Gimbal: Enabling Multi-tenant Storage Disaggregation on
SmartNIC JBOFs

Jaehong Min
University of Washington and
Samsung Electronics

Chenxingyu Zhao
University of Washington

Ming Liu
University of Wisconsin-Madison and
VMware Research

Andrew Wei
University of Washington

Tapan Chugh
University of Washington

In Hwan Doh

Samsung Electronics

Arvind Krishnamurthy
University of Washington

Abstract

Emerging SmartNIC-based disaggregated NVMe storage has be-
come a promising storage infrastructure due to its competitive
IO performance and low cost. These SmartNIC JBOFs are shared
among multiple co-resident applications, and there is a need for
the platform to ensure fairness, QoS, and high utilization. Unfor-
tunately, given the limited computing capability of the SmartNICs
and the non-deterministic nature of NVMe drives, it is challenging
to provide such support on today’s SmartNIC JBOFs.

This paper presents Gimbal, a software storage switch that or-
chestrates IO traffic between Ethernet ports and NVMe drives for
co-located tenants. It enables efficient multi-tenancy on SmartNIC
JBOFs using the following techniques: a delay-based SSD conges-
tion control algorithm, dynamic estimation of SSD write costs, a
fair scheduler that operates at the granularity of a virtual slot, and
an end-to-end credit-based flow control channel. Our prototyped
system not only achieves up to x6.6 better utilization and 62.6% less
tail latency but also improves the fairness for complex workloads.
It also improves a commercial key-value store performance in a
multi-tenant environment with x1.7 better throughput and 35.0%
less tail latency on average.

CCS Concepts

» Information systems — Flash memory; Storage manage-
ment; - Hardware — External storage.

Keywords
congestion control, disaggregated storage, SSD, fairness

ACM Reference Format:

Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu Zhao, Andrew Wei,
In Hwan Doh, and Arvind Krishnamurthy. 2021. Gimbal: Enabling Multi-
tenant Storage Disaggregation on SmartNIC JBOFs . In ACM SIGCOMM 2021
Conference (SIGCOMM °21), August 23-28, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 17 pages. https://doi.org/10.1145/3452296.3472940

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM °21, August 23-28, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8383-7/21/08...$15.00
https://doi.org/10.1145/3452296.3472940

1 Introduction

Storage disaggregation has gained significant interest recently since
it allows for independent scaling of compute/storage capacities and
achieves high resource utilization [1-4, 48]. As datacenter network
speeds have transitioned to 100/200 Gbps and the NVMe-oF spec-
ification [15] that enables flash-based SSDs to communicate over
a network is becoming widely adopted, a disaggregated NVMe
SSD can provide microsecond-scale access latencies and millions
of IOPS.

Recently, SmartNIC-based disaggregated storage solutions, such
as Mellanox BlueField and Broadcom Stingray [8, 11], have emerged
and become increasingly popular because of their low deployment
costs and competitive IO performance compared to traditional
server-based approaches. Such a storage node usually comprises a
commercial-of-the-shelf high-bandwidth SmartNIC, domain-specific
accelerators (like RAID), a PCle-switch, and a collection of NVMe
SSDs, supported by a standalone power supply. Consider the Broad-
com Stingray solution as an example. Compared with a conven-
tional disaggregated server node, the Stingray PS1100R storage box
is much cheaper and consumes up to 52.5W active power while
delivering 1.4 million 4KB random read IOPS at 75.3us unloaded
latency.

Disaggregated storage is shared among multiple tenants for run-
ning different kinds of storage applications with diverse IO access
patterns. An efficient multi-tenancy mechanism should maximize
NVMe SSD usage, ensure fairness among different storage streams,
and provide QoS guarantees without overloading the device. How-
ever, today’s SmartNIC JBOFs! lack such essential support, which
is non-trivial to build. First, the unpredictable performance charac-
teristics of NVMe SSDs (which vary with IO size, read/write mix,
random/sequential access patterns, and SSD conditions) make it
extremely hard to estimate the runtime bandwidth capacity and
per-IO cost of the storage device. For example, as shown in Sec-
tion 2.3, a fragmented SSD can only achieve 16.9% write bandwidth
of a clean SSD; adding 5% writes to a read-only stream could cause
a 42.6% total IOPS drop. Second, an SSD has a complex internal
architecture, and its controller does not disclose the execution de-
tails of individual IO commands. This complicates the IO service
time estimation of a tenant as well as the fair scheduler design.
Finally, SmartNICs are wimpy computing devices. Besides driving

1JBOF = Just a Bunch of Flash

https://doi.org/10.1145/3452296.3472940
https://doi.org/10.1145/3452296.3472940

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

the full networking and storage bandwidth, the amount of available
computation per-IO is bounded, i.e., 1us and 5us for a 4KB and
128KB read, respectively.

To address these challenges, we design and implement Gimbal,
a software storage switch that orchestrates NVMe-oF commands
among multiple co-located tenants. Gimbal borrows ideas from
traditional networking and applies them to the domain of man-
aging storage resources. First, Gimbal views the SSD device as
a networked system and applies a delay-based congestion control
mechanism to estimate its runtime bandwidth headroom. Second,
it introduces the virtual slot concept and the write cost estimation
logic to enable online characterization of the per-IO cost. Finally,
Gimbal exposes an SSD virtual view via an end-to-end credit-based
flow control and request priority tagging so that applications are able
to design flexible IO prioritization, rate-limiting, and load-balancing
mechanisms.

We prototype Gimbal on Broadcom Stingray PS1100R SmartNIC
JBOFs and compare with previously proposed multi-tenant storage
solutions with isolation mechanisms (i.e., Reflex [49], Parda [38],
FlashFQ [70]). Our experiments with synthetic workloads show
that Gimbal not only achieves up to x6.6 better utilization and
62.6% less tail latency but also improves the fairness for various
complex workloads. We also ported a commercial key-value store
(i.e., RocksDB) over a blobstore file system implemented on our
disaggregated storage platform. Our implementation employs a
hierarchical blob allocator to fully utilize a pool of storage nodes.
It manages the storage load and steers read requests based on the
runtime loads of the storage devices using an IO rate limiter and
a load balancer. Our evaluations show that Gimbal can improve
application throughput by x1.7 and reduce tail latency by 35.0% on
average.

2 Background and Motivating Experiments
2.1 NVMe-over-Fabrics Protocol

NVMe-over-Fabrics (NVMe-oF) [15] is an emerging storage pro-
tocol to support disaggregation of modern memory devices (e.g.,
NAND, persistent RAM). It defines a common architecture that
supports the NVMe block storage protocol over a range of storage
network fabrics (e.g., RDMA, TCP, Fiber Channel). NVMe-oF ex-
tends the NVMe base specification [14] and the controller interface.
A storage client (i.e., NVMe-oF initiator) first attaches to a storage
server (also known as NVMe-oF target) and then issues NVMe com-
mands to the remote controller. The NVMe-oF target comprises two
main components: NVMe target core and fabric transport. After
setting up a connection with the initiator, it creates a one-to-one
mapping between IO submission queues and IO completion queues.
NVMe-over-RDMA relies on memory-mapped IO for all opera-
tions. Both the host and the device perform memory read/write of
the host memory to modify the related data structures (including
submission queue, completion queue, data buffer). NVMe-over-
RDMA uses different RDMA verbs for initiating and fulfilling IO
flows. Specifically, RDMA_SEND is used to issue a submission cap-
sule to the target and a completion capsule back to the host. All data
transfers are performed at the NVMe-oF target using RDMA_READ
and RDMA_WRITE verbs. Thus, the data transfer phase requires

Min and Liu, et al.

SmartNIC

PCle Root Complex <——>| PCle switch
ARM A72 CPU L2/L3 + DDR4 DRAM
100Gbps QSFP28 Port | Accelerators | NVMe drive

Figure 1: Architectural block diagram of the Stingray PS1100R
SmartNIC-based disaggregated storage.

no host-side computing cycles. Further, unlike the NVMe specifi-
cation, NVMe-oF does not introduce an interrupt mechanism for
the storage controller. Instead, host interrupts are generated by the
host fabric interface (e.g., host bus adapter, RDMA NIC).

Concretely, the request flow of a read/write under NVMe-over-
RDMA is as follows: (a) a client host sends an NVMe command cap-
sule (including the NVMe submission queue entry and the scatter-
gather address list) to an NVMe-oF target using RDMA_SEND; (b)
the target process picks up commands from the submission queue.
Under a write, it fetches client data via the RDMA_READ; (c) the
target storage controller then performs a read or write IO execu-
tion on the SSDs; (d) in case of reads, the NVMe-oF target issues
a RDMA_WRITE to transmit data from a local buffer back to the
client host memory; (e) the NVMe-oF target process catches the
completion signal, builds a response capsule (which contains the
completion queue entry), and sends this completion capsule via
RDMA_SEND. Some NVMe-oF implementations allow for inlining
small data blocks (e.g., 4KB) into the capsule, reducing the number
of RDMA messages and improving the IO latency.

2.2 SmartNIC JBOF

SmartNICs [5, 8, 10-13] have emerged in the datacenter recently,
not only for accelerating packet manipulations and virtual switch-
ing functionalities [6, 36], but also offloading generic distributed
workloads [35, 54, 58, 59]. Typically, a SmartNIC comprises general-
purpose computing substrates (e.g., ARM or FPGA), an array of
domain-specific accelerators (e.g., crypto engine, reconfigurable
match-action table), onboard memory, and a traffic manager for
packet steering. Most SmartNICs are low-profile PCIe devices that
add incremental cost to the existing datacenter infrastructure and
have shown the potential to expand the warehouse computing
capacity cheaply.

Lately, hardware vendors have combined a SmartNIC with NVMe
drives as disaggregated storage to replace traditional server-based so-
lutions for cost efficiency. Figure 1 presents the Broadcom Stingray
solution [8]. It encloses a PS1100R SmartNIC, a PCle carrier board, a
few NVMe SSDs, and a standalone power supply. The carrier board
holds both the SmartNIC and NVMe drives and an on-board PCle
switch connecting the components. The SmartNIC has 8 x 3.0GHz
ARM A72 CPU, 8GB DDR4-2400 DRAM (along with 16MB cache),
FlexSPARX [7] acceleration engines, 100Gb NetXtreme Ethernet
NIC, and PCle Gen3 root complex controllers. The PCle switch
offers x16 PCle 3.0 lanes (15.75GB/s theoretical peak bandwidth),
and can support either 2 X 8 or 4 X 4 PCle bifurcation. A Stingray
disaggregated storage box with four Samsung DCT983 960GB SSDs,
is listed for $3228.0, with likely much lower bulk prices, and is thus
much cheaper than a Xeon-based one with similar IO configura-
tions. Unsurprisingly, it also consumes lower power than a Xeon

Gimbal: Enabling Multi-tenant Storage Disaggregation on SmartNIC JBOFs

disaggregated server node. The power consumption of a Stingray
PS1100R storage node is 52.5W at most, nearly one-fourth of the
Xeon one (192.0W). Section 5.1 describes the hardware configura-
tions. We use a Watts Up Pro meter [17] to measure the wall power.
The software stack on a SmartNIC JBOF works similar to the Xeon-
based server JBOF, except that the NVMe-oF target runs on the
SmartNIC wimpy cores instead of the x86 cores. The IO request
processing also includes five steps as described above.

SmartNIC JBOFs achieve performance that is competitive to
server JBOFs. In terms of unloaded read/write latency, we configure
fio [9] with one outstanding IO and measure the average latency
as we increase the request size (Figure 2). When serving random
reads, the SmartNIC solution adds 1.0% latencies on average across
five cases where the request size is no larger than 64KB. The latency
differences rise to 20.3% and 23.3% if the IO block size is 128KB
and 256KB, respectively. For sequential writes, SmartNIC execution
adds only 2.7us compared with the server, on average across all
cases. We further break down the latency at the NVMe-oF target
and compare the server and SmartNIC cases. We find that the
most time-consuming part for both reads and writes is the NVMe
command execution phase (including writing into the submission
queue, processing commands within the SSD, and catching signals
from the completion queue). This explains why the latencies on
SmartNIC and server JBOFs are similar. For a 4KB/128KB random
read, it contributes to 92.4%/86.1% and 88.8%/92.2% for server and
SmartNIC, respectively.

Considering bandwidth, SmartNIC JBOF is also able to saturate
the storage limit but using more cores. This experiment measures
the maximum 4KB random read and sequential write bandwidth
as we increase the number of cores. For each FIO configuration,
we increase the IO depth to maximize throughput. As depicted in
Figure 3, the server achieves 1513 KIOPS and 1316 KIOPS using
two cores, respectively. In the case of the SmartNIC, it is able to
serve similar read and write traffic with 3 ARM cores. One core is
enough to achieve the maximum bandwidth under a large request
size (i.e., 128KB).

2.3 Multi-tenant Disaggregated Storage

Different kinds of storage applications share disaggregated storage
nodes, and therefore, we need to provide support for multi-tenancy
and isolation between different workloads. Today’s NVMe SSDs
provide some isolation support. For example, an NVMe namespace
is a collection of logical block addresses that provides independent
addressing and is accessed via the host software. However, names-
paces do not isolate SSD data blocks physically, and requests to
access different namespaces can still interfere.

