
This holds only one type of data. These data types cannot be further divided into sub-types.
String, Number, Date and Logical data types fall in this category.
 17

 Getting Started With TDL

Compound Data Type
This is a combination of more than one data type. The data types that form a compound data type
are referred to as sub-data type. The Compound Data types in TDL are: Amount, Quantity, Rate,
Rate of exchange and Aggregate.

The type for the field definition is specified using the Type attribute.
Example:
[Field: Qty Secondary Field]

Type : Quantity: Secondary Units

Qty Secondary Field is the name of the field, Type is the attribute name, Quantity is the
datatype and Secondary Units is the subtype for the field

2.2.4 Operators in TDL
Operators are special symbols or keywords that perform specific operations on one, two or three
operands and then return a result.

Data Type Sub-Types
Simple Data Types
Number
String
Date
Logical
Compound Data Types
Amount Base / Direct Base

Forex
Rate of Exchange
DrCr

Quantity Number
Primary Units/ Base Units
Secondary Unit/ Alternate Units/ Tail Units

Rate Price
Unit Symbol

Rate of Exchange
 18

 Getting Started With TDL

 Figure 2.5 Operators in TDL

The three types of operators in TDL are as follows:
Arithmetic Operators - The arithmetic operators supported by TDL are + (Addition), -
(Subtraction), / (Division) and * (Multiplication).
Logical Operators - The logical operators used are: OR, AND, NOT, TRUE/ON/YES and
FALSE/OFF/NO
Comparison Operators - A comparison operator compares its operands and returns a log-
ical value based on whether the comparison is true.
String Operators - A string operator allows comparing two strings.
 19

 Getting Started With TDL

2.2.5 Special Symbols
The Symbol Prefix in Tally Definition Language (TDL) has different usage and behavior when
used with different Definitions and attributes of definitions.
The different special symbols used in TDL are $, $$, @, @@, #, ##, ;, ;;, ;;;, /* */, + , ! , * and
_. Each of these symbols are used for a specific purpose. The usage of each of these symbols
will be discussed in detail in the subsequent chapters.

2.2.6 Actions in TDL
Actions are activators of specific functions with a definite result. TDL is an action driven language.
TDL does not have a procedural flow of control. In TDL the user will do some operation in Tally
application, and then some action got executed. In TDL actions are used to implement or activate
the definitions. For example, Display is an action which is used as below:

[#Menu: Gateway of Tally]

Add : Item : Action Reports: Display : Action Report

In Tally application, the Ctrl+A Key pressed from a voucher accepts the Entry Screen. Examples
of Actions are: Display, Menu, Print, Create, Alter etc.

Example:
Action: Create: My Sample Report

Action is the Keyword
Create is the name of the action to be performed. It can be any of the pre-defined actions.
My Sample Report is the name of the definition/variable on which the specified action is to be
performed.

The operator = is a comparison operator, not assignment operator. There
is no assignment operator in TDL.

While evaluating the expression some keywords are ignored. The
keywords which are not considered are Than, With, By, To, Is, Does, Of.
 20

 Getting Started With TDL

 Figure 2.6 Actions in TDL

2.2.7 Functions
The functions in TDL are defined and provided by the platform. These functions are meant to be
used by the TDL programmer and are specifically designed to cater to the business requirement
of the Tally.ERP 9 application. TDL has a library of functions which allows performing string, date,
number and amount related operations apart from the business specific tasks. Some of the basic
functions provided by TDL are $$StringLength, $$Date, $$RoundUp, $$AsAmount etc.

Example:
$$SysName:EndOfList

$$Sysname is the Function name and EndOfList here acts as an argument.
 21

 Getting Started With TDL

 Figure 2.7 Functions in TDL

2.3 Variables in TDL
A Variable is a storage location or entity. It is a value that can change, depending on the condi-
tions or on the information passed to the program. In TDL, a Variable helps to control the
behavior of Reports and their contents. Variables assume different values during execution and
these values affect the behavior of the Reports. A Variable definition is similar to any other defini-
tion.

2.3.1 Types of Variable
The variables are classified into different types based on the type of values that they can store.
In TDL, the variables are classified into four:

Simple Variable - A variable which can store single value
Repeat Variable - A variable which can store multiple values of a single data type within
the Report Scope
List Variables - A variable which can store multiple values of a single datatype identified
by a 'Key'. Key provides the flexibility of accessing a value directly from the List
Compound Variables -Variable which can store multiple values of different data types.
 22

 Getting Started With TDL

Consider the following example to understand the concept of variable in TDL.

[Report : Variable Demo]

Form : Variable Demo

Variable : SampleVar

In the above definition, declaring the variable as local by attaching at the Report level using the
attribute Variable. SampleVar is the variable name.

[Field: Initial Value]

Use : Name Field

Width : 35

Modifies : Sample Var

[Field: Value from Variable]

Use : Name Field

Width : 35

Skip : Yes

Set As : ##SampleVar

Above two field definitions, initial Value and Value from Variable. In the first definition modifying
the Variable value to the user entered value using the attribute Modifies. Since variable 'Sample
Var' is a local variable to this report, modifying in this field will not retain the value once the report
is quit.

The second field which the sets the value of variable as Sample Var.

[Variable: SampleVar]

Type : String

Default : "Default Value"

In the above code snippet gives the actual definition of the Variable. SampleVar is the Variable
name. Type and Default are the attributes of variable. Following section gives a brief explanation
about various attributes of variable definition.

2.3.2 Attributes of Variable Definition
The attributes that defines the behavior of the variable are Type, Default, Volatile and Persistent.

Type
The data type of the variable is specified using the Type attribute of variable definition.
 23

 Getting Started With TDL

All the data types supported by TDL can be used to specify the variable data type. The Types of
values that a variable can handle are String, Logical, Date and Number. The Amount, Quantity
and Rate data type can be used in the context of company object only.
In the absence of attribute Type, String is considered as the default data type.

Example:
[Variable: Test Var]

Type : Logical

Test Var is the variable name, Type is the variable attribute and Logical is the data type defined
for the variable Test Var.

Default
This attribute provides the initial value for the variable. The initial value can be overridden while
defining the system scope.

Example:
[Variable: Test Var]

Type : Logical

Default : Yes

The default value of the variable 'Test Var' is set to Yes.

Persistent
This attribute allows storing the value of variable permanently across sessions. The value of the
variable modified by the last session is retained even after exiting the application. Only the
variable with the system scope can be persistent.

