
Getting Started with
Vulkan
Loader, Layers, and Other Resources

Before You Begin
Supported Operating Systems:

- Windows 7+ (32-bit or 64-bit)
- Linux

- Ubuntu 14.04 or newer
- Fedora Core 23 or newer

- Android Nougat or newer

C/C++ Compiler (minimum):
- Visual Studio 2013
- GCC 4.8.1
- Clang 3.3

Tools:
- Python 3
- CMake 3.0+
- Git

Graphics Hardware
Desktop Devices (minimum):

AMD: Radeon HD 77xx [Windows]
Radeon R9 [Linux]

Intel: Skylake [Windows]
Ivy Bridge [Linux]

Nvidia: GeForce 600 series

Android Nougat (or newer) Devices:
ARM: Mali T760
Imagination: PowerVR Series 6
Nvidia: Tegra K1
Qualcomm: Adreno 500

NOTE: This is an approximate list. Contact your HW provider for up-to-date support info.

- Latest Documentation
- Validation layers
- Samples
- Other Useful Tools

Vulkan SDKs Contain Useful Content

Android Vulkan SDK
https://developer.android.com/ndk/guides/graphics/getting-started.html

Targets:
- Android Nougat Devices

Requires:
- Android Studio 2.1+

Desktop Vulkan SDK
https://vulkan.lunarg.com/

Targets:
- Windows
- Linux

Also Includes:
- Latest Vulkan Loader/Run-time
- Additional Layers

- Screenshot
- Trace/replay

- Tutorial

Released every 4 - 6 weeks

Vulkan Installation Analyzer (VIA)

Validates your desktop setup
- Determines available Vulkan drivers, runtime, and layers
- Captures system state into HTML

Run it:
- After installing SDK or new drivers
- When you file a bug

VIA Results
Overall Result spit out to Command-line (detailed in
Readme file):
 SUCCESS: Validation completed properly
 ERROR: Failed to find Vulkan Driver JSON
 ERROR: Failed to find Vulkan Driver Lib
 ERROR: Vulkan failed to find a compatible driver
 ...

HTML contains details (in collapsible sections)

Vulkan Loader
The gateway to Vulkan on a user’s system

Similar to OpenGL loader typically provided by OS Vendors, but:
• Owned by Khronos
• Updated regularly (4-6 weeks)
• Desktop Loader is Open Source on GitHub

– Largely developed by LunarG (funded by Valve)
– Community support/bug-fixes greatly appreciated and accepted

• NOTE: CLA required for any contributions

How does it get installed on a system?
• Drivers
• Applications
• SDKs

Vulkan Loader (High Level Interfaces)

Okay, Really Vulkan Loaders (Plural)
Intent is only one loader to rule them all

Two different loaders:
- Desktop Loader

- Same source used for Linux/Windows
- Open Source (in Github)

- Android Loader
- Nougat+ devices
- Closed Source

But one loader interface design (in GitHub and LunarG Vulkan SDK)
[Link provided at end]

Object Groups
Instance: High-level construct (similar to GL Context)

Works with all ICDs and Physical Devices
Includes: VkInstance and VkPhysicalDevice

Device: Logical accessor to a particular Physical Device (through a particular ICD)
Includes: VkDevice, VkQueue, VkCmdBuffer and other objects derived from these

Dispatchable Objects
• Most commands take an opaque dispatchable object as first parameter

VkResult vkGetEventStatus(VkDevice device, VkEvent event);

• First field in each dispatchable object is a dispatch table pointer
– Used by loader trampoline code
– ICDs must reserve first element of created objects for a pointer the loader will fill in

VkDevice
vkCreateDevice

vkDestroyDevice

...

Call Chains

Instance Call Chain

Device Call Chain using loader exports *

Device Call Chain using vkGetDeviceProcAddr *

* Some special cases still require a specific device call chain to include a
trampoline/terminator

Vulkan Loader - Extensions

Instance Extensions must be known by the loader!
- Exception is extensions touching just physical device commands

The loader doesn’t need to know about Device Extensions

Vulkan Desktop Loader Debug Environment Variable

Enable Loader debug messages:

VK_LOADER_DEBUG warn, error, info, perf, debug, all

Vulkan Loader Warning
- Loader will crash if you use it improperly
- Designed for performance and functionality
- Like C, enough rope...