An ideal mechanism should achieve the following goals: (1) pro-
vide fairness across tenants; (2) maintain high device utilization; (3)
exhibit low computation overheads and predictable delays at the
storage node. Our characterizations show that existing SmartNIC
JBOFs present limited support for multi-tenancy, as multiple aspects
of IO interference cause unfair resource sharing of storage through-
put. In Figure 4, the victim flow issues random 4KB reads with 32
concurrent I/Os, and we inject a neighboring flow with various IO
sizes, intensity, and patterns. Overall, a flow with high intensity al-
ways obtains more bandwidth regardless of the IO size and pattern.
For example, the bandwidth of the neighboring flow with random

SIGCOMM ’21, August 23-28, 2021, Virtual Event, USA

128KB reads is 377MB/s and 58.4% less than the victim’s when it has
only one concurrent IO. But, it dramatically rises to 1275MB/s as the
concurrent IO is increased to 8 and obtains 3.1x higher bandwidth
than the victim. In addition, the bandwidth of the victim decreases
significantly when the neighboring flow uses a write pattern. The
victim shows 59.1% less bandwidth when the neighbor has the same
10 size and intensity but performs writes. (Appendix D describes
more characterizations.) We summarize below three challenges to
realizing an efficient multi-tenancy mechanism for JBOFs.

Issue 1: IO throughput capacity varies unpredictably with
workload characteristics (e.g., random v.s. sequential, read
v.s. write, 10 size) and SSD conditions. Modern NVMe SSDs fa-
vor sequential access due to request coalescing and write-ahead
logging [21, 29]. Under the disaggregated setting, the overall IO
access patterns become much more random due to request inter-
leaving (i.e., IO blender effect) and impact the IO throughput. SSDs
also experience read/write interference. To minimize NAND access
contention, an SSD distributes reads/writes across different data
channels and NAND chips [31, 34]. Writes are usually slower than
reads (unless they are directly served from the SSD controller write
buffer) and incur the erase-before-write penalty. A flash page has
to clear its data blocks before accepting new values. This causes
the write amplification problem [21], where the actual amount of
data written to the storage media is more than the intended size.
Further, SSDs present asymmetric performance under different IO
sizes due to NAND access granularity and die-level parallelism.
For example, on a Samsung DCT983 960GB SSD, 128KB read could
achieve 3.2GB/s, while the 4KB one maxes out at 1.6GB/s.

The SSD condition, typically characterized by the number of
clean flash pages and their location distribution, depends on the
previous write history. An SSD uses a flash translation layer (FTL)
that maps logical blocks to physical blocks. A new write appends
to a pre-erased block first. To improve the write performance and
endurance, it also employs wear leveling (i.e., balancing the pro-
gram/erasure cycles among all data blocks) [21, 81] and garbage col-
lection [21, 68] (i.e., replenishing valid blocks), which complicates
estimating the SSD condition. When the SSD is highly fragmented,
there are fewer free blocks, and garbage collections are often trig-
gered, which hurts both write and read performance (described in
Appendix A).

Issue 2: Per-10 cost changes drastically with not only read
and write mix but also IO concurrency and IO size. An IO will
be delayed when there is execution contention at the SSD controller,
head-of-line blocking at the device queue, access contention at the
NAND channel/chip/die, or SSD internal activities (e.g., garbage
collection). SSD vendors are hesitant to disclose the device exe-
cution statistics, making it hard to identify the per-IO cost. This
complicates fair IO resource allocations among multiple tenants.
Previous studies [49, 60, 73] apply approximate offline-profiled 10
cost models, which cannot accurately capture the SSD’s dynamic
runtime state.

Issue 3: Fairness in a multi-tenant disaggregated storage
means that each tenant should receive the same amount of
request service time from an SSD controller. The controller’s
request service time is opaque to the host software stack, complicat-
ing the I0 scheduler design. Even though modern NVMe SSDs apply
a multi-queue interface [26, 47, 75] for multiplexing and multicore

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

Min and Liu, et al.

E—
Server-RND-RD = Server-SEQ-WR T — S "RND-RD —%— S “SEQ-WR . I .
300 [Smanhic- AND.HD mmt_ SmarNi-SEQ-WR = | §?2000 SmaniNIC-RND-RD —3%— SmariNIG-SEQ-WR @ [Victim
5 250 S 1500 2 1,000 1 Neighbor
X 1ol o g
< 200 < =
= = o 7 S
g 150 531000 J £ 500
2
g0 2 500 8
50 =
[a] o - @ o o
0 7 8 _ 16 32 _ 128 256 0 T3 56 7 gy 8 95 95 =g =8
10 request size (KB) Core Number (#) oQ L) @© 5 @© 5 na oo
4 X N o N
¥ %0 T2 T8 ¥O0 ¥o

Figure 2: Read/write latency comparison be-
tween SmartNIC and Server JBOFs.
SmartNIC JBOFs.

scalability, the device usually schedules requests among IO queues
in a simple round-robin fashion, impeding the fairness support.
Prior works [49, 60, 64, 70, 70] apply deficit/weighted round-robin
scheduling or its variants to issue I0s from different tenants. In
such approaches, determining an operation’s deficit value/weight
is vital to achieving fairness. However, as discussed above, simply
using IOPS, bandwidth (bytes/s), or some other synthetic static
metrics (such as virtual IOPS [73], approximate IO cost mode [60],
or SLO-aware token [49]), cannot capture the exact IO execution
time. For example, consider a 4KB random read stream mixed with
a 64KB one with the same type and IOPS (Figure 20 in Appendix).
If we use IOPS as the metric, these two streams achieve 91.0MB/s
and 1473.0MB/s, indicating that larger IOs dominate the SSD exe-
cution; if we use bandwidth instead, smaller IOs could submit four
times more requests. Some other works proposed timeslice-based
10 schedulers (e.g., Argon [77], CFQ [25], FIOS [70]) that provide
time quanta with exclusive device access. These approaches not
only violate the responsiveness under high consolidation but also
ignore the fact that the IO capacity is not constant (as discussed
above).

2.4 Challenges of SmartNIC-based Disaggregation

SmartNICs have wimpy computing cores compared with the server
case. When achieving the same storage load, the request tail latency
on SmartNIC JBOFs is higher. For example, the 99.9th latency is
34/66pus on server/SmartNIC if serving ~3000MB/s 4KB sequential
writes. To fully drive the storage read/write bandwidth, SmartNICs
have little computing headroom for each IO request. We evaluate
the achieved bandwidth of 4KB/128KB random read and sequential
write as we add to the per-IO processing cost (Figure 16 in Ap-
pendix). We use all NIC cores in this case. The maximum tolerable
latency limit is 1ys and 5us for 4KB read and write requests, respec-
tively. However, if the request size is 128KB, one can add at most
5us and 10y of execution cost for reads and writes without band-
width loss. Thus, we can only add minimal computation for each
storage 10, and the amount of offloading depends on the storage
traffic profile.

Fortunately, as we demonstrate in this work, the limited Smart-
NIC computing capabilities are sufficient to realize a software storage
switch and equip it with QoS techniques along the ingress/egress
data planes for IO orchestration.

3 SmartNIC as a Switch

This section describes our design and implementation of Gimbal, a
software storage switch with efficient multi-tenancy support (i.e.,
high utilization, low latency, and fairness) for SmartNIC JBOFs.

Figure 3: Read/write throughput as increas-

Type of Neighbor Flow
Figure 4: Multi-tenant interference in dif-
ing the number of cores on server and ferent workloads. (RD:Read, WR:Write,

QD:Number of Concurrent I/Os)

Storage
Applications

Gimbal Storage Switch
Ports Hierarchical IO Scheduler

23] Dual Token Bucket NVMe
144 5% deferred _y | Interface
il £2 rorf B0 @
) £t =0 -
= . o 3 Tm— :m
SSD virtual view O B (- § virtual slots | €% CRH:G ‘ Vé/r\:e C|osl
Te active ontrol -stimator
Portr || 5 € i -«
—NVMe—oF target ot 55 m\m/O*:m\() -] S
transport 1D ¢ =m0~ : Congestion Control ca
Credit DRR T SSD Congestion Control
Management

Ingress Egress

Figure 5: An overview of the Gimbal storage switch architecture. On
the Broadcom Stingray PS1100R, there are at most 4 NIC ports along
with 4 NVMe SSDs.

We first describe its high-level architecture and then discuss each
system component in detail.

3.1 Overview

Figure 5 presents the overall architecture of the software storage
switch, inspired by today’s SAN switches [18, 19]. It comprises
per-SSD pipelines that orchestrate IO flows between NIC ports and
NVMe SSDs. Each pipeline is equipped with three major compo-
nents: (1) IO scheduler at the ingress, which provides per-tenant
priority queueing and executes IOs in a deficit round-robin fash-
ion (DRR) using a normalized IO unit (called a virtual slot). It ex-
poses a fair queueing abstraction; (2) delay-based congestion control
mechanism at the egress, which measures the storage bandwidth
availability and monitors the SSD load status using IO completion
time at runtime. In addition, it employs a rate pacing engine to
mitigate congestion and IO burstiness during submission; (3) write-
cost estimator, dynamically calibrating the SSD write cost based on
latency and providing this information to other system components.
It implements an approximate performance model that adapts to
the workload and SSD conditions.

The switch runs across one or several dedicated SmartNIC cores
and listens on active NIC ports. Similar to other works [49], a
tenant contains an RDMA qpair (for request send/receive) and an
NVMe gpair (for storage command submission/completion). Gimbal
focuses on enabling efficient SSD sharing and relies on the remote
transport protocol (e.g., RDMA) to address in-network contention.

3.2 Delay-based SSD Congestion Control

An SSD has a complex internal architecture. To estimate its instanta-
neous capacity headroom, we take a black-box approach and borrow
the congestion control mechanism from the networking domain.
Specifically, we view the SSD as a networked system, where the con-
troller, circuitry, and NAND chips behave as a router, connection
pipes, and end-hosts, respectively. Thus, one can use a TCP-like
probing technique to measure its available bandwidth. However,

Gimbal: Enabling Multi-tenant Storage Disaggregation on SmartNIC JBOFs

this is non-trivial because (1) the SSD internal parallelism is un-
known due to the FTL mapping logic and IO request interference;
(2) housekeeping operations (such as garbage collection) are unpre-
dictable and consume a non-deterministic amount of bandwidth
when triggered; (3) an SSD is a lossless system without request
drops. Therefore, we develop a customized delay-based congestion
control algorithm to address these challenges.

Traditional delay-based algorithms (e.g., TCP Vegas [27]) use
the measured RTT to calculate the actual bandwidth and take the
bandwidth difference (between actual and expected) as a congestion
signal to adjust its transmission window. However, the bandwidth
metric is ineffective for SSDs because of their opaque parallelism [28,
45]. An SSD employs multiple NAND channels, planes, and dies
to improve its bandwidth so that concurrent IO requests could
execute in parallel and complete independently. Thus, the IO latency
might not be indicative of the consumed SSD bandwidth. Further, a
modern SSD usually applies a 4KB-page based mapping mechanism.
It splits a large IO into multiple 4KB chunks and then spreads them
to different channels as much as possible. Consequently, the latency
is not linear with the IO size, and different sized IOs would achieve
different maximum bandwidths.

Instead, we explore the direct use of the IO latency as the feed-
back (like Swift [50]) and take the latency difference between mea-
sured and target levels as a congestion signal. This is motivated
by our observation that the SSD access latency is very sensitive to
the device load and has an impulse response to the congestion (see
Figure 17 in Appendix). A key question to realizing this mechanism
is determining the latency threshold. We start with a fixed value
(e.g., 2ms) and measure the average achieved latency using EWMA
(Exponential Weighted Moving Average), where ap denotes the
weight. We find that 2ms fixed threshold is only effective for large
IOs (like 64/128KB) but cannot capture the congestion for small IOs
promptly. Reducing the threshold (e.g., <1ms) would also not work
because it hurts the device utilization. Therefore, we propose a dy-
namic latency threshold scaling method. It works similar to Reno’s
congestion control logic [63] for the latency threshold. Specifically,
we set up the minimum and maximum threshold and adjust the
value based on the EWMA IO latency using,

Thres(t) = Thres(t — 1) — ar X (Thres(t — 1) — Latencyewma)

When the EWMA latency approaches the threshold, it promptly
detects a latency increase. Once the EWMA IO latency exceeds the
current threshold, it generates a congestion signal, and the thresh-
old is increased to the midpoint of the current and the maximum
threshold by (Thres(t) = (Thres(t—1)+Threshmax)/2. Consequently,
Gimbal gets the congestion signal more frequently if the EWMA
latency is close to the maximum threshold or grows rapidly. Tuning
the min/max threshold should consider the efficiency of congestion
detection, device utilization, convergence time, as well as the flash
media characteristics (i.e., SLC/MLC/TLC).

3.3 Rate Control Engine

Under a congestion signal, Gimbal applies a rate pacing mechanism
to decide the IO submission rate. Traditional congestion window-
based approaches are ineffective due to the following reasons. First,
since a storage stream contains IOs of various sizes and types, the
same window size (i.e., outstanding bytes) would result in different

SIGCOMM ’21, August 23-28, 2021, Virtual Event, USA

bandwidths for different IO patterns. Second, a short burst of write
10s absorbed by the SSD internal write buffer would cause a signif-
icant increase of the available window size. As a result, more IOs
would be submitted, overwhelming the device’s capability, and the
congestion control system would suffer from performance fluctua-
tions. We instead use a rate pacing mechanism with a token bucket
algorithm to address this issue. Further, since the single bucket
approach would submit write IOs at a wrong rate (i.e., the read rate)
and cause severe latency increments, Gimbal employs a dual token
bucket algorithm that consists of separate buckets for reads and
writes (see Appendix C.1).

