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  Chapter 1 

THE GENETIC BASIS OF CANCER 

 

 

CANCER GENETICS 

 

Cells have several safeguards to ensure that cell division, differentiation and death occur correctly 

and in a coordinated fashion, both during development and in the adult body. The strict regulation 

of these processes may be undermined through the accumulation of (epi)genetic defects, providing 

a single cell with a selective growth advantage. This unrestricted growth potential will lead to the 

clonal expansion of the abnormal cell that, in time, will form a tumor1 (Figure 1). 

 

 

 

 

 

 

 

 

Figure 1. Model for stepwise progression of cancer in association with accumulation of 

(epi)genetic alterations in the cell (adapted from2). 

 

During the course of tumor development most cancers acquire an essential set of functional 

capabilities, i.e. self-sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion 

of programmed cell death (apoptosis), limitless replicative potential, sustained angiogenesis, and 

tissue invasion and metastasis3. These alterations in cell physiology are acquired, directly or 

indirectly, through successive genetic events that target two major classes of cancer-related genes: 

oncogenes and tumor suppressor genes. 

 

Oncogenes 

 

Oncogenes are mutated forms of proto-oncogenes. In normal cells, proto-oncogenes function as 

components of growth promoting signaling and anti-apoptotic pathways. Proto-oncogenes can act as 

cancer promoting genes when inappropriately (over-) expressed, which is caused by gain-of-function 

mutations3. Mutations leading to gain of function are dominant, since only one mutated allele is 

enough to push the cell towards the cancerous behavior. Examples of proto-oncogenes are growth 

factor receptors (e.g. EGFR), transcellular transducers (e.g. K-RAS), and DNA-binding nuclear 

proteins or transcription factors (e.g. MYC). Activation of oncogenes can occur through a wide 

variety of different mechanisms, such as gene amplifications, point mutations and chromosomal 

translocations. 
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Tumor suppressor genes 

 

Tumor suppressor genes (TSGs) are targeted in the opposite way by genetic alterations: these genes 

are affected by loss-of-function mutations. According to Knudson’s two-hit hypothesis4, inactivation 

of both TSG alleles is required for tumor development (Figure 2). This two-hit paradigm was derived 

from mathematical modeling of cancer incidence in retinoblastoma, a rare embryonic pediatric 

tumor developing in the retina of the eye. Based on the remarkable age-of-onset difference 

between hereditary and sporadic forms of retinoblastoma, it was proposed that the presence of a 

germline mutation (‘first hit’) in heritable retinoblastoma followed by a rate-limiting somatic 

mutation (‘second hit’) on the other allele significantly accelerated the onset of the cancer 

phenotype. In sporadic tumors, both inactivating mutational events (first and second hit) have to 

occur in the same somatic cell and therefore it will take longer time for tumors to develop4. At the 

time this hypothesis was formulated, the nature of the genetic defect was not known. Subsequent 

molecular analyses on RB1 and other TSGs confirmed the two-hit paradigm and illustrated that the 

general mechanisms to inactivate the remaining wild-type allele are gross chromosomal alterations, 

leading to loss of heterozygosity (LOH) over large regions of the chromosome5. More subtle 

inactivating mechanisms include intragenic mutations6 and epigenetic silencing7 due to 

hypermethylation of the CpG island spanning the promoter region and deacetylation of lysine 

residues on key histones in the chromatin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Knudson’s two-hit model for the inactivation of a tumor suppressor gene (TSG). 

In familial tumor syndromes (panel A), the initial inactivation of one allele is present in germ cells. 

The rate-limiting step for tumor formation is an additional inactivation event that affects 

somatically the second allele. Somatic inactivation events include subchromosomal deletion (a), 

mitotic recombination (b), nondisjunctional chromosome loss with (c)/ without (d) reduplication of 

the chromosome carrying the mutated TSG, intragenic mutation (e) or an epigenetic event (f). In 

sporadic tumors (panel B), the initial and second inactivating mutational events occur in the same 

somatic cell of an individual4,5 (adapted from8). 
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Tumor suppressor genes have been classified into ‘gatekeepers’ and ‘caretakers’9. ‘Gatekeeper’ 

genes directly inhibit cell growth by suppressing proliferation, inducing apoptosis or promoting 

differentiation. Their loss of function is rate-limiting for a particular step in multi-stage 

tumorigenesis and restoring the ‘gatekeeper’ function suppresses neoplasia. In patients with 

familial adenomatous polyposis (FAP), for example, an inherited defect in the APC gene leads to the 

development of hundreds of adenomatous polyps. Because of their great numbers, some polyps are 

virtually guaranteed to progress to cancer9 (cfr. Infra). In contrast, ‘caretaker’ genes act indirectly 

to suppress growth by repairing mistakes made during normal DNA replication or induced by 

exposure to mutagens. These genes also control processes that are responsible for mitotic 

recombination and chromosomal segregation. The task of ‘caretaker’ genes is to keep genetic 

alteration to a minimum. Consequently, when these genes become inactivated it allows mutations 

in other genes (e.g. oncogenes and ‘gatekeeper’ genes) to accumulate. Defects in the mismatch 

repair genes MSH2, MLH1 and MSH6, for example, are the genetic basis of hereditary non-polyposis 

colorectal cancer (HNPCC). While patients with HNPCC develop adenomatous polyps at about the 

same rate as the general population, these polyps progress to cancer much more often because of 

defective mismatch repair9. 

 

Some TSGs have been hypothesized to exert a selective advantage on a cell when only one allele is 

inactivated10. Potential mechanisms are a dominant negative mutation blocking the function of the 

remaining wild-type gene product, and haploinsufficiency, meaning that the protein product level 

of a single active allele is insufficient to suppress tumor development. One of the first examples of 

evidence for haploinsufficiency for tumor suppression was provided for the p27 gene. P27 acts to 

arrest the cell cycle and has been implicated as a critical player in the progression of a wide variety 

of neoplasms. Murine data show a strong selective advantage to tumor development with loss of a 

single p27 allele. More specifically, p27+/- mice exhibit a tumor latency and aggressive tumor 

behavior between the phenotypes observed in p27-/- and p27+/+ mice. In the tumors of the p27+/- 

mice, the p27 wild-type allele is retained and continued to be expressed11. Although there is 

growing evidence supporting the concept of TSG haploinsufficiency in mouse models of cancer 

(reviewed in10), it is not clear yet whether loss of one wild-type allele confers a phenotype which is 

relevant to human carcinogenesis. 

 

Recent evidence indicates that small non-protein-coding RNA molecules, called microRNAs 

(miRNAs), might also function as tumor suppressors and oncogenes. These short RNA sequences of 

21 to 25 nucleotides play essential roles in many basic physiologic processes including proliferation, 

differentiation, and apoptosis. MicroRNAs negatively regulate protein-coding genes by binding to 

complementary or partially complementary target mRNAs and thereby targeting the mRNA for 

degradation or translational inhibition12. More than half of miRNAs are located at sites in the human 

genome that are frequently amplified, deleted, or rearranged in cancer, suggesting that miRNA 

abnormalities play a broad role in cancer pathogenesis13. Also consistent with this notion is the 
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observed dysregulation of miRNA expression in diverse cancer subtypes including lung cancer14, 

breast cancer15 and glioblastoma16. 

 

The multistep colorectal cancer model 

 

Colorectal cancer is one of the most extensively investigated tumor types, and its model of 

progression due to the stepwise accumulation of genetic abnormalities serves as a paradigm for 

many other neoplasms. Germline mutations in the tumor suppressor gene APC result in familial 

adenomatous polyposis (FAP), one of the principal hereditary predispositions to colorectal cancer. 

Patients with FAP typically develop hundreds to thousands of colorectal adenomas and are prone to 

a variety of specific extracolonic features, such as gastrointestinal polyps, retinal lesions, desmoid 

tumors and brain tumors. Although the colorectal polyps are benign, some adenomas ultimately 

progress to malignant adenocarcinomas by 30-40 years of age17. Somatic mutations in APC are also 

found in the majority (85%) of sporadic colorectal cancers18. 

 

Inactivation of both APC alleles can be detected in the very earliest stages of the adenoma-

carcinoma sequence, illustrating that this event is the initiating trigger for clonal evolution. 

Remarkably, the position and type of the second hit in FAP and sporadic polyps is determined by the 

localization of the first hit19. Apparently, the APC mutation spectrum reflects the fact that there 

exists an optimal APC genotype for providing the nascent tumor cell with a selective advantage20,21. 

Additional oncogenic mutations, often in K-RAS, are required for adenoma growth and progression. 

Subsequent clonal expansion and malignant transformation is driven by additional mutations and 

allelic losses in TP53, SMAD4 and other 18q TSGs9. Taken together, not simply the accumulation, but 

rather also the type, position and temporal order of mutations determine the propensity for 

neoplasia. 

 

The disease severity varies among FAP patients with respect to the number of adenomas which is 

related to the risk of developing cancer22. Disease severity is influenced by the site of the germline 

APC mutation22,23 and there is evidence that additional inherited factors, determined by so-called 

modifier genes, influence the FAP phenotype24. The murine counterpart of human FAP, the ApcMin/+ 

mouse model, shows great phenotypic variability depending on the genetic background25. Two 

modifier loci, Mom1 and Mom2 (Modifier of Min), have been identified that significantly affect polyp 

multiplicity26,27. The secretory phospholipase A2 (Pla2g2a) gene, which is part of the prostaglandin 

synthesis pathway involved in inflammation, has been associated with the Mom1 locus28. There is 

little doubt that similar modifier genes exist in humans29, however it seems that polymorphisms in 

the human orthologue of Pla2g2a do not account for significant variation in susceptibility to 

colorectal cancer30. 
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The cancer stem cell hypothesis 

 

Normal stem cells and cancer cells share several important properties. These include the capacity 

for self-renewal, the ability to differentiate, active telomerase expression, activation of anti-

apoptotic pathways, increased membrane transporter activity and ability to migrate31. At present, 

an increasing body of evidence indicates that tumor initiation might be orchestrated by cancer stem 

cell-like cells. The existence of cancer stem cells was first documented in hematological 

malignancies where only a subset of cancer cells, representing the stem cell subset with the 

potential to self-renew and differentiate, were capable of forming new tumors32. More recently, 

cancer stem-cell like cells have also been identified in breast33,34 and central nervous system 

tumors35-38. The cancer stem cell concept suggests that cancers originate in tissue stem or 

progenitor cells through dysregulation of self-renewal pathways. This subsequently leads to 

expansion of the cell population that then may undergo further genetic and epigenetic changes to 

become fully transformed. It is still not clear if the cancer stem cells are derived from true tissue-

derived stem cells, bone marrow stem cells or mature cells that have undergone a de-

differentiation process. Regardless, the observation that cancer stem cells give rise to 

phenotypically diverse cancers has fundamental implications for understanding the biology of 

carcinogenesis as well as important clinical implications for early detection, prevention, and 

therapy of human malignancies. 

 

 

TUMOR MICROENVIRONMENT 

 

Apart from genetically abnormal cancer cells, a tumor is composed of several other cell types 

including fibroblasts, endothelial cells and immune cells such as macrophages and mast cells. It is 

clear that tumor progression is the product of an evolving crosstalk between different cell types 

within the tumor and its surrounding supporting tissue, or tumor stroma39. Cancer cells generate a 

supportive microenvironment by producing stroma-modulating growth factors and proteases acting 

in autocrine and paracrine manners. The activated stromal cell types in turn, secrete additional 

fluxes of growth factors and proteases, resulting in an activated stroma that promotes tumor 

progression and metastasis. The extensive crosstalk between the microenvironment and the cancer 

cells induces a cascade of stromal reactions such as angiogenesis40, inflammation41 and remodeling 

of the extracellular matrix42. There is increasing evidence that the tumor stroma can also have a 

more direct role in tumorigenesis, by acting as a mutagen. As a consequence of mutations in stromal 

cells, the adjacent epithelial cells may be at an increased risk of neoplastic transformation43. The 

concept of neoplastic transformation as a result of an abnormal microenvironment, can be thought 

of as a ‘landscaper’ defect44. 
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THERAPEUTIC TARGETING 

 

Elucidating the molecular mechanisms leading to cancer development offers a unique potential for 

therapeutic intervention. During the last years, dramatic advances have come from agents 

specifically targeting critical genetic lesions. The tyrosine kinase inhibitor imatinib (Gleevec, 

Novartis), for example, has tremendously improved the treatment of advanced sporadic 

gastrointestinal stromal tumors, showing a clinical benefit in up to 80% of patients with KIT or 

PDGFRA mutations45,46. Another relatively new and particularly promising approach is the clinical 

targeting of the tumor microenvironment. It is clear that anti-angiogenic47 and anti-inflammatory 

drugs48, together with components restoring the extracellular matrix49, can act as chemopreventive 

agents. Nevertheless, there is still an overwhelming need to develop more effective and safer 

agents to minimize cancer morbidity and mortality in the long term. 
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NEUROFIBROMATOSIS TYPE 1 

 

 

Neurofibromatosis type 1 (NF1; OMIM 162200, http://www.ncbi.nlm.nih.gov/Omim) is one of the 

most common autosomal dominant genetic disorders, affecting approximately 1 in 3500 individuals 

worldwide50,51. The condition is caused by defects in the NF1 tumor suppressor gene. The primary 

clinical features are café-au-lait spots, skin-fold freckling and neurofibromas. Characteristic for NF1 

is its extreme clinical variability. 

 

 

CLINICAL ASPECTS OF NF1 

 

The most common manifestations in NF1 are pigmentary abnormalities, such as café-au-lait spots, 

skin-fold freckling and Lisch nodules (iris hamartomas), together with the development of benign 

peripheral nerve sheath tumors or neurofibromas. However, other complications, such as skeletal 

dysplasias, learning disabilities, mental retardation, seizures and optic gliomas fall within the wide 

clinical spectrum of the disease50. Table 1 displays the diagnostic criteria of NF1 following the 

National Institutes of Health (NIH) guidelines52. Patients are diagnosed with NF1 if they demonstrate 

two or more of these criteria. 

 

Table 1. Diagnostic criteria for NF1 according to NIH Consensus Conference in 1987. 

● Six or more café-au-lait spots of over 5 mm in prepubertal individuals and over 15 mm in 

postpubertal individuals 

● Two or more neurofibromas of any type or one plexiform neurofibroma 

● Freckling in the axillary or inguinal regions 

● Optic glioma 

● Two or more Lisch nodules (iris hamartomas) 

● A distinctive osseous lesion such as sphenoid dysplasia or thinning of long bone cortex with 

or without pseudoarthrosis 

● A first-degree relative (parent, sibling or offspring) with NF1 by the above criteria 

 

 

THE NF1 GENE AND PROTEIN 

 

NF1 gene 

 

The NF1 gene was identified by positional cloning in 199053-55. It is located on chromosome 17q11.2 

and spans approximately 300 kb of genomic DNA56. The NF1 promotor is embedded in a ~10 kb CpG-

rich region and contains several conserved transcription factor binding motifs57. From the start to 

the stop codon the NF1 gene measures 278861 bp58. The NF1 gene is composed of 60 exons with at 
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least 4 alternatively spliced exons which are expressed in a developmental- and tissue- specific 

pattern59-62. The processed full-length NF1 mRNA transcript can be detected in nearly all adult 

tissues and is about 11 to 13 kb in length, with a 3.5 kb 3’-untranslated region63-65. 

 

Numerous NF1-related sequences are distributed throughout the human genome. These NF1 

pseudogenes are suggested to have arisen by duplication and transposition of the NF1 locus. They 

are non-processed and non-functional66,67. Three genes, OMGP, EVI2A and EVI2B, are embedded in 

NF1 intron 27b and are transcribed in the opposite orientation68,69. There is no apparent correlation 

between these genes and the NF1 phenotype. 

 

The mutation rate in the NF1 gene is one of the highest among human genes and about half of the 

NF1 patients are sporadic, i.e. they do not have a familial history for NF170,71. Although mutation 

analysis has been proven to be difficult and labour intensive due to the large size of the gene, the 

presence of several pseudogenes, the lack of mutation hotspots and the very diverse spectrum of 

NF1 lesions, the NF1 mutation can be identified in the vast majority of NF1 patients fulfilling the 

NIH criteria if a comprehensive approach for mutation detection is applied72. 

 

NF1 protein 

 

The NF1 gene encodes neurofibromin, a 2818 amino acids (AA) containing protein that harbors a 

functional GAP (GTPase activating protein) related domain (GRD, AA 1205-1536) in its central 

region73-75. Neurofibromin is ubiquitously expressed and most abundant in the nervous system58. The 

protein is highly conserved among vertebrates76 and shows 60% identity with the Drosophila 

homolog77. 

 

Neurofibromin functions as a negative regulator of Ras-mediated signaling (Figure 3). Ras proteins 

are small molecular weight GTPases that link cell surface receptors to intracellular effector 

pathways that regulate proliferation, differentiation and apoptosis. Downstream effectors of Ras 

include the Raf/Mek/Erk, PI3Kinase/AKT and Rho GTPase pathways. Ras also activates a family of 

GDP-GTP exchange factors for the Ral small GTPases (e.g. Ral-Gds). Ras switches between active, 

GTP-bound, and inactive, GDP-bound, conformations. This GTPase cycle is catalyzed by interactions 

with guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs)78. Through 

its GRD, neurofibromin accelerates the conversion of active GTP-bound Ras to the inactive GDP-

bound form73-75. Increased activity of Ras and its downstream effectors has been observed in NF1-

associated tumors and NF1-deficient cells79-88. Thus, NF1 acts as a tumor suppressor gene since loss 

of neurofibromin function results in dysregulated Ras activity and aberrant growth. Importantly, the 

consequences of activated Ras are pleiotropic and the mechanisms and signaling pathways by which 

Ras effects its biological consequences might exhibit significant species-specific and tissue-specific 

differences89. Mutations of many genes in the Ras pathway have been detected in a variety of 
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human cancers90. Moreover, reduced expression of a conserved microRNA (let-7) that targets the 3’-

untranslated region of Ras mRNA has been associated with elevated Ras activity in lung tumors14,91. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Neurofibromin (NF1) and Ras regulation. 

Neurofibromin modulates intracellular signaling that originates from receptor tyrosine kinases 

(RTKs) by accelerating inactivation of active GTP-bound Ras. Loss of neurofibromin leads to 

increased activity of Ras and its downstream effectors resulting in dysregulated cell growth 

(adapted from92). 

 

The Ras-GAP domain of neurofibromin comprises only 13% of the entire polypeptide, what has raised 

the question whether other regions of the molecule are important for modulating cell growth or 

other processes involved in NF1-related disease. Initial studies in Drosophila have shown that 

neurofibromin acts not only as a Ras-GAP, but also as a regulator of the cAMP pathway by regulating 

adenylyl cyclase (AC) activity (Figure 4)77,93. Activation of the Gα subunit of G-protein coupled 

receptors (GPCRs) upon ligand binding, stimulates the enzyme AC that synthesizes cyclic AMP 

(cAMP) from ATP. Cyclic AMP activates the cAMP-dependent protein kinase A (PKA), which in turn 

phosphorylates target proteins involved in a wide range of biological responses94. The NF1-regulated 

AC/cAMP pathway is important for controlling body size77, neuropeptide responses93 and learning95 

in flies, as well as neuropeptide-stimulated AC activity in both flies and mammals96,97. Only 

recently, it was shown that, in Drosophila brains, AC can be activated by at least three distinct 

pathways: an NF1/Ras-dependent, an NF1/Gα-dependent and a classical NF1-independent 

pathway98. Analysis of human NF1 mutations and deletions, expressed in flies without NF1, showed 

that separate domains of neurofibromin control the different AC pathways. RasGAP activity is 

necessary for NF1/Ras-dependent but not NF1/Gα-dependent AC signaling, whereas part of the C-
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terminal region (AA 1748-2818) is sufficient for NF1/Gα-dependent AC signaling and regulation of 

body size98. The functionality of human neurofibromin in the fly system, and the high degree of 

identity between human and fly homologs, suggests that distinct protein domains influencing 

different pathways for AC activation may also be operative in mammals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Neurofibromin (NF1) and adenylyl cyclase (AC) regulation. 

In Drosophila brains, neurofibromin modulates intracellular signaling that originates from G-protein 

coupled receptors (GPCRs) by regulating AC activity. AC can be activated by at least three distinct 

pathways: an NF1/Ras-dependent, an NF1/Gα-dependent and a classical NF1-independent pathway 

(adapted from98). 

 

Homology searches have revealed several other putatively functional domains in the NF1 protein. 

Neurofibromin shares high homology with the lipid-binding domain of Saccharomyces cerevisiae 

Sec14p99,100, which mediates the exchange of phospholipids between membrane bilayers101. The 

inhibition of neurofibromin RasGAP activity by specific lipids102,103 suggests that Ras GTPase function 

may be co-regulated by this putative lipid-binding domain (AA 1562-1714). The Sec14p domain 

overlaps with a protein sequence containing four caveolin-binding domains (AA 1601-2110)104. 

Caveolin proteins have been shown to bind to signaling molecules, such as Ras, within cholesterol-

rich lipid raft microdomains105,106. Both putative lipid-binding domains may target neurofibromin to 

the plasma membrane, where the Ras protein is located. 

Yeast two-hybrid screening revealed that two widely separated regions in neurofibromin (AA 1356-

1562 and AA 2616-2812) can bind to syndecan107. The syndecan family of transmembrane proteins is 

believed to play roles in cell adhesion and intercellular signaling, often acting as binding sites for 

growth/differentiation factors and as co-receptors for conventional receptors108,109. The binding of 

neurofibromin to syndecan provides again a potential mechanism for localizing neurofibromin in 

specialized molecular microdomains with specific cell surface receptors and other cell signaling 

molecules. 
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A functionally active nuclear localization signal has been characterized in exon 43 of NF1110. 

Translocation to the nuclear compartment could be a mechanism to regulate the RasGAP function of 

neurofibromin by sequestration from the cytoplasm. Alternatively, neurofibromin may have a 

specific but yet unknown function in the nucleus.  

Upstream of the GRD, neurofibromin contains a cysteine- and serine-rich domain (CSRD, AA 543-

909), harboring three potential PKA recognition sites which are constitutively phosphorylated64,111. 

Also the C-terminal region of the protein (AA 2260-2818) is constitutively phosphorylated by PKA112. 

Therefore, phosphorylation-dependent NF1-associated proteins may have regulatory effects on the 

function of neurofibromin. 

Neurofibromin has been shown to associate with the three major cytoskeletal systems: the 

microtubule (tubulin)113-115, microfilament (actin)116-118, and filamentous (keratin)119,120 cytoskeleton. 

Closely related to the cytoskeleton is the association of neurofibromin with the motor protein 

kinesin-1121. Moreover, an interaction between the amyloid precursor protein (APP) and the GRD of 

neurofibromin was identified122. APP has been proposed to function as a vesicle cargo receptor for 

kinesin-1 in neurons123 and melanocytes124. Together, these observations suggest a role for 

neurofibromin in cytoskeletal-mediated intracellular signal transduction pathways and vesicular 

cargo transport. 

 

 

GENOTYPE-PHENOTYPE CORRELATIONS IN NF1 

 

A hallmark of NF1 is the extreme clinical heterogeneity, even among related individuals carrying the 

same NF1 mutation. Although the major diagnostic features are present in the large majority of 

affected individuals, the number and location of lesions varies enormously. In addition, NF1 patients 

are prone to other phenotypic features. As a result, the clinical phenotype varies from mild 

manifestations to severe morbidity. Epidemiologic studies suggest that the molecular basis 

underlying this phenotypic variability is determined to a large extent by the genotype at modifying 

loci and that these modifying genes are trait specific125-128. Unlike the highly penetrant mutations in 

TSGs, polymorphic modifier genes exert a more subtle effect by changing the efficiency of different 

steps in tumorigenesis. These steps could occur within the tumor cell, such as the efficiency of cell 

cycle checkpoints or DNA repair, or systematically in the organism, such as the efficiency of 

antitumor immune responses129. 

 

Five percent of NF1 patients have a constitutional microdeletion that encompasses NF1 and its 

neighbouring genes. A total of seventeen genes are located in the typical ~1.5 Mb NF1 microdeletion 

region130. In comparison with the general NF1 population, individuals with an NF1 microdeletion 

frequently show a phenotype with more dermal neurofibromas at an earlier age, a lower average 

IQ131 and facial dysmorphy132-135. In addition, an increased risk for the development of malignant 

peripheral nerve sheath tumors (MPNSTs) has been reported136. As yet, the biological basis for this 

association remains unclear. 
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NF1-ASSOCIATED TUMORS 

 

The most common NF1-associated tumor is the benign peripheral nerve sheath tumor or 

neurofibroma. Neurofibromas have been subdivided into localized neurofibromas, which are 

discrete lesions associated with a single peripheral nerve, diffuse neurofibromas, which are more 

extended beyond the confines of the nerve, and plexiform neurofibromas, which involve multiple 

nerve fascicles. In a small percentage of NF1 patients, plexiform neurofibromas progress to 

malignant peripheral nerve sheath tumors (MPNSTs). NF1 patients are also predisposed to astrocytic 

brain tumors, spinal tumors, pheochromocytoma, myeloid leukemia and gastrointestinal stromal 

tumors50,137. 

 

Neurofibroma 

 

Cutaneous neurofibromas grow as discrete lesions in the dermis or subcutis and are the most 

common type of neurofibroma encountered in NF1. They typically arise during the second decade of 

life, are often associated with the onset of puberty, and continue to increase in number and size 

throughout adulthood. In females, there is often a clear increase in number and size during 

pregnancy. While these tumors are benign, patients can develop thousands of them which, 

depending on location, can be painful and disfiguring. Plexiform neurofibromas are more diffuse and 

can develop internally, sometimes involving an entire limb or body region. They represent 

congenital tumors that seem to enlarge more rapidly during the first decade of life. They can be 

debilitating and can progress to malignancy50. Plexiform neurofibromas are virtually pathognomonic 

for NF1. Diffuse neurofibromas are an uncommon but distinctive form of neurofibroma occuring 

principally in the head and neck region of children and young adults. About 10% of patients with this 

lesion also have NF1. 

 

Histopathology 

Normal peripheral nerve 

Peripheral nerves are complex well-organized structures in which single peripheral nerve fibers are 

wrapped by one Schwann cell that forms a protective sheath. The peripheral nerve sheath provides 

structural and metabolic support to nerves and, in the case of myelinated fibres, potentiates the 

conduction of action potentials. Several nerve fibers and associated Schwann cells are clustered 

into a nerve bundle (or fascicle) and each fascicle is surrounded by concentric layers of perineurial 

cells. Multiple nerve fascicles, bound by loose connective tissue, constitute an individual nerve 

(Figure 5a). Different cell types are present in a normal nerve fascicle: neural cells, Schwann cells, 

perineurial cells, fibroblasts, endothelial cells and occasionally mast cells. During development and 

regeneration following injury, the migration, proliferation, survival, growth arrest, and 

differentiation of each of these cell types is dependent on cues from surrounding cells138. 
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Peripheral nerve sheath tumor 

During neurofibroma formation, cell-cell interactions are disrupted, leading to the loss of the 

normal nerve structure. Schwann cells are found dissociated from nerves and the perineurium is 

disrupted. In addition, neurofibromas contain increased numbers of all cell types present in the 

normal peripheral nerve. The most abundant cell type in this complex are Schwann cells, which 

comprise 60-80% of the cell population (Figure 5b)139. The mixed cell composition in a myxoid 

background is important for diagnosis of neurofibromas and can be confirmed by 

immunohistochemistry, which shows a subset of S100 protein-positive cells (Schwann cells). The 

lesions are often transversed by nerve axons (positive neurofilament immunostaining) and may 

contain varying amounts of collagen fibers and mast cells140. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Normal peripheral nerve and model of neurofibroma development. 