Example:
[System: Variable]

Test Var : 'No'

[Variable: Test Var]

Type : Number

Persistent : Yes

The latest value of variable Test Var will be retained by the application.

Volatile
The attribute Volatile, when set to Yes, allow the user to store multiple values of the variable in
the stack. The default value of this variable is Yes.
It stores multiple values within the report scope. When a report is called from current report, the
variable will store retain the both the values modified through the current report and the previous
report. When user exits the current report the value is restored to the previous one.
 24

 Getting Started With TDL

Example:
[Variable: Test Var]

Type : Number

Volatile : Yes

The variable Test Var is specified in the report R1 which sets it value as 10. The report R2 is
called from R1, and it sets the value to 20. Further a report R3 is called from R2 which modifies
the value as 30. At this point in time, the Test var variable holds three values in stack 10, 20, 30.
When user quits the R3 report, the variable restores the value to 20 and so on.
The actions in TDL can be delivered in three ways:

By activating a Menu Item
By pressing a Key
By activating a Button.

Button /Key is a definition 'Button' refers to the button that appears on the button bar, on clicking
the relevant button, the associated action gets triggered. The action to be associated with this
button needs to be defined in TDL. The key refers to the key combination that is associated along
with the button. The action can be triggered by pressing that key combination also.
 25

Lesson 3: Reports in TDL
Introduction
In Tally.ERP 9 the financial statements are generated as Reports based on the vouchers entered
till date. The Balance Sheet, Profit & Loss A/c, Trial Balance etc are the some of the Reports
which Tally.ERP 9 has by default. Normally a business requires Reports in any of the following
formats:

Tabular Report: A Report with fixed number columns which can be configured
Hierarchical Report: A Report designed in successive levels or layers
Columnar Report: A Report with multiple columns

Tally.ERP 9 caters to generating all the types of Reports mentioned above.

3.1 Display Reports
A menu item defined with Display action is used to display a report. Consider the menu item
Quarterly Report Item defined in the menu Gateway of Tally. To display a report Quarterly
Report using the menu item Quarterly Report item, use the following code.
[#Menu: Gateway of Tally]

Item: Quarterly Report Item: Display: Quarterly Report

Lesson Objectives

On completion of this lesson, you will be able to

Understand how to display the Tally.ERP 9 reports using TDL
Understand the dimensions and formatting of Reports
Understand the concept Object
Understand how to create and edit reports using TDL
 26

 Reports in TDL

3.1.1 Understanding Dimensions & Formatting
Dimensions are specifications. Dimensions in TDL are effective either in the display mode or in
the print mode. The data in TDL does not have an absolute position of the dimensions specified
but a relative. There are four definitions in TDL that attract dimensions. They are: Form, Part, Line
and Field.

In TDL the following Unit of Measurements can be used:
Millimeters/ mms, Centimeters/ cms, Inch (es), Number of Characters/ Number of Lines, %
Screen/ Page, Number - Points (where 1 Point = 1/72 Inch)

Dimensional Attributes
Dimensional Attributes can be classified into two i.e., Specific and General Attributes.

Definitions and Attributes for Formatting
Definition - Border
The Definition Border determines the type of lines required in a border which can be used by a
Part, Line or a Field which means that this definition can define customized borders for the user.
But it is ideal to use the predefined borders which are part of the default TDL instead of user
defined, since almost all possible border combinations are already defined in the Default TDL.
Top, Bottom, Left, Right, Color and PrintFG are the attributes of Border definition.
Consider the following example:
[Field: Sample Border and Style]

Set as : "Welcome 2 Tally"

Width : 60 mms

Border : Sample Border

Definitions Specific Dimensions General Dimensions
Form Height, Width, Space Top,

Space Bottom, Space Left,
Space Right

Horizontal Align, Vertical Align, Full
Height, Full Width

Part Height, Width, Space Top,
Space Bottom, Space Left,
Space Right

Horizontal Align

Line Height, Space Top, Space
Bottom, Indent

Full Height

Field Width, Space Left, Space
Right, Indent

Full Width, Widespaced
 27

 Reports in TDL

[Border: Sample Border]

Top : Thin,Double

Bottom : Thick

Left : Flush

Right : FullLength

Color : Red

Definition - Style
The Definition Style can be used in the Field Definition only. This definition determines the
appearance of the text being displayed/printed by using a corresponding font scheme, Bold, Italic,
Point Size, Font Name, etc.

Style Attribute in Field Definition is used to format the appearance of the text appearing within the
Field both in display and print mode provided the Print Style Attribute is not used within the current
Field. Print Style attribute in Field is used if the Style required while displaying is different from the
Style required while printing. Consider the following example:
[Field: Sample Border and Style]

Set as : "Welcome 2 Tally"

Width : 60 mms

Style : Sample Style

Border : Sample Border

[Style: Sample Style]

Font : "Algerian"

Height : 16

Bold : Yes

Definition - Color
The Definition Color is useful to determine the Foreground and Background color for a Form, Part,
Field or Border both in Display as well as Print Mode,

Color specification can be done by specifying the RGB Values (the combination of Red, Green
and Blue - each value should range from 0 to 255)
For example:
[Color: Light Grey]

RGB : 218, 218, 218
 28

 Reports in TDL

Consider the following example for the better understanding of dimensions
/*
This program illustrates different attributes used for formatting and border and style definition and its attributes
*/

[Report: Dimension Sample]

Form : Dimension Sample

[Form: Dimension Sample]

Parts : Dimension Sample

[Part: Dimension Sample]

Left Part : LRPP Part1

Right Part : LRPP Part2

[Part: LRPP Part1]

Lines : LRPP Part1 Line

[Line: LRPP Part1 Line]

Fields: LRPP Part1 Field1, LRPP Part1 Field2

[Field: LRPP Part1 Field1]

Set as : "Welcome to the World of TDL - Left"

Style : Sample Style

Border : Sample Border

[Field: LRPP Part1 Field2]

Set as : "Hello TDL - Left"

Style : Sample Style

Border : Sample Border

[Part: LRPP Part2]

Lines : LRPP Part1 Line

Local : Field: LRPP Part1 Field1: Set As: "Welcome to the World of TDL -
Right"

Local : Field: LRPP Part1 Field2: Set As: "Hello TDL - Right"
 29

 Reports in TDL

;; Border Definition

[Border: Sample Border]