We define four congestion states based on the latency thresholds
(Threshmax, Threshmin, Threshey,) and the measured EWMA la-
tency (Latewma), and adjust the target submission rate upon each IO
completion. Specifically, these four states are: overloaded (Lateywma
> Threshmay), congested(Thresheyr < Latewma < Threshmax),
congestion avoidance(Threshmin < Latewma < Thresheyr), and
under-utilized(Latevyma < Threshmin).

For the congestion avoidance and congested states, Gimbal incre-
mentally changes the target rate to either probe for more bandwidth
or lower the offered load. The rate is increased/decreased by the
10 completion size for the congestion avoidance/congested state.
For the overloaded state, the rate is immediately adjusted to be
lower than the IO completion rate, and Gimbal discards the remain-
ing tokens in the buckets to avoid a bursty submission. Gimbal
periodically measures the completion rate for this. In addition, Gim-
bal increases the target rate at a faster rate when it observes the
underutilized state (parameter f in Algorithm 1).

Gimbal handles the overloaded and under-utilized states in the
above manner because the incremental adjustments are meaningful
only when the IO pattern doesn’t change; incremental adjustments
will not converge fast enough for dynamic IO patterns. Specifically,
the maximum bandwidth of the SSD may differ dramatically accord-
ing to the read and write mixed ratio. On a fragmented SSD (defined
in Section 5.1), the random write bandwidth is about 180MB/s while
the random read bandwidth is over 1600MB/s. Consequently, the
rate converges slowly if the pattern shifts from write-heavy to read-
heavy. Gimbal, inspired by CUBIC[40] and TIMELY([62], adapts an
aggressive probing strategy for identifying the desired operating
point. This condition only appears when the target rate is insuf-
ficient to submit IO before the SSD drains most of the IOs in the
internal queue. On the other hand, the target rate may exceed the
maximum bandwidth enormously when the pattern shifts in the
opposite direction (i.e., from read-heavy to write-heavy), resulting
in the SSD performing at its peak bandwidth but with a latency
higher than Threshpqx. In this case, Gimbal first identifies the cur-
rent completion rate and sets the target rate to the completion rate.
It then further reduces the target rate by an amount equal to that of
the size of the completed IO. As a consequence, Gimbal holds the
target rate to be lower than that of the SSD’s peak capacity until the
SSD drains the queued IOs and starts exhibiting a normal latency.

Algorithm 1 depicts the congestion control logic. The submis-
sion function is invoked on each request arrival and completion so
that it works in a self-clocked manner. With the congestion control
mechanism, the SSD maintains an average delay in a stable range
providing performance comparable to the device maximum. It ad-
justs the IO request rate of each SSD while eliminating unnecessary

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

waiting time in the device’s internal queue. Crucially, it allows us
to determine the performance headroom of an SSD during runtime.

3.4 Write Cost Estimation

Performance asymmetry of reads and writes is a well-known issue
for NAND devices. Typically, a write consumes more resources
than the same-sized read due to the write amplification caused
by garbage collection. To capture this, we introduce the write cost
parameter — the ratio between the achieved read and write band-
widths. For example, let the maximum read and write bandwidths
(measured independently) of a given SSD be 1000MB/s and 300MB/s,
respectively. The write cost is 3.3 in this case, where we assume
that 700MB/s might be used to run internal tasks for the write.
We cannot obtain this value directly from the SSD. Instead, we
use a baseline setting as the worst case and dynamically calibrate
the write cost according to the current SSD state. One can obtain
write costyorst Via a pre-calibration or from the SSD specification,
so it is a fixed parameter for a specific SSD.

We update the write cost periodically in an ADMI (Additive-
Decrease Multiplicative-Increase) manner. The write cost decreases
by ¢ if the write EWMA latency is lower than the minimum la-
tency threshold and increases to (write cost + write costyworst)/2
otherwise. This allows Gimbal to quickly converge to the worst-
case when we observe latency increases. By using the latency for
adjusting the write cost, Gimbal takes the SSD device optimization
for writes into consideration. Specifically, an SSD encloses a small
DRAM write buffer and stores user data in the buffer first before
flushing it in a batch to the actual NAND at the optimal time [46].
When the write submission rate is lower than the write buffer con-
suming capability, writes are served immediately with consistent
low latency. In this case, unlike other schemes that have only a
fixed cost ratio between read and write, Gimbal reduces the cost
down to 1 (i.e., write cost = 1), same as the read cost. When the
write rate rises beyond the write buffer serving capacity, its latency
and write cost increase.

3.5 Two-level Hierarchical IO Scheduler and Virtual slot

We define the per-I0 cost of NVMe SSDs as the average occupancy
of operations within the NAND per byte of transmitted data. It is
not constant and is affected by numerous factors (Section 2.3). This
metric reflects how an SSD controller executes different types of
NAND commands, such as splitting a large request into multiple
small blocks, blocking in an internal queue due to access contention,
etc. The IO cost should be considered as a key evaluation parameter
for determining fairness since two storage streams would consume
significantly different amounts of resources in an SSD even if they
achieve the same bandwidth.

IO cost is hard to measure because SSDs do not disclose detailed
execution statistics of the NAND and its data channels. IO costs
can also be biased by operation granularity. For instance, a large
128KB IO might be decomposed into individual 4KB requests in-
ternally and deemed complete only when all individual requests
have been processed. In contrast, if we were to pipeline a sequence
of 32 x 4KB operations, issuing a new one after each completion,
the SSD internal queue occupancy would increase even though
the observable outstanding bytes is the same with 128KB 10. We,
therefore, use the notion of a virtual slot, which is a group of IOs

Min and Liu, et al.

Algorithm 1 Congestion Control with Rate Pacing

1: procedure SUBMISSION()

2 update_token_buckets()

3 req = DRR.dequeue()

4 bucket «— dual_token_bucket[req.io_type]
5: if bucket.tokens > req.size then

6: io_outstanding += 1

7 submit_to_ssd(req)

8 return

1: procedure COMPLETION()

2 state = update_latency(cplio_type, cpl.latency)
3 if state == overloaded then

4 target_rate = completion_rate

5: discard_remain_tokens(dual_token_bucket)
6 if state == congested or overloaded then

7 target_rate —= cpl.size

8 else if state == congestion_avoidance then

9: target_rate += cpl.size

10: else
11: target_rate += X cpl.size
12: return

1: procedure UPDATE_LATENCY(IO_TYPE, LATENCY)

2 lat_mon « latency monitor for io_type

3 lat_mon.ewma = (1-ap) lat_mon.ewma_lat + apX latency
4 if lat_mon.ewma > thresh;,,x then

5: lat_mon.thresh = threshax

6 state = overloaded

7 else if lat_mon.ewma > lat_mon.threshold then

8 lat_mon.thresh = (lat_mon.thresh + thresh;,;4x)/2

9 state = congested

10: else if lat_ mon.ewma > thresh;,i, then

11: lat_mon.thresh —= a7 X (lat_mon.thresh - lat_mon.ewma)
12: state = congestion avoidance

13: else

14: lat_mon.thresh —= arX (lat_mon.thresh - lat_mon.ewma)
15: state = underutilized

16: return state

up to 128KB in total (e.g., it might contain up to 1 X 128KB or 32 X
4KB IO commands) and manage IO completion in the granularity
of virtual slots. A virtual slot completes when all operations in the
slot complete. Each tenant always has the same number of virtual
slots. If a tenant runs out of its virtual slots, the IO scheduler defers
following IOs until one of its virtual slots completes and becomes
available. Gimbal maintains the number of virtual slots per tenant
at a minimum and adapts the IO cost variance according to sizes.

The virtual slot mechanism provides an upper bound on the
submission rate and guarantees that any sized IO pattern obtains
a fair portion of the SSD internal resource. It also addresses the
deceptive idleness issue [44] (found in many work-conserving fair
queuing schedulers) because an allocated slot cannot be stolen by
other streams. Gimbal sets the threshold for the number of virtual
slots in a single tenant to the minimum number to reach the device’s
maximum bandwidth if there is only one active tenant. Virtual slots
are equally distributed when more active tenants contend for the
storage. Since each tenant should have at least one virtual slot
to perform IOs, the total number of virtual slots may exceed the
threshold under high consolidation.

Gimbal: Enabling Multi-tenant Storage Disaggregation on SmartNIC JBOFs

Gimbal integrates the virtual slot concept into the DRR scheduler

and ensures the number of slots for each tenant is the same. Similar
to the fair queueing mechanism [33, 37], the DRR scheduler divides
all tenants that have requests into two lists: active, where each one
in the list has assigned virtual slots; deferred, where its tenants
have no available virtual slots and wait for outstanding requests
to be completed. Also, the scheduler sets the deficit count to zero
when a tenant moves to the deferred list and does not increase
the deficit counter of the tenant. Once the tenant receives a new
virtual slot, it moves to the end of the active list, and the scheduler
resumes increasing the deficit count. Gimbal uses a cost-weighted
size for a write IO instead of the actual size (write cost X IO size)
to capture the write cost in the virtual slot. An IO can only be
submitted if its deficit count is larger than the weighted size. For
example, if the tenant has a 128KB write request when the system
is operating under a write cost of 3, the tenant would be allowed to
issue the operation only after three round-robin rounds of satisfying
tenants in the active list (with each round updating the deficit count
associated with the tenant).
Per-tenant priority queues. The ingress pipeline of Gimbal main-
tains priority queues for each tenant. The priority is tagged by
clients and carried over NVMe-oF requests. When a tenant is being
scheduled within an available virtual slot, the scheduler cycles over
these priority queues in a round-robin manner, uses each queue’s
weights to selects IO requests from the queue, and constructs the
IO request bundle. This mechanism allows clients to prioritize a
latency-sensitive request over a throughput-oriented request.

3.6 End-to-End Credit-based Flow Control

The switch applies an end-to-end credit-based flow control between
the client-side and the target-side per-tenant queue. This controls
the number of outstanding IOs to a remote NVMe SSD and avoids
queue buildup at the switch ingress. Unlike the networking setting,
where a credit means a fixed-size data segment or a flit [23, 30],
the number of credits in our case represents the amount of 10
regardless of the size that a device could serve without hurting QoS.
It is obtained from the congestion control module (described above).
The total credit for the tenant is the number of allotted virtual slots
times the IO count of the latest completed slot. A tenant submits
IO if the total credit is larger than the amount of outstanding IO.
Instead of using a separate communication channel for credit
exchange, we piggyback the allocated credits into the NVMe-oF
completion response (i.e., the first reservation field). Similar to
the traditional credit-based flow control used for networking, our
credit exchange/update scheme (like N23 [51, 52]) also minimizes
the credit exchange frequency and avoids credit overflow. However,
it differs in that our protocol (1) works in an end-to-end fashion,
not hop-by-hop; (2) targets at maximizing remote SSD usage with
a QoS guarantee. Algorithm 3 (in Appendix) describes the details.

3.7 Per-SSD Virtual View

Our switch provides a managed view of its SSDs to each tenant that
indicates how much read/write bandwidth headroom is available
at the target so that clients can use the SSD resource efficiently in a
multi-tenant environment. In addition, it also supports IO priority
tagging, which allows applications to prioritize storage operations
based on workload requirements. Such a view enables applications

SIGCOMM ’21, August 23-28, 2021, Virtual Event, USA

to develop flexible mechanisms/policies, like application-specific IO
scheduler, rate limiter, IO load balancer, etc. We later discuss how
we integrate it into a log-structured merge-tree key-value store.

4 Implementation
4.1 Switch Pipeline

We built Gimbal using Intel SPDK [16]. It targets the RDMA trans-
port and extends the basic NVMe-over-Fabric target application
by adding three major components: DRR 10 scheduler, write cost
estimator, and SSD congestion control. The overall implementa-
tions follow the shared-nothing architecture and rely on the reactor
framework of SPDK. On the Broadcom Stingray platform, we find
that one SmartNIC CPU (ARM A72) core is able to fully drive PCle
Gen3 X 4-lanes SSD for any network and storage traffic profile.
Therefore, Gimbal uses one dedicated CPU core to handle a specific
SSD. Each switch pipeline is dedicated to a specific SSD and shares
nothing with other pipelines that handle different SSDs. It runs as a
reactor (i.e., kernel-bypass executor) on a dedicated SmartNIC core
asynchronously and will trigger the ingress handler if incoming
events come from RDMA qpair (or egress handler when an event is
from the NVMe gpair). A reactor uses one or more pollers to listen to
incoming requests from the network/storage. Our implementations
are compatible with the existing NVMe-oF protocol.