(A) Peripheral nerves are comprised of multiple cell types: neurons (pale blue) with surrounding 

Schwann cells (red), perineurial cells (blue) and fibroblasts (yellow). Occasional mast cells are also 

observed (green). (B) Neurofibromas exhibit an increased number of all cell types. In addition, 

Schwann cells are often dissociated from neurons and the perineurium is disrupted. (C) 
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Neurofibroma development is initiated by mutation or loss of the inherited wild-type NF1 allele in 

Schwann cells (pink cells are NF1-/-). This may trigger tumor development by initiating a cascade of 

changes in other cell types as a result of their interdependency and/or haploinsufficiency (adapted 

from141). 

 

Model of neurofibroma development 

Neoplastic Schwann cell 

Molecular analyses of neurofibromas have shown that only a subpopulation of the Schwann cells 

(SCNF1-/-) in these tumors exhibit biallelic inactivation of the NF1 gene142-144. First, genotyping the 

NF1 locus in an NF1-associated neurofibroma and the derived Schwann cells and fibroblasts, 

revealed loss of heterozygosity (LOH) in both the original tumor and the Schwann cells, but not in 

the tumor-derived fibroblasts142. Second, it was demonstrated that fibroblasts isolated from 

neurofibromas carried at least one normal NF1 allele and expressed both NF1 mRNA and protein, 

whereas the S100 positive cells typically lacked the NF1 transcript143. Third, using a cell culture 

system that allows isolation and selective expansion of human Schwann cells from neurofibromas145, 

pure populations of Schwann cells and fibroblasts were grown from 10 neurofibromas with 

characterized constitutional and somatic NF1 mutations. It was found that Schwann cells, but not 

fibroblasts, harbored the somatic NF1 mutation in all studied tumors. Moreover, by culturing 

neurofibroma-derived Schwann cells under different in vitro conditions, the authors were able to 

obtain two genetically distinct (NF1+/- and NF1-/-) Schwann cell subpopulations144. The other cellular 

elements are genetically heterozygous for an inactivating NF1 mutation (NF1+/-). Accordingly, based 

on Knudson’s two-hit hypothesis4, Schwann cells can be considered as the initiating cell type in 

neurofibroma formation (Figure 5c). Neurofibromin-deficient Schwann cells demonstrate increased 

Ras activity and have a substantial growth advantage compared with the other neurofibroma-

derived cellular components80,146. Moreover, they have angiogenic and invasive properties147. It is 

unclear whether interdependence between both hits, as described for FAP and sporadic polyps, 

exists. 

 

NF1 mouse models confirm that NF1 loss in Schwann cells is the genetic bottleneck for neurofibroma 

formation. Because Nf1+/- mice don’t develop neurofibromas148 and Nf1-/- mice die during 

embryogenesis148,149, the question of second-hit mutation in murine neurofibroma development was 

addressed experimentally through the creation of chimeric mice partially composed of Nf1-/- 

cells150,151. Nearly all of these mice develop numerous neurofibromas that histologically resemble 

human plexiform neurofibromas. To identify the initiating cell type, Zhu and coworkers generated a 

conditional NF1 mouse model in which a floxed Nf1 allele is deleted by a Cre transgene under 

control of the Schwann cell-specific promoter, Krox-20. All progeny with the Nf1flox/-;Krox20-Cre 

genotype develop plexiform neurofibromas, confirming that Nf1 loss in the Schwann cell lineage is 

sufficient to generate tumors152. 
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Tumor microenvironment 

To address whether the heterozygous state of NF1 in somatic cells other than the tumor-initiating 

Schwann cell plays an active role in neurofibroma formation, Zhu and coworkers constructed 

Nf1flox/flox;Krox20-Cre mice that have intact Nf1 function in all cells (Nf1+/+), except in the Schwann 

cells (SCNf1-/-). In contrast to the wide-spread plexiform neurofibromas of the Nf1flox/-;Krox20-Cre 

mice, the Nf1flox/flox;Krox20-Cre mice only developed small, infrequent hyperplastic lesions152. This 

finding has led to the emerging view that NF1 heterozygosity in the tumor environment actively 

contributes to neurofibroma formation. Implicit is the requisite that heterozygous inactivation of 

NF1 has functional consequences (haploinsufficiency). 

 

Mast cells accumulate in the stroma of certain tumors and selectively secrete molecules involved in 

growth promotion, neovascularization and remodeling of the ECM153. Mast cells show marked 

infiltration in neurofibromas and have been considered as a major player in neurofibroma 

formation154,155. It has been demonstrated that Nf1+/- mast cells have increased survival and 

proliferation, and are hypermigratory compared to wild-type cells in response to Kit Ligand (KitL) 

secreted by Nf1-/- Schwann cells. Reintroduction of the GRD into Nf1+/- mast cell reduces their 

migration to wild-type levels in response to KitL, providing direct evidence that an Nf1+/- motile 

phenotype is secondary to increased Ras activity84,156,157. Together, these findings illustrate that Nf1-

/- neoplastic cells alter the tumor microenvironment by secreting growth factors and that the 

haploinsufficient state of non-neoplastic cells might be permissive for the progression of 

tumorigenesis. 

 

It is likely that other cells within the tumor microenvironment contribute to neurofibroma 

progression by similar paracrine interactions. Previous studies, for example, have shown that Nf1-/- 

Schwann cells secrete increased concentrations of various angiogenic growth factors, such as 

vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and platelet-

derived growth factor (PDGF)82,158-160. Further, Nf1+/- mast cells secrete increased concentrations of 

VEGF and bFGF161. There is recent genetic and biochemical evidence that, in response to bFGF and 

VEGF, Nf1+/- endothelial cells have increased migration and proliferation properties162-164 and that 

Nf1+/- fibroblasts are hypersensitive to low concentrations of PDGF165,166, both via hyperactivation of 

the Ras-Erk pathway. In addition, Nf1+/- Schwann cells are able to induce angiogenesis and are more 

invasive than their wild-type counterparts167 though the biochemical mechanisms for these 

observations are not determined. 

 

Taken together, a growing body of experimental evidence supports the idea that Nf1 

haploinsufficiency in the tumor environment promotes neurofibroma formation in mice. The Nf1 

gene may hence play the role of ‘gatekeeper’ and ‘landscaper’ depending on the tissue type. The 

tumors that have been observed in the murine model to date have been plexiform neurofibromas 

derived from dorsal root ganglia and cranial nerves152. Whether this is a consequence of the 

expression pattern of the Cre transgene used in those experiments or alternatively reflects a slightly 
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different pathogenesis from the dermal neurofibromas remains an important question. Moreover, 

the recurrent discrepancies in the tumor phenotypes between humans and mice, especially in the 

context of Ras-related neoplasms168, emphasize the value of dissecting tumorigenesis in human 

cells. 

 

MPNST 

 

Approximately 10% of individuals with NF1 will develop an MPNST, a clinically aggressive, often fatal 

cancer, which is poorly responsive to chemotherapy or radiation. Some MPNSTs arise in pre-existing 

plexiform neurofibromas implying a model of multi-step tumor progression, as has been 

demonstrated for the adenoma-carcinoma sequence. Besides NF1 inactivation, additional genetic 

changes have been identified in MPNSTs but not in benign neurofibromas. Alterations required for 

malignant progression include homozygous deletion of CDKN2A which encodes p16INK4A and p14ARF 

169,170, TP53 loss171,172, and inactivation of CDKN1B encoding p27KIP 173. Aberrant expression of the 

epidermal growth factor receptor (EGFR) has also been implicated in the development of MPNST in 

humans and in mouse models174-176. 

 

Mice carrying Nf1 and Trp53 mutations on the same chromosome (cisNf1/Trp53 mice) develop tissue 

sarcomas that resemble MPNSTs150,151. Tumor susceptibility in this mouse model appears to be highly 

dependent on the genetic background177. Recent evidence suggests that genetic interaction 

between an imprinted locus, linked to Nf1 and Trp53, and other polymorphic susceptibility loci 

strongly modifies the incidence of MPNSTs in mice129. The relevance of these results to NF1 patients 

will need to be tested by human association studies. 

 

Other NF1-associated tumors 

 

While defects in glial cells in the peripheral nervous system (Schwann cells) underlie neurofibroma 

development, NF1 patients are also predisposed to developing gliomas or astrocytomas, tumors 

derived from glial cells in the central nervous system (astrocytes). Between 15% and 50% of NF1 

patients develop some type of glioma, although they are often indolent in nature58. Similar to 

neurofibroma formation, Nf1 loss in astrocytes alone is insufficient for murine glioma formation178. 

Factors produced by the Nf1+/- brain environment are possibly required for the formation of low-

grade tumors179. High-grade glioma has been observed in cisNf1/Trp53 mice177. However, high-grade 

gliomas in individuals with NF1 do not develop from pre-existing low-grade tumors. 

 

Juvenile myelomonocytic leukaemia (JMML) is a relentless myeloid malignancy of young children 

characterized by overproduction of myeloid lineage cells that infiltrate hematopoietic and non- 

hematopoietic tissues180,181. The incidence of JMML is increased more than 200-fold in children with 

NF1182. Studies on human NF1 leukemia-derived tumor cells have shown that neurofibromin loss in 

bone marrow cells183,184, which is associated with hyperactive Ras87, results in hypersensitivity to 
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granulocyte-macrophage colony stimulating factor (GM-SCF), which promotes the survival, 

proliferation and differentiation of myeloid lineage cells185. 

 

Spinal nerve sheath tumors are described as symptomatic findings in ~2% of NF1 patients, but can be 

visualized by magnetic resonance imaging (MRI) in ~40% of NF1 patients186. The wide, symmetrical 

distribution of spinal neurofibromas occurring in all adult affected members of the same family and 

segregating in an autosomal dominant fashion, is however extremely rare. Besides café-au-lait 

spots, other typical cutaneous manifestations of NF1 are usually absent or very mild in these 

patients. Familial spinal neurofibromatosis (FSNF, OMIM 162210) has therefore been considered as 

an ‘alternate’ form of NF1. It is noteworthy that the NF1 mutations found in the FSNF families are 

mild mutations, i.e. truncating mutations at the very 3’ end of the gene, splicing and missense 

mutations187,188. It has been suggested that modifier genes might cooperate with the NF1 mutation 

to result in FSNF187. 

 

Pheochromocytomas usually arise within the adrenal medulla and are catecholamine-secreting 

tumors that can present with hypertension. Inherited cancer syndromes with pheochromocytoma as 

a component feature include von Hippel-Lindau syndrome (OMIM 193300), multiple endocrine 

neoplasia type 2 (OMIM 171400) and, to a much lesser extent, NF1189. Somatic NF1 inactivation is 

the underlying mechanism of NF1-associated pheochromocytoma development190. 

 

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the 

gastrointestinal tract191. KIT and PDGFRA activating mutations are the oncogenic mechanisms in 

most sporadic GISTs192,193. In addition to sporadic occurrences, GISTs are increasingly being 

recognized in association with NF1137, yet the underlying pathogenic mechanism remains elusive. 

 

 

THERAPEUTIC TARGETING 

 

Therapeutic interventions designed to inhibit Ras function have been proposed as treatments for 

NF1194. One approach is the administration of molecules that inhibit the enzyme farnesyl 

transferase. Post-translational farnesylation of Ras proteins is absolutely necessary for Ras function 

since this modification is required for anchoring of Ras to the plasma cell membrane where it exerts 

its function195. Preclinical studies have shown that farnesyl transferase inhibitors (FTIs) decrease 

hyperproliferation of neurofibromin-deficient Schwann cells167,196. FTIs have found their way into 

clinical trials for NF1-associated plexiform neurofibromas197,198. Statins, commonly used agents to 

prevent cardiovascular disease, function in the mevalonate pathway as small-molecule inhibitors of 

3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Besides reducing cholesterol levels, 

statins also inhibit the formation of lipid isoprenoids such as farnesyl and geranylgeranyl 

pyrophosphate with beneficial effects on cancer prevention199. Recently, it was reported that 

lovastatin decreased the enhanced brain Ras-MAPK activity in Nf1+/- mice and reversed their 
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learning and attention deficits200. These observations demonstrate that statins may prove useful in 

the treatment of various NF1-related symptoms. In addition, it might be important to consider 

targeting more specific downstream effectors of Ras. Aberrant activation of mTOR in Nf1-deficient 

cells, for example, depends on Ras and PI3K, which inactivate the TSC2 gene product tuberin via 

AKT (Figure 3)83. Importantly, tumor cell lines derived from NF1 patients are highly sensitive to the 

mTOR inhibitor rapamycin83, suggesting the potential utility of rapamycin and its derivatives in 

treating NF1 tumors. Another biological-based therapeutic approach may include pharmacological 

inhibition of KIT activity by Gleevec in order to reduce mast cell infiltration into neurofibromas156. 
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RESEARCH OBJECTIVES 

 

 

One major effort in NF1 research has been to dissect the genetic events underlying different 

aspects of disease development. While determining when and in what cell type the crucial 

molecular defect actually occurs, is critical for understanding the basic pathology of any phenotype, 

this exercise has proven to be surprisingly difficult for many NF1-related symptoms. Impeding 

factors include the large size of the NF1 gene, the presence of several NF1 pseudogenes, the 

complex interactions between cell types within affected tissues, and the NF1 heterozygous state of 

all cells in the body. In order to gain insight in the developmental concepts underlying various NF1-

related symptoms, this thesis aimed at exploiting improved somatic mutation detection strategies 

on a diverse spectrum of NF1-associated cellular entities. 

 

(1) Characterization of the somatic mutation spectrum in neurofibromas 

Since characterization of somatic mutational spectra may provide important clues about different 

aspects of tumorigenesis, the first research objective of this thesis was to investigate thoroughly the 

status of the somatically affected NF1 allele in neurofibromas. To this purpose, we developed an 

improved somatic mutation detection strategy on selectively cultured Schwann cell populations and 

screened a large panel of neurofibromas. In a next step, we compared the germline versus the 

somatic mutation spectrum, studied the interdependence between first and second hits and 

searched evidence for the existence of modifier genes as triggers for particular mechanisms of 

somatic inactivation preceding tumorigenesis. Our initial analyses were suggestive for a different 

mechanism of somatic inactivation between NF1 microdeletion patients and the general NF1 

population. In order to study the putative association between germline mutation and type of 

second hit in further detail, we compared a larger number of neurofibromas from both NF1 patient 

groups. The results of these studies are reported in Papers 1 and 2. 

 

(2) Molecular dissection of isolated disease features in mosaic NF1 patients 

As opposed to classic NF1 where all cells of the body bear at least one mutated NF1 allele, NF1 

segmental phenotypes provide the opportunity to study cell populations differing only with regard 

to the mutation(s) giving rise to the localized disease manifestations. As a second research 

objective, this thesis aimed at molecularly dissecting different clinical subtypes emerging within 

mosaic NF1 in order to gain insight into developmental concepts underlying particular NF1-related 

disease features. To this purpose, we developed a real-time quantitative PCR assay capable of 

detecting low-percentage mosaic point mutations against backgrounds of wild-type and pseudogene 

alleles and investigated mosaic NF1 patients with different clinical manifestations (neurofibromas 

only, pigmentary changes only, and association of both symptoms) at the molecular level. The 

results of these studies are reported in Papers 3 and 4. 
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(3) Identification of the molecular pathogenesis underlying the development of NF1-related 

gastrointestinal stromal tumors 

While KIT and PDGFRA activating mutations are the oncogenic mechanisms in most sporadic 

gastrointestinal stromal tumors (GISTs), the underlying pathogenic mechanism for NF1-related GIST 

development remains elusive. A third goal of this thesis was to gain insight into the mechanisms 

underlying GIST formation in NF1 patients. For this purpose, we studied several NF1-associated 

GISTs with a combination of different techniques: mutation analysis (KIT, PDGFRA and NF1), 

Western blotting, array CGH and ex vivo imatinib response experiments. The results of these studies 

are reported in Paper 5. 
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Communicated by Bruce Gottlieb

Neurofibromatosis type 1 (NF1) is mainly characterized by the occurrence of benign peripheral nerve sheath

tumors or neurofibromas. Thorough investigation of the somatic mutation spectrum has thus far been

hampered by the large size of the NF1 gene and the considerable proportion of NF1 heterozygous cells within

the tumors. We developed an improved somatic mutation detection strategy on cultured Schwann cells derived

from neurofibromas and investigated 38 tumors from nine NF1 patients. Twenty-nine somatic NF1 lesions were

detected which represents the highest NF1 somatic mutation detection rate described so far (76%).

Furthermore, our data strongly suggest that the acquired second hit underlies reduced NF1 expression in

Schwann cell cultures. Together, these data clearly illustrate that two inactivating NF1 mutations, in a

subpopulation of the Schwann cells, are required for neurofibroma formation in NF1 tumorigenesis. The

observed somatic mutation spectrum shows that intragenic NF1 mutations (26/29) are most prevalent,

particularly frameshift mutations (12/29, 41%). We hypothesize that this mutation signature might reflect

slightly reduced DNA repair efficiency as a trigger for NF1 somatic inactivation preceding tumorigenesis. Joint

analysis of the current and previously published NF1 mutation data revealed a significant difference in

the somatic mutation spectrum in patients with a NF1 microdeletion vs. non-microdeletion patients with

respect to the prevalence of loss of heterozygosity events (0/15 vs. 41/81). Differences in somatic inactivation

mechanism might therefore exist between NF1 microdeletion patients and the general NF1 population.

Hum Mutat 27(10), 1030–1040, 2006. rr 2006 Wiley-Liss, Inc.

KEY WORDS: neurofibromatosis type 1; NF1; somatic mutation analysis

INTRODUCTION

Neurofibromatosis type 1 (NF1; MIM] 162200) is a genetic

disorder affecting one in 3,500 individuals worldwide. The primary

clinical features are café-au-lait spots, skin-fold freckling, and

benign peripheral nerve sheath tumors or neurofibromas [Riccardi,

1992]. Characteristic for NF1 is its extreme clinical variability.

Epidemiologic studies suggest that the molecular basis underlying

this phenotypic variability is determined to a large extent by the

genotype at modifying loci and that these modifying genes are trait

specific [Easton et al., 1993; Szudek et al., 2000, 2002, 2003].

The NF1 gene spans 350 kb of genomic DNA, contains 60

exons, and is transcribed in an 11–13 kb transcript coding for the

protein neurofibromin with an open reading frame of 2,818 amino

acids [Cawthon et al., 1990; Viskochil et al., 1990; Wallace et al.,

1990; Marchuk et al., 1991; Li et al., 1995]. The only known

functional domain of neurofibromin is the GAP related domain

(GRD) which is involved in Ras downregulation [Ballester et al.,

1990; Martin et al., 1990; Xu et al., 1990; Bollag et al., 1996]. In

accordance with Knudson’s two hit hypothesis [Knudson, 1971],

both copies of the NF1 gene have been found to be inactivated in

NF1 related tumors [Xu et al., 1992; Legius et al., 1993; Shannon

et al., 1994; Colman et al., 1995]. NF1 promoter methylation

appears to be an uncommon event in NF1 tumorigenesis [Horan

et al., 2000; Luijten et al., 2000; Harder et al., 2004; Upadhyaya

et al., 2004; Fishbein et al., 2005].

Neurofibromas are comprised of multiple cell types, including

Schwann cells, mast cells, perineurial cells, fibroblasts, and

endothelial cells [Riccardi, 1992]. Schwann cells are the most
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prevalent cell type in this complex and have been proposed to be

the tumorigenic cell population [Kluwe et al., 1999; Rutkowski

et al., 2000; Serra et al., 2000]. Notably, only a subpopulation

of the Schwann cells harbors the somatic NF1 alteration [Serra

et al., 2000].

Thorough investigation of the somatic mutation spectrum has

thus far been hampered by the large size of the NF1 gene and

the considerable proportion of NF1 heterozygous cells within

the tumors. Here we show that these problems can be resolved

by performing comprehensive analysis of the NF1 gene on

selectively cultured Schwann cell populations of neurofibromas.

Comparison of the germline vs. the somatic mutation spectrum

and the study of the interdependence between first and second

hits might reveal genotypes with a higher risk for tumorigenesis.

Furthermore, comparison of somatic mutation spectra in different

types of tumors and patients might reflect distinct mutational

mechanisms and might provide evidence for the existence of

modifier genes as triggers for particular mechanisms of somatic

inactivation preceding tumorigenesis.

MATERIAL ANDMETHODS
Tumor Specimens

Thirty-eight dermal neurofibromas were obtained from nine

unrelated NF1 patients who signed informed consent. All patients

fulfilled the NF1 clinical criteria established by the NIH [Stumpf

et al., 1988]. Since patients with a high tumor burden are more

likely to undergo neurofibroma excision for reasons of discomfort,

the individuals included in this study may have been biased

towards those NF1 patients with a more severe tumor phenotype.

Indeed, compared to the age-matched NF1 population [Huson

et al., 1988], most individuals suffered from a severe to excessive

neurofibroma burden.

Schwann Cell Culture

Culture conditions for neurofibroma derived Schwann cells

were as described by Rosenbaum et al. [2000] and Serra et al.

[2000]. The presence of forskolin in the Schwann cell medium

promotes proliferation of cells bearing only the germline mutation

(SC F1). Replacement of proliferation medium by serum-free N2

medium [Bottenstein and Sato, 1979] followed by proliferation

medium without forskolin, promotes proliferation of cells contain-

ing both hits (SC F-). To estimate the purity of Schwann cell

cultures, immunofluorescence was performed. Briefly, fixated

cells were incubated for 1 hr at room temperature with rabbit

S100 primary antibody (1/1000) (Dako; www.dako.com). Alexa

Fluor 488 goat anti-rabbit antibody (1/1000) (Molecular Probes;

http://probes.invitrogen.com) was added for 45 min at room

temperature. Cells were mounted with Vectashield (Vector;

www.vectorlabs.com) plus 40,6-diamidino-2-phenylindole (DAPI,

Sigma Aldrich; www.sigmaaldrich.com) and analyzed on a Zeiss

(www.zeiss.com) fluorescence microscope. Cells were passaged

when cultures were confluent and harvested not earlier than at

passage four.

NF1Mutation Analysis

NF1 mutation analysis (GenBank reference sequence

NM_000267.1, www.ncbi.nlm.nih.gov/GenBank) was performed

essentially as described by Messiaen et al. [2000]. Briefly, genomic

DNA (gDNA) was extracted from Schwann cell cultures with

the QiaAmp procedure (Qiagen; www.qiagen.com) following the

manufacturer’s instructions. Schwann cell cultures were treated

with puromycin (200mg/ml, 4–6 hr) before RNA extraction

(RNeasy kit, Qiagen). The entire NF1 complementary DNA

(cDNA) was sequenced using the ABI3100 genetic analyzer

(Applied Biosystems; www.appliedbiosystems.com). All mutations

found at the cDNA level were confirmed on gDNA by cycle

sequencing. Detection of loss of heterozygosity (LOH) in the NF1

gene was performed by genotyping two microsatellite markers

distal from (30NF1-3, 30NF1-1) [Lopez Correa et al., 1999] and

four within the NF1 gene (Alu, IVS27AC33.1, IVS38GT53.0,

IVS27TG24.8) [Xu et al., 1991; Lazaro et al., 1993a,b, 1994].

Genomic DNA from paired Schwann cell and lymphocyte cultures

was investigated by three sets of multiplex PCR for the

microsatellite markers and subsequently analyzed on the

ABI3100 genetic analyzer (Applied Biosystems) with the Genes-

can software version 3.7 (Applied Biosystems). In case no somatic

hit was detected with the previous techniques, multiplex

ligation-dependent probe amplification (MLPA) analysis using

the P081/P082 kit (MRC Holland; www.mrc-holland.com) was

performed following the manufacturer’s instructions.

Semiquantitative Mutation Screening

In order to determine putative traces of SCNF1–/– in SC F1

cultures and NF11/– cells in SC F� cultures, a semiquantitative

assay was performed on the tumors with detected somatic hits (SC

F�) from patients NF96-1 (tumors A, B, C, and E), NF253-UHG

(tumors D and E), and L-004 (tumors B and D). SC F1, SC F� and

control gDNA samples were subjected to PCR amplification using

primers surrounding the respective somatic hit, except for tumors

E and B of patients NF253-UHG and L-004, respectively. PCR

products were sequenced following the BigDye Terminator

Sequencing protocol (Applied Biosystems). A liz-tagged size

standard was added and the samples were analyzed on a

ABI3130XL platform (Applied Biosystems) using a standard

fragment analysis protocol. Using the Genemapper analysis

software version 3.7 (Applied Biosystems), peak height ratios of

the somatic hit were calculated relative to an internal control peak

of the same nucleotide type at least five nucleotides apart and

these ratios were compared to the control gDNA sample (wild-

type sequence). Each gDNA sample was PCR amplified and

sequenced in triplicate. SC F1, SC F�, and control cDNA samples

of tumor B from patient L-004 were amplified in a multiplex PCR

using primers in NF1 exon 17 (internal control) and primers

surrounding NF1 exon 23.1. Relative peak heights of amplified

fragments (with/without exon 23.1 and exon 17) were analyzed by

the Genemapper analysis software version 3.7 (Applied Bio-

systems). All analyses were performed in triplicate. For tumor E of

patient NF253-UHG, LOH analysis was performed using six

microsatellite markers as described under the NF1 mutation

analysis paragraph; two markers were informative.

In order to evaluate allele-specific NF1 expression in tumors D

and E from patient NF253-UHG, SC F1 and SC F� cDNA

samples were amplified in a multiplex PCR using primers located

in NF1 exon 17 (exclusive amplification of the allele not bearing

the germline NF1 mutation, 100 bp) and TBP (a stable reference

gene in Schwann cells as determined by geNorm (http://

medgen.ugent.be/genorm/) [Vandesompele et al., 2002b], 90 bp).

Relative peak heights of amplified fragments (TBP vs. NF1) were

analyzed by the Genemapper analysis software version 3.7

(Applied Biosystems). All analyses were performed in triplicate.

Real-TimeQuantitative PCR

In order to evaluate the correlation between NF1 messenger

RNA(mRNA) expression, somatic mutation detection, and cell
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admixture, a real-time quantitative PCR assay was performed on

the tumors from patients NF96-1, NF253-UHG, and L-004.

Relative NF1 expression levels were determined using an

optimized two-step SYBR Green I RT-PCR assay [Vandesompele

et al., 2002a] in Schwann cell cultures (SC F1 and parallel SC F�).

PCR reagents were obtained from Eurogentec (www.eurogentec.com)

as SYBR Green I mastermixes and used according to the manu-

facturer’s instructions. Primers in NF1 exons 45 and 46 were

previously described [Vandenbroucke et al., 2002]. Reactions were

run on an ABI5700 instrument (Applied Biosystems). NF1 mRNA

expression levels were normalized using the geometric mean of the

three most stably expressed reference genes in Schwann cells (i.e.,

TBP, HPRT1, and HMBS) as determined by the geNorm software

[Vandesompele et al., 2002b]. Automated analysis of real-time

quantitative PCR data was performed using our in-house

developed qBase software which employs a delta-Ct relative

quantification model with PCR efficiency correction and multiple

reference gene normalization (http://medgen.ugent.be/qbase/).

Each sample was tested in duplicate and all PCR runs were

performed twice, starting from newly synthesized cDNA.