Top : Thin,Double

Bottom : Thick

Left : Flush

Right : FullLength

Color : Red

;; Style Definition

[Style: Sample Style]

Font : "Algerian"

Height : 16

Bold : Yes

 Figure 3.1 Dimensions
 30

 Reports in TDL

3.1.2 Tally Data Structure- Objects, Methods and Collections
Any information that is stored in a computer is referred to as Data. Database is a collection of
information organized in such a way that a computer program can quickly select desired data. A
database can be considered as an electronic filing system. To access information from a
database a Database Management System (DBMS) is used. DBMS allows entering, organizing,
and selecting data in a database.
The organization of data in a database is referred to as the 'Database Structure'. The widely used
database structures are hierarchical, relational, network and object-oriented. In the hierarchical
structure the data is arranged in a tree like structure. This structure uses the parent - child relation
ships to store repeating information. A parent can have multiple children but a child can have only
one parent. The child in turn can have multiple children. Information related to one entity is
referred to as an object. A database is a group of interrelated objects.

An object is a self-contained entity that consists of both data and procedures to manipulate the
data. It is defined as an independent entity based on its properties and behavior/functionality.
Objects are stored in a data base. A relationship can be created between the objects. As dis-
cussed, the hierarchical structure has a parent-child relationship. For example, child objects can
inherit characteristics from parent objects. Likewise, a child object can not exist with out a parent
object. After discussing the object concept in general, let us examine the Tally object structure in
the following section.

Tally Object Structure
The Tally data base is hierarchical in nature in which the objects are stored in a tree like structure.
Each node in the tree can be a tree in itself. An object in Tally is composed of methods and collec-
tion. Method is used to retrieve data from the database. A collection is a group of objects. Each
object in the collection can further have methods and collection. The structure is as shown in
Figure.

 Figure 3.2 Object Structure
 31

 Reports in TDL

Everything in TDL is an Object. As mentioned in the earlier chapters, Report, Menu, Company,
Ledger all are objects in TDL. The properties of objects in TDL are called as attributes. For
example, the attributes Object, Title, Form are all properties that define the Report object.
For example, the Object Ledger contains the Methods Name, Parent etc. and the collections
Address and Billwise Details.
As shown in the above figure Objects available at Level 1 are referred as Primary objects and
objects which are at Level 2-n are referred as secondary objects.
The types of Objects can be broadly classified into two:

Interface Objects - It defines the user interface while Data objects store the value in the
Tally Primary or Secondary database. Any data manipulation operation on the data object
is performed through Interface objects only
Data Objects - Data is actually stored in the Data Objects. These objects are classified into
two types viz., Internal objects and User defined objects / TDL objects.
Internal objects - Internal objects are provided by the platform. They are stored in tally
database. Multiple instances of internal objects can exist. In Tally, internal objects are of
several types. Examples of internal objects are Company, Group, Ledger, Stock, Stock
Item, Voucher Type, Cost Centre, Cost Category Budget, Bill and Unit of Measure.
User Defined Objects /TDL Objects - All Objects which are defined by the user in TDL are
referred as User Defined Objects or TDL objects. User defined objects are further classified
as Static Objects or Dynamic Objects. Static TDL objects cannot be stored in Tally data-
base. The data for the static object is hard coded in the program and can be used for dis-
play purpose only.

The dynamic TDL objects can be created from the data available in any of the following external
data sources:

 XML Files from remote HTTP server
 DLL files
 From any type of database through ODBC

For example, an Employee Object can be created, which gives Name, ID and Designation. These
values can be provided as Methods. All such Objects can be put together inside a Collection. The
following sample code illustrates this.
[Object: Employee1]

Name: "Ashok"

EmpID: 101

EmpDesignation: Trainee-Developer

[Object: Employee2]

Name: "Anad"

EmpID: 99

EmpDesignation: HR-Executive
 32

 Reports in TDL

[Collection: Employee Masters]

Object: Employee1

Object: Employee2

Methods
Each piece of information stored in the data object can be retrieved using a method. A method
either performs some operation on the object or retrieves a value from it. To retrieve the value
from the database, the storage name is prefixed with the $ symbol. TDL provides pre-defined
Methods and allows the user to create methods as well. Methods are classified as Internal or
External methods.

Internal methods are predefined methods. For example, under the object ledger Methods,
Name, Opening Balance etc. are internally defined.

In External Methods A user can change the behavior or perform an action on the internal
object by defining new Methods. Methods defined by the user are referred to as External
methods or User defined methods.

Example:
[#Object: Bill]

BalanceDiffAmt: $OpeningBalance - $ClosingBalance

In the above code, OpeningBalance and ClosingBalance are default Methods. BalanceDif-
fAmt is a User Defined Method which gives the difference of Opening Balance and Closing
Balance for the Bill. The user can access this method using $BalanceDiffAmt.

Collection
A collection can be a collection of objects or a collection of collections. The collection of collec-
tions is referred as Union of collection. In TDL collections are of two types: Simple collection and
Compound collections.

Simple Collection: Simple collections only have a single method which is repeatable.
Simple Collections cannot have sub-collections. The Name and Address are examples of
Simple Collections.
Compound Collections: The collections which have sub-collections and multiple methods
are called Compound Collection. Any Internal or External Collections of Primary or Sec-
ondary or user defined objects is an example of a Compound Collection.

Collection, the data processing artifact of TDL provides extensive capabilities to gather data not
only from Tally database but also from external sources using ODBC, DLLs and HTTP.
 33

 Reports in TDL

Creating Employee Collection
Collections can also be a cluster of External Objects. Consider the following example of
Employee Collection of External Objects.
[#Menu: Gateway of Tally]

Add: Item : Employee Dept. : Display :Employee List

[System: Formula]

EmpHRA : $EmpBasic * 0.10

AmtWidth : 10

[Report: Employee List]

Form : EmpForm

[Form: Emp Form]

Part : EmpPart

[Part: Emp Part]

Line : Emp Titles, Emp Line

Repeat : Emp Line : MyEmps

Scroll : Vertical

Common Border : Yes

[Line: Emp Titles]

Use : Emp Line

Local : Field : FEmp Name : Set as: "Employee Name"

Local : Field : FEmp Basic : Type : String

Local : Field : FEmp HRA : Type : String

Local : Field : FEmp Salary : Type : String

Local : Field : FEmp Basic : Set as: "Basic"

Local : Field : FEmp HRA : Set as : "H.R.A."