4.2 Parameters of Gimbal

Gimbal is affected by the following parameters:

e Max/Min Delay threshold. Threshyi, is an upper bound of
"congestion-free" latency. It should be larger than the highest
latency when there is only one outstanding IO, which is 230us on
our SSD. We set Thresh,in to 250us. Thresh;,ax should ensure
that SSDs achieve high utilization for all cases and provide suffi-
cient flexibility to tune other parameters. We characterized this
parameter by configuring different types of storage profiles and
found that when saturating the bandwidth, the lowest latency is
between 500us and 1000us, depending on the workload. Further,
to minimize the frequency that Gimbal enters the overloaded
state (Section 3.3), we set Threshmax to a slightly higher value
(i.e., 1500us). Since the minimum latency of the SSD is highly
correlated with the NAND characteristics, the parameter val-
ues we determine generally apply to other TLC-based SSDs as
well. However, 3DXP, SLC, or QLC have completely different
device characteristics, and we need to adjust these thresholds
appropriately for such devices.

e ar,ap and . ar decides how frequently the congestion signal is
generated. Although the higher value (e.g., 278) has a negligible
impact on the result, we set ar to 27! and speculatively generate
a signal to minimize the trigger rate of the "overloaded" state. ap
is used to tolerate occasional latency spikes and capture recent
trends. We set it to 271, § determines how fast the target rate is
increased in the underutilized state. We set the value to 8. Gimbal
can increase the target rate to a peak value within a second
(Section 3.3).

e Number of virtual slots and the size: Gimbal uses 128KB as
the slot size as it is the de facto maximum IO size of the NVMe-oF
implementation. If the system supports a larger size, the value
may be increased accordingly. However, such a larger virtual
slot degrades fairness. The threshold of the number of virtual

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

slots for a single tenant is highly related to the outstanding bytes
required for the maximum sequential read bandwidth. We found
that 8 x 128KB sequential read I/Os is the minimum to reach
3.3GB/s bandwidth. Gimbal uses the value 8 for the threshold.
e Write cost and decrement factor 5: Write cost.yorst describes
the maximum cost of a write IO on the SSD. It can be measured via
a microbenchmark or simply calculated by using the maximum
random read and write IOPS from the datasheet. We choose the
latter way and set the parameter to 9 for the Samsung DCT983
NVMe SSD. The additive decrements factor decides how fast
Gimbal reacts to observed write latencies. It should reduce the
write cost only when writes are served fast from the SSD (not
intermediate low write latency). We set § to 0.5 empirically.

4.3 Case Study: RocksDB over Gimbal

This section describes how we support a log-structured merge-tree
(LSM) key-value store (i.e., RocksDB) in a multi-tenant environment.
We show how to optimize its various components using the per-SSD
virtual view exposed by the storage switch.

Overview. RocksDB [20] is based on an LSM-tree data structure
(Appendix E). We run the RocksDB over a blobstore file system
in an NVMe-oF aware environment. Our modifications include a
hierarchical blob allocator over a pool of NVMe-oF backends, an
IO rate limiter to control outstanding read/write IOs, and a load
balancer that steers read requests based on the runtime loading
factor of a storage node.

Hierarchical blob allocator. We allocate storage blobs across a
pool of remote storage nodes. Upon an allocation request, it chooses
a blob from an available NVMe SSD and then updates blob address
mappings. The blob address in our case includes <NVMe transport
identifier, start LBA number, LBA amount, LBA sector size>. A free
operation then releases allocated sectors and puts them back into
the pool. Such an allocator should (1) fully use the storage capacity
and provide the appropriate granularity to reduce the storage waste;
(2) use a small amount of metadata for block management.

We apply a hierarchical blob allocator (HBA) to satisfy these

requirements. First, there is a global blob allocator at the rack-scale
that divides total storage into mega blobs (i.e., a large chunk of
contiguous storage blocks, 4GB in our current implementation),
and uses a bitmap mechanism to maintain availability. Within the
RocksDB remote environment layer, there is a local agent perform-
ing allocation in the granularity of micro blobs (i.e., a small chunk
of contiguous storage blocks, 256KB in our case). It also maintains
a free micro blob list based on allocated mega blobs. A file blob
allocation request is served by the local allocator first and will trig-
ger the global allocator when the local free pool becomes empty.
To minimize the IO interference impact, we employ a load-aware
policy to choose a free mega/micro blob: selecting the one with the
maximum credit (i.e., the least load) of the NVMe SSD.
IO rate limiter. Since our RocksDB is built on top of the SSD virtual
view, which applies the credit-based flow control with the NVMe-oF
target, it automatically supports an IO rate limiter. Specifically, a
read/write request is issued when there are enough credits; other-
wise, it is queued locally. Under an NVMe-oF completion response,
if the credit amount is updated in the virtual view, the database will
submit more requests from the queue.

Min and Liu, et al.

Replication and load balancing We also built a replication mech-
anism to tolerate flash failures [61, 69] and a load balancer to im-
prove remote read performance. Each file has a primary and a
shadow copy that is spread across different remote backends. When
there is an allocation request (during file creation/resize), we will
reserve primary and secondary microblobs from two different back-
ends in the HBA. If any of their local pools run out of microblobs,
a megablob allocation request is triggered. A write operation will
result in two NVMe-oF writes and is completed only when the
two writes finish. In terms of read, since there are two data copies,
RocksDB will issue a read request to the copy whose remote SSD
has the least load. We simply rely on the number of allocated credits
to decide the loading status on the target. As described before, since
credit is normalized in our case, the one with more credits is able
to absorb more read/write requests.

5 Evaluation
5.1 Experiment Methodology

Testbed setup. Our testbed comprises a local rack-scale RDMA-
capable cluster with x86 servers and Stingray PS1100R storage
nodes, connected to a 100Gbps Arista 716032-CQ switch. Each
server has two Intel Xeon processors, 64/96GB memory, and a
100Gbps dual-port Mellanox ConnectX-5 NIC via PCle 3.0 X 16-
lanes. Section 2.2 describes the Stingray setup, and we configure
it to use 4 X NVMe SSDs. We use Samsung DCT983 960GB NVMe
SSDs for all experiments unless otherwise specified. We run CentOS
7.4 on Intel machines and Ubuntu 16.04 on Stingray nodes, where
their SPDK version is 19.07 and 19.10, respectively.

Comparison Schemes. We compare Gimbal against the following
multi-tenancy solutions designed for shared storage. Since none
of these systems target NVMe-oF, we ported these systems onto
SmartNIC JBOFs and tailored them to our settings.

e ReFlex [49], enables fast remote Flash access over Ethernet. It
applies three techniques: kernel-bypass dataplane executor for
10 request processing, SLO-based request management, and DRR-
like QoS-aware scheduler. We implemented their scheduler model
within the SPDK NVMe-oF target process and used the proposed
curve-fitting method to calibrate the SSD cost model.

Parda [38], enforces proportional fair share of remote storage
among distributed hosts. Each client regulates the IO submission
based on the observed average IO latency. We emulated Parda at
the NVMe-oF client-side and applied a similar flow control. To
obtain the IO RTT, we encode a timestamp into the NVMe-oF
submission command and piggy it back upon completion.
FlashFQ [70], is a fair queueing IO scheduler. It applies the start-
time fair queueing mechanism [37] and combines two techniques
to mitigate IO interference and deceptive idleness: throttled dis-
patching and dynamically adjusting the virtual start time based
on IO anticipation. It uses a linear model to calculate the virtual
finish time. We implemented these techniques and calibrated
the parameters (including the dispatching threshold and model)
based on our SSD.

SSD and Workloads. We emulate two SSD conditions: Clean-SSD,
pre-conditioned with 128KB sequential writes; Fragment-SSD, pre-
conditioned with 4KB random writes for multiple hours. They
present different "bathtub” characteristics (Figure 14). We use a

Gimbal: Enabling Multi-tenant Storage Disaggregation on SmartNIC JBOFs

variety of synthetic FIO [9] benchmarks to evaluate different aspects
of Gimbal and compare with the other three approaches. We set
the maximum outstanding IOs (i.e., queue depth or QD) 4 and 32 to
128KB and 4KB workloads, respectively. All read workloads in the
microbenchmark are random, while 128KB write is sequential and
4KB write is random. We re-condition the SSD with the same pattern
before each test. We use YCSB [32] for the RocksDB evaluation.
Evaluation metric. When multiple applications run simultane-
ously over an SSD, the bandwidth allocated to each application
depends on its storage profile and may differ from each other sig-
nificantly. To examine fairness quantitatively, we propose the term
fair utilization or f-Util as a worker-specific normalized utilization
ratio. As shown below, it is calculated by dividing the per-worker
achieved bandwidth over its standalone maximum bandwidth when
it runs exclusively on the SSD, and the ideal ratio is 1.

per_worker_bw(i)

_Util(i) =
f-Util) standalone_max_bw(i)/total_#_of_workers

5.2 Utilization

We run 16 workers of the same workload (i.e., standalone bench-
mark) to evaluate the utilization of each scheme. Figure 6 describes
the standalone bandwidth of workloads and their average latency.
Gimbal performs similarly to the FlashFQ on both Clean-SSD and
Fragment-SSD but outperforms ReFlex on Clean-SSD by x2.4 and
x6.6 for read and write, respectively. It also outperforms Parda on
Fragment-SSD by x2.6 in the read utilization. This is mainly because
our SSD congestion control mechanism can estimate the accurate
bandwidth headroom so that the scheduler submits just the right
amount of I0s. The offline-profiled cost model (used by ReFlex)
overestimates the IO cost for writes and large IOs, resulting in lower
throughput. Parda fails to reach the maximum bandwidth in the
4KB read workload on Fragment-SSD because the end-to-end RTT
between clients and NVMe-oF targets in Parda is too large to detect
both the throughput capacity and congestion. In terms of latency,
FlashFQ is a work-conserving SFQ scheduler and will issue much
more IOs to the SSD without considering the request QoS. Gimbal
keeps the latency low by employing the credit-based flow control
and performs similar to the Parda for Clean-SSD. The write latency
of Gimbal on Fragment-SSD is higher than Parda by x3.4, but it
outperforms other schemes by x9 on average. Note that Gimbal
does not improve the read latency for Fragment-SSDs because the
maximum number of outstanding IOs in the workload is the same
as the total credit count for the tenant.

5.3 Fairness

Different IO Sizes. On our testbed, the maximum 128KB random
read performance on Clean-SSD (3.16GB/s) is 89% higher than the
4KB read performance (1.67GB/s). We run the benchmark with
16-workers of 4KB read and 4-workers of 128KB read. Figure 7a
and 7d present the bandwidth of one worker for each IO size and
the f-Util for each scheme. We define the utilization deviation as
|“Ctual—.g”ll_ide.al—U”” to identify how each tenant achieves its fair
ideal_Util
bandwidth share. Gimbal shows the closest bandwidth to the ideal
value and the utilization deviation of the 128KB IO case is x2.1, x8.7,
and x6.4 less than ReFlex, FlashFQ, and Parda, respectively (x1.9,
x4.1 and x7.1 for 4KB). Unlike other schemes, Gimbal considers
the cost difference in the virtual slot mechanism so that it is able

SIGCOMM ’21, August 23-28, 2021, Virtual Event, USA

[ReFlex [FlashFQ [Parda I Gimbal

@ =
& \ \ \ \ 3
S 3,000 1043
§ 2,000 38
o : 10 §
2 S
S 1,000 1027
Qo >
g o 1ot <
<

c- C- F-R F-W
G gSD Congytion and 10 types

-R, - F-R F-w
SSD ang\l(lion and 10 types

(a) Bandwidth (b) Avg. Latency (Log-scale)

Figure 6: Device utilization on different schemes. IO size is 128KB
and 4KB for Clean-SSD and Fragment-SSD, respectively. (C:Clean-
SSD, F:Fragment-SSD, R:Read, W:Write)

to allocate 22.0% more bandwidth for 128KB IO in the experiment.
The IO cost in ReFlex is proportional to the request size and shows
the same bandwidth for both cases.

Different IO Types. In this experiment, we run 16 workers for
each read and write and compare the f-Util of each scheme. The
Clean-SSD case executes 128KB sequential read and 128KB random
write, while the Fragment-SSD one contains 4KB random read and
4KB random write. Figure 7b, 7c, 7e and 7f describe the aggregated
read/write bandwidth and f-Util. Gimbal only shows a difference of
13.8% for Clean-SSD and 3.8% for Fragment-SSD between read and
write f-Util, and outperforms ReFlex, FlashFQ, and Parda by x12.8,
x10.4 and x7.5 on Clean-SSD (x4.2, x184.2 and x330.2 on Fragment-
SSD), respectively. Gimbal improves the fair bandwidth allocation
for read/write cases because it addresses the cost of different IO
types and the SSD conditions with the virtual slot and the write
cost mechanism. Note that Gimbal shows a lower utilization on
Clean-SSDs because the congestion control prevents the latency
from growing beyond the maximum threshold. Parda fails to allot
the read bandwidth on Fragment-SSD since the write latency for
small IO size is not correlated to the IO cost (possibly lower than
the same-sized read latency). The linear model of FlashFQ does not
provide fairness in modern SSDs, and the read and write bandwidths
are the same on both Clean-SSD and Fragment-SSD. ReFlex has
a fixed pre-calibrated model, irrespective of SSD conditions, and
limits the write bandwidth substantially on Clean-SSD. As a result,
it only works on Fragment-SSD; it would require re-calibration of
the model in an online manner to adapt to SSD conditions.