Mismatch Repair GeneAnalysis

As a first attempt to determine the putative contribution of

DNA repair variation in NF1 tumor predisposition, we screened

the mismatch repair (MMR) genes MLH1 (GenBank

NM_000249.2, www.ncbi.nlm.nih.gov/GenBank), MSH2 (Gen-

Bank NM_000251.1, www.ncbi.nlm.nih.gov/GenBank), and

MSH6 (GenBank NM_000179.1, www.ncbi.nlm.nih.gov/Gen-

Bank) in peripheral blood lymphocytes of all nine NF1 patients

(eight Belgian and one Dutch). The entire coding regions and

the splice junctions were amplified by PCR using 23 primer pairs

for each gene. All amplicons were subjected to denaturing gradient

gel electrophoresis (DGGE) except for exons 12 (MLH1), exons 1

and 5 (MSH2), and exons 1 and 10 (MSH6), which were analyzed

by direct cycle sequencing. Amplification and DGGE analysis was

performed as described [Wu et al., 1998]. The observed MMR

gene variants p.I219V (MLH1), p.G322D (MSH2), and p.G39E

(MSH6) were screened in a control population (non-NF1

individuals, geographically matched to the NF1 patients under

study) to determine the respective allele frequencies. The

p.G322D (MSH2) variant was tested in 15 additional geographi-

cally matched NF1 patients selected for an excessive neurofibroma

burden compared to the age-matched NF1 population [Huson

et al., 1988].

Microsatellite Instability Analysis

In order to evaluate microsatellite instability in the neurofi-

bromas from patients L-002 and NF482-UHG, SC F� cultures

and corresponding blood samples were subjected to PCR using

microsatellite markers for BAT25, BAT26, D2S123, D5S346,

and D17S250 from the reference panel for evaluation of micro-

satellite instability in colorectal tumors [Boland et al., 1998],

together with D18S55, D18S58, and D18S61. PCR products were

analyzed on the ABI3100 genetic analyzer (Applied Biosystems)

with the Genescan software version 3.7 (Applied Biosystems).

Statistical Analysis

A comprehensive overview of the current findings and

previously reported data is shown in Table 4. Only those studies

applying a systematic somatic mutation detection approach

(combination of LOH analysis and search for NF1 intragenic

mutations) were taken into account. These comprise the studies of

Sawada et al. [1996], Eisenbarth et al. [2000], Serra et al. [2001],

Wiest et al. [2003], and Upadhyaya et al. [2004]. Moreover, only

those neurofibromas for which both germline and somatic

mutations were characterized were included in the survey. In

total, 96 neurofibromas derived from 34 NF1 patients were

withheld: 29 neurofibromas from this report and 67 from the

literature. For both groups of mutations (germline and somatic),

distinct categories were made according to the type of mutation

(splice, missense, nonsense, NF1 microdeletion, deletion, inser-

tion, LOH) and their respective region of occurrence within

the NF1 gene (GenBank reference sequence NM_000267.1:

50 (proximal to c.3613), GRD (c.3613_c.4608), 30 (distal to

c.4608)). Fisher’s Exact and Binomial tests were performed using

SPSS 12.0 (www.spss.com) for Windows.

RESULTS
Schwann Cell Culture

By using selective culture media with and without forskolin, we

cultured from each tumor Schwann cells expected to carry only

the first hit (SCNF11/�) in parallel with cells expected to carry

both hits (SCNF1�/�). In general, SC F1 cultures grew at a slower

pace than SC F� cultures and fibroblast contamination,

determined by immunofluorescence staining and morphological

evaluation of cell cultures, appeared to be the most persistent

problem. The purity of 22 out of 38 SC F- cultures, estimated by

S100 immunofluorescence staining, is presented in Table 1.

NF1Mutation Analysis and Semiquantitative
Somatic Mutation Screening

Germline mutations were identified in all patients and

confirmed on blood lymphocytes. NF1 somatic mutation analysis

was performed on Schwann cell cultures of 38 dermal neurofi-

bromas derived from nine NF1 patients. Somatic mutations were

found in 29 tumors. Of these, 26 represented subtle mutations of

different types whereas three samples showed LOH of the NF1

region. In summary, 12 small deletions ranging from 1 to 19 bp,

one single exon deletion, seven nonsense mutations, six splicing

mutations (four leading to out-of-frame exonic dropouts), and

three LOH events were detected (Table 1). Semiquantitative

estimation of the percentage of somatic hit in SC F1 and SC

F� cultures derived from tumors of patients NF96-1, NF253-

UHG, and L-004 are presented in Table 2.

NF1mRNA Expression in Schwann Cell Cultures

Data from two independent real-time quantitative PCR

experiments were combined (average of normalized logarithmic

NF1 expression levels) and are presented in Table 2 and Figure 1.

The average NF1 expression ratio (SC F1/SC F�) of the eight

neurofibromas without detected second hit (tumor D from patient

NF-96-1; tumors A, B, C, and F from patient NF253-UHG; and

tumors A, C, and E from patient L-004) equals 1.08 (95%

confidence interval [CI]: 0.79–1.48). The average NF1 expression

ratio (SC F1/SC F-) of six of the eight neurofibromas with

detected second hit (tumors A, B, and C from patient NF-96-1;

tumors D and E from patient NF253-UHG; and tumor B from

patient L-004) falls outside this 95% CI. Notably, only in the SC

F� cultures derived from the six latter tumors (average fold

reduction in NF1 expression being 3.33 [95% CI: 2.20–5.05]), was

a substantially high percentage of somatic hit (31–100%, Table 2)

detected compared to the parallel SC F1 cultures. Moreover,

semiquantitative evaluation of allele-specific NF1 expression in

tumors D and E from patient NF253-UHG revealed that
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decreased expression is due to the allele not bearing the germline

NF1 mutation (data not shown). Since the constitutional

mutation in patient NF96-1 is a NF1 microdeletion, the same

holds true for the tumors of this individual. Taken together, these

data strongly suggest that the acquired second hit results in

reduced NF1 expression (P 5 0.0023; Fisher’s Exact test).

Mismatch Repair GeneAnalysis

In all patients, several alterations in MLH1, MSH2, and MSH6

were detected (data not shown). All alterations were known

polymorphisms (InSight database, www.insight-group.org). Those

variants leading to amino acid alterations were selected for further

evaluation, i.e., p.I219V (MLH1), p.G322D (MSH2), and p.G39E

(MSH6). Respective allele frequencies of these variants were

74/184 (�40%), 5/364 (�1%), and 37/186 (�20%) in a control

non-NF1 population, geographically matched to the NF1 patients

under investigation, and 6/18 (�33%), 2/18 (�11%), and 4/18

(�22%) in the NF1 patients (Table 3). Only the frequency of the

p.G322D (MSH2) polymorphism is statistically different

(P 5 0.038; Fisher’s Exact test) in the NF1 patients compared

to the control population, but this significance at the 5% level

disappeared after correcting for multiple testing. Analysis of 15

additional geographically matched NF1 patients with a similar

tumor burden did not reveal the MSH2 polymorphism in any

individual. No microsatellite instability could be detected in any

of the analyzed tumors.

Germline vs. Somatic Mutation Spectrum

In order to compare the germline and somatic mutation

spectrum and to explore a putative interdependence between

both, a descriptive and statistical analysis on the germline and

somatic NF1 mutation data set of 96 neurofibromas from 34 NF1

patients was performed. Twenty-nine neurofibromas are described

in this report and the remaining 67 were compiled from the

literature (Table 4). In summary, the 34 germline mutations

include seven splice and nine nonsense mutations, nine small

deletions (1–4 bp), four insertions, and five total NF1 deletions.

Nineteen of these reside in the 50 region of the NF1 gene, while

two and eight mutations, respectively, are present in the GRD and

the 30 region. The 96 somatic hits include 15 splice, 15 nonsense

TABLE 1. Germline and SomaticNF1Mutations in 38 DermalNeuro¢bromas Derived from 9 NF1PatientsTogether With Estimated
Purity of SCF- Cultures�

Patient Tumor

NF1

SCF�Germline Somatic

L-001 TumorA g.AC127024.4_AC129917.6del ( 5NF1microdeletion) c.5026_5032del 95%
TumorB c.3189T4A (p.C1063X) 95%
TumorC c.4086_4092del 95%
TumorD c.396_403del 95%
Tumor E c.3774G4A (p.W1258X) 95%

L-002 TumorA c.1246C4T (p.R416X) c.655-1G4T 95%
TumorB c.3757_3764del 95%
TumorC LOH 95%
TumorD c.1105C4T (p.Q369X) 95%
Tumor E c.1153del 95%
TumorF c.246_247del 95%

NF96-1 TumorA g.AC127024.4_AC129917.6del( 5NF1microdeletion) c.[7395^1G4A;7395G4A] NA
TumorB c.3330del NA
TumorC c.7438del NA
TumorD ND NA
Tumor E c.2050C4T (p.P684X) NA

L-004 TumorA c.6791dup ND NA
TumorB c.3871-?_39741?del NA
TumorC ND NA
TumorD c.4729del NA
Tumor E ND NA

L-005 TumorA c.311311G4A LOH NA
NF253-UHG TumorA c.2851�2A4G ND 75%

TumorB ND 70%
TumorC ND 10%
TumorD c.1663_1666del 95%
Tumor E LOH 95%
TumorF ND 95%

NF339-UHG TumorA g.AC127024.4_AC129917.6del( 5NF1microdeletion) c.4697T4A (p.L1566X) 95%
TumorB c.2851^2A4G 80%
TumorC c.[1007G4A;1008G4A] (p.W336X) 95%
TumorD c.240911G4A 95%
Tumor E ND 70%

NF482-UHG TumorA c.3525_3526del c.2252-30_2252-6delinsT NA
TumorB c.603_621del NA
TumorC c.118511G4A NA
TumorD c.359_375del NA

NF116-UHG TumorA c.5122dup c.4537C4T (p.R1513X) NA

�GenBankNF1 reference sequenceNM_000267.1with mutation numbering beginningwith 11as A of theATG codon.
LOH, loss of heterozygosity; ND, not detected; SC F-, estimated Schwann cell percentage of SC F- cultures determined by S100 immuno£uorescence
staining; NA, no data available.
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and one missense mutation, 22 small deletions (1–31 bp), one
single exon deletion, one insertion, and 41 LOH events. Thirty-
one of the intragenic somatic mutations reside in the 50 region,
10 in the GRD, and 14 in the 30 region of the NF1 gene. Cross
tabulation did not reveal a statistically significant association
between the location of the germline mutation and the location or

type of somatic mutation. The somatic mutation spectrum in
patients with a NF1 microdeletion vs. patients with a minor lesion
as germline mutation was significantly different with respect to the
prevalence of LOH events (0/15 vs. 41/81: P 5 0.0001; Fisher’s
Exact test) (Table 5). Thirteen of the 15 neurofibromas with a
germline NF1 microdeletion are described in this report. To avoid

TABLE 2. AssociationBetween Somatic MutationDetection,Cell Admixture andNF1Expression for theTumors of PatientsNF96-1,
NF253-UHG, and L-004�

Patient Germline Tumor Somatic C SQ qPCR

NF96-1 NF1microdeletion A c.[7395-1G4A;7395G4A] F1 0% 3.7070.34
F^ 72% 1.0070.09

B c.3330del F1 0% 3.7470.75
F^ 31% 1.0070.09

C c.7438del F1 0% 6.1071.52
F^ 100% 1.0070.12

D ND F1 NA 0.9170.14
F^ NA 1.0070.11

E c.2050C4T (p.P684X) F1 0% 1.1870.22
F^ 9% 1.0070.18

NF253-UHG c.2851^2A4G A ND F1 NA 0.7470.08
F^ NA 1.0070.12

B ND F1 NA 1.4070.17
F^ NA 1.0070.27

C ND F1 NA 1.0170.27
F^ NA 1.0070.07

D c.1663_1666del F1 0% 3.0170.56
F^ 50% 1.0070.21

E LOH F1 0% 2.9770.22
F^ 94% 1.0070.07

F ND F1 NA 1.2070.28
F^ NA 1.0070.17

L-004 c.6791dup A ND F1 NA 1.3870.24
F^ NA 1.0070.26

B c.3871-?_39741?del F1 0% 1.8170.45
F^ 100% 1.0070.13

C ND F1 NA 1.9470.17
F^ NA 1.0070.06

D c.4729delA F1 80% 1.4670.53
F^ 100% 1.0070.19

E ND F1 NA 0.6170.45
F^ NA 1.0070.13

�GenBankNF1 reference sequenceNM_000267.1.
C, culture condition; F1, with forskolin; F�, without forskolin; SQ, semiquantitative estimation of percentage NF1^/^ cells; ND, not detected; NA, not
applicable; qPCR, relativeNF1 expression in SC F1 vs. the parallel SC F� cultures (rescaled to 17Standard error of the mean [SEM]) determined by
real-time quantitative PCR.

FIGURE 1. NF1mRNA expression levels in Schwann cell cultures (SC F1 left from SC F�, whereby SC F� levels are rescaled to one
for each tumor) derived from di¡erent tumors from patients NF96-1, NF253-UHG, and L-004 (mean of two independent
experiments7standard error of themean [SEM]).
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TABLE 3. MismatchRepairGeneVariants Leading toAminoAcidChanges Detected inNineNF1Patients�

Patient MLH1 MSH2 MSH6 Tumor phenotype (age/]NFB)

Severe tumor burden andNF1microdeletion
L-001 c.655A4G (p.I219V) ç ç 49 years/100^500
NF96-1 ç ç ç 33 years/4100

Severe tumor burdenwithoutNF1microdeletion
L-002 c.655A4G (p.I219V) (hom) c.965G4A (p.G322D) c.116G4A (p.G39E) (hom) 34 years/TNTC
L-004 c.655A4G (p.I219V) ç ç 58 years/100^500
L-005 c.655A4G (p.I219V) ç c.116G4A (p.G39E) 55 years/TNTC
NF482-UHG ç c.965G4A (p.G322D) c.116G4A (p.G39E) 48 years/TNTC
NF116-UHG ç ç ç 49 years/4100

Moderate tumor burden
NF253-UHG c.655A4G (p.I219V) ç ç 33 years/o50

Mild tumor burden
NF339-UHG ç ç ç 41years/segmental

�GenBankMLH1 reference sequenceNM_000249.2, MSH2 reference sequenceNM_000251.1, MSH6 reference sequenceNM_000179.1.
hom, homozygous alteration; NFB, neuro¢broma;TNTC, too numerous to count.

TABLE 4. Overview ofGermline and SomaticNF1Mutations inNeuro¢bromas Revealed by aCombination of LOHAnalysis
andNF1MutationDetectionTechniques�

NF1germline NF1Somatic

ReferenceMutation Type Region Mutation Type Region

g.AC127024.4_AC129917.6del Microdeletion ^ c.5026_5032del Deletion 30 Current report
c.3189T4A (p.C1063X) Nonsense 50

c.4086_4092del Deletion GRD
c.396_403del Deletion 50

c.3774G4A (p.W1258X) Nonsense GRD
c.1246C4T (p.R416X) Nonsense 50 c.655^1G4T Splice 50

c.3757_3764del Deletion GRD
LOH LOH ^
c.1105C4T (p.Q369X) Nonsense 50

c.1153del Deletion 50

c.246_247del Deletion 50

g.AC127024.4_AC129917.6del Microdeletion ^ c.[7395^1G4A;7395G4A] Splice 30

c.3330del Deletion 50

c.7438del Deletion 30

c.2050C4T (p.P684X) Nonsense 50

c.6791dup Insertion 30 c.3871-?_39741?del Deletion GRD
c.4729del Deletion 30

c.311311G4A Splice 50 LOH LOH ^
c.2851-2A4G Splice 50 c.1663_1666del Deletion 50

LOH LOH ^
g.AC127024.4_AC129917.6del Microdeletion ^ c.4697T4A (p.L1566X) Nonsense 30

c.2851^2A4G Splice 50

c.[1007G4A;1008G4A]
(p.W336X)

Nonsense 50

c.240911G4A Splice 50

c.3525_3526del Deletion 50 c.2252-30_2252-6delinsT Splice 50

c.603_621del Deletion 50

c.118511G4A Splice 50

c.359_375del Deletion 50

c.5122dup Insertion 30 c.4537C4T (p.R1513X) Nonsense GRD
g.AC027793_AC004526del Microdeletion ^ c.543_546del Deletion 50 Sawada et al. [1996]
c.126011G4A Splice 50 c.4021C4T (p.Q1341X) Nonsense GRD Eisenbarth et al. [2000]

c.4084C4T (p.R1362X) Nonsense GRD
c.1246C4T (p.R416X) Nonsense 50 LOH LOH ^
c.2041C4T (p.R681X) Nonsense 50 c.2246C4G (p.S749X) Nonsense 50 Serra et al. [2001]

LOH LOH ^
LOH LOH ^

c.3525_3526del Deletion 50 c.2928_2940del Deletion 50

c.2266C4T (p.Q756X) Nonsense 50

c.126011604A4G Splice 50

c.126011G4A Splice 50

c.451411G4C Splice GRD
c.587-8_587-3del Splice 50

c.7676^2A4T Splice 30

c.2815del Deletion 50

c.5774del Deletion 30

c.6292_6322del Deletion 30
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an ascertainment bias against LOH, only those neurofibromas

derived from NF1 patients with an intragenic germline mutation

were taken into account for further comparison. The frequency

of LOH in our cohort (3/16, 19%) is similar to literature data

(42/205, 20%) [Colman et al., 1995; Daschner et al., 1997; Serra

et al., 1997; Eisenbarth et al., 2000; Rasmussen et al., 2000; Serra

et al., 2001; Wiest et al., 2003; Upadhyaya et al., 2004] but is

significantly different from the group of tumors with both

characterized hits derived from the systematic somatic mutation

detection studies (3/16 vs. 38/65: P 5 0.0053; Fisher’s Exact test).

DISCUSSION

Unbiased NF1 somatic mutation screening has been challenging

due to the large size of the NF1 gene, the diversity of lesions

found within the NF1 gene, and the cellular heterogeneity of

NF1 related tumors. Here, we present an improved strategy for

NF1 somatic mutation detection. Extensive screening of the NF1

gene in selectively grown Schwann cells derived from neurofi-

bromas resulted in the highest NF1 somatic mutation detection

rate described up to now (76%). Moreover, it was demonstrated

that the acquired somatic hit reduces NF1 mRNA expression. As

a reduction in NF1 expression was not observed for SC F- cultures

with undetectable somatic NF1 mutations (Table 2) and Schwann

cell purity could not be assessed for several of these (Table 1), we

postulate that a high proportion of NF11/– cells was still present in

at least some of these cultures. Fibroblast admixture in Schwann

cell cultures is a persistent problem in this context and the purity

of Schwann cell subpopulations during successive passages may

LOH (12) LOH (12) ^
c.979delinsTT Deletion 50 LOH LOH ^

LOH LOH ^
c.3419C4G (p.S1140X) Nonsense 50 LOH LOH ^

LOH LOH ^
c.57491332A4G Splice 30 LOH LOH ^
c.910C4T (p.R304X) Nonsense 50 LOH LOH ^
c.225112T4C Splice 50 LOH LOH ^

LOH LOH ^
c.387011G4T Splice GRD LOH LOH ^
c.910C4T (p.R304X) Nonsense 50 LOH LOH ^
c.1754_1757del Deletion 50 LOH LOH ^
c.3525_3526del Deletion 50 LOH LOH ^
c.801G4A (p.W267X) Nonsense 50 c.164111G4A Splice 50 Wiest et al. [2003]

c.1528-14_1546del Splice 50

c.3049C4T (p.Q1017X) Nonsense 50

c.3916C4T (p.R1274X) Nonsense GRD
c.520511G4A Splice 30

c.5767_5770del Deletion 30

LOH LOH ^
LOH LOH ^

c.801G4A (p.W267X) Nonsense 50 c.1381C4T (p.R461X) Nonsense 50

c.7237_7253del Deletion 30

c.3303_331417del Splice 50

c.4750_4751ins Insertion 30

LOH LOH ^
c.2731del Deletion 50 c.7285C4T (p.R2429X) Nonsense 30 Upadhyaya et al. [2004]
c.6788_6791del Deletion 30 c.1888del Deletion 50

c.6791dup Insertion 30 c.2033del Deletion 50

c.4374_4375del Deletion GRD
LOH LOH ^
LOH LOH ^
LOH LOH ^

g.AC127024.4_AC129917.6del Microdeletion ^ c.6387A4C (p.R2129S) Missense 30

c.2851-2A4G Splice 50 LOH LOH ^
c.4537C4T (p.R1513X) Nonsense GRD LOH LOH ^
c.6788_6791del Deletion 30 LOH LOH ^
c.7267dup Insertion 30 LOH LOH ^
c.7268_7269del Deletion 30 LOH LOH ^

�GenBankNF1 reference sequenceNM_000267.1.
50, proximal to c.3613;GRD,GAP-related domain (c.3613-4608); 30, distal to c.4608.

TABLE 5. ComparisonNF1Somatic Mutation SpectrumofNF1
Microdeletion (MD) andNon-microdeletionPatients

SomaticNF1mutation
GermlineNF1

mutation
Fisher’s Exact

Type Number MD Non-MD test (a50.008)

Splice 15 3 12 P 50.7
Nonsense 15 5 10 P 50.06
Missense 1 1 0 P 50.2
Deletion 23 6 17 P 50.2
Insertion 1 0 1 P 51
LOH 41 0 41 P 50.0001
Total 96 15 81

TABLE 4. Continued

NF1germline NF1Somatic

ReferenceMutation Type Region Mutation Type Region
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depend on the composition of the original tumor. Regardless, the

high somatic mutation detection rate and the observed NF1

mRNA reduction in SC F� cells illustrate that two inactivating

events, in a subpopulation of the Schwann cells, are required for

neurofibroma formation and emphasize the importance of genetic

inactivation mechanisms, instead of epigenetic factors, in NF1

tumorigenesis.

The high prevalence of somatic minor lesion mutations (26/29)

compared to LOH events in our cohort (3/29) is striking. This is in

contrast with previous somatic mutation reports where LOH has

been detected more often than small somatic lesions. This might

be explained by the fact that: 1) LOH is technically easier to

detect than intragenic mutations, 2) somatic mutation detection

approaches were used that were not sensitive enough to detect

all types of mutations, 3) the coding NF1 region was not entirely

analyzed, and 4) some patient groups might exist with a tendency

to acquire a particular type of somatic alteration. The high

prevalence of frameshift mutations (12/29, 41%) as second hit

is remarkable. The occurrence of deletions comprising Z4

nucleotides (7/29, 24%) is especially high in comparison with

the germline mutation spectrum (71/804, 9%; own unpublished

data) (P 5 0.012; Binomial test). Recently, NF2 frameshift

mutations were reported to be more prevalent in sporadic tumors,

particularly with increasing age at diagnosis, compared to classic

and mosaic neurofibromatosis type 2 [Evans et al., 2005]. The

high occurrence of somatic frameshift mutations might therefore

be explained by an age related shift in mutation mechanism,

possibly due to an age related decline in DNA repair efficiency

[Evans et al., 2005]. Compared to the general age matched NF1

population [Huson et al., 1988], most individuals included in the

current report suffer from a severe to excessive neurofibroma

burden. While it is well known that NF1 microdeletion patients

develop more neurofibromas at an earlier age [Kayes et al., 1994;

Cnossen et al., 1997; Leppig et al., 1997; Tonsgard et al., 1997],

for other NF1 patients this remarkable tumor phenotype remains

unexplained. It is tempting to speculate that reduced DNA repair

efficiency influences the NF1 somatic mutation rate and hence

tumor development and tumor burden. Several lines of evidence

strengthen this hypothesis. First, there is increasing evidence that

mild reductions in DNA repair capacity, assumed to be the

consequence of common genetic variation, affect cancer predis-

position [Mohrenweiser et al., 2003]. Second, the NF1 gene has

been shown to be a mutational target in cells deficient for the

MMR process [Wang et al., 2003]. Third, epidemiologic studies

suggest that the molecular basis underlying the phenotypic

variability in NF1 is determined to a large extent by the genotype

at modifying loci [Easton et al., 1993; Szudek et al., 2000, 2002,

2003]. Genes involved in eukaryotic MMR are responsible for the

repair of base:base and single to larger base insertion/deletion

mispairs [Kolodner and Marsischky, 1999]. The somatic mutation

signature (high occurrence of larger frameshift mutations) might

reflect impairment of the latter DNA repair mechanism. In a first

attempt to determine the putative contribution of DNA repair

variation in NF1 tumor predisposition, we screened the MMR

genes MLH1, MSH2, and MSH6 in peripheral blood lymphocytes

of all patients in this report. In accordance with the extensive

genetic variation found in repair genes in the general population,

distinct polymorphisms were detected for all genes in all NF1

patients. Only those variants leading to amino acid alterations

were selected for further evaluation, i.e., p.I219V (MLH1),

p.G322D (MSH2), and p.G39E (MSH6), because of their

potential impact on protein structure and activity. The Polyphen

algorithm (http://tux.embl-heidelberg.de/ramensky; [Xi et al.,

2004]) indicates that, of the three selected polymorphisms, only

p.G322D in MSH2 could have a potential impact on the

respective protein activity. This finding is supported by functional

assays in yeast since quantitative in vivo DNA MMR assays in

Saccharomyces cervisiae indicate that the homologous yeast

p.G317D allele variant exhibits a slightly reduced efficiency of

MMR compared with the wild-type yeast MSH2 [Drotschmann

et al., 1999; Ellison et al., 2001]. The triggers for development of

multiple tumors might be different in NF1 microdeletion patients

(17 genes are present in the typical NF1 microdeletion region)

compared to individuals with an intragenic NF1 mutation.

Therefore, we subdivided the patient group with a severe tumor

burden into two different entities: 1) severe tumor burden and

NF1 microdeletion (L-001, NF96-1) and 2) severe tumor burden

without NF1 microdeletion (L-002, L-004, L-005, NF482-UHG,

and NF116-UHG). While the frequency of the MLH1 and MSH6

variants in the NF1 patients and the control population is roughly

similar, the occurrence of the MSH2 variant in NF1 patients with

multiple neurofibromas and an intragenic NF1 germline mutation

(five patients) is higher than expected (2/5 vs. 5/182: P 5 0.011;

Fisher’s Exact test). Microsatellite instability analysis of the tumors

of the two NF1 patients was negative. Analysis of 15 additional

NF1 patients selected with a similar tumor burden did not reveal

the MSH2 polymorphism in any individual. One might expect that

genetic predisposition to tumor development is the result of an ‘‘at-

risk’’ genotype composed of small contributions of functionally

significant variants in multiple DNA repair genes. Therefore,

epidemiological studies in large NF1 patient groups will be

essential for evaluating the association between variant DNA

repair genotypes and tumor predisposition.

To study the interdependence between germline and somatic

hits. we made an overview of the current findings together with

previously reported cases (Table 4). In total, combined germline

and somatic mutation data of 96 neurofibromas derived from 34

NF1 patients were subjected to descriptive and statistical analysis.

These results have to be interpreted with caution. Inadequate

detection techniques and the mixed cellular pools that were used

for mutation analysis in previous studies together with the

selection of only those neurofibromas for which both germline

and somatic mutations were characterized, might have led to

biased results. More specifically, somatic NF1 minor lesion

mutations might be underestimated compared to LOH events,

and certain types of small somatic lesions might be under/

overrepresented due to the specific technologies applied in the

former studies.

Both intragenic germline and somatic mutations tend to reside

in the 50 region of the NF1 gene (19/29, 66% and 31/55, 56%,

respectively). In contrast with observations in familial adenoma-

tous polyposis (MIM] 175100) [Lamlum et al., 1999; Crabtree

et al., 2003], no association was found between the location of the

germline and the location or type of the somatic NF1 mutation.

When focusing on the minor somatic lesions, the frequency of

somatic missense mutations (1/55) is remarkably low in compar-

ison with the NF1 intragenic germline mutation spectrum (114/

851, 13%; own unpublished data) (P 5 0.003; Binomial test).