Warning,

Vulkan

Developer!

● Looks for Manifest files
○ Formatted in JSON
○ Contain basic information about ICD (name, API version, library)
○ Windows

■ Registry: HKLM/Software/Khronos/Vulkan/Drivers
○ Linux

■ Standard folders (under vulka/icd.d/):
● /usr/local/etc/vulkan/icd.d
● /usr/local/share/vulkan/icd.d
● ...

● Loader investigates these during vkEnumerateInstanceExtensions and
vkCreateInstance

Vulkan ICDs [Desktop]

Vulkan Loader ICD Debug Environment Variables

Force a particular Driver path:

VK_DRIVERS_PATH Delimited list of paths to location of driver
JSON files

Force a particular ICD:

VK_ICD_FILENAMES Delimited list of specific driver JSON files
(by full driver name)

● Optional components, enabled by request
○ App passes layer names to vkCreateInstance via VkInstanceCreateInfo

member ppEnabledLayerNames
○ Desktop environment var: VK_INSTANCE_LAYERS

● Can add, remove, or augment Vulkan behavior
○ Validation VK_LAYER_LUNARG_standard_validation
○ Track debug data VK_LAYER_RENDERDOC_Capture
○ Render FPS VK_LAYER_LUNARG_monitor
○ Log content VK_LAYER_LUNARG_api_dump
○ Grab screenshots VK_LAYER_LUNARG_screenshot
○ Write your own!

Vulkan Layers

Reasons for Using Validation
Determine application correctness

Catch portability issues
• Produces validation errors, but still works for you
• May not work for others

Evaluate Vulkan usage efficiency
• More focus on this in the future

You want to be like:

A “Meta-Layer” grouping other layers in proper order

What’s in Standard Validation?

Only on
Desktop,

Sorry
Android

Developers

Using Standard validation
I wrote my app, it runs (without returning a bad VkResult) but...

Initial response: “Man, Vulkan Sucks!”

Turn on validation and you see:

ERROR: [DS] Code 31 : You must call vkEndCommandBuffer() on
CB 0x97b8e0 before this call to vkQueueSubmit()!

Easy fix, and then:

Validation Output

Always Grab the Latest
Download the latest SDKs (for Desktop or Android)

Continually improving:
• Validation coverage
• Support for new Extensions
• Bug fixes
• Performance tweaks
• Warning/Error message clarifications

– Listing Spec sections

Validation layers causes perf impact
Performance hit depends on application complexity

Smoke (in LVL demos) on Intel Linux Mesa:
Normal: 160+ fps
With Validation: 6+ fps (roughly 4% of initial perf)

If higher perf needed
● Don’t use “standard_validation”
● Manually enable some validation layers

Needed during development, but not final product

Useful, But Don’t Always Enable

Vulkan Layer Dispatching

- Must have own dispatch table (to call next in chain)
- Don’t use table in object

- Assistance available:
- vk_layer.h defines instance and device dispatch table structures and utility

funcs
- Some extensions present, but layers may need to define their own

extension function pointer storage

Vulkan Layer Distributed Dispatching

• Layers do NOT have to intercept all calls
– Must intercept

• vkCreateInstance
• vkEnumerateInstanceLayerProperties
• vkGetInstanceProcAddr

– If implementing device commands, must also intercept
• vkCreateDevice
• vkGetDeviceProcAddr

• Layers should pass the info along, except
– vkNegotiateLoaderLayerInterfaceVersion
– Others may choose to not pass down

Vulkan Layer Distributed Dispatching

Instance Chain

Device Chain

Vulkan Layer Definitions (Desktop)
• Stored in JSON file

– Windows : Define in Registry
• HKLM/Software/Khronos

– Linux: Found in Standard paths
• /usr/local/etc/vulkan
• /usr/local/share/vulkan
• /etc/vulkan
• /usr/share/vulkan
• $HOME/.local/share/vulkan