Local : Field : FEmp Salary : Set as : "Salary"

Local : Field : Default : Align : Centre

Local : Field : Default : Style : Normal Bold

Border: Thin Top Bottom
 34

 Reports in TDL

[Line: Emp Line]

Field : FEmp Name

Right Fields: FEmp Basic, FEmp HRA, FEmp Salary

[Field: FEmp Name]

Set as : $EmpName

Width : @@NameWidth

Space Left : 3

[Field: FEmp Basic]

Type : Amount

Set as : $$AsAmount:$EmpBasic

Width : @@AmtWidth

Align : Right

Border : Thin Left Right

[Field: FEmp HRA]

Use : FEmp Basic

Set as : $$AsAmount:@@EmpHRA

Border : Thin Right

 [Field: FEmp Salary]

Use : FEmp Basic

Set as : #FEmpBasic + #FEmpHRA

Border : Thin Right

[Collection: MyEmps]

Objects : Emp01, Emp02, Emp03, Emp04, Emp05

[Object: Emp01]

EmpName : "Ajay"

EmpBasic : 1000

EmpDept : "Training"
 35

 Reports in TDL

[Object: Emp02]

EmpName : "Anil"

EmpBasic : 2000

EmpDept : "Training"

[Object: Emp03]

EmpName : "Ashish"

EmpBasic : 3000

EmpDept : "Large Enterprise"

[Object: Emp04]

EmpName : "Sanjay"

EmpBasic : 4000

EmpDept : "Large Enterprise"

[Object: Emp05]

EmpName : "Veena"

EmpBasic : 5000

EmpDept : "Large Enterprise"
 36

 Reports in TDL

The output for the above program is as shown below.

 Figure 3.3 External Object Output

3.2 Edit Reports
Create and Alter action acts only upon the Report Definition. These actions activate the Report in
Create or Alter Mode. In other words, the Report is started in the Edit Mode. In case of Create
Action, the user enters the Report in order to add values whereas in case of Alter, the user enters
the Report to modify the already created values.

To store the values as a part of Tally Database, the Report must be associated to a Data Object.
For example, Group, Ledger, Voucher, etc. are some of the Data Objects available in Tally.

For instance, in order to design an interface to create a Ledger:
The Object Ledger must be associated to the Report using Report Attribute Object
Values entered by the user in the Fields within the Report must be stored in relevant Meth-
ods using Field Attribute, Storage

Example:
The following code demonstrates the usage of Action Create and Attribute Storage at Field defini-
tion to store the values entered within the relevant Object associated at Report Level
 37

 Reports in TDL

[#Menu: Gateway of Tally]

Add : Key Item: Ledger Creation: L : Create:Create Ledger

 ;; Object Association done at Report Level

[Report: Create Ledger]

Form : Create Ledger

Object : Ledger

[Form: Create Ledger]

Parts : Create Ledger

[Part: Create Ledger]

Lines : Store LedgerName, Store LedgerGroup

[Line: Store LedgerName]

Fields: Short Prompt, Name Field

Local : Field: Short Prompt: Info: "Name :"

Local : Field: Name Field: Storage: Name

;; Storing the value entered by user in an Internal Method Name available within the Object associated at the Report Level

[Line: Store LedgerGroup]

Fields : Short Prompt, Name Field

Local : Field : Short Prompt: Info : "Under :"

Local : Field : Name Field: Storage :Parent

Local : Field : Name Field: Table :Group

Similarly, Parent Method is stored with the user entered value which is considered as the Group of
the Ledger created. Also Group is a default Table/ Collection to display all the default as well as
user defined Groups. Field Attribute Table helps to restrict the user input to a predefined list.
In the above example,

Default Menu, Gateway of Tally have been altered to add a new Item Ledger Creation
which allows the user to create Ledger
Report Create Ledger associates the Object Ledger to it which indicates that the Report is
meant for creating an instance of the Object Ledger.
The Name and Group of the Ledger are stored in the Internal Methods Name and Parent
which stores.
 38

 Reports in TDL

Example:
The following code demonstrates the usage of Alter Action at Button

[Button: My Reco Button]

Button meant to do Bank Reconciliation
Key : Alt + F5

Action: Alter: Bank Recon

Alter Action to trigger Bank Recon Report in Alter Mode
Title : "Reconcile"

[Form: My Bank Vouchers]

 Button: My Reco Button

Associating the Button to the Report

In the above example,
Button My Reco Button is defined with alter action to alter Report Bank Recon on press-
ing Alt + F5 Key. This button is used for entering dates in Bank Reconciliation Report.
Button My Reco Button is associated to the Form My Bank Vouchers

3.3 Designing Reports using Existing Data
3.3.1 Simple Trial Balance Report
Design a report which prints ledger name and closing balance as follows:
 ABC & Company 12,000.00
 Cash A/C 6,000.00
 State Bank of India 12,000.00

Use the following code.
[#Menu: Gateway of Tally]

Add : Item: MyTrialBalance : Display : My Trial Balance

[Report: My Trial Balance]

Form : My Trial Balance

[Form: My Trial Balance]

Top Part : MyTB Detail

[Part: MyTB Detail]

Top Line : MyTB Detail
 39

 Reports in TDL

Repeat : MyTB Detail: MyTB Collection

Scroll : Vertical

[Line: MyTB Detail]

Left Fields : MyTB Name

Right Fields : MyTB Amt

[Field: MyTB Name]

Width : 30

Set as : $Name

[Field: MyTB Amt]

Type : Amount

Width : 15

Set as : $ClosingBalance

Align : Right

[Collection: MyTB Collection]

Type : Ledger

The Set as: $Name and Set as: $ClosingBalance are Internal Methods which are associ-
ated with the Fields, MyTB Name and MyTB Amt, under the Line MyTB Detail with Col-
lection MyTBCollection.
The Repeat attribute at the Part level repeats the Top Line MyTB Detail to list all the
Objects under the Collection MyTB Collection.
Attribute Scroll: Vertical is used under the Part because it increases the visibility of the
Lines and scrolls the screen without making the Lines shrink to fit the screen. This is useful
if the Trial Balance of a Company has a considerable number of ledgers.
 40

 Reports in TDL

The output of the program as shown:

 Figure 3.4 Trial Balance - Output

3.3.2 Tabular Reports
A Tabular Report has the simplest format of all the Report formats. A typical Tabular Report will
have following components:

Report Title: It contains the Name of the Report, the Title for each column, the Day/ Period
for which a Report is generated, etc.
Report Details: It contains the actual information
Report Total: It contains the Total of the respective columns

In a typical Tabular Report, the number of columns is fixed and is interactive i.e. an end user can
change the appearance of the Report. The Day Book, Stock Summary, Trial Balance, Group
Summary are the some of the default Tabular Reports in Tally.ERP 9.