It is tempting to speculate that the described somatic missense

mutation might have only a mild impact on protein activity and

will only contribute to tumorigenesis when occurring in combina-

tion with a ‘‘dramatic’’ constitutive hit such as the NF1

microdeletion (leading to loss of 17 genes) in the particular

tumor. More tumors will need to be studied, including tumors from

patients with a missense alteration as the constitutive hit, to clarify

this further. The somatic mutation spectrum of NF1 microdeletion
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and non-microdeletion patients was revealed to be significantly

different with respect to the prevalence of LOH events (0/15 vs.

41/81: P 5 0.0001; Fisher’s exact test) (Table 5). This finding

points to a putative difference in somatic inactivation mechanism

between both NF1 patient groups. This phenomenon was also

observed in patient UHG-339, who is mosaic for a NF1

microdeletion. We investigated this hypothesis in more detail on

an extended series of tumors [De Raedt et al., 2006]. A similar

discrepancy in the frequency of LOH between patients with a

germline total gene deletion vs. a germline intragenic mutation has

been observed in tumors of patients with the von Hippel-Lindau

syndrome and in patients with retinoblastoma [Hagstrom and

Dryja, 1999; Vortmeyer et al., 2002; Wait et al., 2004].

In conclusion, we developed an improved strategy for somatic

screening of the NF1 gene on selectively cultured Schwann cells

and analyzed the somatic mutation spectrum in neurofibromas.

The high somatic mutation detection rate (76%) together with

the observed NF1 mRNA reduction in SC F� cultures illustrate

that two inactivating mutations, in a subpopulation of the

Schwann cells, are required for neurofibroma formation. Given

the high occurrence of somatic frameshift mutations, a putative

role of reduced DNA repair efficiency as a trigger for NF1 somatic

inactivation and hence tumorigenesis was suggested. The absence

of LOH as second hit in NF1 microdeletion patients compared to

the general NF1 population, led to the hypothesis that differences

in somatic inactivation mechanism might exist between both

patient groups. Studies on a larger series of tumors are needed to

confirm these observations and will be important to further

elucidate the molecular basis underlying tumorigenesis in NF1.
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Neurofibromatosis type I (NF1) is an autosomal dominant familial tumor syndrome characterized by the presence of multiple

benign neurofibromas. In 95% of NF1 individuals, a mutation is found in the NF1 gene, and in 5% of the patients, the germline

mutation consists of a microdeletion that includes the NF1 gene and several flanking genes. We studied the frequency of loss

of heterozygosity (LOH) in the NF1 region as a mechanism of somatic NF1 inactivation in neurofibromas from NF1 patients

with and without a microdeletion. There was a statistically significant difference between these two patient groups in the pro-

portion of neurofibromas with LOH. None of the 40 neurofibromas from six different NF1 microdeletion patients showed

LOH, whereas LOH was observed in 6/28 neurofibromas from five patients with an intragenic NF1 mutation (P ¼ 0.0034, Fish-

er’s exact). LOH of the NF1 microdeletion region in NF1 microdeletion patients would de facto lead to a nullizygous state of

the genes located in the deletion region and might be lethal. The mechanisms leading to LOH were further analyzed in six neu-

rofibromas. In two out of six neurofibromas, a chromosomal microdeletion was found; in three, a mitotic recombination was

responsible for the observed LOH; and in one, a chromosome loss with reduplication was present. These data show an impor-

tant difference in the mechanisms of second hit formation in the 2 NF1 patient groups. We conclude that NF1 is a familial tu-

mor syndrome in which the type of germline mutation influences the type of second hit in the tumors. VVC 2006 Wiley-Liss, Inc.

INTRODUCTION

Neurofibromatosis type I (NF1) is an autosomal

dominant disorder with a prevalence of 1/4,000

(Huson, 1989). It is caused by mutations in the

NF1 tumor suppressor gene located at chromosome

band 17q11.2 (Legius et al., 1993). Neurofibromin,

the NF1 gene product, is a negative regulator of

the Ras-Map kinase pathway. The main features of

the NF1 phenotype are multiple café-au-lait spots,

axillary freckling, Lisch nodules, benign neurofi-

bromas, and learning disabilities. Most individuals

with NF1 show a mutation in the NF1 gene (point

mutation, small deletion, insertion, or duplication)

(Messiaen et al., 2000). Five percent of NF1 indi-

viduals have a microdeletion (Clementi et al.,

1996; Cnossen et al., 1997; Rasmussen et al., 1998;

Kluwe et al., 2004) that encompasses NF1 and its

neighboring genes. Individuals with an NF1 micro-

deletion exhibit on average a larger neurofibroma

burden, have a lower average IQ (Descheemaeker

et al., 2004; Venturin et al., 2004) compared with

non-microdeletion patients, and often show dis-

tinct facial characteristics (Venturin et al., 2004). In

addition, an increased risk for the development of

malignant peripheral nerve sheath tumors has been

reported (De Raedt et al., 2003). Two recurrent

types of NF1 microdeletions have been described.
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The type I microdeletion is the most prevalent, is

meiotic in origin (Lopez-Correa et al., 2000a), and

has a length of 1.4 Mb. The breakpoints are

located in the low copy repeats (NF1REPA and C)

flanking the NF1 microdeletion region (Lopez-

Correa et al., 2001; Kehrer-Sawatzki et al., 2004),

and 17 genes are localized in this region (De Raedt

et al., 2004). The type II NF1 microdeletion is

smaller (about 1.2 Mb) and mitotic in origin. The

breakpoints are located in the JJAZ1 (SUZ12)
gene/pseudogene region, and a total of 16 genes

are deleted. These patients are often mosaic for

the NF1 microdeletion, which may be the reason

why their phenotype is less severe (Petek et al.,

2003; Kehrer-Sawatzki et al., 2004).

A common mechanism for the somatic inactiva-

tion of a tumor suppressor gene is loss of heterozy-

gozity (LOH), i.e., loss of the wild type allele at a

heterozygous locus. This chromosomal event may

arise by several mechanisms such as deletion of

part of the chromosome, mitotic recombination

between the centromere and the locus of the tu-

mor suppressor gene, or chromosome loss with or

without reduplication of the homologous chromo-

some. Mitotic recombination has been suggested

as a common mechanism for LOH at the NF1
locus in neurofibromas of patients with NF1 (Serra

et al., 2001b) and has been reported in malignant

myeloid cells from children with NF1 (Cooper

et al., 2000). LOH in the NF1 region in neurofibro-

mas from individuals with a known NF1 germline

mutation has been reported in 42 of 208 neurofi-

bromas (21%) (Colman et al., 1995; Lothe et al.,

1995; Sawada et al., 1996; Daschner et al., 1997;

Serra et al., 1997; Eisenbarth et al., 2000; Rasmus-

sen et al., 2000; Serra et al., 2001a; Wiest et al.,

2003; Upadhyaya et al., 2004). Thus far, we found

only three publications describing LOH data each

in one neurofibroma from an NF1 microdeletion

patient. (Sawada et al., 1996; Serra et al., 2001a;

Upadhyaya et al., 2004). This is the first study that

systematically compares the frequency of somatic

loss of the NF1 wild type allele in a large number

of neurofibromas from both NF1 microdeletion and

non-microdeletion patients.

MATERIALS ANDMETHODS

Samples

Forty neurofibromas from six patients with a

constitutional type I NF1 microdeletion and 28

neurofibromas from six NF1 patients without a

microdeletion were investigated. Twenty neurofi-

bromas were formalin-fixed and paraffin-embed-

ded (FFPE), and 42 had been fresh frozen. In

addition, neurofibroma-specific Schwann cell cul-

tures were available from six other neurofibromas

(Table 2). All neurofibromas investigated were

located cutaneously or s.c., and none were plexi-

form or spinal neurofibromas. Peripheral blood leu-

kocyte DNA from each patient was used as

matched control DNA. All patients fulfilled the

NIH diagnostic criteria for NF1 (Stumpf et al.,

1988). None of the 6 NF1 microdeletion patients are

mosaic, and all deletions are de novo and of type I. They
have their proximal breakpoint located in the low copy

repeats flanking NF1 (Lopez-Correa et al., 2001)

between chromosome 17 reference positions (build 35)

25996120 and 26022120. Their distal breakpoint is

located between positions 27412117 and 27438208.

The other six patients have intragenic NF1 mutations

(GenBank reference sequence NM_000267.1): c.2851-

2A>G (NF253-UHG), c.4515-2A>T (NF44-UHG),

c.1261-19G>A (NF93-UHG), c.5546G>A (p.R1849Q)

(NF37-UHG), c.1246C>T (p.R416X) (L-002) and

c.988_989insA (NF24-UHG).

DNA Extraction from Frozen Tissue

and Cultured Cells

Frozen tumor tissue fragments were pulverized

with a mortar. Culture conditions for neurofibroma-

derived Schwann cells were applied as described

in (Rosenbaum et al., 2000; Serra et al., 2000). In

both cases, gDNAwas extracted using the QiaAmp

procedure (Qiagen, The Netherlands) following

the manufacturer’s instructions.

DNA Extraction from FFPE Tissue

Ten-micrometers thick unstained slides were

dewaxed through successive xylene and ethanol

washes. DNA was extracted from archival FFPE

neurofibroma tumor samples following manual

microdissection of the neoplastic regions, visual-

ized by comparison with one parallel H&E stained

slide. DNA was extracted from these microdis-

sected tissue fragments using the QiaAmp proce-

dure (Qiagen, The Netherlands) following the

manufacturer’s instructions and was subsequently

purified and concentrated on Microcon filters

(Millipore, Belgium).

LOH Analysis

Genomic regions at both sides of the NF1 micro-

deletion region were sequenced, and heterozygous

SNPs were detected in all patients (Table 1). Tu-

mor and control DNA samples were subjected to

PCR amplification (Hotgoldstar mix, Eurogentec,

Belgium) using primers for the informative SNPs
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(primers available on request). For each SNP, a

short amplicon could be designed (<130 bp). In

the individuals NF44-UHG (c.4515-2A>T), L-002

(c.1246C>T), NF93-UHG (c.1264-19G>A), and

NF37-UHG (c.5546G>A), the intragenic constitu-

tional NF1 mutation was used as an additional

intragenic SNP. PCR products were sequenced fol-

lowing the BigDye Terminator Sequencing proto-

col (ABI, Applied Biosystems, Belgium). A liz-

tagged size standard was added, and the samples

were analyzed on an ABI3100 machine using a

standard fragment analysis protocol. Using the

Genescan analysis software (Applied Biosystems,

Belgium), peak height ratios of the two alleles of

the SNP were calculated relative to an internal

control peak of the same nucleotide at least five

nucleotides apart, and these ratios were compared

between tumor and corresponding control DNA.

Every DNA sample was PCR amplified (35 cycles)

and sequenced for each SNP in triplicate. LOH for

an SNP was scored when the average ratio (SNP

nucleotide/control nucleotide) of the two alleles in

tumor tissue fell outside the 95% confidence inter-

val of the ratios observed in control DNA of the

same patient and when the average ratios in tumor

versus control tissue were at least 20% different. If

one SNP showed LOH, a second SNP was tested

to confirm the presence of LOH in the tumor.

Given the cutoff of 20% used in this study, LOH

will not be detected if less than 20% of the tumor

cells are pathogenic. Figure 1A shows the typical

output when LOH is observed for a SNP (tumor

33 of patient NF253-UHG, SNP rs1018190).

Newly identified SNPs were submitted to the

NCBI SNP database (http://www.ncbi.nlm.nih.

gov/snp).

NF1 Somatic Mutation Analysis

Selective Schwann cell cultures (SCNF1�/�)
derived from the neurofibromas of patient L-001

were treated with puromycin before RNA extraction

(RNeasy kit, Qiagen, Belgium). The entire NF1
cDNAwas sequenced using the ABI3100 genetic an-

alyzer (Applied Biosystems) (Messiaen et al., 2000).

All mutations found at the cDNA level were con-

firmed on gDNA by cycle sequencing. Comparison

of the mutations found in the SCNF1�/�, the parallel

SCNF1+/� cultures, and blood lymphocytes allowed to

conclude which mutation represented the somatic

alteration. Tumors from patients C174, C176, and

C186 were screened for a deletion of the NF1 gene,

using FISH (clones P1-9 and P1-12; Leppig et al.,

1996), dHPLC, and direct sequencing as described

by Upadhyaya et al. (2004), combined with MLPA

and deletion PCR.

TABLE 1. Overview of SNPs Used in the LOH Analysis and
Clones Used in Array CGH Experiments in Positional

Reference to NF1

SNP number Chr17 reference position Polymorphism

rs8082669 10335232 A/G
rs4791544 13125881 A/T
rs1634421 18792051 C/T

Centromere
RP11-138P22 23.14 Mb
rs1018190 24571352 C/G
rs6505129 24777744 A/G
RP11-104I20 25.11 Mb
rs29001484 25562640 G/A
rs4583306 25562840 T/C
Proximal BP 25996120-26022120
NF1 26.44 Mb
Distal BP 27412117-27438208
rs9891455 27534262 C/T
RP11-474K4 27.58 Mb
rs8074061 27625458 C/T
rs753750 27638817 A/T
rs2055091 27961859 A/T
rs28909978 28053334 T/C
rs11869264 28135095 C/T
RP11-47L3 30.68 Mb

BP, breakpoint.

Figure 1. Example of LOH assay. A: Overlay of the traces of SNP
rs1018190 (G/C polymorphism) from blood and tumor 32 of individual
NF253-UHG, only the G- (top) and the C-trace (bottom) are shown.
The SNP peak and the control peak of the tumor DNA are represented
in black. It is clear that in tumor 32 the G-allele of rs1018190 is lost
compared with that in the blood. B: Overlay of the traces of the semi-
quantitative PCR used to determine if the LOH of NF1 is caused by a
copy number loss. Blood DNA of patient L-002 was compared with
DNA of tumor 3 (represented in black). The first peak (103 bp) repre-
sents NF1, and the second peak (107 bp) represents the NF1 pseudo-
gene located on chromosome 15. Tumor 3 has copy number loss of
NF1.
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Identification of the Mechanism of LOH

Semiquantitative PCR

Several pseudogenes of NF1 are present in the

human genome, some of which contain deletion/

insertions when compared with the functional copy

of NF1. PCR primers were designed in an area pres-

ent in both the NF1 gene and an NF1 pseudogene

in such a way that both loci would be amplified with

the same primers in the same PCR reaction. The

PCR amplification would result in two PCR prod-

ucts with a size difference of only a few basepairs

(bp). A semiquantitative PCR can be used to test

whether one or two copies of NF1 are present in the

tumor in relation to the pseudogene. Using a pseu-

dogene as control fragment has an advantage over a

classical semiquantitative PCR because only one

primer set is needed and variations caused by PCR

efficiency of test and control fragment is minimized,

resulting in increased accuracy of the assay. Primer

pairs were designed to amplify a small fragment of

NF1 exon 22 located at 17q11.2 (103 bp) together

with the corresponding fragment of its pseudogene

located on chromosome 15 (107 bp) and character-

ized by a 4-bp insertion. Tumor and normal DNA

samples were subjected to 35 cycles of PCR (Hot-

goldstar mix, Eurogentec, Belgium). Relative peak

heights of amplified fragments were analyzed by the

Genescan software (Applied Biosystems, Belgium),

and the ratios of gene versus pseudogene fragments

were compared between tumor and normal DNA for

each patient. Every analysis was performed in tripli-

cate. Similar to SNP LOH analysis, copy number

loss was defined when the average ratio (NF1/NF1
pseudogene) fell outside of the 95% confidence

interval of the corresponding ratio in normal DNA

with a minimum difference of at least 20%. Figure

1B shows the output of this semiquantitative PCR

for NF1. DNA from a tumor with copy number loss

of NF1 was compared to the blood DNA of the same

individual (L-002 tumor 3).

LOH analysis of markers on the p arm of chromosome 17

To distinguish LOH caused by mitotic recombi-

nation from LOH caused by deletion and reduplica-

tion of the homologous chromosome 17, SNPs

rs8082669, rs1634421, and rs4791544 located on the

p arm of chromosome 17 were analyzed. If LOH of

NF1 was caused by a mitotic recombination, markers

on chromosome 17p would not show LOH. Only

tumors showing LOH not caused by a somatic dele-

tion were tested (i.e., tumor 32 (NF253-UHG), tu-

mor 5 and 12 (L-002), and tumor 41 (NF44-UHG)).

Array CGH

The array CGH experiments were performed

according to the protocol described by Vermeesch

et al. (2005). The arrays were constructed using a 1

Mb Clone Set and contain 3527 BAC and PAC

clones (Fiegler et al., 2003) spotted in duplicate.

Tumor DNA was directly compared to DNA

extracted from blood leukocytes of the same indi-

vidual, and both were labeled by a random prime

labeling system (Bioprime DNA Labeling System,

Invitrogen, Belgium) using Cy3- and Cy5-labeled

dCTPs (Amersham Biosciences, Belgium). Follow-

ing incubation of about 36 hr, the slides were

washed and scanned at 532 nm (Cy3) and 635 nm

(Cy5) on the Agilent G2565BA MicroArrayScanner

System (Agilent; Palo Alto, CA). Image analysis

was performed using ArrayVision software (Imag-

ing Research; St Catharines, Ontario, Canada).

Further analysis was performed with Excel (Micro-

soft; Diegem, Belgium). For each clone, a normal-

ized log2 ratio was calculated. Subsequently, a 2D

Lowess normalization was performed (Yang, 2003).

Datapoints for which the variation between the in-

tensity ratios of the duplicated spots was larger than

10% were excluded from the analysis. The quality

of an array experiment was considered good when

the SD was lower than 0.096 and the hybridization

efficiency was higher than 90%. The fold change of

a single clone is considered significantly different if

it falls outside of the 6|(log2 (1.5) � 2 3 SD)| inter-

val. The fold change of two or more consecutive

clones is considered significantly different if it falls

outside of the 64 3 SD interval (Vermeesch et al.,

2005).

Real-time quantitative PCR

Real time quantitative PCR (primers available

on request) was performed on C17orf41 with

HPRT1 as housekeeping gene as described by Jun

et al. (2001), with the exception that an ABI

PRISM 7000 instrument (Applied Biosystems, Bel-

gium) was used.

RESULTS

Detection of LOH

As the somatic point mutation in NF1 had already

been identified in 10 neurofibromas of microdele-

tion patients, these samples were excluded from

LOH analysis. These somatic mutations are shown

in Table 2.
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LOH in the Neurofibromas

LOH of NF1 was detected in six of the 28 neu-
rofibromas (21%) from NF1 non-microdeletion

patients, compared with none of the 40 neurofibro-

mas from the NF1 microdeletion patients. This is a

significant difference in LOH frequency (P ¼
0.0034, Fisher’s exact test). The percentage LOH

observed varied between 30% and 75%. Table 2

TABLE 2. Overview of Results of the LOH Analysis

(Continued)

897



Chapter 2 

62  

TABLE 2. Overview of Results of the LOH Analysis (Continued)

(Continued)

898



  Chapter 2 

 63

gives an overview of the results obtained in the dif-

ferent tumors. In addition to these six neurofibro-

mas with LOH tumor 33 from patient NF253-

UHG (a nondeletion patient) has LOH of two

markers (rs6505129 and rs1018190) located centro-

meric of NF1. The semiquantitative PCR (NF1
(pseudo)exon 22) did not show any evidence of

copy number loss of NF1 in this tumor. Because of

the poor quality of the DNA, we were unable to

prove the involvement of NF1 in the area with

LOH. Therefore, we did not include this tumor in

our calculations. In the individuals NF44-UHG

(c.4515-2A>T), L-002 (c.1246C>T), NF93-UHG

(c.1264-19G>A), and NF37-UHG (c.5546G>A),

the intragenic constitutional NF1 mutation was

used as an additional intragenic SNP for testing

LOH. Each time LOH was observed in NF1 (Ta-

ble 2), the wild type allele was lost in the tumor.

Mechanism Leading to LOH

In three tumors (L-002 tumor 5 and 12 and

NF253-UHG tumor 32), the observed LOH

resulted from a mitotic recombination event as

LOH for markers on 17q was shown in the pres-

ence of two copies of the NF1 gene without any

LOH on 17p. Two neurofibromas had lost one copy

of NF1 because of a deletion on chromosome 17

(L-002 tumor 3, NF44-UHG tumor 1). These two

samples were used for array CGH analysis. In both

cases, array CGH confirmed the presence of a so-

matic deletion that affected the NF1 region on

chromosome 17 (Fig. 2A). The deletions were

large and different in size. The somatic deletion of

NF44-UHG tumor 1 was at least 2.5 Mb and

encompassed clones RP11-104I20 to RP11-474K4

(25.11–27.58 Mb on the ENSEMBL contig of

chromosome 17). L-002 tumor 3 had a somatic de-

letion of at least 7.5 Mb encompassing clones

RP11-138P22 to RP11-47L3 (23.14–30.68 Mb on

the ENSEMBL contig of chromosome 17). For ref-

erence, NF1 is located at position 26.44 Mb. More

than the entire NF1 microdeletion region was

somatically deleted in these two tumors. No copy

number aberrations were observed for clones in

other regions of chromosome 17 or on other chro-

mosomes (Fig. 2B). Array CGH was also performed

on a neurofibroma with LOH resulting from a mi-

totic recombination (L-002 tumor 12), and on a

TABLE 2. Overview of Results of the LOH Analysis (Continued)

The column NF1 (germ line) shows if LOH was observed using the germline NF1 mutation of the individual; the column NF1 (somatic mut) shows the

somatic mutation found in the respective tumor.

NF1 SQ, semiquantitative PCR (number of NF1 copies indicated) relative to NF1 pseudogene; F, frozen; H, marker heterozygous; SC, Schwann cell cul-

ture; P, paraffin; L, marker not heterozygous (LOH); U, amplification failed; NI, not informative; ND, not determined; 17p, 17p marker analysis.
aTumors have LOH of NF1 and not of markers on 17p; LOH is thus caused by a mitotic recombination.
bTumors have LOH of NF1 and for markers on 17p; no copy number loss of NF1 is observed; LOH is thus caused by chromosome loss and reduplica-

tion. The dark gray areas represent the minimal region of LOH due to a somatic deletion. The light gray areas represent the minimal region of LOH

due to a mitotic recombination.
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neurofibroma without LOH (L-002 tumor 1). As

expected, neither of these DNA samples showed

any copy number changes across the genome. Tu-

mor 41 of individual NF44-UHG did not show any

copy number loss of NF1. Besides LOH in the

NF1 region, LOH was also present for markers

located on 17p. This points to the mechanism of

chromosome loss and reduplication.

Real Time PCR of C17orf41

C17orf41 is located in the NF1 microdeletion
region and is possibly essential for the survivals of

Figure 2. Array CGH output of neurofibromas. A: Array CGH out-
put of NF44-UHG tumor 1 (top) and L-002 tumor 3 (bottom). The nor-
malized log2 ratio for each clone from chromosome 17 is shown. The
clones are arranged from chromosome 17pter to 17qter. The deleted
region is indicated in gray. NF1 is deleted in both neurofibromas. B:
Array CGH output of L-002 tumor 3. The normalized log2 ratio of all
clones is depicted. The clones are arranged from pter on chromosome
1 on the left to qter of the Y chromosome on the right. The fold change

of a single clone is considered significant if it falls outside of the 6|(log2
(1.5) � 2 3 SD)| interval (indicated by the dashed line on the figure).
The fold change of two or more consecutive clones is considered signif-
icant if it falls outside of the 64 3 SD interval (indicated by the bold
line on the figure). Similar to all other neurofibromas tested on array
CGH, L-002 tumor 3 has a stable karyotype and a somatic deletion only
in the NF1 region (indicated by the arrow). [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.]
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cells. The expression of C17orf41 was tested with

real time PCR on seven cell lines from Schwann

cells of neurofibromas (four cell lines of NF1
microdeletion patients and three of non-microdele-

tion patients). On average, the expression of

C17orf41 was five times lower than the housekeep-

ing gene HPRT1 (DCt ¼ 2.25, South Dakota ¼
0.80). There was no difference in expression

between both patient groups.

DISCUSSION

The tumor suppressor NF1 can be inactivated in

tumors by different mechanisms. In this report, we

showed that the relative proportion of one of these

mechanisms (LOH) differs significantly in NF1
microdeletion patients when compared with that

in NF1 patients with an intragenic NF1 mutation.

Thus, although LOH was responsible for the so-

matic inactivation of NF1 in a quarter of the neuro-

fibromas from NF1 non-microdeletion patients (6/

28 ¼ 21%; 95% CI, 8–41%), LOH was never

observed in 40 neurofibromas (0/40; 95% CI, 0–

7%) from known NF1 microdeletion patients (P ¼
0.0034, Fisher’s exact test). The finding of LOH in

neurofibromas from NF1 patients with an intra-

genic mutation are in concordance with published

data from the literature: LOH being detected in

DNA from 42/205 neurofibromas (21%; 95% CI,

15–27%) from patients in whom the germline

mutation was not a microdeletion (Colman et al.,

1995; Lothe et al., 1995; Sawada et al., 1996;

Daschner et al., 1997; Serra et al., 1997; Eisenbarth

et al., 2000; Rasmussen et al., 2000; Serra et al.,

2001a; Wiest et al., 2003). In addition, LOH has

not been described in three neurofibromas from

NF1 microdeletion patients reported in the litera-

ture (Sawada et al., 1996; Serra et al., 2001a; Upad-

hyaya et al., 2004). Combining the data on NF1
microdeletion patients presented here and in the

literature, none of the 43 neurofibromas from

microdeletion patients showed LOH (0%; 95% CI,

0–6.7%) versus 48 of 233 neurofibromas from NF1

individuals without a microdeletion (21%; 95% CI,

16–26%) (X2
; P ¼ 0.001).

A similar discrepancy in the frequency of LOH

between patients with a germline gene deletion

and a germline intragenic mutation has been

observed in tumors of patients with the von Hip-

pel-Lindau (VHL) syndrome and in patients with

retinoblastoma. In VHL patients with a germline

deletion of VHL, no LOH was observed in eight

tumors analyzed (0/8 tumors, 95% CI, 0–31%)

(Vortmeyer et al., 2002; Wait et al., 2004), while

this is a frequent event in tumors without a germ-

line deletion (81/132 tumors ¼ 61%, 95% CI, 52–

70%) (Crossey et al., 1994; Zeiger et al., 1995;

Prowse et al., 1997; Bender et al., 2000; Glasker

et al., 2001; Vortmeyer et al., 2002). Also, no LOH

was observed for RB1 in 12 retinoblastoma patients

with a germline deletion of RB1 (0/12 tumors, 95%

CI, 0–22%), whereas 69% of the tumors from indi-

viduals without a germline deletion had LOH

(101/146 tumors, 95% CI, 61–77%) (Hagstrom and

Dryja, 1999). Germline/somatic mutation correla-

tions have also been observed in familial adenoma-

tous polyposis patients. In this disorder, the loca-

tion and the type of somatic mutation in APC
depends on the position of the germline mutation

in APC. If the germline APC mutation is near

codon 1300 (codon 1285–1398), then the inactiva-

tion of the wild type allele is associated with LOH

and is usually due to a mitotic recombination. If a

germline truncating point mutation is present

before codon 1285, then LOH is very rare and all

somatic mutations are located after codon 1285.

However, when the germline mutation is located

after codon 1399, then the majority of somatic

mutations are located before codon 1285 (Crabtree

et al., 2003).

Several hypotheses can be put forward to

explain the observed difference in LOH in the two

NF1 patient groups. The type I NF1microdeletion

region is known to contain at least 17 genes, and

thus LOH of this region, whether due to mitotic

recombination or a microdeletion, would lead to a

nullizygous state for all genes located within this

region.