• Queried by loader without loading library for security reasons

Desktop Layer Debug Environment Vars

• Force on a Layer from outside the application:

VK_INSTANCE_LAYERS Delimited list of layer names to enable

• Force/Override the Layer path:

VK_LAYER_PATH Delimited list of paths to search for layer
JSON files

Implicit
• Can be always enabled
• Disable with Environment Variable (Defined in JSON)
• Example: VK_LAYER_NV_Optimus

Explicit
• Must be enabled by app or environment

Different registry/folder locations:
• Windows Registry:

– ImplicitLayers
– ExplicitLayers

• Linux folders:
– implicit_layer.d
– explicit_layer.d

Desktop Layer Loading

Only
“Explicit Layers” on

Android

Overall Desktop Layer Order

Vulkan Layer Wrapping
• “Wrapping”

– Creating your own object that contains a dispatchable object
– Return your object pointer back up call chain
– When called, “unwraps” object on way back down call chain

• Possibilities
– If you can avoid wrapping:

• Use hash table (or something similar) to reference your data based on dispatchable
object value

– If you have to wrap:
• Must “unwrap” your object in any extension command that uses that object for

everything to work properly
• Suggest you maintain a “whitelist” of supported extensions and warn on something

new
• Layer must wrap with struct containing dispatch table

– Initialize with SetInstanceLoaderData or SetDeviceLoaderData

RenderDoc
Graphical Debugger with Vulkan support

Currently only on Windows

Record and then investigate

Where?
• Installed with LunarG’s Vulkan SDK
• Source available in Github

RenderDoc

Beyond RenderDoc
RenderDoc is a great place to start, but missing GPU internal data
• No kernel-level thread timing
• No GPU context submission information
• Missing throughput information

For that, use your HW vendor’s tools (Vulkan Support may vary):
• AMD PerfStudio
• Intel GPA
• Nvidia Nsight
• ARM Streamline Performance Analyzer
• Imagination PowerVR Tools
• Qualcomm Adreno Profiler
• ...

Other Resources
Vulkan Book:

Vulkan Programming Guide is out!

Vulkan Tutorial:
LunarG SDK : https://vulkan.lunarg.com/doc/sdk/latest/windows/tutorial/html/index.html

Fancier Examples:
Sascha Willems : https://github.com/SaschaWillems/Vulkan

Many others available (listed in Khronos’ Vulkan Resource Page)

https://vulkan.lunarg.com/doc/sdk/latest/windows/tutorial/html/index.html
https://github.com/SaschaWillems/Vulkan

Links
Khronos Vulkan Resources:

https://github.com/KhronosGroup/Khronosdotorg/blob/master/api/vulkan/resources.md

Vulkan SDKs:
- LunarG : https://vulkan.lunarg.com/
- Android : https://developer.android.com/ndk/guides/graphics/index.html

LoaderAndValidationLayers GitHub (Khronos): Loader, Validation Layers, Docs
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers

LoaderAndLayerIf Document: <GitHub>/blob/master/loader/LoaderAndLayerInterface.md

VulkanTools GitHub (LunarG): VIA, VkTrace, ApiDump, Screenshot layer
https://github.com/LunarG/VulkanTools

MoltenVK : https://moltengl.com/moltenvk/

RenderDoc : https://github.com/baldurk/renderdoc

https://github.com/KhronosGroup/Khronosdotorg/blob/master/api/vulkan/resources.md
https://github.com/KhronosGroup/Khronosdotorg/blob/master/api/vulkan/resources.md
https://vulkan.lunarg.com/
https://developer.android.com/ndk/guides/graphics/index.html
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md
https://github.com/LunarG/VulkanTools
https://github.com/LunarG/VulkanTools
https://moltengl.com/moltenvk/
https://github.com/baldurk/renderdoc