5.4 Latency

Figures 8 presents the average and tail latency of different IO types
from the previous experiment (i.e., read and write mixed workload).
We report the end-to-end average, 99th and 99.9th latency includ-
ing in-network queueing delay along the data path as well as the
request execution time. Gimbal not only maximizes the SSD usage
but also provides the best service guarantee compared with Parda.
The benefits mainly come from the fact Gimbal can (1) balance the
number of outstanding reads and writes to mitigate the IO inter-
ference at the device; (2) use credits to control the request rate. On
average, compare with Parda, Gimbal reduces the 99th read and
write latency by 48.6% and 57.1% for a Clean-SSD (57.5% and 62.6%
for a Fragment-SSD). Parda shows an average latency lower than
Gimbal on Fragment-SSD, but it suffers from poor utilization and
imbalanced resource allocation. The IO RTT observed by the client
alone is not sufficient to avoid the congestion on the shared SSD,
and Gimbal outperforms Parda in the 99th and 99.9th latency across

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

Read [Write

Min and Liu, et al.

I_ Read]

Aggregated B/W (MB/s)
>
8

ol |

@ @

@ 800 @ 2000 Fes

s 128KB] 48] | g

£ 600 = 1,500

3 S

2 g

S 400 5 1,000

s o]

3 5

@ 200 2 500

e 5

S 2 o0

= ReFlex FlashFQ Parda Gimbal ReFlex FlashFQ
Schemes

(a) Clean-SSD: 4KB/128KB Read IO Size (Bandwidth)

F-util

Schem

(b) Clean-SSD: 128KB Read/Write (Bandwidth)

Read [___] Write

Parda Gimbal ReFlex FIashFé} Parda Gimbal
es chemes

(c) Fragment-SSD: 4KB Read/Write (Bandwidth)

ReFlex F\ashFéJcheme Parda Gimbal 0 ReFlex FlashFé) h
chemes

'S

(d) Clean-SSD: 4KB/128KB Read 10 Size (f -Util)

(e) Clean-SSD: 128KB Read/Write (f-Util)

0
Parda Gimbal ReFlex

FlashF Parda Gimbal
gchemes

(f) Fragment-SSD: 4KB Read/Write (f -Util)

Figure 7: Fairness in various mixed workloads on different schemes and SSD conditions

[ReFlex [FalshFQ [Parda [EEE Gimbal

Latency (usec)
=
=X

Read Avg. Read 99th Read 99.9th Write Avg. Write 99th Write 99.9th
Percentiles

(a) Clean-SSD (128KB IO latency, Log-scale)
I I I I I

10

10°

Latency (usec)

102

Read Avg. Read 99th Read 99.9th Write Avg. Write 99th Write 99.9th
Percentiles

(b) Fragment-SSD (4KB IO latency, Log-scale)

Figure 8: Read/Write 10 latency comparison. 16 workers each for
Read and Write.

all workloads. FlashFQ and ReFlex have no flow control mecha-
nisms and incur high latencies under high worker consolidation or
a large number of outstanding IOs.

5.5 Dynamic Workloads

This experiment changes the workload dynamically and demon-
strates the importance of estimating the dynamic write cost. We
initiate 8 read workers at the beginning of the experiment and add
a write worker at a 5-second interval until the number of read and
write workers becomes the same (i.e., 8 read and 8 write workers
run simultaneously at the maximum congestion). We then drop one
read worker at a time at the same interval. Additionally, we limit
the maximum IO rate of the single worker to 200MB/s and 60MB/s
for read and write, respectively. This simulates an application with
a specific IO rate.

Figure 9 shows the bandwidth over time for each worker and
the latency for each IO type. Gimbal shows that it adapts to the
workload characteristics and can accelerate write IOs accordingly.
The first write worker benefits from the internal write buffer so that
most I0s complete immediately. The latency thus is about 70 usec
(i.e., less than the minimum latency threshold) on average, while
the average read latency is about 1000 usec at the same moment.
As discussed in Section 3.4, Gimbal reduces the write cost to 1
and benefits from the SSD device optimization for writes in this

250
I
200 | Read Worker ------ - Write Worker |>
150 N —
100 M orsiemiarrrofty A .
MM AL L L waie 40 14
op T :
| I g ot i i i
I

1,250
1,000
750
500
250

Latency(us) Worker B/W (MB/s)

10 30 50 70 90
Time(sec)

Figure 9: Performance over time as the number of workers changes
(the latency is a raw device latency measured directly in Gimbal and
averaged out every 100ms)

case. After the second writer arrives, the write rate starts to exceed
the capability of the internal buffer and the latency grows more
than 10 times. Gimbal detects such a latency change at runtime
and increases the write cost. As a result, the bandwidth for write
workers converges to the fair bandwidth share.

5.6 Application Performance

In this experiment, we run 24 RocksDB instances over three Smart-
NIC JBOFs that are configured with different mechanisms on frag-
mented SSDs. As described before, we enhanced RocksDB with
a rate limiter and a read load balancer. We report the aggregated
throughput and average/99.9th latency (Figure 10). On average,
across five benchmarks, Gimbal outperforms ReFlex, Parda, and
FlashFQ by x1.7, x2.1, x1.3 in terms of throughput, and reduces the
average/99.9th latency by 34.9%/48.0%, 54.7%/30.2%, 20.1%/26.8%,
respectively. Among them, YCSB-A and YCSB-F (i.e., update-heavy
and read-modify-write) workloads benefit the most while YCSB-
C (i.e., read-only) observes the least performance improvements.
This is because Gimbal can schedule a mix of read/write IOs more
efficiently to maximize the SSD performance.

Scalability. We used the same RocksDB configuration and scaled
the number of RocksDB instances over three SmartNIC JBOFs (as
above). Figures 11 and 12 present throughput and average read
latency, respectively. YCSB-A, YCSB-B, and YCSB-D max out their
performance with 20 instances, while YCSB-F achieves the max
throughput under 16 instances. For example, the average read la-
tency of YCSB-F with 24 DB instances increases by 38.1% compared
with the 16 instance case. YCSB-C is a read-only workload, where 24

Gimbal: Enabling Multi-tenant Storage Disaggregation on SmartNIC JBOFs

SIGCOMM ’21, August 23-28, 2021, Virtual Event, USA

—
Reflex B===1 FlashFQ ——
Parda === Gimbal ==

—
Reflex === FlashFQ ——
Parda === Gimbal ===

—
Reflex ===2 FlashFQ ——
Parda == Gimbal ==

Benchmark
(a) Throughput.

Benchmark
(b) Average read latency.

Benchmark
(c) 99.9th read latency.

Figure 10: RocksDB performance comparison over four approaches. We configure the YCSB to generate 10M 1KB key-value pairs with a Zipfian

distribution of skewness 0.99 for each DB instance.

@ 600 YCSB-A —»— YCSB-A —»— YCSB-C —%— YCSBF —— _12000 Vanila === Vanilla+FC+[B ==
$ 500 vCSB-B] 3 200 YCSB-B YCSB-D T 0000 Vanila:FC e
o] YCSB-C —%— “ g 2
< 400{1yCSB-D / Z 150 S 8000
5 YCSB-F —+— = S 9
5 300 - 8 T 6000
G _— 5 100 5
2 200 g . £ 4000
3 A = o &
£ 100 M I 2 Op— = ® 2 2000
0] 12 16 20 4 0 3 12 16 20 4 0~~CSE-A YCSBB YC3B.C YCSB-D YCSBF

RocksDB Instances (#)
Figure 11: Throughput as increasing the num-
ber of RocksDB instances.

instances still cannot saturate the NVMe-oF target read bandwidth,
and the average read latency varies little.

Virtual view enabled optimizations. This experiment examines
how the virtual view provided by Gimbal could help improve the
application performance. We followed the above RocksDB setting
and ran 8 DB instances (from two client servers) over one SmartNIC
JBOF. Figure 13 presents the read tail latency of five benchmarks
comparing three cases (i.e., vanilla w/o optimizations, w/ flow con-
trol, w/ flow control and load balancing). On average, across the
five workloads, the IO rate limiter enabled via our credit scheme
reduces the 99.9th latencies by 28.2% compared with the vanilla
one. The request load balancer, which could choose one replica that
has more bandwidth, further reduces the tail by 18.8%.

5.7 Overheads

We evaluate the overhead of Gimbal in two ways. First, we compare
the average CPU cycles of the submission and completion proce-
dure with a vanilla SPDK NVMe-oF target on SmartNIC. As shown
in Table 1a, Gimbal adds 37.5-62.5% more cycles to realize the stor-
age switch. Although Gimbal adds some overhead on average in
the pipeline, it does not hurt the performance for PCle Gen3 SSD
as discussed in Section 2.4. Future PCle Gen4 SSDs could achieve
~7GB/s bandwidth or 1 MIOPS. We run the 4KB read benchmark
with a NULL device (which does not perform actual IO and returns
immediately) to measure the maximum IOPS of Gimbal on Smart-
NIC. Gimbal performs 821 KIOPS with 1 SmartNIC core. Gimbal
could support a multi-core implementation if one can distribute
the active tenants to each core in a balanced manner. For example,
we extend the experiment to the 4-core case and find that Gimbal
achieves 2446 KIOPS, indicating that SmartNIC-based Gimbal can
support next-generation SSDs. We also expect Gimbal to scale up
with future powerful ARM cores or specialized engines.

5.8 Generalization

This experiment evaluates how Gimbal performs on a different type
of SSD. We run the same microbenchmark (Section 5.3) using Intel
DC P3600 1.2TB model. This SSD uses 2-bit MLC NAND, presenting

RocksDB Instances (#)
Figure 12: Average read latency as increasing
the number of RocksDB instances.

Benchr{wark
Figure 13: Performance improvement via the
SSD virtual view enabled optimizations.

Vanilla SPDK Gimbal
Submit 32 52 (+62.5%)
1workers (QD1) Complete 16 22 (+37.5%)
Submit 21 30 (+42.9%)
16 workers (QD32) Complete 17 25 (+47.1%)

(a) CPU cycle comparison (4KB Read, QD=Queue Depth, 125cycles=1usec)

Vanilla SPDK Gimbal
1 CPU core, 1 worker 937 KIOPS 821 KIOPS (-12.4%)
4 CPU cores, 8 workers 2692 KIOPS 2446 KIOPS (-9.2%)

(b) The maximum IOPS with NULL device (4KB Read I0)
Table 1: Overhead comparison with vanilla SPDK

33.5% lower 128KB read (2.1GB/s) and 35.0% higher 4KB random
write (243MB/s) in terms of bandwidth. We tune the Threshmax
to 3ms for better read utilization as it achieves higher tail latency
than DCT983 for 128KB read. Gimbal adapts the characteristics of
the SSD and performs similarly to the DCT983 case in terms of the
f-Util. Specifically, it shows 0.63 and 0.72 of f-Util for read and
write under the clean condition and 0.58 and 0.90 for read and write
under the fragmented condition.

We also run Gimbal on Xeon E5-2620 v4 CPU and compare the
overhead with the vanilla SPDK. Gimbal performs 10.8% lower (1368
KIOPS) than the vanilla SPDK (1533 KIOPS) for 4KB read perfor-
mance with the NULL device, similar to the result on SmartNIC.

5.9 Summary

Table 2 summarizes the high-level differences between Gimbal and
the other approaches. Gimbal outperforms the other approaches be-
cause it dynamically estimates the available bandwidth and IO costs
for each storage device based on current conditions and workloads,
performs fine-grained fair queueing at the NVMe-oF target across
tenants, and uses credit-based flow control to adjust the client be-
havior. The other approaches lack one or more such support. For
example, ReFlex and FlashFQ use an approximate offline-profiled
SSD cost model that hurts scheduling efficiency. They also don’t

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

ReFlex Parda FlashFQ Gimbal
BW estimation Static Dynamic X Dynamic
10 cost & WR tax Static X Static Dynamic
Fair queueing @Target @Client @Target @Target
Flow control X v X 4

Table 2: Comparison of four multi-tenancy mechanisms.

regulate client-side IOs, causing significant delays. Parda employs
a client-side mechanism, which uses the end-to-end delay as the
congestion signal for its flow control, and performs limited fair
queueing within a server without coordination with other hosts.
Such a high latency feedback control loop is unsuitable for low-
latency high-bandwidth NVMe SSDs.

6 Related Work and Discussion

Shared storage with QoS guarantee. Prior work has explored
how to achieve high device utilization and fairness for local and
remote shared storage [38, 42, 49, 60, 64, 65, 70, 73, 76, 77]. As dis-
cussed in Section 5, these approaches cannot precisely estimate
the IO capacity (under different SSD conditions) and per-IO cost
(under various mixed workloads), causing inefficiencies when ap-
plied to the NVMe-oF based disaggregated setting. There are also
some timeslice-based IO schedulers (e.g., CFQ [25], Argon [77])
that allocate time quanta for fairness and provide tenant-level ex-
clusive access. They usually target millisecond-scale slow storage
and would hurt responsiveness, utilization, and fairness when used
with fast NVMe SSDs. Recently, researchers have tried to leverage
ML techniques (e.g., a light neural network) to predict the per-IO
performance [41]. The predicted result is a binary model (indicating
if an IO is fast or slow) and can only help improve the admission
control of storage applications for predictable performance, which
is insufficient to achieve fairness. IOFlow [76] proposes a software-
defined architecture for enforcing end-to-end policies of storage
I0s running in the data center. It adds queueing abstractions along
the data plane and relies on a centralized controller for translating
policies to queuing rules. We believe Gimbal can serve as one of its
execution stages at the storage server.