Several hypotheses can be put forward to

explain the present findings:

1. Neurofibromas contain a mixture of cells. Only

the Schwann cells show a complete inactiva-

tion of the NF1 gene (Serra et al., 2000). It

could be possible that for some unknown rea-

son the percentage of cells from microdeletion

neurofibromas showing LOH in the NF1 re-

gion is lower than the 20% detection limit. If

less than 20% (criteria used for classification of

LOH) of the cells in the neurofibroma are

affected, LOH would not be detected result-

ing in a bias against LOH. It was estimated by

sequence analysis of the five frozen tumors

from microdeletion patients C174, C176, and

C186 that the second hit in the NF1 gene was

present in at least 30–60% of cells. Moreover,

in an additional five neurofibromas of NF1
microdeletion patients, a second hit in the

NF1 gene was found in cultured Schwann cells
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and none of these tumors showed LOH (Table

2). Also, on the basis of marker analysis in the

neurofibromas of non-microdeletion patients,

the minimum percentage of cells showing

LOH was 30%.

2. One or more of the genes in the microdeletion

region may be essential for the survival of the

cell. The complete loss of (some of) these

genes following LOH would therefore be le-

thal. Gene C17orf41 (OMIM No. 609534), also

known as FLJ12735 or FRAG1, is a good candi-

date to support this hypothesis. Real-time

quantitative PCR demonstrated that C17orf41
is expressed in Schwann cells. It is located in

the NF1 microdeletion region and in vitro ex-

periments have shown that mouse cells with a

reduced amount of C17orf41 protein enter the

apoptosis pathway. More specifically, a reduced

expression of C17orf41 leads to the induction of

apoptosis through the release of Rad9 (Ishii

et al., 2005). Hence, one can imagine that, in

humans, complete loss of C17orf41 resulting

from LOH in a cell with an NF1 microdeletion

might induce apoptosis. Not a lot is known on

the effect of a nullizygous state of the genes

present in the NF1 microdeletion region.

Besides the NF1 knock-out mouse models,

OMGP is the only gene in the NF1 microdele-

tion region of which a knock-out mouse model

exists (Huang et al., 2005). These nullizygous

OMGP mice are perfectly viable. Other genes

present in the NF1 microdeletion region might

also cause lethality; however, any direct evi-

dence is lacking at this moment.

3. A more mechanistic hypothesis is that the pres-

ence of a NF1 microdeletion on one chromo-

some 17 may suppress mitotic recombination

within the region. For a mitotic recombination

to occur, two chromatids of homologous chromo-

somes need to align. The presence of a microde-

letion close to the centromere (17q11.2) might

reduce the likelihood of a mitotic recombination

occurring between the centromere and NF1.
The end result would be a lower frequency of

LOH. Mitotic recombination has however been

demonstrated to be a common mechanism of

LOH at the NF1 locus in tumors of patients

with NF1 (Serra et al., 2001b), an observation

confirmed in the present study. However, we

also demonstrate that the loss of copy number of

NF1 due to a somatic deletion is a frequent

mechanism underlying LOH in neurofibromas

(3/6 neurofibromas with LOH). This NF1 copy

number loss was thoroughly investigated using

both semiquantitative PCR and array CGH anal-

ysis. If LOH due to a mitotic recombination is

impossible in NF1 microdeletion patients, then

one would still expect LOH to occur because of

a somatic deletion of the NF1 region. However,

we failed to observe any evidence of LOH in 40

neurofibromas from NF1 microdeletion patients.

This is in contrast to non-microdeletion patients,

where three cases of a somatic deletion of NF1
were found in 28 neurofibromas. This difference

is only of borderline significance (P ¼ 0.065,

Fisher’s exact test).

4. The observed data might also result from the

frequent use of alternative second hit mecha-

nisms in microdeletion patients, thus greatly re-

ducing the proportion of LOH observed in neu-

rofibromas of these patients. Assuming that the

absolute number of LOH events in Schwann

cells is similar in both NF1 microdeletion and

non-microdeletion patients, then the proportion

of LOH in neurofibromas would be lower in

NF1microdeletion patients if alternative mech-

anisms leading to the inactivation of the normal

NF1 allele were more frequent. The observed

difference in LOH frequency could then point

to the presence of a mechanism that made the

wild type NF1 allele in NF1 microdeletion

patients more vulnerable to other somatic

mutations, excluding LOH, than in non-micro-

deletion patients. NF1 microdeletion patients

lack the homologous allele of NF1 and 16 other

genes. The repair of double-strand breaks

(DSBs) cannot be performed by the error-free

mechanism of homologous recombination at

the moment during the cell cycle when sister

chromatids are not present (G1 phase). This

would entail that in these phases of the cell

cycle, DSB in the NF1 region on the normal

chromosome 17 can only be repaired by the

error-prone mechanisms of non-homologous

end joining or single-strand annealing (Pfeiffer

et al., 2004). This would cause an excess of

small somatic mutations in the wild type alleles

of the 17 genes in the NF1 microdeletion

region. The question remains why this poten-

tial mechanism would not be at play in other

familial cancer syndromes where germline dele-

tions are not associated with a more severe tu-

mor phenotype (NF2 and VHL) (Lopez-Correa

et al., 2000b; Wait et al., 2004).

We believe that the observed findings are best

explained by the hypothesis that the presence of

one copy of certain genes in the NF1 microdeletion
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region is essential for the survival of Schwann cells

and/or by the hypothesis that the wild type genes

in the NF1 microdeletion region on the normal

chromosome 17 are more vulnerable to mutation.

Nonmosaic NF1 microdeletion patients have on

average a higher tumor burden than do non-micro-

deletion patients. One explanation might be that

the wild type NF1 gene is more vulnerable to

mutation. Another hypothesis is that haplo-insuffi-

ciency for one or more genes present in the NF1
microdeletion results in an aspecific growth advant-

age of different cell types, including Schwann cells.

NF1 microdeletion patients are known to have a

general tendency to overgrowth. Thus, children

with an NF1 microdeletion are often relatively tall,

and have large hands and feet, and sometimes they

even show a real overgrowth phenotype in infancy

(van Asperen et al., 1998). Recently Spiegel et al.

(2005) reported an advanced childhood height

growth in NF1 microdeletion patients. It can be

hypothesized that because of an aspecific growth

advantage of cells with an NF1 microdeletion, the

Schwann cells of subclinical neurofibromas could

grow at a faster pace and hence give rise to more

visible tumors at a given age. Therefore, the num-

ber of visible tumors might be higher in NF1
microdeletion patients because of a faster growth

rate of the tumors. Aside from the overgrowth phe-

notype observed in NF1 microdeletion patients,

we do not have additional arguments for this hy-

pothesis.

In conclusion, we have demonstrated that a sig-

nificant difference exists in the somatic inactiva-

tion mechanisms of NF1 in neurofibromas of NF1
microdeletion versus non-microdeletion patients.

Hence, it is clear that both patient groups differ

not only at the phenotypic (different average tu-

mor burden) and the constitutional level (pres-

ence/absence of a microdeletion), but also at the

somatic level (LOH as rare/frequent mechanism of

NF1 inactivation). This new insight might open

new avenues for a better understanding of the

genetic basis underlying the high tumor burden of

NF1 microdeletion patients.
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Although Xuorescent in situ hybridization (FISH)1 and
loss of heterozygosity (LOH) analysis can pick up mosai-
cism for gross chromosomal rearrangements relatively eas-
ily, detection of small mosaic lesion mutations remains
technically challenging. Moreover, the presence of highly
homologous pseudogenes throughout the human genome
may complicate minor lesion mutation analysis at the geno-
mic DNA (gDNA) level. In an attempt to detect low-per-
centage mosaicism for point mutations against a
background of normal and pseudogene alleles, we have
developed a nested real-time quantitative PCR (qPCR)
assay taking advantage of 3� locked nucleic acid (LNA)
allele-speciWc PCR (AS-PCR) primers and the cost-eVective
SYBR Green I detection chemistry.

One conceptually simple strategy to detect single-base
substitutions is AS-PCR, which is based on positioning the
3� base of a PCR primer to match one variant allele [1].
Over the years, a number of strategies have been developed
to improve the speciWcity and reliability of primers in AS-
PCR. Among these are the incorporation of additional mis-
matches near the 3� end [2] and the use of high-aYnity
DNA analogues such as LNAs [3,4]. Although AS-PCR
assays provide an elegant method to discriminate between
alleles, accurate quantiWcation of the variants is not attain-
able because of the intrinsic endpoint detection by conven-
tional PCR methods. This limitation is fully addressed

using the real-time qPCR method, whereby PCR product
accumulation is monitored at each PCR cycle by means of
Xuorescent detection. In this article, we evaluate the dis-
criminating power of diVerent AS-PCR primers on a real-
time qPCR platform. As a model, we use various tissues
and cell types derived from a segmental neuroWbromatosis
type 1 (NF1, MIM 162200) patient.

To determine the NF1 mutation underlying the segmen-
tal phenotype, selectively cultured Schwann cells [5] derived
from peripheral nerve sheath tumors were screened by a
highly sensitive NF1 mutation detection cascade as
described previously [6]. A nonsense mutation (c.2041C > T
(p.R681X)) was revealed in NF1 exon 13. The region span-
ning the point mutation was ampliWed, and PCR products
were cloned in the pCR2.1-TOPO vector (Invitrogen).
The wild-type and mutant inserts were conWrmed by
gDNA sequencing on an ABI3730XL using BigDye chem-
istry (Applied Biosystems). Cloned fragments were reampli-
Wed and puriWed (MSB Spin PCRapace, Invitek), and
concentrations were determined using the PicoGreen double-
stranded DNA (dsDNA) QuantiWcation Reagent (Molecu-
lar Probes) on a TD-360 Xuorometer (Turner Designs).

The mutant allele-speciWc qPCR assay was optimized to
achieve a maximal discriminating power between mutant
and wild-type alleles, evaluated as the diVerence in the cycle
threshold (Ct) values of mutant ampliWcation products
between matched (mutant-speciWc) and mismatched (wild-
type-speciWc) primers while preserving high ampliWcation
eYciency. Real-time qPCR reactions were performed on an
iCycler iQ instrument (Bio-Rad) using a 1£ SYBR Green I
Master Mix (Eurogentec), 250 nM of primers, 10 nM Xuo-
rescein, and 5£ 103 molecules of mutant plasmid input.
Primers were designed with the freely available Primer 3

* Corresponding author. Fax: +32 9 240 6549.
E-mail address: joke.vandesompele@ugent.be (J. Vandesompele).

1 Abbreviations used: FISH, Xuorescent in situ hybridization; LOH, loss
of heterozygosity; gDNA, genomic DNA; qPCR, quantitative PCR; LNA,
locked nucleic acid; AS-PCR, allele-speciWc PCR; NF1, neuroWbromatosis
type 1; dsDNA, double-stranded DNA; Ct, cycle threshold.
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web tool (Whitehead Institute, http://frodo.wi.mit.edu/cgi-
bin/primer3) and consisted of a common forward primer
(5�-tcttccacccttgactctca-3�) together with an AS-PCR
reverse primer, resulting in an 82-bp amplicon. We evalu-
ated the following six AS-PCR reverse primers for their dis-
criminating power: a wild-type or mutant DNA primer
with an additional 3� subterminal mismatch (underlined)
(5�-ctagtttggtctgggcttgttg/a-3�) and two wild-type or
mutant 3� LNA (bold) primers (5�-ctagtttggtctgggcttgtcg/a-
3� and 5�-ctagtttggtctgggcttgttg/a-3�). Although the muta-
tion itself dictates the choice of the 3� terminal nucleotide in
the primers, the nucleotide at the penultimate position was
chosen based on the previously observed reduced ampliWca-
tion eYciency when thymidine occupies this primer posi-
tion [7]. The thermal proWle consisted of 1 cycle at 95 °C for
10 min followed by 40 cycles at 95 °C for 15 s and at 61 °C
for 1 min. After PCR ampliWcation, a melting curve was
generated to check the speciWcity of the PCR reactions
(absence of primer–dimers or other nonspeciWc ampliWca-
tion products). Data acquisition and automated analysis
were done by the iCycler iQ software (version 3.1, Bio-
Rad). Real-time PCR results in Fig. 1 illustrate that the
diVerences in Ct value (�Ct) between matched and mis-
matched primers are 0.3 for the DNA primer (with 3� sub-
terminal mismatch), 1.5 for the 3� LNA primer, and 6.8 for
the 3� LNA primer with 3� subterminal mismatch. Clearly,
the introduction of the 3� subterminal primer:template mis-
match shifts Ct values toward higher values but also signiW-
cantly increases the discriminating power of the 3� LNA
primer.

Equimolar dilutions of wild-type and mutant plasmid
PCR fragments were used to generate standard curves of 5
log-10 orders of magnitude. To enhance linearity and
reproducibility, dilutions were made in a 10-ng/�l � DNA-
containing carrier solution. QuantiWcation of mutant alleles
in the presence of the wild-type form was tested by mixing
an excess (5£ 105 molecules) of wild-type allele with a 5-
point 10-fold dilution series of the mutant form (5£ 105–50
molecules). As a control, a standard curve containing only

the mutant allele was used. Ideally, both series should result
in overlapping ampliWcation plots. We observed that at low
levels of the mutant allele (<2500 molecules), the excess
of the wild-type allele (5£ 105 molecules) signiWcantly
impaired accurate quantiWcation of the low-abundant
alternative allele (Fig. 2). Therefore, the sensitivity of the
quantitative assay is estimated at 1/200 (mutant allele vs.
wild-type allele).

Comparative analysis revealed that the bona Wde NF1
mutation under study (c.2041C > T) is present as a variant
in at least three NF1 pseudogenes. To exclude interference
of NF1 pseudogenes with the quantiWcation of the bona Wde
NF1 mutation, all unknown samples were ampliWed with
NF1-speciWc exon 13 primers prior to nested real-time
qPCR. The Wrst-round ampliWcation was performed on a
PTC-200 Thermal Cycler (MJ Research) using 10 ng
gDNA input and a PCR touch-down program starting at
61 °C gradually reduced (1 °C /cycle) to 52 °C for an addi-
tional 30 cycles. Because both wild-type and mutant alleles
are ampliWed from the same NF1 exon 13 amplicon, the ini-
tial proportional representation of both alleles is preserved.
The Wrst-round ampliWcation products were puriWed with
Exonuclease I and Shrimp Alkaline Phosphatase (USB)
and were diluted (1/100,000) in a 10-ng/�l � DNA-contain-
ing carrier solution.

Nested real-time quantitative PCRs were performed on
an iCycler iQ instrument. In each experiment, duplicates of
a standard dilution series of speciWc PCR fragments for
each allelic variant and triplicates of 2 �l of unknown sam-
ple template were ampliWed in a 15-�l reaction containing
1£ SYBR Green I Master Mix and 250 nM of allele-spe-
ciWc primers. The thermal proWle was as described above.
Each experiment was performed twice, and data acquisition
and automated analysis were done by the iCycler iQ soft-
ware (version 3.1). The relative number of molecules of

Fig. 1. AmpliWcation plots of mutant plasmid using diVerent AS-PCR
primers: mutant (rectangle) and wild-type (triangle) DNA primer (green),
3� LNA primer (blue), and 3� LNA primer with 3� subterminal mismatch
(red) (replicates are shown). (For interpretation of the references to color
in this Wgure legend, the reader is referred to the web version of this
article.)
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Fig. 2. QuantiWcation of mutant alleles in the presence of the wild-type
form. An excess (5 £ 105 molecules) of wild-type allele was mixed with a
dilution series of the mutant form (red dots). As a control, a standard
curve containing only the mutant allele was used (blue dots). At low levels
of the mutant allele (<2500 molecules or <1/200), the presence of the wild-
type allele signiWcantly impaired accurate quantiWcation of the low-abun-
dant alternative allele, as illustrated by lower Ct values for the red dots.
(For interpretation of the references to color in this Wgure legend, the
reader is referred to the web version of this article.)
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each allele was determined by interpolating the Ct values of
the unknown samples to each standard curve, followed by
determination of the fraction of mutant alleles. Quantita-
tive results of both experiments were highly concordant
(see Table 1 in Supplementary material), showing mutant
alleles in 1.41–47.40% of various tissues of the NF1 segmen-
tal patient.

In conclusion, we have described a real-time quantiWca-
tion strategy for the detection of low-percentage mosaic
point mutations. We evaluated the discriminating proper-
ties of diVerent AS-PCR primers and demonstrated that the
use of a 3� LNA primer with an artiWcial mismatch at the 3�
subterminal position had the largest discriminating power.
To our knowledge, our method represents the Wrst quanti-
tative allele discrimination assay taking advantage of 3�
LNA AS-PCR primers and SYBR Green I detection chem-
istry, allowing accurate, sensitive, and cost-eVective quanti-
Wcation of single-nucleotide changes. The presented
methodology oVers opportunities for research and molecu-
lar diagnostic applications where quantiWcation of two
DNA sequences that diVer by only one nucleotide is
desired. Examples include population SNP genotyping,
mutation detection, and risk assessment of disease trans-
mission to oVspring by mosaic patients.
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Abstract 

 

Mosaic neurofibromatosis type 1 (NF1) can present as mild generalized disease, segmental disease 

or gonadal mosaicism. Here we show that different clinical subtypes emerging within mosaic NF1 

result from a postzygotic NF1 mutation in neural crest derived cell types. The study of the affected 

cell types provides important insight into developmental concepts underlying particular NF1-related 

disease features. Four mosaic NF1 patients with different clinical manifestations (neurofibromas 

only, pigmentary changes only, and association of both symptoms) were investigated at the 

molecular level. For each patient various tissues and cell types were tested with quantitative assays 

capable of detecting low-percentage NF1 mutations. This approach confirmed the bi-allelic 

inactivation of Schwann cells in neurofibromas and demonstrated for the first time bi-allelic NF1 

inactivation in melanocytes in NF1-related café-au-lait macules. Interestingly, both disease features 

appear to arise even within a background containing predominantly NF1 wild-type cells. This report 

provides molecular evidence that the mosaic NF1 phenotype reflects the embryonic timing and 

accordingly the neural crest derived cell type involved in the somatic NF1 mutation. 
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Introduction 

 

Neurofibromatosis type 1 (NF1, [MIM 162200]) is a common autosomal dominant disorder caused by 

alterations in the NF1 gene. The NF1 encoded protein, neurofibromin, functions as a negative 

regulator of Ras mediated signaling [1, 2, 3]. The primary clinical features of NF1 are café-au-lait 

macules (CALMs), freckling and benign peripheral nerve sheath tumors or neurofibromas [4]. NF1 

patients also have a predisposition to develop a wide spectrum of other symptoms, illustrating the 

critical function of neurofibromin in a variety of tissues and cell types. The biological context 

underlying the development of many NF1-related symptoms, however, remains largely unknown. 

Mosaic NF1 is caused by a postzygotic NF1 lesion [5, 6, 7] and can present as mild generalized 

disease, segmental disease or gonadal mosaicism [8]. The mosaic phenotype most probably reflects 

the timing of and tissues involved in the somatic mutation. Since segmental NF1 is characterized by 

the regionally limited distribution of NF1 diseases signs, it provides the opportunity to study cell 

populations differing only with regard to the mutation(s) giving rise to mosaicism. Determining when 

and in what cell types inactivation of the NF1 gene occurs is critical for understanding the basic 

pathology of NF1-related symptoms. 

In this report, we investigated one mildly affected and three segmental NF1 patients with different 

clinical manifestations, i.e. neurofibromas only, pigmentary changes only, and combination of both 

neurofibromas and pigmentary changes. In order to elucidate the involvement of particular cell 

types and mutational mechanisms in the respective phenotypes, we investigated various tissues and 

cell types derived from every mosaic patient with quantitative assays capable of detecting low-

percentage NF1 mutations. 
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Material and Methods 

 

Patient material 

Four mosaic NF1 patients with distinct clinical manifestations were included in the study. 

Neurofibromas only 

Patient SNF1-1 is a 46 years old female and has several small cutaneous neurofibromas within a 

limited body region on the trunk. Her two sons (20 and 23 years old) don’t show any NF1-related 

symptoms. Peripheral blood from the three individuals, together with buccal smears, hair roots, 

urine and Schwann cells and fibroblasts cultured from three neurofibromas of the female patient 

were available for analysis. 

Pigmentary defects only 

Patient SNF1-2 is a 23-year old male presenting with several CALMs within a background of 

hyperpigmented skin involving the entire right leg, hip and lower back (Figure 1A). Peripheral blood, 

buccal smears, hair roots and urine together with fibroblasts and melanocytes cultured from normal 

skin, CALM and the hyperpigmentation area were available for analysis. 

Patient SNF1-3 is a 37 year old female with freckling in the groin. Her both daughters (3 and 5 year 

old) present with full-blown NF1. Peripheral blood from the three individuals together with buccal 

smears, hair roots and urine of patient SNF1-3 were available for analysis. 

Pigmentary defects and neurofibromas 

Patient SNF1-4 is a 15-year old female with more than six CALMs scattered over the body and 

several small neurofibromas located on the right hand within a hyperpigmented background (Figure 

1B). Peripheral blood, buccal smears, hair roots and urine, together with Schwann cells and 

fibroblasts derived from one neurofibroma and fibroblasts and melanocytes derived from the 

hyperpigmentation area (right hand), two CALMs (left thigh and right lower back) and normal skin 

(right buttock) were available for analysis. Magnetic resonance imaging (MRI) of the patient’s right 

hand revealed a subcutaneous nodule with a few smaller surrounding subcutaneous satellite lesions. 

Histopathologically, the lesions arising within the hyperpigmentation area were determined as 

neurofibromas due to the absence of mitotic activity and the mixture of elongated spindle shaped 

Schwann cells and fibroblasts in a background of wavy collagenous fibers. This diagnosis was 

confirmed by immunohistochemistry (S100 positivity in the majority of spindle shaped cells). 

 

Cell culture 

Skin biopsy 

A biopsy of normally pigmented and/or hyperpigmented skin was taken using 5 mm punch biopsy 

excision. To separate the epidermal layer (with melanocytes anchored to the basal membrane) from 

the underlying dermis (with fibroblasts), skin biopsies were incubated overnight at 4 °C in dispase II 

(Boehringer Mannheim). Melanocytes were cultured in Ham’s F10 medium (Gibco, Invitrogen Ltd) 

supplemented with 2.5 % fetal calf serum (FCS), 1 % Ultroser, 5 ng/ml basic fibroblast growth 

factor, 10 ng/ml endohelin-1, 0.33 nM cholera toxin, 0.033 mM isobutyl-methyl-xanthine, 5.3 nM 12-
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O-tetradecanoyl phorbol-13-acetate and 20 ng/ml stem cell factor. Dermal fibroblasts were grown 

in DMEM medium (Gibco, Invitrogen Ltd) supplemented with 10% FCS. 

Neurofibroma 

Culture conditions for neurofibroma-derived Schwann cells and fibroblasts were as previously 

described [9, 10]. The presence of forskolin in the Schwann cell medium (SCM) promotes 

proliferation of cells bearing only the first hit (NF1+/-, SC F+). Replacement of proliferation medium 

by serum-free N2 medium and subsequently by proliferation medium without forskolin promotes 

proliferation of cells containing both hits (NF1-/-,SC F-). To estimate the purity of Schwann cell and 

fibroblast cultures derived from the neurofibroma of patient SNF1-4, immunofluorescence staining 

with rabbit S100 primary antibody (Dako) was performed as previously described [11]. For one SC F- 

culture (patient SNF1-1, neurofibroma 3), Schwann cells were separated from contaminating 

fibroblasts by using p75 (nerve growth factor receptor)-coupled MACS® Microbeads (Miltenyi Biotec) 

which magnetically label the Schwann cell target population. Subsequent growth of recovered cells 

in SCM resulted in a highly pure Schwann cell culture (>95%, estimated by S100 staining). 

 

NF1 mutation screening 

NF1 mutation analysis (GenBank reference sequence NM_000267.1) was performed essentially as 

described [12]. Briefly, genomic DNA (gDNA) was extracted from melanocyte cultures with the 

QiaAmp procedure (Qiagen) and from all other cell cultures with the Puregene procedure (Gentra). 

Cultures were treated with puromycin (200 µg/ml, 4-6 hours) before RNA extraction (RNeasy kit, 

Qiagen). The entire NF1 complementary DNA (cDNA) was sequenced using the ABI3730XL genetic 

analyser (Applied Biosystems). All mutations found at the cDNA level were confirmed on gDNA by 

cycle sequencing. Multiplex ligation-dependent probe amplification (MLPA) analysis was performed 

using the SALSA NF1 area kit (MRC Holland) following the manufacturer’s instructions to detect 

deletions. 

 

Fine mapping NF1 deletion breakpoints 

The genomic deletions detected by MLPA analysis were evaluated in further detail. The location of 

the NF1 multi-exon deletion breakpoints was determined by long-range PCR with primers residing in 

the segments adjacent to the deleted interval. Amplification products were subsequently sequenced 

by using the ABI3730XL genetic analyzer (Applied Biosystems). The location of the NF1 

microdeletion breakpoints was determined by aspecifically amplifying and sequencing paralogous 

sequence variants (PSVs) in the low copy repeats (LCRs) flanking the NF1 microdeletion region (De 

Raedt et al., in press). By scoring the relative intensity of both nucleotides of the PSV, the location 

of the breakpoint was determined: centromeric (higher relative intensity of the nucleotide specific 

for the telomeric LCR) or telomeric (higher relative intensity of the nucleotide specific for the 

centromeric LCR) of the PSV investigated. 
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Loss of heterozygosity NF1 region 

Loss of heterozygosity (LOH) in the NF1 gene region was evaluated by genotyping 2 microsatellite 

markers telomeric (3’NF1-3, 3’NF1-1) [13] and 4 within the NF1 gene (Alu, IVS27AC33.1, 

IVS38GT53.0, IVS27TG24.8) [14, 15, 16, 17]. Genomic DNA from paired melanocyte/Schwann cell 

and lymphocyte cultures of the same patient was investigated by touch-down PCR for the 

microsatellite markers and subsequently analyzed on the ABI3130XL genetic analyser (Applied 

Biosystems) with the GeneMapper software Version 3.7 (Applied Biosystems). To determine the 

extent of LOH in different samples from patient SNF1-4, additional SNPs proximal (rs6505129, 

rs6505165 and rs8071580) and distal (rs753750 and rs9904537) to the NF1 microdeletion region were 

evaluated as previously described [18]. LOH for a SNP was scored when the average ratio (SNP 

nucleotide/ control nucleotide) of the two alleles in the tested tissue fell outside the 95% 

confidence interval of the ratios observed in control blood DNA of the same patient and when the 

average ratios in tested tissue versus control blood were at least 20% different. The mechanism 

underlying LOH (deletion versus mitotic recombination) was evaluated by semi-quantitative PCR 

taking advantage of the amplification of NF1 exon 22 (103 bp) together with the corresponding 

fragment of its pseudogene located on chromosome 15 (107 bp) as previously described [18]. 

 

Cloning NF1 point mutations 

In order to determine whether both NF1 mutations detected in SCF- cultures derived from the 

neurofibromas of patient SNF1-1 resided on different alleles, cloning experiments were performed. 

For neurofibroma 1 (NF1 c.2041C>T and c.1655T>G), a fragment containing both alterations and an 

additional SNP in exon 13 (rs2285892) was amplified (516 bp), cloned in the pCR2.1-TOPO Vector 

(Invitrogen) and sequenced. For neurofibroma 2 (NF1 c.2041C>T and [c.603T>C; 604_621del]), a 

fragment containing the deletion and a SNP in exon 5 (rs1801052) was amplified (286 bp), cloned 

and sequenced. Since rs1801052 and rs2285892 are in complete linkage, information on the 

genotype of the SNP in exon 13 linked with the 1st hit (cloning experiment neurofibroma 1) and 

information on the genotype of the SNP in exon 5 linked with the 2nd hit (cloning experiment 

neurofibroma 2), provides information on the fact whether both mutations reside on the same (exon 

5/exon13: A/G or G/A) or different (exon5/exon13: A/A or G/G) haplotypes. 