Designing a Tabular Report
A typical Tabular Report will have a Title Line, Details Line and an optional Total Line. The Details
Line will be repeated over the objects of a Collection. A Tabular Report can be made Interactive
by adding the following features.

Adding Buttons to change the period, to change the contents of the Report, etc.
Adding explosions to the lines
 41

 Reports in TDL

Example: Simple Tabular Report
Let us consider writing a simple Trial Balance.
[Part: My TB Part]

Lines : My TB Title, My TB Details

Repeat : My TB Details: My TB Groups

Scroll : Vertical

The following code snippet displays the exploded part:
[Line: My TB Details]

Fields : My TB Name Field, My TB ParName Field

Right Fields: My TB Dr Amt Field, My TB Cr Amt Field

Explode : My TB Group Explosion : $$IsGroup and $$KeyExplode

[Field: My TB Name Field]

Use : Name Field

Set as : $Name

Variable: MyGroupName1

The code for the exploded part is as shown below:
[Part: My TB Group Explosion]

Lines : My TB Details Explosion

Repeat : My TB Details Explosion : My TB GroupsLedgers

Scroll : Vertical

[Line: My TB Details Explosion]

Fields : My TB Name Field, My TB ParName Field

Right Fields : My TB Dr Amt Field, My TB Cr Amt Field

Explode : My TB Group Explosion : $$IsGroup and $$KeyExplode

Indent : 2 * $$ExplodeLevel

Local : Field : Default : Delete: Border

In the code snippet, the Collection My TB GroupLedgers is a union of collections of the Type
Group and Ledgers respectively.

[Collection: My TB GroupsLedgers]

Collection : My TB Groups, My TB Ledgers
 42

 Reports in TDL

The variable MygroupName1 is used in the attribute Child Of under the collections My TB
Groups and My TB Ledgers.

[Collection: My TB Groups]

Type : Group

Child Of : #MyGroupName1

[Collection: My TB Ledgers]

Type : Ledger

Child Of : #MyGroupName1

When the user presses the Shift + Enter keys, then the exploded part shows the Sub-groups
under the group in the current line.

Attributes and Functions used in the above program
The attribute Explode
The attribute 'Explode' refers to an attribute of the line, which is used to take the current data from
the Line Object. A Part is displayed after the process of explosion is complete.
Syntax

Explode : <Part Name> : <Logical Condition>
<Part Name> is the name of the Part which displays the additional information about the Line
object.
<Condition> If the Condition is True, then it will result in an explosion.
The Function of $$KeyExplode
$$KeyExplode function gives the current status of the keys Shift and Enter. This is used as a
condition to check if the user has pressed the Shift+Enter Keys.

3.3.3 Hierarchical Report (Drill down Report)
A Tally application provides a simple way of navigating from one report to another which is
commonly referred to as a drill down. A Drill Down facility moves from one report to the other to
give a detailed view based on the selection in the current report. A user can return to the first
Report from the detailed view. A typical drill down in Tally.ERP 9 starts from the Report and
reaches the Voucher Alteration screen.
Designing Hierarchical Reports
A Hierarchical Report can be designed by incorporating the following changes to a Tabular
Report.

Variable attribute of Report definition
Child Of attribute of Collection definition
Display and Variable attributes of Field definitions
Variable Definition
 43

 Reports in TDL

Example:
The following code snippet demonstrates the Drill down action, which is based on the Group
Name displayed in the field. The Drill down action is achieved by specifying the two attributes
Variable and Display at the field level.
[Field: MyTB Name]

Width : 120 mms

Set as : $Name

Variable : GroupVar

Display : My Trial Balance : $$IsGroup

A Variable is defined as a Volatile and is associated at Report. The attribute Variable of Report
definition is used to associate the Variable with the report.
[Variable: Group Var]

Type : String

Default : ""

Volatile : Yes

[Report: My Trial Balance]

Form : My Trial Balance

Variable : GroupVar

The same Variable is used in the Childof attribute of the Collection definition. When a line is
repeated over this collection in the report when the user presses the Enter key the Report being
displayed will have the objects whose Parent Name is stored in the variable.
[Collection: My Collection]

Type : Group

Childof : ## GroupVar
 44

 Reports in TDL

The following screen is displayed when the user selects the option from the Menu:

 Figure 3.5 Simple Trail Balance Report

When the key Enter is pressed by the user, the next screen displays the Sub Groups of the
current Group
 45

 Reports in TDL

 Figure 3.6 Sub Groups

Columnar Report
The reports in which the number of columns added or deleted as per the user inputs are referred
to as column based reports. There are four types of column based reports in Tally, namely Multi-
Column Reports, Auto-Column Reports and Automatic Auto-Column Reports, Columnar Report.
Using Column Report & Repeat attribute at the Report By using the Column Report & Repeat
attribute at the Report, "New Column", "Alter Column" and "Delete Column" buttons will be auto-
matically added to 'MulCol TrialBalance' Report.

[Report: MulCol Trial Balance]

ColumnReport: MyMultiColumns

Repeat : SVCurrentCompany, SVFromDate, SVToDate

In the above code attribute Column Report of the Report definition, facilitates the creation of mul-
ticolumn reports.

The attribute Column Report is associated with a variable. The variable is specified in the Repeat
attribute of Report definition. Both attributes must be specified in the Report definition to create a
multi-column report.
 46

 Reports in TDL

 Figure 3.7 Multi Column Report
 47

Lesson 4: Customisation – An Insight
4.1 Customising Default Screens
4.1.1 User Defined Fields
There may be instances when you need to store additional information in the existing objects.
This need has given rise to the concept of User Defined Fields (UDF) which is stored as a part of
Tally database. In other words, UDFs store additional information in the existing objects.

Similar to data types used in Fields and Variables, User Defined Fields (UDF) can also be of type
String, Amount, Quantity, Rate, Number, Date and Logical. Defining UDFs does not serve the
purpose unless it is associated with one or more internal objects. When UDF is created in an
already existing report, it is always attached to the object to which this report is associated.