Remote storage 10 stacks. Researchers [48] have characterized
the performance of iSCSI-based disaggregated storage and proposed
optimization opportunities, such as parallel TCP protocol process-
ing, NIC TSO offloading, jumbo frames, and interrupt affinity pin-
ning. ReFlex [49] provides a kernel-bypass data-plane to remove
the NVMe storage processing stack, along with a credit-based QoS
scheduler. Also, i10 [43] is an efficient in-kernel TCP/IP remote
storage stack using dedicated end-to-end IO paths and delayed
doorbell notifications. Researchers [39] have also characterized the
server-based NVMe-oF performance. Our work targets SmartNIC
JBOFs that use NVMe-oF protocols.

Disaggregated storage architecture. New hardware designs have
been proposed to address the limitations of existing disaggregation
designs. Sergey et al. [53] proposes four kinds of in-rack storage
disaggregation (i.e., complete, dynamic elastic, failure, and configu-
ration disaggregation) and explores their tradeoffs. Shoal [72] is a
power-efficient and performant network fabric design for disaggre-
gated racks built using fast circuit switches. LeapIO [55] provides
a uniform address space across the host Intel x86 CPU and ARM-
based co-processors in the runtime layer and exposes the virtual
NVMe driver to an unmodified guest VM. As a result, ARM cores

Min and Liu, et al.

can run a complex cloud storage stack. We focus on emerging
SmartNIC-based disaggregated storage solutions.

Programmable packet scheduling. Researchers have explored
new HW/SW programmable packet schedulers. PIFO [74] proposes
a push-in first-out queue that enables packets to be pushed into
an arbitrary position based on their calculated rank and dequeued
from the head. PIEO [71] then improves PIFO scalability and expres-
siveness via two capabilities: providing each scheduling element a
predicate; dequeuing the packet with the smallest index from a sub-
set of the entire queue. SP-PIFO [22] further approximates the PIFO
design via coarse-grained priority levels and strict FIFO queues. It
dynamically adjusts the priority range of individual queues by modi-
fying the queuing threshold. PANIC [56] combines PIFO with a load
balancer and a priority-aware packet dropping mechanism to ex-
plore efficient multi-tenancy support on SmartNICs. Carousel [66]
and Eiffel [67] are two efficient software packet schedulers, which
rely on a timing wheel data structure and bucketed integer priority
for fast packet operations. Compared with these studies, a key dif-
ference is that Gimbal focuses on scheduling storage IO requests
among NVMe SSDs instead of individual packets. Exposing pro-
grammability from the Gimbal traffic manager to realize flexible
scheduling policies will be our future work.

Emerging storage media. QLC NAND has gained significant at-
tention because of its cost and capacity advantage over TLC. How-
ever, its performance characteristic is worse than TLC, presenting
a higher degree of read and write asymmetry [57]. We expect the
techniques introduced by Gimbal could also apply to QLC SSDs.
Gimbal could also support the 3DXP device. However, it is suitable
for a local cache rather than the disaggregated storage [80]. 3DXP
also provides a similar performance of read and write with in-place
update [79] and might not benefit from Gimbal as much as NAND
devices.

Hardware-accelerated Gimbal. The pipelined architecture of
Gimbal has a standard interface for both ingress and egress and can
be plugged into any hardware-accelerated NVMe-oF implementa-
tion. In addition, Gimbal itself is portable to a hardware logic with
ease using a framework such as Tonic [24].

7 Conclusion

This paper presents Gimbal, a software storage switch that enables
multi-tenant storage disaggregation on SmartNIC JBOFs. Gimbal
applies four techniques: a delay-based congestion control mecha-
nism for SSD bandwidth estimation, a new IO cost measurement
scheme, a two-level hierarchical I/O scheduling framework, and
an end-to-end credit-based flow control along with an exposed
SSD virtual view. We design, implement, and evaluate Gimbal on
the Broadcom Stingray PS1100R platforms. Our evaluations show
that Gimbal can maximize the SSD usage, ensure fairness among
multiple tenants, provide better QoS guarantees, and enable multi-
tenancy aware performance optimizations for applications. This
work does not raise any ethical issues.

Acknowledgments

This work is supported by Samsung and NSF grants CNS-2028771
and CNS-2006349. We would like to thank the anonymous reviewers
and our shepherd, Brent Stephens, for their comments and feedback.

Gimbal: Enabling Multi-tenant Storage Disaggregation on SmartNIC JBOFs

References

[1

=

[20]
[21]

[22

[23

[24]

[25]
[26

[27]

[28]

[29]

[32]

[33]

2017. Disaggregated or Hyperconverged, What Storage will Win the Enterprise?
https://www.nextplatform.com/2017/12/04/disaggregated- hyperconverged- st
orage-will-win-enterprise/.

2018. Free Your Flash And Disaggregate. https://www.lightbitslabs.com/blog/f
ree-your-flash-and-disaggregate/.

2018. Industry Outlook: NVMe and NVMe-oF For Storage. https://www.iol.unh.
edu/news/2018/02/08/industry-outlook-nvme-and-nvme-storage.

2019. What is Composable Disaggregated Infrastructure? https://blog.westerndi
gital.com/what-is-composable- disaggregated-infrastructure/.

2020. Alpha Data ADM-PCIE-9V3 FPGA SmartNIC. https://www.alpha-data.c
om/dcp/products.php?product=adm-pcie-9v3.

2020. AWS Nitro System. https://aws.amazon.com/ec2/nitro/.

2020. Broadcom FlexSPARX acceleration subsystem. https://docs.broadcom.co
m/doc/1211168571391.

2020. Broadcom Stingray PS1100R SmartNIC. https://www.broadcom.com/pro
ducts/storage/ethernet-storage-adapters-ics/ps1100r.

2020. Flexible I/O Tester. https://github.com/axboe/fio.

2020. Marvell LiquidIO SmartNICs. https://www.marvell.com/products/ethernet-
adapters-and- controllers/liquidio- smart-nics/liquidio- ii- smart-nics.html.

2020. Mellanox BlueField-2 SmartNIC. https://www.mellanox.com/products/bl
uefield2-overview.

2020. Mellanox Innova-2 Flex Open Programmable SmartNIC. https://www.me
llanox.com/products/smartnics/innova- 2-flex.

2020. Netronome Agilio SmartNIC. https://www.netronome.com/products/agili
o-cx/.

2020. NVM Express Base Specification. https://nvmexpress.org/developers/nvme-
specification/.

2020. NVM Express over Fabrics Specification. https://nvmexpress.org/develop
ers/nvme-of - specification/.

2020. The Intel Storage Performance Development Kit (SPDK). https://spdk.io/.
2020. Watts up? PRO. http://www.idlboise.com/sites/default/files/WattsUp_Pro
_ES.pdf.

2021. Brocade G620 Switch. https://www.broadcom.com/products/fibre-channel-
networking/switches/g620-switch.

2021. Cisco MDS 9000 Series Multilayer Switches. https://www.cisc
o.com/c/en/us/products/storage-networking/mds-9000-series-multilayer-
switches/index.html.

2021. RocksDB. https://rocksdb.org.

Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D Davis, Mark S Manasse,
and Rina Panigrahy. 2008. Design tradeoffs for SSD performance.. In USENIX
Annual Technical Conference.

Albert Gran Alcoz, Alexander Dietmiiller, and Laurent Vanbever. 2020. SP-PIFO:
approximating push-in first-out behaviors using strict-priority queues. In 17th
{USENIX} Symposium on Networked Systems Design and Implementation ({ NSDI}
20).

Thomas E Anderson, Susan S Owicki, James B Saxe, and Charles P Thacker. 1993.
High-speed switch scheduling for local-area networks. ACM Transactions on
Computer Systems (TOCS) 11, 4 (1993), 319-352.

Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford,
David Walker, and David Wentzlaff. 2020. Enabling programmable transport pro-
tocols in high-speed NICs. In 17th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 20). 93-109.

Jens Axboe. 2004. Linux block IO—present and future. In Ottawa Linux Symp.
Matias Bjorling, Jens Axboe, David Nellans, and Philippe Bonnet. 2013. Linux
Block IO: Introducing Multi-Queue SSD Access on Multi-Core Systems. In Pro-
ceedings of the 6th International Systems and Storage Conference.

Lawrence S. Brakmo and Larry L. Peterson. 1995. TCP Vegas: End to end conges-
tion avoidance on a global Internet. IEEE Journal on selected Areas in communica-
tions 13, 8 (1995), 1465-1480.

Feng Chen, Binbing Hou, and Rubao Lee. 2016. Internal parallelism of flash
memory-based solid-state drives. ACM Transactions on Storage (TOS) 12, 3 (2016),
1-39.

Feng Chen, David A Koufaty, and Xiaodong Zhang. 2009. Understanding intrinsic
characteristics and system implications of flash memory based solid state drives.
ACM SIGMETRICS Performance Evaluation Review 37, 1 (2009), 181-192.

Eric Chung, Andreas Nowatzyk, Tom Rodeheffer, Chuck Thacker, and Fang Yu.
2014. An3: A low-cost, circuit-switched datacenter network. Technical Report
MSR-TR-2014-35, Microsoft Research (2014).

Tae-Sun Chung, Dong-Joo Park, Sangwon Park, Dong-Ho Lee, Sang-Won Lee,
and Ha-Joo Song. 2009. A survey of flash translation layer. Journal of Systems
Architecture 55, 5-6 (2009), 332-343.

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing.

A. Demers, S. Keshav, and S. Shenker. 1989. Analysis and Simulation of a Fair
Queueing Algorithm. In Proceedings of the 2015 ACM Conference on Special Interest

[34

[35

[36

[37

[38

[39

=
=

[41

[42]

[43

[44

[45

[46

[47

[49

[50

[51

[53

SIGCOMM ’21, August 23-28, 2021, Virtual Event, USA

Group on Data Communication.

Peter Desnoyers. 2012. Analytic modeling of SSD write performance. In Proceed-
ings of the 5th Annual International Systems and Storage Conference.

Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silberstein. 2019.
NICA: An Infrastructure for Inline Acceleration of Network Applications. In 2019
USENIX Annual Technical Conference (USENIX ATC 19).

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Pop-
uri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure Accel-
erated Networking: SmartNICs in the Public Cloud. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18).

Pawan Goyal, Harrick M Vin, and Haichen Chen. 1996. Start-time fair queueing:
A scheduling algorithm for integrated services packet switching networks. In
Conference proceedings on Applications, technologies, architectures, and protocols
for computer communications.

Ajay Gulati, Irfan Ahmad, and Carl A. Waldspurger. 2009. PARDA: Proportional
Allocation of Resources for Distributed Storage Access. In 7th USENIX Conference
on File and Storage Technologies (FAST 09).

Zvika Guz, Harry (Huan) Li, Anahita Shayesteh, and Vijay Balakrishnan. 2017.
NVMe-over-Fabrics Performance Characterization and the Path to Low-Overhead
Flash Disaggregation. In Proceedings of the 10th ACM International Systems and
Storage Conference.

Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly
high-speed TCP variant. ACM SIGOPS operating systems review 42, 5 (2008),
64-74.

Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg Halim, Henry Hoff-
mann, and Haryadi S. Gunawi. 2020. LinnOS: Predictability on Unpredictable
Flash Storage with a Light Neural Network. In 14th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 20).

Mohammad Hedayati, Kai Shen, Michael L Scott, and Mike Marty. 2019. Multi-
queue fair queuing. In 2019 {USENIX} Annual Technical Conference ({USENIX}
{ATC} 19). 301-314.

Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agarwal. 2020. TCP * RDMA:
CPU-efficient Remote Storage Access with i10 . In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20).

Sitaram Iyer and Peter Druschel. 2001. Anticipatory scheduling: A disk scheduling
framework to overcome deceptive idleness in synchronous I/O. In Proceedings of
the eighteenth ACM symposium on Operating systems principles.

Myoungsoo Jung and Mahmut Kandemir. 2013. Revisiting widely held SSD expec-
tations and rethinking system-level implications. ACM SIGMETRICS Performance
Evaluation Review 41, 1 (2013), 203-216.

Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Yang-Suk Kee, and Moonwook
Oh. 2014. Durable write cache in flash memory SSD for relational and NoSQL
databases. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. 529-540.

Tae Yong Kim, Dong Hyun Kang, Dongwoo Lee, and Young Ik Eom. 2015. Improv-
ing performance by bridging the semantic gap between multi-queue SSD and
I/O virtualization framework. In 2015 31st Symposium on Mass Storage Systems
and Technologies (MSST).

Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu John, and Sanjeev Kumar.
2016. Flash Storage Disaggregation. In Proceedings of the Eleventh European
Conference on Computer Systems.

Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. ReFlex: Remote Flash
~ Local Flash. In Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems.
Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Wassel, Xian
Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,
Michael Ryan, David Wetherall, and Amin Vahdat. 2020. Swift: Delay is Sim-
ple and Effective for Congestion Control in the Datacenter. In Proceedings of
the Annual Conference of the ACM Special Interest Group on Data Communica-
tion on the Applications, Technologies, Architectures, and Protocols for Computer
Communication.

HT Kung and Alan Chapman. 1993. The FCVC (flow-controlled virtual channels)
proposal for ATM networks: A summary. In 1993 International Conference on
Network Protocols. IEEE, 116-127.