 

Quantification of NF1 mutations 

Real-time quantitative PCR 

In order to detect low-percentage mosaicism for NF1 point mutations against a background of 

normal and pseudogene alleles, a nested real-time quantitative PCR (qPCR) assay was developed 

[19]. Briefly, the region spanning the NF1 point mutation was amplified (primer sequences available 

upon request) and equimolar dilutions of cloned PCR fragments (wild-type and mutant alleles) were 

used to generate standard curves of 5 orders of magnitude. For actual quantification, allele-specific 

3’ locked nucleic acid (LNA) primers (Eurogentec) were used. Since both somatic NF1 point 

mutations appeared to be present in several NF1 pseudogenes, samples were amplified with NF1 

specific primer pairs and diluted prior to nested real-time qPCR. In order to detect low-percentage 
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mosaicism for NF1 multi-exon deletions, a real-time qPCR assay using deletion-specific primers was 

developed. Briefly, a primer pair situated in the deletion specifically amplified the wild-type allele 

and a second breakpoint overlapping primer pair specifically amplified the mutant allele. Equimolar 

dilutions of both PCR fragments were used to generate standard curves of 5 orders of magnitude. 

Real-time qPCR reactions were performed on an iCycler iQ instrument (Bio-Rad). In each 

experiment, duplicates of a standard dilution series of specific PCR fragments for each allele variant 

(wild-type and mutant) and triplicates of 10 ng DNA of unknown samples (different tissues from 

segmental NF1 patient under study and non-NF1 control sample) were amplified in a 15µl reaction 

containing 1 x SYBR Green I Master Mix (Eurogentec) and 250 nM of allele-specific primers. The 

thermal profile consisted of 1 cycle at 95°C for 10 minutes followed by 40 cycles at 95°C for 15 

seconds and at 61°C (c.2042C>T), 63°C (c.2325+1G>A) or 60°C (c.1783_2000+205del422) for 1 

minute. Each experiment was performed twice and data acquisition and automated analysis was 

done by the iCycler iQ software version 3.1 (Bio-Rad). The relative number of molecules of each 

allele was determined by interpolating the Ct values of the unknown samples to each standard 

curve, followed by the determination of the fraction of mutant alleles (number of mutant molecules 

divided by sum of number of wild-type and mutant molecules). 

FISH analysis 

To determine submicroscopic NF1 deletions, dual color FISH was performed [20] using PAC clones 22 

(926B9; 5’NF1) and 13 (1002G3; 3’NF1) [13]. To investigate mosaicism, at least 100 interphase 

nuclei were evaluated. 
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Results 

 

Neurofibromas only (patient SNF1-1) 

NF1 mutation screening on selectively cultured Schwann cells (SC F-) derived from two 

neurofibromas revealed an identical mutation (c.2041C>T (p.R681X)) in each tumor in addition to 

two tumor specific alterations (c.1655T>G (p.L552R) and [c.603T>C; c.604_621del], respectively). 

Cloning experiments demonstrated that, for the two tumors, both NF1 mutations resided on 

different alleles. Quantification of mutant transcripts in the presence of the wild-type form was 

tested by mixing an excess (5x105 molecules) of wild-type allele with a 5 point 10-fold dilution 

series of the mutant form (5x105 – 50 molecules). As a control, a standard curve containing only the 

mutant transcript was used. Ideally, both series should result in overlapping amplification plots. We 

observed, however, that at low levels of mutant transcript (<2500 molecules), the presence of the 

wild-type transcript (5x105 molecules) significantly impaired accurate quantification of the low-

abundant alternative transcript. Therefore, the sensitivity of the quantitative assay is estimated at 

1/200. Real-time qPCR demonstrated the presence of the first hit (percentage mutant allele ± 

standard error of the mean (SEM)) in EBV transformed white blood cells (3.7±1.1%), hair follicles 

(1.8±0.5%), fibroblasts derived from both neurofibromas (8.4±1.6% and 19.4±7.9%, respectively) and 

selectively cultured Schwann cells from a third smaller neurofibroma (6.7±2.5%). Buccal smears, 

urine and fibroblasts derived from the third neurofibroma were negative as well as blood from both 

children of the patient and the control sample (Table 1). 

 

Pigmentary defects only 

Patient SNF1-2 

Combined NF1 cDNA sequencing and MLPA analysis revealed an NF1 microdeletion exclusively 

present in the melanocytes derived from CALMs and background hyperpigmentation area. A second 

alteration (c.1226_1227del) was only detected in the melanocytes of the CALM. Further 

characterization of the microdeletion revealed an atypical deletion with the proximal breakpoint 

residing within the centromeric LCR flanking the NF1 gene and the distal breakpoint located 

centromeric from the telomeric LCR flanking the NF1 gene before JJAZ1 exon 7 (minimum size of 

the deletion 1,30 Mb). FISH analysis of skin fibroblasts (CALM, hyperpigmented and unaffected skin) 

and blood lymphocytes with NF1 specific probes revealed low percentages of mosaicism (<5%) for 

the NF1 microdeletion (Table 2). 

Patient SNF1-3 

MLPA analysis on peripheral blood of one of the daughters of patient SNF1-3 pointed to an NF1 

multi-exon deletion (including exons 12a and 12b) at the genomic level. Long-range PCR confirmed 

the presence of a ~2kb deletion. Further characterization by sequencing localized the deletion 

breakpoints in exon 12a (c.1783) and intron 12b (c.2000+205) with additional bases at the deletion 

junction. Excess wild-type transcript did not influence quantification of low-abundant mutant 

transcript since identical amplification plots were obtained for mutant transcript and mutant 

transcript with excess wild-type fragment standard curves. Real-time quantitative PCR 
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demonstrated that the mutant allele was present in peripheral blood of both daughters with full-

blown NF1 (44.9±12.7% and 47.8±15.0%, respectively). The NF1 mutation was also detected in a low 

percentage of cells derived from different tissues from the mother: peripheral blood (1.5±0.6%), 

buccal smear (2.8±1.0%), urine (3.8±1.7%) and hair (7.2±2.9%), while the control sample was 

negative (Table 3). 

 

Pigmentary defects and neurofibromas (patient SNF1-4) 

Analysis of neurofibroma-derived Schwann cells (SC F+ and F-) and melanocytes derived from both 

the hyperpigmentation area and two CALMs remote from that zone revealed an identical NF1 

mutation (c.2325+1G>A) leading to out-of-frame skipping of exon 14 and deletion of the wild-type 

NF1 allele. For all samples, the proximal deletion breakpoint resided between rs6505129 

(chromosome 17 reference position 24777972, NCBI build 36.2) and rs6505165 (position 25598975), 

while the distal deletion breakpoint resided between the most distal PSV in the telomeric NF1 LCR 

(position 27439522) and rs9904537 (position 27579216) (minimum/maximum size of deletion 1.84 

Mb/2.80 Mb). To test the influence of excess wild-type transcript on detection of the mutant 

transcript (c.2325+1G>A), a 5 point 10-fold dilution series of the mutant form (5x105 – 50 molecules) 

was mixed with excess wild-type (5x105 molecules). Equal mounts of water (instead of wild-type 

transcript) were added to a second series of dilutions. Comparison of both amplification plots 

revealed that at low levels of mutant transcript (<1250 molecules), the presence of the wild-type 

transcript significantly impaired accurate quantification of the low-abundant alternative transcript. 

Therefore, the sensitivity of the quantitative assay is estimated at 1/400. Real-time qPCR 

demonstrated the presence of the intragenic NF1 mutation (percentage mutant allele ± SEM) in 

fibroblasts derived from both the neurofibroma (12.3±6.9%) and hyperpigmented area (2.0±0.6%). 

Peripheral blood, melanocytes and fibroblasts derived from normal skin, fibroblasts derived from 

both CALMs, buccal smear, urine and the control sample were negative. As expected, the mutation 

could not be detected in peripheral blood from the parents and siblings of the patient (Table 4). In 

order to pick up low-percentage mosaicism for the NF1 deletion, we are planning FISH experiments 

on skin fibroblasts (CALM, hyperpigmented and unaffected skin) and blood lymphocytes with NF1 

specific probes. Immunofluorescence staining revealed S100 positive cells in the SC F- (>95%), SC F+ 

(>95%) and fibroblast (~10%) cultures derived from the neurofibroma. 
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Discussion 

 

In this report, four mosaic NF1 patients with different clinical manifestations were investigated at 

the molecular level to provide insight into the cell types and mutational mechanisms involved in the 

development of particular NF1-related disease features. 

 

Neurofibromas only (patient SNF1-1) 

In selectively cultured Schwann cells (SC F-) derived from two neurofibromas, an identical NF1 

mutation in addition to two tumor specific alterations on the other allele were detected clearly 

confirming the tumor-initiating properties of Schwann cells in neurofibroma development [9, 21, 

22]. Quantitative mutation screening of fibroblasts derived from both neurofibromas revealed only 

low percentages of mutant -first hit- allele (8.4±1.6% and 19.4±7.9%, respectively), undetectable by 

conventional mutation detection techniques (i.e. PCR NF1 exon 13 and subsequent sequencing). 

Similarly, Shultz et al. (2000) [23] could not demonstrate any NF1 mutation in neurofibroma-derived 

fibroblasts from a segmental NF1 patient by use of the protein truncation test, enzymatic mutation 

detection and FISH. Remarkably, only a limited amount of mutant allele (6.7±2.5%) was detected in 

selectively cultured Schwann cells (purity estimated at >95%) from a third smaller tumor, further 

illustrating the high abundance of NF1+/+ cells in the tumor microenvironment. A growing body of 

experimental evidence supports the idea that NF1 haploinsufficiency in the tumor environment 

promotes (plexiform) neurofibroma formation in mice [24, 25, 26, 27, 28]. Haploinsufficient mast 

cells, for example, have been shown to be hypermigratory and to have increased survival and 

proliferation potential in response to stem cell factor (SCF), secreted by Nf1-/- Schwann cells [25, 

27]. Whether the abundance of NF1 wild-type cells in (dermal) neurofibromas from segmental NF1 

patients reflects a slightly different pathogenesis or, alternatively, is associated with the small size 

of these patients’ tumors (heterozygous neighboring cells may promote tumor growth more 

efficiently than wild-type neighboring cells) remains an important question. 

 

Pigmentary defects only (patient SNF1-2) 

Combined NF1 cDNA sequencing and MLPA analysis revealed an NF1 microdeletion exclusively 

present in melanocytes derived from affected skin of patient SNF1-2 (Table 2). Although a high 

frequency of mosaic NF1 microdeletions are caused by somatic recombination of the JJAZ1 gene 

[29], the current NF1 lesion does not represent a typical type II deletion. A second alteration 

(c.1226_1227del) was only present in melanocytes derived from the CALM, not in the 

hyperpigmented background area. Previously, Eisenbarth et al. (1997) [30] did not detect somatic 

NF1 inactivation in melanocytes cultured from 10 CALMs of patients with classical NF1. The 

discrepancy with the current data can probably be explained by different melanocyte culture 

conditions and by the fact that, before, the cells were only analyzed for LOH at the NF1 locus 

whereas we performed comprehensive NF1 mutation screening. Available evidence suggests that 

paracrine cytokines interacting between epidermal melanocytes and non-melanocytic cells in the 

skin play a central role in epidermal hyperpigmentation (reviewed in [31]). Although the 
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etiopathogenesis of NF1-related pigmentary lesions remains largely unknown, it has been postulated 

that the mechanism of epidermal hyperpigmentation and mast cell infiltration in NF1 CALMs might 

be associated with increased secretion of cytokines such as SCF and hepatocyte growth factor by 

dermal fibroblasts [32]. In the same line, De Schepper et al. (2006) [33] reported increased levels of 

soluble SCF in fibroblast supernatant from NF1 CALM but, importantly, also in NF1 normal skin 

compared with control individuals. In other words, paracrine networks are at play in the NF1 skin, 

but are not sufficient for CALM development. Here, we demonstrate that bi-allelic NF1 inactivation 

in the melanocyte may be required for CALM formation, while even in the haploinsufficient state 

the NF1 gene presumably has an effect on skin color. Recently, a significant increase in melanocyte 

density was demonstrated in NF1 CALM skin compared with NF1 normal skin, control normal skin and 

control CALM skin [33]. These NF1 CALM melanocytes also display a higher melanin content and 

melanogenesis [34]. In light of our current findings, it is tempting to speculate that bi-allelic NF1 

inactivation in melanocytes might be the underlying molecular mechanism for the distinct 

properties of these NF1-related pigmentary lesions. In a next step, it will be essential to determine 

the dysregulating consequences of neurofibromin loss and NF1 haploinsufficiency on signaling 

pathways in melanocytes. Previous studies on segmental pigmentary lesions revealed NF1 mutations 

in 9% and 18% of fibroblasts [6, 7] and in 20% of keratinocytes [7] cultured from CALMs. Also in this 

report, low percentages of the NF1 mutation were detected in the fibroblasts derived from the 

hyperpigmentary and CALM skin lesions of patient SNF1-2 (3% and 4%, respectively). Therefore, we 

speculate that pigmentary lesions can arise within an environment consisting of predominantly NF1 

wild-type cells. 

Although a definite association between malignant melanoma and NF1 has not yet been established, 

one clinical report describes the occurrence of malignant melanoma arising from a pre-existing 

CALM in an NF1 patient [35]. This may imply a model of multi-step tumor progression, a genetic 

scenario previously demonstrated for the plexiform neurofibroma – malignant peripheral nerve 

sheath tumor sequence. Stepwise transformation from melanocytes to melanoma has been 

described previously for non-NF1 related melanomas [36]. While BRAF and NRAS mutations occur at 

the stage of the benign nevus, additional molecular lesions in CDKN2A and PTEN are required for the 

progress towards malignancy. Interestingly, BRAF and NRAS mutations activate the MAP-Kinase 

pathway, an effect which can also be caused by NF1 inactivation. Therefore, the question emerges 

whether, instead of BRAF and NRAS mutations, NF1 inactivation in NF1-related CALMs might act as 

an alternative mechanism to activate the MAP-Kinase pathway. Interestingly, double inactivation of 

the NF1 gene was recently demonstrated in an early disease stage melanoma arising in a 15-year old 

NF1 patient [37]. 

 

Pigmentary defects and neurofibromas (patient SNF1-4) 

In patient SNF1-4 an identical NF1 mutation (c.2325+1G>A) was revealed in neurofibroma-derived 

Schwann cells and melanocytes derived from both the hyperpigmentation area and two CALMs 

remote from that zone. Moreover, all samples showed deletion (1.84 Mb-2.80 Mb) of the wild-type 

NF1 allele. Currently, we are further pinpointing the deletion breakpoints in these samples by using 
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high resolution techniques. Given the fact that melanocytes and Schwann cells can arise from a 

bipotent glial-melanocyte precursor [38], it is tempting to speculate that one or both NF1 mutations 

occurred in a common neural crest precursor (Figure 2). The clinical picture of neurofibromas 

arising within a hyperpigmented background might be compatible with this hypothesis. In other 

words, loss of heterozygosity for the underlying NF1 mutation in an early developmental stage (e.g. 

bipotent glial-melanocytic precursor [38]) might be responsible for the segmental involvement of 

epidermis (melanocyte) and several nerve branches (Schwann cell). Unexpectedly, the NF1 point 

mutation was also detected in neurofibroma-derived fibroblasts (culture passage 2), albeit at a 

significant lower frequency (12.3±6.9%). Immunofluorescence staining demonstrated that the latter 

observation most probably can be explained by the presence of S100 positive cells (Schwann cells 

and/or melanocytes) in the fibroblast cultures. It is well known that different neurofibromas from 

one NF1 patient bear different second hits (patient SNF1-1 and [11]) and arise during the second 

decade of life [4]. Strikingly, both inactivating NF1 mutations in the melanocytes derived from the 

hyperpigmentation zone (right hand) and two CALMs remote from that area (left thigh and right 

lower back) seem to be identical. This finding is particularly intriguing with respect to the typical 

congenital appearance of many NF1 CALM lesions. It remains to be explored whether the early 

presentation of pigmentary NF1 signs could be attributed to bi-allelic NF1 inactivation in 

melanocytic precursors (melanoblasts) during embryonic development (Figure 2). Melanoblasts 

migrate in mice from the neural crest dorsolaterally and enter the skin where they proliferate 

clonally and finally differentiate into mature skin melanocytes [39, 40]. One might assume that 

neurofibromin loss in melanoblasts will result in enhanced proliferation and, hence, increased 

melanocyte density [33] in NF1-related CALM lesions. It will be essential to molecularly dissect more 

CALM lesions derived from different areas of the body and to determine the (presumably different) 

second hit in NF1 clinical features arising only later in life. 

 

Mosaic transmission (patient SNF1-3) 

A somatic mutation may affect somatic cells only (somatic mosaicism), gonadal cells only (gonadal 

mosaicism) and a proportion of both cell types (gonosomal mosaicism). The clinical picture of 

patient SNF1-3 (freckling only) and her both daughters (full-blown NF1) together with the 

quantitative data (Table 3) illustrate that this patient is a gonosomal mosaic. Clearly, and as 

opposed to previous animal work [41], the risk of transmitting disease to offspring is not 

proportional to the percentage of body area involved. The molecular data obtained from patient 

SNF1-3, and all other mosaic patients described in this report, irrefutably indicate that the 

percentage of the NF1 mutation in non-neural crest derived cells is often so low that it would be 

missed by routine NF1 screening. This implies that an accurate diagnosis for mosaic NF1 can only be 

established by comprehensive screening of those cell populations giving rise to mosaicism, i.e. 

Schwann cells in neurofibromas and/or melanocytes in pigmentary lesions. This new insight will 

incontestably facilitate genetic counseling of individuals with mosaic NF1. Screening the relevant 

cell type in the mosaic NF1 patient can provide a molecular marker useful in the prenatal and 

presymptomatic diagnostic setting. 
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In conclusion, we provide for the first time molecular evidence that different NF1 mosaic 

phenotypes result from a postzygotic NF1 mutation in neural crest derived cell types. While NF1 

deficiency in Schwann cells is essential for neurofibroma development, bi-allelic NF1 inactivation in 

melanocytes seems to be required for NF1-related CALM development. Both disease features arise 

even within a background containing predominantly NF1+/+ cells. These findings provide important 

insight into developmental concepts underlying NF1-related disease features and open avenues for 

improved genetic counseling of individuals with mosaic NF1. 
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Table 1. Overview of NF1 mutations revealed by routine mutation detection techniques (Routine) 

and real-time quantitative PCR (qPCR) in different tissues derived from segmental patient SNF1-1 

presenting with neurofibromas only. 

 

(SC F-: Schwann cells grown without forskolin, Fibro: fibroblasts, +: mutation detectable, -: 

mutation not detectable, qPCR: percentage mutant allele ± standard error of the mean determined 

by real-time quantitative PCR) 

 

 

NF1 mutation 
c.2041C>T (p.R681X) 

Patient Sample 

Routine qPCR 
Second hit 

SC F- + 41.4±15.1% c.1655T>G (p.L552R) Neurofibroma 1 
Fibro - 8.4±1.6% - 
SC F- + 47.4±15.6% [c.603T>C; c.604_621del] Neurofibroma 2 
Fibro - 19.4±7.9% - 
SC F- - 6.7±2.5% - Neurofibroma 3 
Fibro - - - 

Blood - 3.7±1.1% - 
Buccal smear - - - 
Urine - - - 

SNF1-1 

Hair - 1.8±0.5% - 
Child 1 Blood - - - 
Child 2 Blood - - - 
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Table 2. Overview of NF1 mutations revealed by routine mutation detection techniques (Routine) 

and quantitative assays (FISH) in different tissues derived from segmental patient SNF1-2 presenting 

with pigmentary defects only. 

 

(MC: melanocytes, +: mutation detectable, -: mutation not detectable, FISH: percentage of 

interphase nuclei with NF1 microdeletion determined by FISH analysis, NA: no data available) 

 

 

NF1 mutation 
NF1 microdeletion 

Patient Sample 

Routine FISH 
Second hit 

MC + NA c.1226_1227del Café-au-lait spot  
Fibro - 4% - 
MC + NA - Hyperpigmentation 
Fibro - 3% - 
MC - NA - Unaffected skin 
Fibro - 0% - 

Blood - 2% - 
Buccal smear - NA - 
Urine - NA - 

SNF1-2 

Hair - NA - 
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Table 3. Overview of NF1 mutations revealed by routine mutation detection techniques (MLPA) and 

real-time quantitative PCR (qPCR) in different tissues derived from segmental patient SNF1-3 

presenting with freckling only. 

 

(+: mutation detectable, -: mutation not detectable, qPCR: percentage mutant allele ± standard 

error of the mean determined by real-time quantitative PCR) 

 

 

NF1 mutation 
c.1783_2000+205del422 

Patient Sample 

MLPA qPCR 
Child 1 Blood + 44.9±12.7% 
Child 2 Blood + 47.8±15.0% 

Blood - 1.5±0.6% 
Buccal smear - 2.8±1.0% 
Urine - 3.8±1.7% 

SNF1-3 

Hair - 7.2±2.9% 
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Table 4. Overview of NF1 mutations revealed by routine mutation detection techniques (Routine) 

and real-time quantitative PCR (qPCR) in different tissues derived from mosaic patient SNF1-4 

presenting with neurofibromas and pigmentary defects. 

 

(SC: Schwann cells grown with (F+)/ without (F-) forskolin, Fibro: fibroblasts, MC: melanocytes, +: 

mutation detectable, -: mutation not detectable, qPCR: percentage mutant allele ± standard error 

of the mean determined by real-time quantitative PCR, NA: no data available, S100: S100 

immunofluorescence data available) 

 

 

NF1 mutation 
c.2325+1G>A 

Patient Sample 

Routine qPCR 
deletion NF1 allele 

SC F- + 88.8±37.5% + S100 
SC F+ + 67.2±32.8% + S100 

Neurofibroma 
(hand, right) 

Fibro + 12.3±6.9% - S100 
MC + 96.9±75.1% + Hyperpigmentation 

(hand, right) Fibro - 2.0±0.6% - 
MC + 71.8±20.8% + Café-au-lait spot 

(thigh, left) Fibro - - - 
MC + 54.9±33.6% + Café-au-lait spot 

(lower back, right) Fibro - - - 
MC - - - Normal skin 

(buttock, right) Fibro - - - 
Blood - - - 
Buccal smear - - - 
Urine - - - 

SNF1-4 

Hair - NA - 
Mother  Blood - - - 
Father Blood - - - 
Brother Blood - - - 
Sister Blood - - - 
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Figure 1. Illustration clinical subtypes of mosaic NF1 patients 

 

A. Patient SNF1-2 presents with several CALMs (illustrated by asterisks) within a pigmented 

background involving the entire right leg, hip and lower back. 

B. Patient SNF1-4 presents with more than six café-au-lait macules (one depicted on the left) 

scattered over the body and several small neurofibromas (illustrated by asterisks) located on the 

hand within a hyperpigmented background (depicted on the right). 
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Figure 2. Proposed genetic model for neurofibroma and café-au-lait macule development in mosaic 

NF1 patients. 

 

The clinical mosaic phenotype reflects the timing and accordingly the cell type involved in the 

somatic mutation. While mutations occurring in terminally differentiated cells (i.e. Schwann cells or 

melanoblasts/melanocytes) will give rise to solitary symptoms (i.e. neurofibromas only (patient 

SNF1-1) or pigmentary lesions only (patient SNF1-2)), somatic alterations earlier in embryonic 

development (i.e. common precursor of both cell types) will result in associated symptoms (i.e. 

neurofibomas and pigmentary defects (patient SNF1-4)). Interestingly, both disease features appear 

to arise even within a background containing predominantly NF1+/+ cells. 

 

(Z: zygote, NC: neural crest stem cell, GM: glial-melanocytic precursor, G: glial cell, SC: Schwann 

cell, Mb: melanoblast, Mc: melanocyte, NFB: neurofibroma; CALM: café-au-lait macule) 

 

 

 

 

94  



  Chapter 2 

 95

Molecular pathogenesis of multiple gastrointestinal

stromal tumors in NF1 patients
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Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal

tract. KIT and PDGFRA activating mutations are the oncogenic mechanisms in most sporadic GISTs. In

addition to sporadic occurrences, GISTs are increasingly being recognized in association with neurofibroma-

tosis type 1 (NF1), yet the underlying pathogenic mechanism remains elusive. To gain an insight into the

mechanisms underlying GIST formation in NF1 patients, we studied seven GISTs from three NF1 patients

with a combination of different techniques: mutation analysis (KIT, PDGFRA and NF1), western blotting,

array CGH and ex vivo imatinib response experiments. We demonstrate that (i) the NF1-related GISTs do

not have KIT or PDGFRA mutations, (ii) the molecular event underlying GIST development in this patient

group is a somatic inactivation of the wild-type NF1 allele in the tumor and (iii) inactivation of neurofibromin

is an alternate mechanism to (hyper) activate the MAP-kinase pathway, while the JAK-STAT3 and PI3K-AKT

pathways are less activated in NF1-related GIST compared with sporadic GISTs. In conclusion, we report for

the first time the molecular pathogenesis of GISTs in NF1 individuals and demonstrate that this type of tumor

clearly belongs to the spectrum of clinical symptoms in NF1.

INTRODUCTION

Gastrointestinal stromal tumors (GISTs) are the most common

mesenchymal tumors of the gastrointestinal tract (1). They

occur predominantly in the stomach (70%) and small intestine

(10–20%) and originate from primitive cells with character-

istics of the interstitial cells of Cajal (ICCs), the autonomic

pacemaker cells which regulate peristalsis in the digestive

tract (1–3). Most sporadic GISTs contain gain-of-function

mutations in KIT (80–85%) (4,5) and strongly express the

constitutively activated protein (6). Some GISTs contain

gain-of-function PDGFRA mutations as an alternate onco-

genic mechanism (7,8). Both receptor tyrosine kinases trans-

duce their signals through the downstream PI3K-AKT (9),

MAP-kinase (10,11) and JAK-STAT3 signaling cascades

(12–16). Therapeutic targeting with the tyrosine kinase inhibi-

tor imatinib (Gleevec, Novartis, Basel, Switzerland) shows a

clinical benefit in up to 80% of patients with sporadic GIST

(17,18).

GISTs are increasingly recognized in adults with neuro-

fibromatosis type 1 (NF1), an autosomal dominant genetic

disorder caused by alterations of the NF1 gene and affecting

1/3500 individuals worldwide. Neurofibromin, the protein

encoded by NF1, functions as a GTPase-activating protein

for Ras by catalyzing the hydrolysis of active Ras-GTP to

an inactive Ras-GDP (19–23). The primary clinical features

of the disease are café-au-lait spots, freckling and benign

peripheral nerve sheath tumors or neurofibromas (24).
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Neurofibromin deficiency in neurofibromas results in hyper-
activation of the MAP-kinase pathway. On the basis of a
single Swedish study of 70 NF1 patients, it is estimated that
adults with NF1 might have a risk for GISTs as high as 7%
(25). GISTs in NF1 patients tend to be multiple and are
located predominantly within the small intestine (26–28).
Morphologically and immunohistochemically, GISTs occur-
ring in the NF1 patients are similar to sporadic GISTs
(26–29). Little is known about the molecular basis underlying
GIST formation in NF1, and whether there is a difference in
the molecular pathogenesis of sporadic and NF1-related
GISTs. It remains an intriguing question why NF1 patients
are at an increased risk for this type of tumor.