Example:
[System: UDF]

MyUDF : String : 20001

The above code snippet is used to store the user input in the UDF MyUDF using the attribute
storage. UDFs should be defined under the section [System: UDF].
MyUDF is the Name of UDF which identifies the UDF it describes the purpose for which it is
created. String is the datatype which deals with any of the Tally data type. 20001 is the UDF
index number which can be any number between 1 and 59999.

Lesson Objectives

On completion of this lesson, you will be able to

Understand the basic concepts for Customisation
Understand the differenct types of Customisation
 48

 Customisation – An Insight

[Field: NewField]

Use : NameField

Storage : MyUDF

In the above code snippet, MyUDF is the Name of UDF and the attribute storage allows the user
to store the value in the context of current object.

To retrieve the value of MyUDF from an object use the following field definition
[Field: MyField]

Use : Namefield

Set as : $MyUDF

UDFs are classified into two types, which are as follows:
 Simple UDF
 Complex/Compound/Aggregate UDF

Simple UDF
A Simple UDF can store one or more values of single data type only. When a UDF is used for
storage, it stores the value in the context of object associated at Line or Report Level, by default.
Only one value is stored in this case.

Example:
;;A company wants to store their company location which is not available in default Tally. Hence you are adding the same.

[#Part : Basic Company]

Add : Line : At End : CustLocation

[Line : CustLocation]

Field : Medium Prompt, CustLocation

Local : Field : Medium Prompt : Set as : "Company Location"

Index Number can be any number between 1 and 59999. The number
falling between 1 to 9999 and 20001 to 59999 are opened for customisa-
tion and 10000 to 20000 is allotted for Common development in TSPL.
The user can create 59999 UDFs of each data type.
 49

 Customisation – An Insight

[Field : CustLocation]

Use : Name Field

Storage : CompanyLocation

Table : CompanyLoc

Show Table : Always

[Table : CompanyLoc]

Title : "Company Location"

List : "Bangalore", "Mumbai", "Kolkata", "Chennai"

[System : UDF]

CompanyLocation : String : 30001

In the TDL code, an existing Part Basic Company has been modified to add a new Line CustLo-
cation which in turn has a Field CustLocation that allows the user to enter and store the location
of the company in a UDF CompanyLocation. You need not associate any object explicitly, since
by default this Part inherits the Object, Company from the Report.

The Company Alteration screen is displayed as shown.

 Figure 4.1 Simple UDF Screen

You have added a new input, Company Location, to store additional information, which is a UDF
of type String. A table has been created to restrict the user input to a particular list.
 50

 Customisation – An Insight

Consider the following scenario when multiple values of the same data type are to be stored as a
part of the UDF.

Example:
;; A company wants to create and store the details of vehicles belongs to it.

[#Menu: Gateway Of Tally]

Key Item : Company Vehicles : C : Alter : CompanyVehicles

[Report: CompanyVehicles]

Form : CmpVeh

Object : Company

Here we are associating the Object "Company"at Report level

[Form: CmpVeh]

Part : CmpVeh

Width : 25% Page

Height : 60% Page

Vertical Align : Centre

[Part: CmpVeh]

Line : CompTitle, CompVeh

Repeat : CompVeh : Vehicle

Break On : $$IsEmpty:$Vehicle

Scroll : Vertical

When multiple values of the same data type are to be stored, then the Repeat attribute of Part is
used. The field of the line uses the same UDF name in the Storage attribute. In the Repeat
attribute CompVeh is the name of the line to be repeated and Vehicle is the name of the UDF to
store multiple values.

The example explained in the section "UDF to store single value" can be modified to store
multiple values of string type.

In this scenario, multiple values of type string can be stored under the object Company.
[Line: CompTitle]

Fields : Form Subtitle

Local : Field : Form SubTitle : Set as : "Company Vehicles"

Space Bottom : 1
 51

 Customisation – An Insight

[Line: CompVeh]

Field : CSrNo, CVeh

[Field: CSrNo]

Use : Number Field

Width : 4

Set as : $$Line

Skip : Yes

[Field: CVeh]

Use : Name Field

Storage : Vehicle

Unique : Yes

[System: UDF]

Vehicle : String: 700

The following screen represents a repeat UDF that stores the details pertaining to Company
Vehicles.
 52

 Customisation – An Insight

 Figure 4.2 Store Company Vehicle

Example:
To display the Company Vehicles stored using the previous code in the Sales Voucher Entry
[Collection: CMP Vehicles]

Type : Vehicle: Company

Childof : ##SVCurrentCompany

Format : $Vehicle, 20

Title : "Company Vehicles"

[#Part: EI DelNoteInfo]

Add : Option : Veh EI DelNoteInfo : @@IsSales

[!Part: Veh EI DelNoteInfo]

Add : Line : EI Vehicles Det

Height : 4
 53

 Customisation – An Insight

[Line: EI Vehicles Det]

Field : Medium Prompt, EI Vehicles Det

Local : Field: Medium Prompt :Set as : "Vehicle : "

[Field: EI Vehicles Det]

Use : Short Name Field

Table : CMP Vehicles, Not Applicable

Show Table : Always

Storage : VCHVehicle

A popup table is displayed when the cursor is placed in the field 'EI Vehicles Det'. The Table
contains values stored in the UDF which are Not Applicable as a list.

[System: UDF]

VCHVehicle : String :20001

The following screen shows a new input field added to store the vehicle details in the Invoice. This
field should retrieve the table from the Vehicle list.
 54

 Customisation – An Insight

 Figure 4.3 Company Vehicle Diapatch

Aggregate UDF
Aggregate UDFs are very useful for storing multiple values and repeated values. An aggregate
UDF is a combination of different types of UDFs. Aggregate UDFs can be used to store user data
in a tabular format attached to any internal object and can be used as a collection of UDFs.
Consider the following example to explain Aggregate UDF.