H. T. Kung, Trevor Blackwell, and Alan Chapman. 1994. Credit-Based Flow
Control for ATM Networks:Credit Update Protocol, Adaptive Credit Allocation,
and Statistical Multiplexing. In Proceedings of the Conference on Communications
Architectures, Protocols and Applications.

Sergey Legtchenko, Hugh Williams, Kaveh Razavi, Austin Donnelly, Richard
Black, Andrew Douglas, Nathanaél Cheriere, Daniel Fryer, Kai Mast, An-
gela Demke Brown, Ana Klimovic, Andy Slowey, and Antony Rowstron. 2017. Un-
derstanding Rack-Scale Disaggregated Storage. In Proceedings of the 9th USENIX
Conference on Hot Topics in Storage and File Systems.

https://www.nextplatform.com/2017/12/04/disaggregated-hyperconverged-storage-will-win-enterprise/
https://www.nextplatform.com/2017/12/04/disaggregated-hyperconverged-storage-will-win-enterprise/
https://www.lightbitslabs.com/blog/free-your-flash-and-disaggregate/
https://www.lightbitslabs.com/blog/free-your-flash-and-disaggregate/
https://www.iol.unh.edu/news/2018/02/08/industry-outlook-nvme-and-nvme-storage
https://www.iol.unh.edu/news/2018/02/08/industry-outlook-nvme-and-nvme-storage
https://blog.westerndigital.com/what-is-composable-disaggregated-infrastructure/
https://blog.westerndigital.com/what-is-composable-disaggregated-infrastructure/
https://www.alpha-data.com/dcp/products.php?product=adm-pcie-9v3
https://www.alpha-data.com/dcp/products.php?product=adm-pcie-9v3
https://aws.amazon.com/ec2/nitro/
https://docs.broadcom.com/doc/1211168571391
https://docs.broadcom.com/doc/1211168571391
https://www.broadcom.com/products/storage/ethernet-storage-adapters-ics/ps1100r
https://www.broadcom.com/products/storage/ethernet-storage-adapters-ics/ps1100r
https://github.com/axboe/fio
https://www.marvell.com/products/ethernet-adapters-and-controllers/liquidio-smart-nics/liquidio-ii-smart-nics.html
https://www.marvell.com/products/ethernet-adapters-and-controllers/liquidio-smart-nics/liquidio-ii-smart-nics.html
https://www.mellanox.com/products/bluefield2-overview
https://www.mellanox.com/products/bluefield2-overview
https://www.mellanox.com/products/smartnics/innova-2-flex
https://www.mellanox.com/products/smartnics/innova-2-flex
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://nvmexpress.org/developers/nvme-specification/
https://nvmexpress.org/developers/nvme-specification/
https://nvmexpress.org/developers/nvme-of-specification/
https://nvmexpress.org/developers/nvme-of-specification/
https://spdk.io/
http://www.idlboise.com/sites/default/files/WattsUp_Pro_ES.pdf
http://www.idlboise.com/sites/default/files/WattsUp_Pro_ES.pdf
https://www.broadcom.com/products/fibre-channel-networking/switches/g620-switch
https://www.broadcom.com/products/fibre-channel-networking/switches/g620-switch
https://www.cisco.com/c/en/us/products/storage-networking/mds-9000-series-multilayer-switches/index.html
https://www.cisco.com/c/en/us/products/storage-networking/mds-9000-series-multilayer-switches/index.html
https://www.cisco.com/c/en/us/products/storage-networking/mds-9000-series-multilayer-switches/index.html
https://rocksdb.org

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

[54] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yonggiang Xiong, Andrew
Putnam, Enhong Chen, and Lintao Zhang. 2017. KV-Direct: High-Performance
In-Memory Key-Value Store with Programmable NIC. In Proceedings of the 26th
Symposium on Operating Systems Principles.

Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav Gogte, Sriram Govindan,

Dan R. K. Ports, Irene Zhang, Ricardo Bianchini, Haryadi S. Gunawi, and Anirudh

Badam. 2020. LeaplO: Efficient and Portable Virtual NVMe Storage on ARM

SoCs. In Proceedings of the Twenty-Fifth International Conference on Architectural

Support for Programming Languages and Operating Systems.

Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh Sivaraman, and Aditya Akella.

2020. PANIC: A High-Performance Programmable NIC for Multi-tenant Networks.

In 14th USENIX Symposium on Operating Systems Design and Implementation

(0SDI 20).

Chun-Yi Liu, Yunju Lee, Myoungsoo Jung, Mahmut Taylan Kandemir, and Wonil

Choi. 2021. Prolonging 3D NAND SSD lifetime via read latency relaxation. In

Proceedings of the 26th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems. 730-742.

Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon Peter, and

Karan Gupta. 2019. Offloading Distributed Applications onto SmartNICs Using

IPipe. In Proceedings of the ACM Special Interest Group on Data Communication.

[59] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo
Phothilimthana. 2019. E3: Energy-Efficient Microservices on SmartNIC-
Accelerated Servers. In 2019 USENIX Annual Technical Conference (USENIX ATC
19).

[60] Hui Lu, Brendan Saltaformaggio, Ramana Kompella, and Dongyan Xu. 2015.

vFair: latency-aware fair storage scheduling via per-IO cost-based differentiation.

In Proceedings of the Sixth ACM Symposium on Cloud Computing.

Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. 2015. A Large-Scale

Study of Flash Memory Failures in the Field. In Proceedings of the 2015 ACM

SIGMETRICS International Conference on Measurement and Modeling of Computer

Systems.

Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,

Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats.

2015. TIMELY: RTT-Based Congestion Control for the Datacenter. In Proceedings

of the 2015 ACM Conference on Special Interest Group on Data Communication.

[63] Jeonghoon Mo, Richard J La, Venkat Anantharam, and Jean Walrand. 1999. Anal-
ysis and comparison of TCP Reno and Vegas. In IEEE INFOCOM’99. Conference
on Computer Communications. Proceedings. Eighteenth Annual Joint Conference
of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.
99CH36320), Vol. 3. 1556-1563.

[64] Mihir Nanavati, Jake Wires, and Andrew Warfield. 2017. Decibel: Isolation and
Sharing in Disaggregated Rack-Scale Storage. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17).

[65] Stan Park and Kai Shen. 2012. FIOS: a fair, efficient flash I/O scheduler.. In FAST.

[66] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam, Carlo
Contavalli, and Amin Vahdat. 2017. Carousel: Scalable traffic shaping at end
hosts. In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication.

[67] Ahmed Saeed, Yimeng Zhao, Nandita Dukkipati, Ellen Zegura, Mostafa Ammar,

Khaled Harras, and Amin Vahdat. 2019. Eiffel: Efficient and Flexible Software

Packet Scheduling. In 16th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 19).

Mark R Schibilla and Randy J Reiter. 2012. Garbage collection for solid state disks.

US Patent 8,166,233.

[69] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. 2016. Flash Reliability
in Production: The Expected and the Unexpected. In 14th USENIX Conference on
File and Storage Technologies (FAST 16).

[55

[56

[57

[58

(61

[62

[68

[70] Kai Shen and Stan Park. 2013. FlashFQ: A fair queueing I/O scheduler for flash-
based SSDs. In 2013 {USENIX} Annual Technical Conference ({USENIX} {ATC}
13). 67-78.

[71] Vishal Shrivastav. 2019. Fast, scalable, and programmable packet scheduler in

hardware. In Proceedings of the ACM Special Interest Group on Data Communica-
tion.

[72] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh Lee, Han
Wang, Rachit Agarwal, and Hakim Weatherspoon. 2019. Shoal: A Network
Architecture for Disaggregated Racks. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19).

[73] David Shue and Michael] Freedman. 2014. From application requests to Virtual
IOPs: Provisioned key-value storage with Libra. In Proceedings of the Ninth
European Conference on Computer Systems.

[74] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole,

Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin

Katti, and Nick McKeown. 2016. Programmable packet scheduling at line rate. In

Proceedings of the 2016 ACM SIGCOMM Conference.

Arash Tavakkol, Juan Gémez-Luna, Mohammad Sadrosadati, Saugata Ghose,

and Onur Mutlu. 2018. MQSim: A Framework for Enabling Realistic Studies of

Modern Multi-Queue SSD Devices. In 16th USENIX Conference on File and Storage

Technologies (FAST 18).

[75

Min and Liu, et al.

[76] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis, Antony Row-

stron, Tom Talpey, Richard Black, and Timothy Zhu. 2013. Ioflow: A software-
defined storage architecture. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles.

Matthew Wachs, Michael Abd-El-Malek, Eno Thereska, and Gregory R Ganger.
2007. Argon: Performance Insulation for Shared Storage Servers.. In FAST.
Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Manu Awasthi, Tameesh Suri,
Zvika Guz, Anahita Shayesteh, and Vijay Balakrishnan. 2015. Performance
characterization of hyperscale applicationson on nvme ssds. In Proceedings of the
2015 ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems.

Jinfeng Yang, Bingzhe Li, and David J Lilja. 2020. Exploring Performance Char-
acteristics of the Optane 3D Xpoint Storage Technology. ACM Transactions on
Modeling and Performance Evaluation of Computing Systems (TOMPECS) 5, 1
(2020), 1-28.

Jinfeng Yang, Bingzhe Li, and David J Lilja. 2021. HeuristicDB: a hybrid storage
database system using a non-volatile memory block device. In Proceedings of the
14th ACM International Conference on Systems and Storage. 1-12.

Yiying Zhang, Leo Prasath Arulraj, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. 2012. De-indirection for flash-based SSDs with nameless writes..
In FAST.

Gimbal: Enabling Multi-tenant Storage Disaggregation on SmartNIC JBOFs

Appendices are supporting material that has not been peer-
reviewed.

Appendix A Additional SSD characteristics

Figure 14 demonstrates the performance impact of write amplifica-
tion by comparing two conditions: SSDs pre-conditioned with large
sequential (clean) and random IO (fragmented) patterns. Adding
5% writes reduces the overall IOPS by 42.6% in the fragmented case.
Compared to the clean case, the fragmented one achieves 16.9%
and 17.8% of the throughput of write-only and 90/10 W/R scenarios,
respectively.

Figure 15 compares the unloaded latency in a clean SSD v.s. three
other scenarios for different IO sizes. On average, across these cases,
fragmented SSD, 70/30 read/write mix, and 8 concurrent IOs cause
52.0%, 83.6%, and 80.5% latency increase, respectively. Larger I0s
(e.g., 128/256KB) observe more degradation as they are more likely
to contend with other requests.

Appendix B Dynamics of Congestion Control

In this section, we provide experimental results that illustrate the
following aspects of SSD behavior: (a) delay as a function of SSD
load, (b) dynamic latency threshold determined by the congestion
control algorithm, and (c) bandwidth capability estimated by the
congestion control algorithm.

As shown in Figure 17, the observed latency increases dramat-
ically when the load exceeds the throughput capacity. With the
congestion control algorithm, the SSD maintains an average de-
lay in a stable range, providing throughputs close to the device
maximum. We plot the typical behavior of the congestion control
algorithm as it adapts the delay threshold based on observed laten-
cies. Figure 18 shows the latency threshold according to the EWMA
latency. As the number of outstanding IO increases, the EWMA
latency begins to exceed the threshold, and hit the threshold more
frequently as expected.

Appendix C Additional Details of the Gimbal Switch

Algorithm 2 Gimbal IO scheduler

procedure SCHED_SUBMIT
virt_slot = tenant.curr_virt_slot
io.tenant = tenant

1:

2

3

4 io.virt_slot = virt_slot

5: virt_slot.submits += 1

6 virt_slot.size += io.weighted_size
7 if virt_slot.size > 128KB then

8 virt_slot.is_full = true

9 close(virt_slot)

10: if open_virt_slot(tenant) == fail then

11: move_to_deferred(tenant)

12: procedure SCHED_COMPLETE

13: tenant = io.tenant

14: v_slot = io.virt_slot

15: v_slot.completions += 1

16: if v_slot.is_full AND v_slot.submits == v_slot.completions then
17: reset(v_slot)

18: if tenant.deferred AND open_slot(tenant) == success then
19: move_to_active(tenant)

SIGCOMM ’21, August 23-28, 2021, Virtual Event, USA

We now describe some more implementation details of the soft-
ware storage switch. We describe how to manage virtual slots, how
to handle heterogeneity in request bundle sizes caused by the write
tax and how the system maintains lists of tenants with requests.
We then provide the pseudocode of the scheduling algorithm.

Active and deferred list. Our scheduler calls a function on
every IO submission and is also triggered as a callback function
when there is an IO completion event. The whole logic is described
in Algorithm 2. Generally, the scheduler applies the DRR service
discipline for inter-tenant fair storage resource allocation. For each
slot in use, the scheduler tracks if its outstanding I/Os are completed
and free the slot when the operations are done. When the chosen
tenant is in the deferred list then the callback function tries to open
new virtual slot. If it succeeds, then the tenant is removed from the
deferred list, added to the active list. For each tenant in the active
list, the scheduler will accumulate the deficit value, and move to the
deferred list when there are no more available virtual slots. Here,
the basic quantum for a deficit is 128KB (the maximum IO size). As
described before, it also takes the write cost into considerations
and uses the weighted IO size.