RESULTS

Histopathological analysis

The NF1-related intestinal tumors corresponded to bona fide
spindle cell type GISTs (Fig. 1A). The tumor cells were
strongly positive for CD117 (Fig. 1B and 1C). The mast
cells served as positive control for CD117, whereas the
other tissue elements of the mucosa and submucosa were
negative (Fig. 1B and 1C). There was a variable positivity
for alpha smooth muscle actin, CD34 and S-100 protein,
whereas desmin was negative.

Mutation analysis

KIT/PDGFRA. Analysis of the entire KIT and PDGFRA coding
region did not reveal any activating mutation in the NF1-related
GIST specimens (Table 1). One single nucleotide polymorphism
(SNP) in the 30-UTR region ofKIT (rs2213181, http://www.ncbi.
nlm.nih.gov/SNP) was revealed in all GISTs derived from
patient NF1-1. In the GIST of patient NF1-3, one silent poly-
morphism was found in KIT (p.K546K) and five alterations
were found in PDGFRA: three silent mutations (p.N204N,
p.G313G and p.A603A), one 30-UTR SNP (rs7680422, http://
www.ncbi.nlm.nih.gov/SNP) and one missense mutation
[c.1825T.C (p.S478P)]. The missense mutation was not pre-
dicted to have an impact on protein activity (Polyphen algorithm,

http://tux.embl-heidelberg.de/ramensky) and was found in
19/98 (19%) control individuals. All detected variants were
also present in DNA extracted from peripheral white blood
cells of the respective patients. The detection of heterozygous
polymorphisms indicates the presence of both KIT alleles in
one out of seven tumors and both PDGFRA alleles in four out
of seven tumors.

NF1. Mutation screening of peripheral blood revealed NF1
germline mutations in all three patients (Table 1). The
somatic alterations in the NF1 gene region detected in six
of the seven GISTs (Table 1) were three nonsense
mutations, one donor splice site mutation, a multi-exon del-
etion encompassing NF1 exons 10c–21 and one loss of het-
erozygosity (LOH) event including the NF1 gene. All NF1
mutations are assumed to have an inactivating effect
(Table 1). Analysis of the nonsense mutation p.R2616X in
different cell types derived from tumor II of patient NF1-2
demonstrated that the somatic NF1 mutation was exclu-
sively present in the cells cultured with the medium selec-
tive for ICC culture and not in fibroblasts grown from the
same tumor.

Western blotting

All seven NF1-related tumors showed only rudimentary
neurofibromin expression in comparison with the control
GIST882 cell line harboring the KIT p.K642E mutation and
the sporadic GIST with the KIT p.557–558delWK mutation
(Fig. 2). NF1-related GISTs demonstrated normal total KIT
expression but low levels of constitutive KIT autophosphory-
lation in comparison to the control GIST882 and sporadic
GIST cells (Table 2). Total MAPK and MAPK phosphory-
lation was ubiquitously more pronounced in NF1-related
GIST tissue. On the basis of the densitometric quantification
of autoradiographic signals, the relative p-MAPK expression
in NF1-related GIST was 3–18-fold higher than in sporadic
GIST (Table 2). Expression of total AKT was variable in
NF1-related GISTs and not associated with protein phos-
phorylation. Moreover, NF1 tumors did not express STAT3
protein.

Figure 1. Histopathological analysis of NF1-related GISTs. (A) Low power view, showing the spindle cell character of the NF1-related GIST (H&E stain,
�200). (B) KIT staining shows strong expression in the tumor (immunoperoxidase stain for CD117, �50). (C) Detail of the mucosa. Only the mast cells
are KIT positive (immunoperoxidase stain for CD117, �350).
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Array CGH experiments

Array CGH experiments on NF1-related GISTs showed

similar losses of chromosome regions as seen in sporadic

GISTs (i.e. losses of chromosomes 11, 14, 22 and 1p) in

addition to several extra alterations (Table 3). These additional

chromosomal abnormalities seem not to be recurrent in the

different tested NF1-related GISTs. Array CGH confirmed

LOH of the NF1 gene in the large tumor of patient NF1-3

[loss of the clones containing the NF1 gene (RPCI5-926B9

and RP11-229K15)] while no other aberrations were observed

(Table 3 and Fig. 3).

Phenotype of cultured cells

After 3 days in culture, the primary cells of tumor III from

patient NF1-2 exhibited spindle shape type of growth and

95% were KIT immunopositive. The Ki-67 labeling index

was 0.5 and 8.7% in ligand unstimulated and ligand stimulated

cultures, respectively (Fig. 4).

Imatinib assay

As shown in Figure 5, KIT phosphorylation of primary

NF1-related GIST cells seeded in culture is ligand-

dependent as shown by very limited KIT phosphorylation

in the absence of stem cell factor (SCF). SCF-dependent

KIT phosphorylation of NF1-related GIST cells is totally

inhibited by exposure to imatinib at concentration of

0.5 mM. The same inhibition is observed in the control

autophosphorylated GIST882 cell line harboring the KIT

p.K642E mutation. The level of MAPK phosphorylation of

primary NF1-related GIST cells was moderately decreased

after exposure to imatinib but the inhibition was neither

complete nor dose-dependent. Imatinib decreased in a dose-

dependent way the level of MAPK autophosphorylation at

concentrations lower than 1.0 mM in the GIST882 cell line

but not at any tested doses in control fibroblasts. The rela-

tive p-KIT and p-MAPK expressions, based on the densito-

metric quantification of autoradiographic signals, are shown

in Table 4.

DISCUSSION

Although activating mutations of KIT and PDGFRA are

known to be the most frequent genetic events in the develop-

ment of sporadic GISTs, the underlying pathogenic mechan-

ism leading to GIST formation in the NF1 setting remains

elusive. In this study, total screening of KIT and PDGFRA

in seven GISTs from three NF1 patients did not reveal any

activating mutation. Several sequence variants were detected:

three silent mutations in PDGFRA (p.N204N, p.G313G and

p.A603A), 1 silent mutation in KIT (p.K546K), one SNP in

the 30-UTR region of both KIT and PDGFRA and one mis-

sense mutation in exon 10 of PDGFRA (p.S478P) that was

not predicted to have an impact on protein activity (Polyphen

algorithm) and that is a frequent polymorphism (19/98 con-

trols, 19%) in the examined population. All variants were

also present in normal control tissue (white blood cells) of

the respective patients. In conclusion, the alterations do not

correspond to known mutation hot spots in sporadic GISTs,

are not tumor specific and have not been demonstrated to

result in activation of the tyrosine kinases. This finding is in

line with published reports (27–31). Of the 113 NF1-related

GISTs previously published, only eight showed KIT/

PDGFRA alterations. Takazawa et al. (2005) (30) reported

three KIT (p.L558L, p.P627L and p.I653T) and two

PDGFRA (p.P589S and p.R822S) mutations in 34 NF1-related

GISTs. None have been demonstrated to result in activation of

the protein nor have they been previously reported in sporadic

or familial GIST. Yantiss et al. (2005) (29) detected an iden-

tical point mutation in KIT exon 11 in three tumors from one

patient. As control tissue was not analyzed, this patient may

have had a germline KIT mutation. Taken together, these

results indicate that KIT or PDGFRA mutations are not

playing a role in the development of GISTs in NF1 patients.

In accordance with Knudson’s two-hit hypothesis (32),

somatic inactivation of the NF1 tumor suppressor gene leads

to tumor formation in NF1 (33–36). In line with this

concept, we detected somatic NF1 alterations in six of seven

NF1-related GISTs (Table 1). Analysis of different cell

types derived from tumor II of patient NF1-2 demonstrated

that the somatic NF1 mutation was only present in tumoral

cells cultured using specific conditions for ICCs (37). This is

the first time that somatic NF1 inactivation is demonstrated

Table 1. Molecular analysis of seven GISTs derived from three NF1 patients

Patient Tumor Material KIT PDGFRA NF1

Germline Somatic Mutation effect

NF1-1 I F 2 2 c.4269þ1G.T c.5546þ2T.A Frameshift leading to PTC

II F 2 2 c.5242C.T (p.R1748X) PTC

III F 2 2 ND

NF1-2 I F 2 2 c.6791dupA c.279T.A (p.C93X) PTC

II ICC þ F 2 2 c.7846C.T (p.R2616X) PTC

III ICC þ F 2 2 del [ex10c–21] Truncating

NF1-3 I F 2 2 c.7807delG LOH Loss wild-type NF1 allele

F, frozen; 2, negative; ND, no mutation detected; PTC, premature termination codon; ICC, interstitial cells of Cajal.
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in neoplastic GIST cells and it illustrates that the lack of func-
tional neurofibromin, in the absence of KIT or PDGFRA
mutations, can lead to GIST formation.

Neurofibromin functions as a negative regulator of the
MAP-kinase pathway by catalyzing the hydrolysis of active
Ras-GTP to an inactive Ras-GDP. In this light, inactivation
of neurofibromin in NF1-related GISTs is the mechanism
leading to tumor formation. To further elucidate this hypo-
thesis, we evaluated the expression of KIT, neurofibromin
and several downstream signaling molecules. Clear differ-
ences were observed between sporadic and NF1-related
GISTs (Fig. 2). First, NF1-related GISTs demonstrated com-
parable total KIT expression but low levels of constitutive
KIT autophosphorylation. Secondly, in contrast to sporadic
tumors, NF1-related GISTs showed a dramatically reduced
level of neurofibromin, confirming the inactivating effect of
the NF1 somatic mutations. Thirdly, strong expression and
activation of MAPK in NF1-related GISTs illustrated
increased signaling through the MAP-kinase pathway when
compared with sporadic GIST cells. Fourthly, the
JAK-STAT3 and PI3K-AKT pathways were shown to be
less active in NF1-related GISTs. These data suggest that

activation of the MAP-kinase cascade is a common cause of
GIST development in both NF1 and non-NF1 patients,
although there are important differences in the mechanism
of activation (inactivation of NF1 versus activation of
KIT/PDGFRA).

Recurrent cytogenetic aberrations in sporadic GISTs
include deletion of 14q, 22q, 1p, 11p and 9p and gain of 8p
and 17q (reviewed in 5). These chromosomal changes can
be viewed as secondary events acquired after the oncogenic
mutations in the receptor tyrosine kinases and are associated
with clinical progression. While deletion of chromosome
arms 14q (38–43) and 22q (39,42–45) are frequent findings
in sporadic GISTs and likely represent sites for tumor suppres-
sor genes that play a role early in GIST formation, losses on
chromosomes 1p, 9p and 11p are more significantly associated
with malignancy (40,46–48). Gains on chromosomes 8q and
17q are associated with metastatic behavior (41,42,49). The
array CGH experiments on NF1-related GISTs showed
similar gains and losses of chromosome regions as seen in
sporadic GISTs, i.e. losses of chromosomes 11, 14, 22 and
1p, in addition to several extra alterations (Table 3). These
additional chromosomal abnormalities seem not to be recur-
rent in the different tested NF1-related GISTs. Remarkable
is the array CGH profile of the very large tumor from
patient NF1-3 where only the clones containing the NF1
gene are deleted while no other aberrations are observed
(Fig. 3). Taken together, the genomic changes observed in
the analyzed NF1-related GISTs were similar to those
described in sporadic GISTs and did not indicate any change
that could be associated particularly with NF1-related
GISTs, except for the deletion of the NF1 gene region. It
remains elusive why clinically symptomatic GISTs arise in
only a minority of NF1 patients and why, in contrast to spora-
dic tumors, they tend to be multiple and predominantly located
in the small intestine. The presence of multiple GISTs in NF1
might reflect a distinct rate-limiting step in oncogenesis com-
pared with sporadic GIST. While a broad spectrum of in-
activating genetic mechanisms might lead to suppression of
the wild-type NF1 allele and hence GIST formation in NF1
patients, only a limited set of specific activating mutations
in KIT/PDGFRA will result in sporadic GIST. Moreover,
genotypes at modifying loci, not detectable by array CGH,
might trigger the development, location and number of mul-
tiple GISTs in NF1 patients.

On the basis of the array CGH profiles of the three tumors
from patient NF1-2 and tumors I and II from patient NF1-1
(Table 3), one might argue that clustered GISTs are clonal.
In this light, the identical chromosomal alterations in the
tumors of each patient (loss 1pter!1p12 and 14 for NF1-2;
loss 1pter!1p12, 14 and 22 for NF1-1) would reflect a
common precursor lesion, whereas the tumor-specific altera-
tions (cytogenetic aberrations and NF1 somatic mutation)
could be seen as secondary events. However, as illustrated
by the same alterations in the tumors from two different
patients, deletion of chromosomes 1p, 14 and 22 are recurrent
cytogenetic aberrations in GISTs. Moreover, the apparently
identical breakpoints at chromosome band 1p12 can be
explained by the poor clone coverage at the centromere
[21 Mb gap between RP11-418J17 (1p12) and RP11-417J8
(1q12)]. Overall, different tumors derived from the same

Figure 2. Analysis of KIT/PDGFRA downstream signaling pathways in two
sporadic [GIST882 cell line (KIT p.K642E) and sporadic GIST (KIT p.557–
558delWK)] and seven NF1-related GISTs by western blotting. Equal
protein loading was demonstrated with anti-actin staining. On the basis of
the densitometric quantification of autoradiographic signals, the relative
p-MAPK expression in the NF1-related GISTs was 3–18-fold higher than in
the sporadic GIST. Because of short exposure time, phosphorylation of
MAPK of GIST882 is less visible.
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patient bear different NF1 somatic mutations and, with the

exception of the typical GIST-related chromosomal altera-

tions, array CGH profiles are quite diverse. Therefore, it is

most likely that multiple GISTs in NF1 patients are indepen-

dent tumors.

The tyrosine kinase inhibitor imatinib (Gleevec, Novartis)

has tremendously improved the treatment of advanced sporadic

GISTs, showing a clinical benefit in up to 80% of patients

(17,18). To determine whether this drug could also be effec-

tive in NF1-related GISTs, we performed an ex vivo imatinib

response experiment. As illustrated in Figure 5, ligand-

dependent KIT autophosphorylation of primary NF1-related

GIST cells and the control GIST882 cell line is totally inhib-

ited by the exposure to imatinib at a concentration of 0.5 mM.

In contrast to control fibroblasts, the level of MAPK autophos-

phorylation of primary NF1-related GIST cells was lowered

after exposure to imatinib, although the inhibition was

neither complete nor dose-dependent as clearly illustrated in

the GIST882 cell line. These experiments thus suggest that

imatinib might only have a mild effect on NF1-related

GISTs. It will be important to determine whether this

ex vivo observation can be translated into clinical benefit for

NF1 patients with GISTs. As it was proven by in vitro

studies (18), wild-type KIT is equally sensitive to imatinib

as mutated KIT protein. Nevertheless, this observation does

not translate to clinical response of patients with tumors that

do not harbor KIT mutations (who poorly respond to the treat-

ment). Therefore, in vitro assays may have only restricted

predictive value.

In conclusion, we report for the first time the molecular

pathogenesis of GISTs in NF1 individuals. Somatic NF1

inactivation in the ICCs seems to be the molecular event

underlying GIST development in the NF1 setting. Inactivation

of neurofibromin in the absence of KIT or PDGFRA mutations

is an alternate mechanism leading to GIST formation. More-

over, NF1-related GISTs show an increased signaling

through the MAP-kinase pathway when compared with spora-

dic GIST cell lines. These findings clearly position GISTs in

the range of clinical symptoms seen in NF1. It will be import-

ant to determine whether the tyrosine kinase inhibitor Gleevec

used in the treatment of sporadic GIST also has an effect on

NF1-related GIST.

MATERIAL AND METHODS

Patient material

Studies were performed on seven GISTs derived from three

consenting NF1 patients. Peripheral blood was available for

all patients as well as frozen tissue from the seven tumors

and two tumor cell cultures from patient NF1-2. Control

GIST cells included a GIST882 cell line harboring a KIT

p.K642E mutation (50) and a sporadic GIST with a KIT

p.557–558delWK mutation.

Phenotype NF1 patients

Patient NF1-1 is a 72-year-old female patient with widespread

cutaneous neurofibromas. At the age of 59 years, a carcinoid

tumor originating from the duodenum was resected. A GIST

in the small intestine was diagnosed at the age of 68 and

another in the retroperitoneal area adjacent to the bladder 4

years later. During surgery, both tumors were resected as

well as a third not previously noted. The patient died post-

operatively due to pulmonary complications. Her mother had

had NF1 and had died due to complications related to a

GIST at the age of 40.

Patient NF1-2 is a 59-year-old male with family history of

neurofibromatosis type 1 and multiple cutaneous neuro-

fibromas. Multiple GISTs of the duodenum were diagnosed

by endoscopy following massive upper gastrointestinal tract

bleeding. The episode of bleeding was preceded by the inges-

tion of a non-steroidal anti-inflammatory drug (nimesulide).

During surgery, tumors were palpated at the serosal side of

the duodenum and the proximal jejunum. No tumors could

be palpated in the rest of the intestinal tract. Twelve small

tumors (diameters of 3–22 mm) were removed from the duo-

denum and the proximal jejunum. A large lesion was localized

in D2 and protruded at the anti-mesenterial side (diameter

20 mm). Two other large lesions (diameters 20 and 22 mm)

Table 3. Summary of array CGH experiments on seven GISTs derived from

three NF1 patients

Patient Tumor Array CGH

Gain Loss

NF1-1 I No gain 1pter!1p12, 2pter!2p11.2,

6q12!qter, 11pter!11p11.2,

13, 14, 18, 22

II 10q25.1!10qter 1pter!1p12, 3q11.2!3qter,

11, 14, 19q13.11!19qter, 22, X

III 6, 10, 20, 20 no loss

NF1-2 I 9q21.13!9qter 1pter!1p12, 14

II 9q21.11!9qter 1pter!1p12, 14, 15, 22

III Xq22.1!Xqter 1pter!1p12, 14, 15

NF1-3 I No gain 17q11.2 only RPCI5-926B9

and RP11-229K15 (¼NF1)

Table 2. Relative p-KIT and p-MAPK expression based on densitometric quantification of autoradiographic signals obtained by western blotting (data correspond-

ing to Fig. 2)

Sporadic GIST NF1-related GIST

GIST882 Sporadic GIST GIST NF1-1 GIST NF1-2 GIST NF1-3

III II I III II I

p-KIT/KIT 0.44 3.05 0.64 0.67 0.30 0.22 0.18 0 0.81

p-MAPK/MAPK 0.10 0.11 1.78 0.82 1.50 1.73 1.46 0.98 0.32
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showed mucosal ulcerations and were located in D2–D3.
Pathological examination showed very few mitoses (less
than 5 per 50 high-power fields). There were no post-operative
complications, and post-operative follow-up at 2 years was
uneventful. He did not receive adjuvant therapy.

Patient NF1-3 is a male with a severe thoraco-lumbar
kyphoscoliosis and multiple cutaneous neurofibromas. At the

age of 55, surgery was performed for a growing pelvic mass
with nycturia and frequent micturition. The large tumor fills
the pelvic cavity completely and is connected to the ileum
over a distance of 4 cm. The large tumor was removed from
the peritoneum, the bladder and the mesenterial side of the
rectum and subsequently resected together with 7 cm of
jejunum. The tumor measured 110 � 110 � 50 mm3 and
showed central necrosis. Pathological examination showed
only one mitosis per 50 high-power fields. In the resected frag-
ment of the jejunum, a tumor with a diameter of 20 mm was
present (no mitoses detected) and three additional smaller
GISTs (diameter 3–5 mm, no mitoses). The post-operative
evolution was uneventful and the patient did not receive adju-
vant therapy. At follow-up 2.5 years later, he is free of symp-
toms and a CT-scan of the abdomen did not reveal any mass.

Histopathology

Histopathological sections (5 mm) were cut from tumor para-
ffin blocks for routine H&E staining. Immunohistochemical

Figure 3. Array CGH profiles of seven NF1-related GISTs. Profiles are com-
posed of numerically ordered autosomes (1–22) followed by X and Y. Arrows
below and above profiles mark losses and gains, respectively.

Figure 4. Phenotype of cultured cells. (A) After 3 days in culture, the primary
cells of tumor III from patient NF1-2 exhibited spindle shape type of growth
and 95% were KIT immunopositive. (B) The Ki-67 labeling index was 0.5 and
8.7% in ligand unstimulated and ligand stimulated cultures, respectively.

Figure 5. Ex vivo effect of imatinib on the phosphorylation of KIT Y703 and
MAPK T202/Y204 residues in control GIST882 cell line (KIT p.K642E),
primary NF1-related GIST cells cultured in medium supplemented with stem
cell factor (SCF) and control human fibroblasts determined by western blot
assay. Equal protein loading was demonstrated with anti-actin staining. The
relative p-MAPK expression was evaluated on the basis of the densitometric
quantification of autoradiographic signals. In contrast to control GIST882
cells with activating KIT mutation, the phosphorylation of wild-type KIT in
primary NF1-related GIST cells under in vitro condition is ligand-dependent.
Imatinib treatment resulted in only partial and dose-independent inhibition of
MAPK posphorylation of NF1-GIST cells cultured under ligand stimulation.
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staining was conducted using the avidin–biotin–peroxidase

complex method. Commercially available monoclonal (mc)

or polyclonal (pc) antibodies specific for CD117 (pc, 1:250;

DAKO, Glostrup, Denmark), CD34 (mc, 1:10; Becton

Dickinson, San Jose, CA, USA), a-Smooth Muscle Actin

(mc, 1:100; DAKO), desmin (mc, 1:20; ICN, Aurora,

OH, USA) and S-100 (pc, 1:300; DAKO) were used.

The CD117 immunostaining was performed without antigen

retrieval and the presence of mast cells served as an internal

control.

KIT/PDGFRA mutation analysis

Genomic DNA was extracted from snap-frozen tumor tissue of

NF1-related GISTs using the High Pure PCR Template Prep-

aration Kit (Roche). The entire KIT and PDGFRA coding

region and the splice junctions were amplified by PCR.

All amplicons were bidirectionally cycle sequenced using

the ABI3730XL machine (Applied Biosystems).

NF1 mutation analysis

Germline NF1 mutation analysis was performed (51). An

improved strategy for NF1 somatic mutation detection was

developed (Maertens et al., manuscript in preparation) and

applied specifically to the primary GIST cell cultures.

Briefly, the second passage of ICC cell cultures from tumors

II and III from patient NF1-2 was treated with puromycin

before RNA extraction (RNeasy kit, Qiagen). Genomic DNA

was extracted with the PureGene DNA purification kit

(Gentra). The entire NF1 cDNA was sequenced. Mutations

found at the cDNA level were confirmed on gDNA. Detection

of LOH was performed by genotyping microsatellite markers

telomeric (30NF1-3, 30NF1-1) (52) and within (Alu,

IVS27AC33.1, IVS38GT53.0, IVS27TG24.8) (53–56) NF1.

Genomic DNA from paired frozen tissue or primary GIST

cell cultures and lymphocyte cultures was investigated by

multiplex PCR and analyzed on the ABI3100 genetic analyzer

(Applied Biosystems) with the Genescan software (Applied

Biosystems). Loss of the wild-type NF1 allele was confirmed

by at least one of the following techniques: FISH, array CGH,

MLPA or SNP analysis. Frozen tumor specimens negative for

LOH were subsequently submitted to PCR amplification and

cycle sequencing of all NF1 exons.

Western blotting

Proteins were isolated from snap-frozen tumor specimens and

western blotting was performed as described in

Debiec-Rychter et al. (57). In short, equivalent amounts of

protein (30 mg) from clarified lysates were resolved with

SDS–PAGE, transferred to PDVF membranes and immuno-

blotted sequentially with antisera specific for anti-NF1

(sc-67; 1:200; Biotechnology, Santa Cruz, CA, USA),

anti-phospho-KIT (Y703) (1:250; Zymed, San Francisco,

CA, USA), anti-KIT (1:500; DAKO), anti-phospho MAPK

(T202/Y204) (1:1000; Cell Signaling Technology Inc.,

Beverly, MA, USA), anti-MAPK (1:1000; Zymed), anti-

phospho AKT (S473) (1:500; Cell Signaling Technology

Inc.), anti-AKT (1:500; Cell Signaling Technology Inc.), anti-

STAT3 (1:500; Zymed) and anti-actin (1:500; Sigma, Saint

Louis, MI, USA). After washes, membranes were probed

with anti-rabbit or anti-goat immunoglobulin-HRP conjugate

and incubated with ECL substrate (Pierce, Rockford, IL,

USA). On the basis of the densitometric quantification of auto-

radiographic signals, the relative p-MAPK expression was

determined in NF1-related GISTs.

Array CGH

Array CGH was performed as published previously (58).

Tumor DNA was compared with DNA extracted from blood

lymphocytes of a sex-matched control individual. Every case

was analyzed twice and tumor DNA was once labeled with

Cy3 and once with Cy5. Clones that gave the same result

twice were taken into account.

Primary GIST cell culture and imatinib assay

The GIST specimen used for this experiment was tumor III of

patient NF1-2. Primary cells were obtained from a disaggregated

tumor specimen seeded at 60–70% confluence in 100 mm cell

culture dishes and grown for 3 days in DMEM supplemented

with 10% FBS, 20 ng/ml SCF, 0.1 mM non-essential amino

acids, 1.0 mM sodium pyruvate, 100 U/ml penicillin, 0.1 mg/ml

streptomycin and 0.5 mM 3-isobutyl-1-methylxanthine (Sigma).

As a control, the same NF1-2 primary GIST cells, GIST882

cell line and normal human fibroblasts were grown in similar

conditions but without the SCF ligand. For evaluation of the

phenotype, NF1-2 primary GIST cells from tumor III were

seeded at 60–70% confluence in slide chambers and grown for

3 days in the same conditions as above. After fixation in 4%

Table 4. Relative p-KIT and p-MAPK expression based on densitometric quantification of autoradiographic signals obtained by western blotting (data correspond-

ing to Fig. 5)

GIST-NF1 GIST-882 GIST-NF1 (þSCF) Fibroblasts

SCF(þ) SCF(2) Imatinib (mM) Imatinib (mM) Imatinib (mM)

0 0.1 0.5 1.0 0 0.1 0.5 1.0 0 0.1 0.5 1.0

p-KIT/KIT 1.01 ,0.01 0.90 0.21 0 0 1.02 0.33 , 0.1 , 0.1 / / / /

p-MAPK/MAPK 1.79 0.45 1.13 0.37 0.12 0 1.05 0.76 0.84 0.78 1.10 1.15 1.14 1.10

/: not applicable.
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paraformaldehyde, immunohistochemical staining using the

polyclonal rabbit antihuman antibody against CD117 (1:250;

DAKO) and Ki-67 antibody (1:250; DAKO) was performed by

the avidin–biotin–peroxidase complex method. The prolifer-

ation index was determined as the percentage of Ki-67 positive

cells of the total number of cells. Imatinib mesylate was provided

by Novartis Pharmaceuticals Corporation. The compound was

dissolved at 10 mM in 100% DMSO (Sigma). Controls were per-

formed with solvent (DMSO) dilutions. The effect of imatinib on

the autophosphorylation of the KIT Y703 and the MAPK T204/

Y202 residues in cultured primary NF1-related GIST cells (either

ligand stimulated or unstimulated), the control GIST882 cell line

and human fibroblasts was determined by western blot assay. In

short, cells were exposed to either vehicle alone or to imatinib

mesylate within a range of doses (0.1, 0.5 and 1.0 mM) for

90 min, washed with ice-cold PBS and lysed. Lysates were incu-

bated for 30 min atþ48C and then centrifuged for 20 min. Super-

natants were removed and used for SDS gel electrophoresis and

immunoblotting as described previously (57). Equivalency of

loading intracellular proteins was demonstrated by stripping the

membrane and re-blotting using anti-actin antibody (1:500;

Sigma).
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  Chapter 3 

GENERAL DISCUSSION AND FUTURE PERSPECTIVES 

 

 

Neurofibromatosis type 1 (NF1), one of the most common autosomal dominant genetic disorders 

worldwide, is caused by defects in the NF1 gene. The NF1 encoded protein, neurofibromin, 

functions as a negative regulator of Ras mediated signaling1-3. The wide spectrum of clinical 

manifestations observed in NF1 patients clearly illustrates the critical function of neurofibromin in a 

wide variety of tissues and cell types. Given the central role of Ras signaling pathways in so many 

biological processes, perhaps this is not surprising. Nevertheless, the basic pathology of many of the 

NF1-related symptoms, and thus the exact role of neurofibromin in different cellular contexts, 

remains largely unknown. 