Example:
A company wants to create and store multiple details of company vehicles.
The details required are: Vehicle Number, Brand, Year of Mfg., Purchase Cost, Type of Vehicle,
Currently in Service, Sold On date and Sold for Amount

;; Report to accept vehicle details

[Report: Company Vehicles]

Form : Company Vehicles

Object : Company
 55

 Customisation – An Insight

;; Definition of Aggregate UDF

[System : UDF]

Company Vehicles : Aggregate : 1000

VVehicle Number : String : 1000

VBrand : String : 1001

VYear of Mfg : Number : 1000

VPurchase Cost : Amount : 1000

VType of Vehicle : String : 1002

VCurrently in Service : Logical : 1000

VSold On date : Date : 1000

VSold for : Amount : 1001

[Collection: CMP Vehicles]

Type : Company Vehicles : Company

Childof : ##SVCurrentCompany

Format : $VVehicleNumber, 20

Format : $VBrand, 10

Filter : InServiceFormula

Title : $$LocaleString:"Company Vehicles"

[System: Formula]

InServiceFormula : $VCurrentlyinService

The code creates an aggregate UDF to accommodate the details like, Vehicle Number, Brand,
Year of Mfg., Purchase Cost, Type of Vehicle, Currently in Service, Sold On date and Sold for.

4.1.2 Voucher Customization
A voucher is a primary document that contains all the information regarding a transaction. To
begin with, it is necessary to understand the classification of Vouchers and their structure.

Aggregate UDF definition does not associate each component field with
the aggregate UDF. The association will take place only when you repeat
a Line over aggregate UDF and within that Line you have fields which
stores value into the component UDFs.
 56

 Customisation – An Insight

Classification of Vouchers
For every transaction in Tally.ERP 9, you can make use of an appropriate voucher to enter all the
required details. Broadly vouchers are classified into three types:

Accounting Vouchers - It record transaction which requires only accounting details. Eg.,
Receipt, Payment, Contra and Journal
Inventory Vouchers - It record transaction which require details pertaining only to Inven-
tory. Eg., Stock Journal and Physical Stock Vouchers
Accounting-cum-Inventory Vouchers - These types of vouchers are transactions which
contain details pertaining to both accounts as well as inventory. Eg, Purchase Order,
Receipt Note, Rejection In, Debit Note, Purchase, Sales Order, Delivery Note, Rejection
Out, Credit Note, Sales etc.

Structure of a Voucher Object
Voucher Objects store two types of information, Base Information and Actual Entries.

Base Information consists of base methods like Voucher Number, Date, Reference, Narration
and so on, which are common to all the voucher types.

Actual Entries are the entries pertaining to Accounts and Inventory.

The hierarchy of the Voucher Objects is as shown.

 Figure 4.4 Heirarchy of Voucher Objects

The base entries of the Voucher are Date, Voucher Type, Voucher Number, etc.
At the first level are two basic collections namely, Ledger Entries and Inventory Entries. Each
Ledger Entry Object has its own base Methods like LedgerName, Amount, Bill Allocation Collec-
tion and Cost Category Allocation Collection. Each Cost Category Allocation Object in turn,
contains its own Methods, which are Name, Amount and a Cost Centre Allocation Collection.

4.1.3 Customisation - Case studies
A user usually enters transactions in a voucher and prints it in the default format provided.
However, there may be instances, when the user would want to print in a format other than the
 57

 Customisation – An Insight

default one provided in Tally. In such circumstances, user may have to get it customised
according to the company needs.

When there is a requirement for customisation, you need to adhere to the following steps:
1. Analyse the Format required by the company to judge whether

 The requirement can be met with the default format with some minor changes.
 OR

 A whole new format needs to be designed.
2. Check whether any additional input fields are required. If required, add the appropriate UDFs

at relevant places.
3. Identify the definitions that need to be altered to suit the user requirements.

Voucher Customisation - Case studies
Let us consider the following examples to understand the Voucher Customisation.

Case 1
A Company ABC Company Ltd needs Cheque No., Date and Bank Name in Payment/ Receipt
Voucher and Printed Receipt. Also there should be an option whether to print the Cheque details
or not.

Solution:
Step 1: - Add additional fields to capture Bank Name, Cheque Number and Cheque Date. For this
UDFs following UDF are created
[System: UDF]

BankName : String : 1000

NarrWOCh : String : 1001

ChequeNumber : Number : 1000

ChqDate : Date : 1000

Above UDFs are used in the existing Part VCH Narration.
;; Modify the Narration Part to add the details

[#Part: VCH Narration]

Add: Option: BankDet VCH Narration :@@IsPayment OR @@IsReceipt

Add: Option: BankDet VCH NarrationRcpt : @@ReceiptAfterSave

The Screen of the Receipt Voucher on entering the details looks like this:
 58

 Customisation – An Insight

 Figure 4.5 Alteration of Receipt Voucher

Step 2:- Configuration screen of Receipt & Payment is altered to add a new option. For this
existing Parts Payment Print Config & Receipt Print Config are altered

 ;; Payment Config Changes

[#Part: Payment Print Config]

Add: Lines : Before: PPRVchNarr : PPR ChqDetails

 ;; Receipt Config Changes

[#Part: Receipt Print Config]

Add: Lines : After: PPRWithCost: PPR ChqDetails

Step 3:- Existing Field PPR Narr & Part PPRBottomDetails is altered to get required Receipt/
Payment Voucher
[#Field: PPR Narr]

Option : PPR Narr Rct Pymt

[#Part: PPRBottomDetails]

Option : PPRBottomDetails Rct Pymt : (@@IsPayment OR @@IsReceipt)

AND ##PPRChqInfo
 59

 Customisation – An Insight

The Print out of Customised Receipt Voucher looks like this:

 Figure 4.6 Print Preview of Receipt Voucher

Step 4:- Existing Field PRCT Thru is altered to get required Receipt/Payment Voucher

The Print out of Customised Receipt looks like this:
[#Field: PRCT Thru]

Option : PRCT Thru Rct Pymt : @@IsReceipt
 60

 Customisation – An Insight

 Figure 4.7 Print Preview of Receipt Voucher

4.2 Invoice Customisation
Invoice customisation can be broadly classified into following categories based on the require-
ment.

Invoice Customization - User defined format
Invoice Customization - Modifications to default format

4.2.1 Invoice Customization - User defined format
In this category, totally new Invoice format needs to be developed. After developing a new Invoice
format, this can be enabled in following two different ways.

1. Replacing the existing format with new one
2. Adding new format along with default format
 61

 Customisation – An Insight

 Replacing the existing format with new one
By default, there are two basic formats provided for Commercial Invoice Printing

1. Normal Invoice i.e., Comprehensive Invoice
2. Simple Invoice i.e., Simple Printed Invoice

Comprehensive Invoice and Simple Printed Invoice are two optional forms which are executed
based on satisfying a given condition. The default option available for print is the Comprehensive
Invoice.

Simple Invoice is printed if Print in Simple Format is set to Yes in F12 Configuration. Compre-
hensive Invoice is printed only if the user opts for Neat Format mode of printing and above Option
set to No.