Credit-based Flow Control Our protocol is integrated with
the NVMe-oF submission and completion command processing
(Algorithm 3). Upon issuing a request, if there are enough credits,
the command is sending to the target side, and the inflight count
is increased; otherwise, applications receive a busy device signal,
and storage I/Os will be scheduled later. When receiving a NVMe-
OF completion request, it first processes the NVMe-oF command,
extracts the credit value, updates the latest credit amount, decrease
the inflight count, and then resumes storage workloads via callbacks.
Note that all credit manipulation operations are atomic.

Algorithm 3 Credit-based flow control inlined with the NVMe-oF
request processing

1: procedure NVMEOF_REQ_SUBMIT(req)

2 target_ssd = req.ssd

3 if target_ssd.credit_tot > target_ssd.inflight then

4 ret = submit_nvmeof_req(req)

5: if ret is success then

6 target_ssd.inflight = target_ssd.inflight + 1
7 else

8

ret = device.busy
return ret

9: procedure NVMEOF_REQ_COMPLETE(req)
10: target_ssd = req.ssd

11: ret = complete_nvmeof_req(req)
12: if ret is success then
13: target_ssd.credit_tot = credit_obtain(req)

14: target_ssd.inflight = target_ssd.inflight — 1
15: completion_callback(req) > Application specific
16: return ret

C.1 Dual Token Bucket for Read and Write

We describe the detail algorithm of the dual token bucket here
(Algorithm 4). A burst submission of write I/Os should be avoided
since it causes a latency spike even under moderate bandwidth.
Gimbal employs a token bucket algorithm in the rate pacing module
to mitigate the burstiness. A single bucket for both read and write

SIGCOMM 21, August 23-28, 2021, Virtual Event, USA

Min and Liu, et al.

o

Clean-RD —— Frag-RD Vanilla ——= 70/30 (R/W] 4KB read —¢—
@ 2000 Clean-WR —=— Frag-WR @ g 128KB {Z:d
a o] 4KB write —%—
S 1500 SRR 4’\ 128KB write
< £ ¥ #
2 1000 °
= 2 4
k] 2
§ 500 g o
a \-\ m
0F=—— 0 o %]
20 40 60 80 100 4 8 16 32 64 128 256 1 5 10 20 40 80 160 320
Read Ratio 10 size (KB) Per-10 added processing latency (us)

Figure 14: 4KB IO performance as increasing Figure 15: Random read latency varying Figure 16: 4KB/128KB read/write bandwidth

the read ratio in clean and fragmented condi- IO request size under different scenarios.

tions. QD=queue depth.
B T ‘ 2,500%
23,000 (- - - = 4KB Latency Congestion | L\\ku‘ A g
g Unt] 1 ~
2 - - - 128KB Latency . A ;«Z‘,’M', A A

@ 2,000 |- o aal
=7 —— Read BW et A 5
[i Q
21,000 s ==) 15008
o bl :
g N A g
4 ‘ ‘ ‘ | g
1,000 2

0 10 m =

20
Time (sec)
Figure 17: Latency increases over time under the 4KB/128KB read

mixed workload. Left and right Y-axis represent latency and aggre-
gated bandwidth, respectively.

lat

/ot 4

Latency (us)

100

Figure 18: Dynamic Latency Threshold (128KB Random Read)

does not prevent the burst submission because the DRR IO scheduler
in Gimbal does not reorder read and write I/Os so that it is possible
that only a single kind of IO operations may be dequeued in a
series. Gimbal has only one target rate which is the sum of read and
write bandwidth and it is significantly higher than a desirable write
bandwidth. Therefore, the single bucket approach would submit
write I/Os at a wrong rate and cause severe latency increments in
this case. Hence, Gimbal employs a dual token bucket algorithm.
There are two buckets for each read and write. Tokens are generated
by the target rate and then distributed to each bucket according

to the IO cost. Specifically, out of the total generated tokens, the
£ write_cost
write_cost+1

bucket receives the remainder or the amount of

is given to the read bucket and the write

1
write_cost+1

we allow overflowed tokens to transfer between each other. Thus,
dual token bucket offers the flexibility in rate pacing mechanism
while avoiding the burst submission of write I/Os for write intensive
workloads. Our dual token bucket works globally and applies to
all tenants. Algorithm 4 in Appendix describes the token update
procedure in detail.

Token bucket size. Gimbal does not reorder I/Os when de-
queued from the DRR scheduler. As a result, one bucket needs to
wait for the next IO if (1) the dequeued IO is not for the bucket and
(2) the other bucket does not have sufficient tokens to submit the IO.
A smaller bucket size would cause one bucket drops lots of tokens
during the wait time. Since the read bucket typically waits for the
write bucket, a small-sized one would hurt read bandwidth. On the
other hand, a large bucket size allows the read bucket to accumu-
late tokens during the wait time, increasing the read bandwidth.

amount o

. Lastly,

as increasing the per-IO processing cost on
SmartNIC JBOFs.

Algorithm 4 Dual Token Bucket

procedure UPDATE_TOKEN_BUCKETS()
max_tokens « 256KB

avail_tokens = target_rate X time_since_last_update
write_cost

read_tokens += avail_tokens X Trwrite cost

1:

2

3

4

5: write_tokens += avail_tokens X Trwrite cost
6 if read_tokens > max_tokens then

7 write_tokens += read_tokens - max_tokens

8 read_tokens = max_tokens

9 if write_tokens > max_tokens then

10: read_tokens += write_tokens - max_tokens
11: read_tokens = min(read_tokens, max_tokens)
12: write_tokens = max_tokens

We evaluated the range from 128KB to 512KB and set the size to
256KB empirically, which provides a fair bandwidth allocation for
read/write under a mixed-IO workload.

Appendix D Characterizing JBOF Multi-tenancy

This section characterizes the multi-tenancy support for today’s
SmartNIC JBOFs. In the disaggregated storage environment, dif-
ferent IO streams interact with each other along the IO path, and
will impact their performance. We categorize interference factors
into three types, i.e., IO intensity, IO size, and IO pattern (read v.s.
write, random v.s. sequential). We then use controlled experiments
to demonstrate how each factor affects a storage stream perfor-
mance and causes unfair resource sharing. Our experiment setup
is described in Section 5.1 and we use the fio [9] utility plus the
SPDK fio plugin. Note that (1) fio NVMe-oF clients run on different
client servers, and read/write to the same NVMe SSD; (2) we use
dedicated NVMe-oF target cores to handle different fio streams.

IO intensity: indicates how frequent a storage stream issues
10 requests to the remote storage. We configure two competing fio
storage streams with the same IO request size and read/write type.
Both streams can maximize the SSD bandwidth alone, but they differ
in the iodepth (i.e., the number of outstanding IO requests) where
stream1 issues twice the number of requests as stream2. Figure 19
reports the results for 4KB random read and 16KB sequential write,
respectively. On average across different IO sizes, stream1 achieves
2.0x and 1.8x more bandwidth compared with stream2 for two
cases, respectively. This is because the NVMe-oF target receives
more requests from stream1, and submits more NVMe commands
to SSD device queues. As a result, stream1 obtains more bandwidth
share than stream2.

10 size: presents the read/write block size of an NVMe-oF re-
quest within a stream. Again, we configure two competing fio
storage streams with the same read/write type and iodepth (which

Gimbal: Enabling Multi-tenant Storage Disaggregation on SmartNIC JBOFs

SIGCOMM ’21, August 23-28, 2021, Virtual Event, USA

S S—
2500 Stream{-RND-RD === Streami1-SEQ-WR —— @ 2000
_ Stream?2-RND-RD = Siream2-SEQ-WR ——1 2
3 =
@ 2000
g £ 1500
= 1500 E
3 2 10001\ |
])
8 1000 g \
3 E 500}
@ 500 s ~
% —_—
0 a8 16 32 64 128 256 0 % [y

SEQread only ——
SEQ read+write T——1

4KBrand read —%—
4KB sequential read
4KB rand write —6—

RND read only =
RND read+write S

4KB

0
write

g ‘
P 0 S

10 request size (KB)

Figure 19: Bandwidth of two competing stor-
age streams with different I0 depth varying
the IO request size.

is large enough to saturate the remote bandwidth). The IO size of
stream1 is 4KB, and stream?2 gradually increase its size. We report
the achieved bandwidth of stream1 under four cases in Figure 20.
Even though two storage streams would submit the similar amount
of requests into the NVMe drive, apparently, large IO occupies more
bandwidth for any of the random/sequential read/write scenarios.
For example, in the case of random read, when stream1 and stream2
are both 4KB, each stream takes around 850.0 MB/s. When a 4KB
stream1 mixes with 64KB stream2, stream1 only uses 91.0MB/s,
while stream2 achieves 1473.0MB/s.

2500
Avg-rnd-wr —%—
P99.9-rnd-wr
__2000 Avg-seq-wr —e—
a P99.9-seq-wr
. 1500
2
© 1000
©
—
500
p
[0). T
0 4 8 16 32 64 128 256

Stream2 |0 request size (KB)

Figure 22: Avg./P99.9 latency of 4KB random read mixed with write
traffic varying its 10 request size.

Avg-rnd-wr ——
P99.9-rnd-wr
— Avg-seq-wr —6—
8 1000 HL_P99.9-seq-wr

P

4 8 16 32 64
Stream2 |0 request size (KB)

128

Figure 23: Avg./P99.9 latency of 4KB sequential write mixed with
read traffic varying its IO request size.

IO pattern: refers to the type of IO request (e.g., read or write,
random or sequential) of a storage stream. Since the NVMe SSD
presents distinct execution costs for different typed IOs, when
they mix, one would observe significant performance interference
in terms of latency and bandwidth. We set up two competing
fio streams with the same adequate io depth and io size where
stream1/stream2 performs read/write, respectively. As Figure 21
shows, compared with the standalone mode, stream1 only achieves
38.9% and 27.3% bandwidth (on average across different IO sizes)
for random and sequential cases when mixed IO happens. This is

%0

10 request size of stream2 (KB)

Figure 20: Stream1 bandwidth (4KB ran-
dom/sequential read/write) varying the IO re-
quest size for stream2.

80 100 120 4 16 32 64 1

10 request size (KB)

Figure 21: Stream1 bandwidth compared be-
tween standalone v.s. mixed cases varying the
10 request size.

mainly because the read/write request handling within the SSD
has lots of overlapping [75, 78], such as device-level IO request
queue, FTL engine, write cache, flash chip controller for accessing
the planes, etc.

Next, in terms of latency, we run a 4KB random read stream,
and couple with another stream issuing random/sequential writes,
varying its IO size (Figure 22). We also repeat the same experiment
by mixing a 4KB sequential write stream with a random/sequential
read streams (Figure 23). Adding background traffic (stream2) defi-
nitely hurts the average and tail latency of the frontend one (stream1).
This is due to the head-of-line blocking impact coming from inter-
leaved different typed IOs. The larger the IO size is, the more latency
degradation one would observe. For example, considering random
read under sequential write, the average/p99.9 latency of the 128KB
case is 1.7x and 2.6X higher than the 4KB case, respectively. Further,
the curve becomes flat in Figure 22 after 16KB because stream2
has saturated the maximum write bandwidth. Therefore, to iso-
late different storage streams, one should also take the read/write
distribution and carefully monitor its dynamic execution costs at
runtime.

Appendix E RocksDB LSM-tree

RocksDB [20] is based on an LSM-tree data structure, consisting of
two key components: Memtable, an in-memory data structure that
accumulates recent updates and serves reads of recently updated
value; SSTable, collections of sorted key-value pairs maintained in a
series of levels. When the memtable reaches the size limit, it is per-
sisted as an SSTable by flushing the updates in sequential batches
and merging with other overlapping SSTables. Also, low-level SSTa-
bles are merged into high-level ones via compaction operations.
L SSTables contain the latest data, while L;..L,, contain the older
data. Files within each level are maintained in a sorted-order, with
a disjoint key-range for each SSTable file (except in Ly, where each
SSTable file can span the entire key-range). Data retrieval starts
from the Memtable and will look up multiple SSTables (from level
0 to high levels) until finding the key.

	Abstract
	1 Introduction
	2 Background and Motivating Experiments
	2.1 NVMe-over-Fabrics Protocol
	2.2 SmartNIC JBOF
	2.3 Multi-tenant Disaggregated Storage
	2.4 Challenges of SmartNIC-based Disaggregation

	3 SmartNIC as a Switch
	3.1 Overview
	3.2 Delay-based SSD Congestion Control
	3.3 Rate Control Engine
	3.4 Write Cost Estimation
	3.5 Two-level Hierarchical IO Scheduler and Virtual slot
	3.6 End-to-End Credit-based Flow Control
	3.7 Per-SSD Virtual View

	4 Implementation
	4.1 Switch Pipeline
	4.2 Parameters of Gimbal
	4.3 Case Study: RocksDB over Gimbal

	5 Evaluation
	5.1 Experiment Methodology
	5.2 Utilization
	5.3 Fairness
	5.4 Latency
	5.5 Dynamic Workloads
	5.6 Application Performance
	5.7 Overheads
	5.8 Generalization
	5.9 Summary

	6 Related Work and Discussion
	7 Conclusion
	Acknowledgments
	References
	A Additional SSD characteristics
	B Dynamics of Congestion Control
	C Additional Details of the Gimbal Switch
	C.1 Dual Token Bucket for Read and Write

	D Characterizing JBOF Multi-tenancy
	E RocksDB LSM-tree