 

Elucidating the biological framework underlying the development of NF1-related symptoms has 

proven to be difficult. Aggravating factors include the large size of the gene, the presence of 

several NF1 pseudogenes, the complex interactions between cell types, the NF1 haploinsufficient 

state of all cells in the body, and the involvement of modifier genes. Despite this complexity, 

important progress has been made in deciphering the molecular and biochemical events that 

underlie NF1-associated tumor development in NF1 mouse models4-7. However, the concern that the 

mechanisms and signaling pathways by which Ras effects its biological consequences might exhibit 

significant species-specific differences8, emphasize the value of dissecting tumorigenic as well as 

non-tumorigenic lesions in human cells. Determining when and in what cell type the crucial 

molecular defect occurs, is critical for understanding the basic pathology of any phenotype. 

Moreover, this information is essential for elucidating the normal function of the NF1 gene and 

developing tailored treatment protocols in the long term. In this thesis, we exploited improved 

somatic mutation detection strategies on a diverse spectrum of cellular entities in order to gain 

insight into the developmental concepts underlying various NF1-related symptoms. 

 

The requirement for second hit mutations to develop benign neurofibromas has been controversial. 

Early work in this area concluded that such mutations were not present in this tumor type9. More 

recently, investigators have reported second hit mutations or loss of heterozygosity (LOH) in human 

neurofibromas, albeit at low frequency (15-40%)10-15. Based on dual-label immunofluorescence data, 

one group speculated lately that neurofibromas develop in haploinsufficient tissues without the 

need for a second hit at the NF1 tumor suppressor locus16, 17. In our opinion, it is risky to draw 

conclusions on the mutation status of a particular gene based on immunohistochemical data only. 

We hypothesized that the relatively low detection rates reported may be due to (1) the cellular 

heterogeneity of neurofibromas, i.e. the fraction of Schwann cells carrying the second hit may be 

too low to reveal the somatic mutation, and (2) the low sensitivity of the applied mutation 

detection strategies. In Paper 1, we present an improved NF1 somatic mutation detection strategy. 

Extensive screening of the NF1 gene in selectively grown Schwann cells (SC F-) derived from a large 

panel of neurofibromas resulted in the highest NF1 somatic mutation detection rate described up to 
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now (76%). Moreover, our data strongly suggested that the acquired second hit underlies reduced 

NF1 expression in Schwann cell cultures. Therefore, our work shows for the first time irrefutable 

evidence that the occurrence of two inactivating NF1 mutations in a subpopulation of the Schwann 

cells is required for neurofibroma formation, which is in line with Knudson’s two-hit hypothesis18. 

Moreover, the high somatic mutation detection rate emphasizes that genetic alterations, and not 

epigenetic events, constitute the prevailing mechanism for NF1 inactivation in neurofibroma 

development. 

 

In a next step, we compared the germline versus the somatic mutation spectrum. For several 

familial cancer syndromes, similar studies have provided important insights into the underlying 

mechanisms of tumorigenesis and mutagenesis. In familial adenomatous polyposis (FAP), for 

example, the non-random distribution of mutations in the APC gene reflects an optimal level of β-

catenin signalling in colorectal tumors19, 20. A significant difference in the somatic inactivation 

mechanism in neurofibromas derived from NF1 microdeletion patients and the general NF1 

population was initially observed in Paper 1 and firmly established in Paper 2. While LOH is 

responsible for the somatic inactivation of NF1 in a quarter of the neurofibromas from non-

microdeletion patients, this mechanism was never observed in neurofibromas derived from NF1 

microdeletion patients. Compared to the general NF1 population, individuals with an NF1 

microdeletion frequently show a phenotype with more dermal neurofibromas at an earlier age. Now 

it becomes clear that both patient groups not only differ at the phenotypic and constitutional level, 

but also at the somatic level. This important new insight may open new avenues for a better 

understanding of the genetic basis underlying the high tumor burden of NF1 microdeletion patients. 

Whether the wild-type NF1 allele in microdeletion patients is, for an as yet undetermined reason, 

more vulnerable to other types of somatic inactivation remains an important question. 

 

Compared to the age-matched NF1 population, most individuals included in Paper 1 suffered from a 

severe to excessive neurofibroma burden. Strikingly, the somatic mutation spectrum consisted 

predominantly of NF1 minor lesion mutations, especially frameshift mutations. To our opinion, this 

mutation signature might reflect slightly reduced DNA repair efficiency as a trigger for NF1 somatic 

inactivation preceding tumorigenesis. Several lines of evidence strengthen this hypothesis. First, 

there is increasing evidence that mild reductions in DNA repair capacity, assumed to be the 

consequence of common genetic variation, affect cancer predisposition21. Second, the NF1 gene has 

been shown to be a mutational target in cells deficient for the mismatch repair process22. Third, 

epidemiologic studies suggest that the molecular basis underlying the phenotypic variability in NF1 

is determined to a large extent by the genotype at modifying loci23-26. Future large and well-

designed candidate gene association studies are needed to help further illuminate the putative role 

of common variants in DNA repair genes as contributing factors in NF1 tumor predisposition. 

 

In Paper 4, four mosaic NF1 patients with different clinical manifestations (neurofibromas only, 

pigmentary changes only, and association of both symptoms) were investigated at the molecular 
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level. For this purpose, a real-time quantitative PCR approach capable of detecting low-percentage 

mosaic point mutations against backgrounds of normal and pseudogene alleles was optimized (Paper 

3). For every mosaic patient, various tissues and cell types were tested to gain insight into the 

developmental concepts underlying particular NF1-related disease features. This approach elegantly 

confirmed the tumorigenic properties of Schwann cells in neurofibroma development. Moreover, we 

demonstrated for the first time that bi-allelic NF1 inactivation in melanocytes seems to be the 

underlying trigger for NF1-related café-au-lait macule (CALM) development. Clearly, this finding 

provides an important stimulus for further research. First of all, additional NF1-related CALMs will 

need to be tested to confirm our initial observations. Screening different CALMs derived from the 

same NF1 patient will provide insight into the developmental timing of the second hit. In the 

context of the early onset and frequent congenital manifestation of CALMs, identical NF1 second 

hits in different CALMs might point to inactivation of the NF1 wild-type allele in melanocyte 

precursors (melanoblasts) during embryonic development. Besides NF1-related CALMs, it will also be 

of particular interest to screen the NF1 mutation status in CALMs from healthy control individuals. 

The next step will be to determine the dysregulating consequences of neurofibromin loss on 

signaling pathways in melanocytes. In this respect, it will be of fundamental importance to study 

whether NF1 inactivation in melanocytes triggers particular autocrine and paracrine networks 

resulting in increased melanocyte density27, and a higher melanin content and melanogenesis28, 

features which have been shown to be specific for NF1 CALMs. 

 

Interestingly, both neurofibromas and CALMs in mosaic NF1 patients appear to arise even within a 

background containing predominantly NF1 wild-type cells. Deciphering the complex interactions 

between the different cell types within the neurofibroma microenvironment is currently a major 

topic and challenge in NF1 research. Previous findings in mouse models have led to the emerging 

view that NF1 haploinsufficiency in the tumor environment actively contributes to, or is even 

necessary for, neurofibroma formation4-6. However, considering the recurrent discrepancies in the 

tumor phenotypes between human and mice, especially in the context of Ras-related neoplasms29, 

caution must be exercised in extrapolating these observations to humans. Moreover, the tumors that 

have been observed in the murine model to date have been plexiform neurofibromas derived from 

dorsal root ganglia and cranial nerves. Whether this is a consequence of the expression pattern of 

the Cre transgene used to generate the conditional mouse model or alternatively reflects a slightly 

different pathogenesis from the dermal neurofibromas remains an important question. At this 

moment, it is unclear whether the abundance of NF1 wild-type cells in neurofibromas from 

segmental NF1 patients reflects a slightly different pathogenesis in humans or, alternatively, is 

associated with the small size of these patients’ tumors (heterozygous neighboring cells may 

promote tumor growth more efficiently than wild-type neighboring cells). In this respect, it will be 

of particular importance to evaluate the involvement of NF1 haploinsufficient mast cells in human 

neurofibroma development. Currently, we are undertaking efforts to isolate mast cells from 

neurofibromas of segmental patients in order to determine their NF1 mutational status. 
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Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the 

gastrointestinal tract and are increasingly being recognized in association with NF1. In contrast to 

the sporadic tumors where KIT and PDGFRA activating mutations are the oncogenic mechanisms, the 

molecular basis underlying GIST formation in NF1 remained elusive at the start of this thesis. Using 

a combination of mutation analysis, Western blotting and array CGH we demonstrated in Paper 5 

that (1) the NF1-related GISTs do not have KIT or PDGFRA mutations, (2) the molecular event 

underlying GIST development in this patient group is a somatic inactivation of the wild-type NF1 

allele specifically in the interstitial cells of Cajal and (3) inactivation of neurofibromin is an 

alternate mechanism to (hyper) activate the MAP-Kinase pathway, while the JAK-STAT3 and PI3K-

AKT pathways are less activated in NF1-related compared to sporadic GISTs. These findings clearly 

position GISTs in the spectrum of clinical symptoms seen in NF1. It will be important to determine if 

the tyrosine kinase inhibitor Gleevec used in the treatment of sporadic GIST also has an effect on 

NF1-related GIST. 

 

The results of this thesis offer several future perspectives for guiding impending research efforts. 

First of all, the presented data demonstrate that a growing body of NF1-related symptoms, as well 

tumoral as non-tumoral lesions, require somatic inactivation of the wild-type NF1 allele. This 

observation emphasizes the value of dissecting additional, as yet unexplored, NF1 clinical 

manifestations at the somatic level. Such studies are essential for identifying the cell types, the 

cellular processes and the molecular pathways altered by NF1 defects. The analyses reported in this 

thesis mainly focused on pinpointing the cells and molecular defects underlying the development of 

various NF1-related symptoms. Accurately identifying the biochemical and cellular consequences of 

these cell-autonomous molecular defects, however, requires more functionally oriented analyses. As 

we enter into an era of targeted cancer therapeutics, an improved understanding of the signaling 

pathways dysregulated as a consequence of neurofibromin loss will ultimately provide additional 

molecular targets for drug design. 

Identifying modifying genes is an important challenge in NF1 research. Such genes may be 

indispensable determinants of risk prediction, the current lack of which substantially contributes to 

the psychological burden where NF1 patients and their families are suffering from. Also motivating 

this search is the hypothesis that genetic modifiers might control rate-limiting steps during disease 

development, and as such may represent good therapeutic targets. To identify these modifiers, 

National Institute of Health (NIH) funded NF1 Consortia are in the process of collecting material and 

detailed phenotypic information from thousands of NF1 patients. Indeed, only genetic association 

studies on large well-defined patient groups offer a powerful approach for mapping causal genes 

with modest effects. In this thesis, we suggested a putative role for DNA repair genes as 

contributing factors in NF1 tumor predisposition. To help further test this hypothesis, well-designed 

candidate gene association studies on patient cohorts that can only be gathered by well-coordinated 

collaborative efforts will be of fundamental importance. 
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SUMMARY 
 

 

Neurofibromatosis type 1 (NF1; OMIM 162200) is one of the most common autosomal dominant 

genetic disorders, affecting approximately 1 in 3500 individuals worldwide. The most common 

clinical manifestations are pigmentary abnormalities together with the development of benign 

peripheral nerve sheath tumors or neurofibromas. In addition, NF1 patients are prone to a 

pleiotropy of other phenotypic features. Determining when and in what cell type the crucial 

molecular defect actually occurs has proven to be surprisingly difficult for many NF1-related 

symptoms. Impeding factors include the large size of the NF1 gene, the presence of several NF1 

pseudogenes, the complex interactions between cell types within affected tissues, and the NF1 

heterozygous state of all cells in the body. The major goal of this thesis was to gain insight into the 

developmental concepts underlying various NF1-related symptoms by exploiting improved somatic 

mutation detection strategies on a diverse spectrum of cellular entities. 

 

First, we investigated thoroughly the status of the somatically affected NF1 allele in cultured 

Schwann cells derived from neurofibromas (Paper 1). The high somatic mutation detection rate 

together with the observation that the acquired second hit underlies reduced NF1 expression, 

irrefutably demonstrated that two inactivating mutations in this particular cell type are required for 

neurofibroma formation. Given the high occurrence of somatic frameshift mutations, a putative role 

of reduced DNA repair efficiency as a trigger for NF1 somatic inactivation preceding tumorigenesis 

was suggested. In a next step, we compared the germline versus the somatic mutation spectrum. A 

significant difference in the somatic inactivation mechanism in neurofibromas derived from NF1 

microdeletion patients and the general NF1 population was observed in Paper 1 and firmly 

established in Paper 2. This important new insight may open new avenues for a better 

understanding of the genetic basis underlying the high tumor burden of NF1 microdeletion patients. 

 

As opposed to classic NF1 where all cells of the body bear at least one mutated NF1 allele, NF1 

segmental phenotypes provide the opportunity to study cell populations differing only with regard 

to the mutation(s) giving rise to mosaicism. For this purpose, we developed a real-time quantitative 

PCR assay capable of detecting low-percentage mosaic point mutations against backgrounds of 

normal and pseudogene alleles (Paper 3) and molecularly dissected different clinical subtypes 

emerging within mosaic NF1 (Paper 4). This approach elegantly confirmed the tumorigenic 

properties of Schwann cells in neurofibroma development. Moreover, we demonstrated for the first 

time that bi-allelic NF1 inactivation in melanocytes seems to be the underlying trigger for NF1-

related café-au-lait macule development. Clearly, this finding provides an important stimulus for 

further research aiming to understand the etiopathogenesis of pigmentary lesions in NF1. 

 

Finally, we unraveled the molecular pathogenesis of gastrointestinal stromal tumors (GISTs) arising 

in the NF1 setting (Paper 5). We demonstrated that, in comparison with sporadic GISTs, NF1-related 
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tumors do not bear KIT or PDGFRA mutations, but show somatic inactivation of the wild-type NF1 

allele in the interstitial cells of Cajal. In this respect, inactivation of neurofibromin constitutes an 

alternate mechanism to activate the MAP-Kinase pathway, while the Jak-Stat3 and PI3K-Akt 

pathways are less activated in NF1-related GIST compared to sporadic tumors. It will be important 

to determine if the tyrosine kinase inhibitor Gleevec used in the treatment of sporadic GIST also has 

an effect on NF1-related GIST. 

 

In conclusion, we have provided significant new insights in the cell types and molecular defects 

underlying the development of various NF1-related symptoms. Accurately identifying the 

biochemical and cellular consequences of these cell-autonomous molecular defects will be of 

fundamental importance to elucidate the exact role of neurofibromin in different cellular contexts 

and may ultimately provide additional targets for tailored drug design. 
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SAMENVATTING 

 

 

Neurofibromatose type 1 (NF1; OMIM 162200) is één van de meest voorkomende autosomaal 

dominante genetische aandoeningen, die wereldwijd ongeveer 1 op 3500 individuen treft. De meest 

voorkomende klinische kenmerken zijn pigmentaire afwijkingen en de ontwikkeling van perifere 

zenuwschede tumoren of neurofibromen. Daarnaast kunnen NF1 patiënten ook een wijde waaier aan 

andere symptomen vertonen. Voor veel NF1 gerelateerde klinische kenmerken is het verrassend 

moeilijk gebleken om te bepalen wanneer en in welk cel type het cruciale moleculaire defect 

plaatsvindt. Bemoeilijkende factoren omvatten de grootte van het NF1 gen, de aanwezigheid van 

meerdere NF1 pseudogenen, de complexe interacties tussen verschillende cel types in aangetaste 

weefsels, en de heterozygotie voor NF1 in alle cellen van het lichaam. De belangrijkste doelstelling 

van deze thesis was om inzicht te verwerven in de ontwikkeling van verschillende NF1 gerelateerde 

symptomen, en dit door de toepassing van verbeterde somatische mutatie detectie strategieën op 

een divers spectrum van cellulaire entiteiten. 

 

Eerst en vooral onderzochten we, in gekweekte Schwann cellen afkomstig van neurofibromen, de 

status van het somatisch aangetaste NF1 allel (Artikel 1). Het hoge somatische mutatie detectie 

cijfer en de bevinding dat de verworven tweede hit aanleiding geeft tot een verlaagde NF1 

expressie, toonde ontegensprekelijk aan dat twee inactiverende mutaties in dit specifieke cel type 

noodzakelijk zijn voor de vorming van neurofibromen. Wegens het hoge percentage aan somatische 

mutaties met een effect op het leesraam, werd vooropgesteld dat een verlaagde efficiëntie van het 

DNA herstel mechanisme mogelijk een katalysator zou kunnen zijn voor somatische inactivatie van 

het NF1 gen, en bijgevolg tumorvorming. In een volgende stap vergeleken we het germinale met het 

somatische mutatie spectrum. Een significant verschil in het mechanisme van somatische inactivatie 

in neurofibromen afkomstig van NF1 microdeletie patiënten en de algemene NF1 populatie werd 

opgemerkt in Artikel 1, en vervolgens uitgebreid bevestigd in Artikel 2. Dit belangrijk inzicht kan 

nieuwe wegen openen naar een beter begrip van de genetische basis voor het verhoogd voorkomen 

van tumoren bij NF1 microdeletie patiënten. 

 

In tegenstelling tot klassieke NF1, waar in alle cellen van het lichaam tenminste één gemuteerd NF1 

allel aanwezig is, bieden NF1 segmentaire fenotypes de mogelijkheid om cel populaties te 

bestuderen die enkel verschillen in de mutatie die aanleiding geeft tot mosaïcisme. Voor deze reden 

ontwikkelden we een real-time kwantitatieve PCR techniek die in staat is om lage percentages aan 

mosaïsche puntmutaties op te pikken tegen een achtergrond van normale en pseudogen allelen 

(Artikel 3) en ontleedden we op moleculair niveau verschillende klinische subtypes die voorkomen 

binnen mosaïsche NF1 (Artikel 4). Deze aanpak bevestigde op elegante wijze de tumorigene 

eigenschappen van Schwann cellen in de ontwikkeling van neurofibromen. Bovendien toonden we 

voor de eerste keer aan dat bi-allelische NF1 inactivatie in melanocyten de onderliggende oorzaak 

  117 



Chapter 3 

zou kunnen zijn voor de ontwikkeling van NF1 gerelateerde café-au-lait vlekken. Onmiskenbaar 

verschaft deze bevinding een belangrijke stimulans voor verder onderzoek. 

 

Tenslotte analyseerden we de moleculaire pathogenese van gastrointestinale stromale tumoren 

(GISTen) die voorkomen binnen de NF1 setting (Artikel 5). We toonden aan dat, in tegenstelling tot 

sporadische GISTen, NF1 gerelateerde tumoren geen KIT of PDGFRA mutaties dragen, maar een 

somatische inactivatie van het wild-type NF1 allel vertonen in de interstitiële cellen van Cajal. 

Inactivatie van neurofibromine vormt een alternatief mechanisme om de MAP-Kinase signaal 

transductie cascade te activeren, terwijl de Jak-Stat3 en PI3K-Akt signaal transductie cascades 

minder geactiveerd zijn in NF1 gerelateerde dan in sporadische GISTen. Het zal belangrijk zijn om 

na te gaan of de tyrosine kinase inhibitor Gleevec, die gebruikt wordt bij de behandeling van 

sporadische GISTen, ook een effect zou kunnen hebben op NF1 gerelateerde GISTen. 

 

Samenvattend kunnen we stellen dat we een significante bijdrage hebben geleverd in de 

identificatie van de cel types en de moleculaire defecten die verantwoordelijk zijn voor de 

ontwikkeling van verschillende NF1 gerelateerde symptomen. Het nauwkeurige bepalen van de 

biochemische en cellulaire gevolgen van deze cel autonome moleculaire defecten zal van cruciaal 

belang zijn om de exacte functie van neurofibromine in verschillende cellulaire omgevingen te 

ontrafelen. Uiteindelijk kan dit inzicht leiden tot bijkomende doelwitten voor op maat gemaakte 

geneesmiddelen. 
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RESUME 

 

 

La neurofibromatose de type 1 (NF1; OMIM 162200) est une des maladies génétiques les plus 

communes qui affecte environs 1 individu sur 3500 mondialement. Les manifestations cliniques les 

plus caractéristiques sont les anomalies pigmentaires et les tumeurs des etuis de nerfs 

périphériques ou neurofibromes. En plus, les individus affectés peuvent présenter un éventail 

d’autres symptômes. Pour beaucoup de manifestations cliniques, il est apparu difficile de 

déterminer quand, et dans quel type de cellule le défaut moléculaire se situe. Des éléments qui 

compliquent cette analyse comprennent la grande taille du gène NF1, la présence de plusieurs 

pseudogènes NF1, les interactions complexes entre les différents types de cellules dans les tissus 

affectés, et l’état hétérozygote de NF1 dans toutes les cellules du corps. Le but principal de cette 

thèse était d’obtenir une compréhension plus profonde du développement de différents symptômes 

relatés à la NF1, par appliquer des stratégies de détection des mutations somatiques améliorées à 

un éventail diverse des entités cellulaires. 

 

D’abord, nous avons examiné profondément l’état de l’allèle NF1 somatiquement affecté, 

spécifiquement dans les cellules de Schwann cultivées de neurofibromes (Article 1). Le taux élevé 

de détection de mutations somatiques et l’observation que la mutation seconde aboutit à une 

expression abaissée du gène NF1, a indiqué incontestablement que deux mutations inactivantes 

dans ce type de cellule spécifique est nécessaire pour le développement de neurofibromes. A cause 

du taux élevé de mutations somatiques avec un effet sur le cadre de lecture, il a été proposé qu’un 

efficience abaissé du mécanisme de réparation de l’ADN pourrait catalyser l’inactivation du gène 

NF1, et ainsi le développement de tumeurs. Ensuite, nous avons comparé le spectre des mutations 

germinales et somatiques. Une différence significative entre le mécanisme d’inactivation somatique 

des neurofibromes dérivés des patients avec une microdélétion de NF1 et la population NF1 

generale a été remarquée dans l’Article 1 et profondément examinée dans l’Article 2. Cette notion 

pourrait ajouter à une compréhension améliorée de la cause génétique de la présentation surélevée 

de tumeurs chez les patients avec une microdélétion de NF1. 

 

Contrairement à la NF1 classique, où toutes les cellules du corps portent au moins un allèle NF1 

muté, les phénotypes segmentaires de la NF1 offrent la possibilité d’étudier des populations de 

cellules qui diffèrent seulement au niveau de la mutation causant le mosaïcisme. Pour cette raison, 

nous avons développé un essai de PCR quantitatif capable de détecter des pourcentages très bas de 

mutations ponctuelles mosaïques dans un contexte d’allèles normaux et de pseudogènes (Article 3) 

et nous avons analysé au niveau moléculaire de différentes manifestations cliniques qui se 

présentent dans la NF1 mosaique (Article 4). Cette approche a conformé avec élégance les 

caractéristiques tumeurigènes des cellules de Schwann dans le développement des neurofibromes. 

En plus, nous avons démontré pour la première fois que l’inactivation bi-allèlique du gène NF1 
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pourrait être la cause principale du développement des taches de café-au-lait relatées à la NF1. 

Indéniablement, cette constatation comporte un stimulant important pour la recherche d’avenir. 

 

Finalement, nous avons analysé la pathogenèse moléculaire des tumeurs stromales gastro-

intestinales (GISTs) qui se présentent dans le contexte de la NF1 (Article 5). Nous avons démontré 

que, contrairement aux GISTs sporadiques, les tumeurs relatées à la NF1 ne présentent pas de 

mutations dans les gènes KIT ou PDGFRA, mais montrent une activation somatique de l’allèle normal 

de NF1 dans les cellules interstitielles de Cajal. L’inactivation de la neurofibromine compose un 

mécanisme alternatif pour activer les voies de signalisation de Map-Kinase, tandis que les voies de 

signalisation de Jak-Stat3 et PI3K-Akt sont moins activées dans les GISTs relatées à la NF1 que 

sporadiques. Il sera important de vérifier si l’inhibiteur de tyrosine kinase Gleevec, utilisé pour le 

traitement des GISTs sporadiques, aurait aussi un effet sur les GISTs relatées à la NF1. 

 

En conclusion, nous avons apporté à la perspicacité des types cellulaires et défauts moléculaires 

responsables pour le développement des manifestations cliniques différentes de la NF1. Déterminer 

consciencieusement les répercussions biochimiques et cellulaires de ces défauts moléculaires et 

cellulaires autonomiques sera fondamental pour établir la fonction de la neurofibromine dans des 

contextes cellulaires différents. Finalement, cette perspicacité pourrait aboutir à l’identification 

des cibles additionnelles pour le développement des médicaments sur mesure. 
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  Chapter 3 

LIST OF ABBREVIATIONS 
 
 
AA  amino acid 
aCGH  array comparative genomic hybridisation 
APP  amyloid precursor protein 
AC  adenylate cyclase 
bp  base pair 
CALM  café-au-lait macule 
cAMP  cyclic adenosine monophosphate 
cDNA  complementary DNA 
CSRD  cysteine / serine rich domain 
DNA  deoxyribonucleic acid 
F  forskolin 
FAP  familial adenomatous polyposis 
FSNF  familial spinal neurofibromatosis 
FTI  farnesyl transferase inhibitor 
EGFR  epidermal growth factor receptor 
ERK  extracellular signal-regulated protein kinase 
EVI2A  ecotropic viral insertion site 2 protein A 
EVI2B  ecotropic viral insertion site 2 protein B 
GAP  GTPase activating protein 
GEF  guanine nucleotide exchange factor 
GIST  gastrointestinal stromal tumor 
GM-CSF  granulocyte / macrophage colony-stimulating factor 
GPCR  G-protein coupled receptor 
GRD  GAP related domain 
HMG-CoA 3-hydroxy-3-methylglutaryl coenzyme A 
HNPCC  hereditary non-polyposis colorectal cancer 
IBMX  3-isobutyl-1-methylxanthine 
JMML  juvenile myelomonocytic leukaemia 
kb  kilobase 
KitL  kit ligand 
kDa  kilodalton 
LOH  loss of heterozygosity 
MAPK  mitogen activated protein kinase 
MPNST  malignant peripheral nerve sheath tumor 
MRI  magnetic resonance imaging 
mRNA  messenger RNA 
Min  murine intestinal neoplasia 
miRNA  micro RNA 
Mom  modifier of Min 
mTOR  mammalian target of rapamycin 
NF1  neurofibromatosis type 1 
NIH  National Institute of Health 
OMGP  oligodendrocyte-myelin glycoprotein 
OMIM  online mendelian inheritance in man 
PCR  polymerase chain reaction 
PDGFRA platelet derived growth factor alpha 
PI3K  phosphatidylinositol-3-kinase 
PKA  cAMP-dependent protein kinase A 
qPCR  quantitative PCR 
RNA  ribonucleic acid 
RT-PCR  reverse transcriptase PCR 
SC  Schwann cell 
SCF  stem cell factor 
TSG  tumor suppressor gene 
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