Case 1
ABC Company Ltd requires Sales Invoice in the following format for both Normal Invoice as well
as Simple Invoice.
 62

 Customisation – An Insight

 Figure 4.8 Invoice Customisation
 63

 Customisation – An Insight

Solution:
Step 1:-Default forms Comperhensive Invoice & Simple Printed Invoice are modified with an
optional Form.
[#Form: Comprehensive Invoice]

Add : Option: My Invoice: @@IsSales

[#Form: Simple Printed Invoice]

Add : Option: My Invoice: @@IsSales

Step 2:-The Parts and Page Breaks of the default Form are deleted and new Parts are added.
To begin with, the Invoice is classified into three parts: Top Part, Body Part and Bottom Part.
These Parts can be further divided into any number of Parts according to the user's requirement.
[!Form: My Invoice]

Delete : Parts

Delete : Bottom Parts

Delete : PageBreak

Space Top : 0

Space Bottom : 0

Space Left : 0

Space Right : 0

Add: Part : My Invoice Top Part

Add: Part : My Invoice Body Part

Add: Bottom Part: My Invoice Bottom Part

 Adding new format along with default format
Alternatively, you can also create a new format of invoice by modifying the existing Form Sales
Color by replacing its default print report code.
This way of Customisation begins with the following code snippet:
[#Form: Sales Color]

Add : Print: Sales Invoice

[Report : Sales Invoice]

Form : Sales Invoice

Object : Voucher

In this code snippet, the default Print Report is deleted, the Report Sales Invoice is added and
the Object Voucher is associated to it. However, in the previous example, it was not necessary to
associate the Voucher Object, since it was already associated in the default Report, Printed
Invoice.
 64

 Customisation – An Insight

Case 1
ABC Company Ltd requires Sales Invoice in addition to the default sale invoice.

 Figure 4.9 Invoice Customisation

4.2.2 Invoice Customization - Modifications to default format
There may be a requirement in Invoice customisation which is similar to the default Tally format
with some minor changes. In such cases, one can just alter the default definitions as required.
Case 1
A Company ABC Company Ltd requires an Invoice to have Terms and Conditions as shown
below:
 65

 Customisation – An Insight

 Figure 4.10 Invoice Customisation

Solution:
Step 1:- Default configuration Part IPCFG Right is altered to add ne option.
[#Part: IPCFG Right]

Add : Lines : GlobalWithTerms
 66

 Customisation – An Insight

Step 2:- Default Part EXPINV ExciseDetails is altered to cater the requirement.

[#Part: EXPINV ExciseDetails]

Delete : Lines : EXPINV ExciseRange, EXPINV ExciseRangeAddr, +

 EXPINV ExciseDiv, EXPINV ExciseDivAddr, +

 EXPINVExciseSerial,EXPINVInvoiceTime,EXPINV RemovalTime

Add : Lines : EXPINV SubTitle, EXPINV ExciseDetails

Repeat: EXPINV ExciseDetails : Global Terms

Local : Field: EXPINV SubTitle : Info : "Terms & Conditions :"

Local : Field: EXPINV SubTitle : Border : Thin Bottom

Local : Line : EXPINV SubTitle : Space Bottom : 1

Invisible : NOT @@IsInvoice OR NOT ##ShowWithTerms

Case 2
Sorting Inventory Entries as per user requirement
Solution:
The inventory entries of an invoice are printed in the order in which they are entered. This order
can be changed as per user requirement. The sorting can be done in either the ascending or
descending order of the item name, stock group, and stock category, units of measure, rate, and
value and so on. To denote the descending order, attach '-' sign to it.

To change the order of the default invoice:
 Define a Collection of inventory entries in the desired sorted order

[Collection : Sorted Inventory Entries]

Type : Inventory Entries : Voucher

Sort : Default : -$Parent:StockItem:$StockItemName, $StockItemName

 Note the Part in which the repeat Line of Inventory entries is mentioned in the DefTDL
and Change this Part to repeat the Line with the new Collection defined
 67

	Lesson 1: Introduction
	1.1 Introduction to Tally.ERP 9
	1.2 About the Product Tally.Developer 9
	1.2.1 Tally Developer Installation - An Introduction
	1.2.2 Pre-Installation - System Requirements
	1.2.3 Steps for Installing Tally.Developer 9
	1.2.4 Uninstalling Tally.Developer 9

	1.3 Tally Definition Language
	1.3.1 What is TDL?
	1.3.2 Configuration in Tally.ERP 9 to enable TDL

	Lesson 2: Getting Started With TDL
	2.1 Creating your first TDL Program
	2.1.1 Steps for creating TDL program using Tally.Developer 9

	2.2 Understanding the Various Components of TDL
	2.2.1 Definitions
	Interface Definitions
	Data Definitions
	Formatting Definitions
	Integration Definitions
	Action Definitions
	System Definitions

	2.2.2 Attributes & Modifiers
	Classification of Attributes

	2.2.3 Data Types in TDL
	2.2.4 Operators in TDL
	2.2.5 Special Symbols
	2.2.6 Actions in TDL
	2.2.7 Functions

	2.3 Variables in TDL
	2.3.1 Types of Variable
	2.3.2 Attributes of Variable Definition
	Type
	Default
	Persistent
	Volatile

	Lesson 3: Reports in TDL
	3.1 Display Reports
	3.1.1 Understanding Dimensions & Formatting
	Dimensional Attributes
	Definitions and Attributes for Formatting

	3.1.2 Tally Data Structure- Objects, Methods and Collections
	Tally Object Structure
	Methods
	Collection

	3.2 Edit Reports
	3.3 Designing Reports using Existing Data
	3.3.1 Simple Trial Balance Report
	3.3.2 Tabular Reports
	Designing a Tabular Report

	3.3.3 Hierarchical Report (Drill down Report)
	Designing Hierarchical Reports
	Columnar Report

	Lesson 4: Customisation - An Insight
	4.1 Customising Default Screens
	4.1.1 User Defined Fields
	Simple UDF
	Aggregate UDF

	4.1.2 Voucher Customization
	Classification of Vouchers
	Structure of a Voucher Object

	4.1.3 Customisation - Case studies
	Voucher Customisation - Case studies

	4.2 Invoice Customisation
	4.2.1 Invoice Customization - User defined format
	4.2.2 Invoice Customization - Modifications to default format

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

