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Abstract: Standard methods of �tting �nite mixture models take into account the majority of observations in
the center of the distribution. This paper considers the case where the decision maker wants to make sure
that the tail of the �tted distribution is at least as heavy as the tail of the empirical distribution. For instance,
in nuclear engineering, where probability of exceedance (POE) needs to be estimated, it is important to �t
correctly tails of the distributions. The goal of this paper is to supplement the standard methodology and
to assure an appropriate heaviness of the �tted tails. We consider a new Conditional Value-at-Risk (CVaR)
distance between distributions, that is a convex function with respect to weights of the mixture. We have
conducted a case studydemonstrating e�ciency of the approach.Weights ofmixture are foundbyminimizing
CVaR distance between the mixture and the empirical distribution. We have suggested convex constraints on
weights, assuring that the tail of the mixture is as heavy as the tail of empirical distribution.
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1 Introduction
Finite mixtures (or mixture distributions) allow to model complex characteristics of a random variable. They
are frequently used in the cases where data are not normally distributed. For example, �nite mixtures are
well suited for modeling heavy tails. Another application of �nite mixtures is to model multi-modal random
variables.

The ability to model heavy tails is important in risk management and �nancial engineering. Finite mix-
tures are frequently used in these �elds to model a wide variety of random variables. For example, paper
[14]estimates Value-at-Risk (VaR) for a heavy-tailed return distribution using a �nite mixture. Paper [3] mod-
els asset prices with a log-normal mixture. Paper [1] models the error distribution of the GARCH(1,1) with a
�nite mixture, the resulting model is called NM-GARCH.

Finite mixtures are also frequently used in machine learning for clustering and classi�cation of the data.
For example, paper [10] uses the Gaussian mixture models for image classi�cation.

Expectation Maximization (EM) is a popular algorithm for �tting mixture models. In general, EM solves
a nonconvex optimization problem with respect to parameters of the mixture. The original EM algorithm, as
de�ned in [4], does not allow for additional constraints in the problem. There exist modi�cations of original
EM algorithm with di�erent constraints. For example [6] presents a modi�ed EM algorithm that can handle
linear equality constraints on the parameters. Papers [5] and [13] presents modi�cation of EM algorithm that
can handle linear equality and inequality constraints and linear and nonlinear equality constraints respect-
fully.

This article derives a new methodology for �tting mixture models with constraints on length of the tails
of the mixture distribution. The methodology is based on the concept of Conditional Value at Risk (CVaR)
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distance between distributions. In �nance, CVaR is also called Expected Shortfall (ES). This paper deals with
the weights of the individual distributions in the mixture and imposes CVaR constraints on the tails of the
mixture. The resulting problem is a convex minimization problem. We also formulate a problem with cardi-
nality constraints on the number of nonzero weights in the mixture. In this case, the resulting problem is
mixed-integer minimization problem with convex objective function and convex constraints on CVaRs of the
�tted mixture . We present a case study that illustrates a method of �tting a normal (Gaussian) mixture such
that the resulting tales of the mixture are at least as heavy as the tails of the empirical distribution.

2 Finite Mixture and CVaRα-distances Between Distributions
Let F1(x, θ1), . . . , Fm(x, θm) be a set of cumulative distribution functions (CDFs), where x ∈ R and θi is the
parameter set of a distribution Fi. The CDF of the mixture of F1(x, θ1), . . . , Fm(x, θm) is de�ned as follows.

De�nition 1. Let p = (p1, . . . , pm)T be the column vector of weights of the mixture, p ≥ 0 and pT1 = 1, the
CDF of a �nite mixture is de�ned as

Fp,θ(x) =
m∑
j=1

pjFj(x, θj). (1)

In this de�nition, θ = (θ1, . . . , θm) is the vector of parameters. Further, we will omit θ from Fp,θ(x) and write
the CDF of the mixture as Fp(x). Normal distributions are usually used for construction of �nite mixtures.

2.1 CVaRα - norm of Random Variables

We denote the CVaR of a random variable (r.v.) X at the the con�dence level α ∈ [0, 1) by CVaRα(X),

CVaRα(X) = min
C

(
C + 1

1 − αE[X − C]+
)
, (2)

where [x]+ = max(x, 0), C ∈ R and E is an expectation operator. if X is a continuous random variable then

CVaRα(X) = E(X|X > qα(X))

where qα(X) is the α quantile of X

qα(X) = inf{x ∈ R | P(X > x) ≤ 1 − α}

with P denoting probability. Additionally, It can be shown that CVaR0(X) = E(X). CVaRα(X) is a convex mea-
sure of risk with respect to X and satis�es coherent risk measure properties proposed by Artzner in [2]. For a
comprehensive analysis of the CVaRα(X) risk-measure see [12], [11].

We denote by ‖X‖α the CVaRα-norm of X at the con�dence level α ∈ [0, 1),

‖X‖α = CVaRα(|X|). (3)

CVaRα -norm is the expectation of 1 − α largest absolute values of X. The CVaRα -norm for the deterministic
case was introduced in [8] and for the stochastic case in [7]. CVaRα-norm satis�es the following standard
properties:
1. If ‖X‖α = 0⇒ X ≡ 0 almost surely (a.s.),
2. ‖λX‖α = |λ|‖X‖α for any λ ∈ R (positive homogeneity),
3. ‖X + Y‖α ≤ ‖X‖α + ‖Y‖α for any r.v.s X, Y, de�ned on the same probability space (Ω, µ,F) (triangle in-

equality).



Fitting heavy-tailed mixture models with CVaR constraints | 367

2.2 CVaRα -distance

This section introduces the concept of CVaRα-distance between distributions. The CVaRα-distance was de-
�ned by Pavlikov and Uryasev [9] in the context of discrete distributions.

A distance function on a set V is de�ned as a map d : V × V 7→ R satisfying the following conditions
∀x, y ∈ V:
1. d(x, y) ≥ 0 (non-negativity axiom);
2. d(x, y) = 0 if and only if x = y (identity of indiscernibles);
3. d(x, y) = d(y, x) (symmetry);
4. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).
Assume that there are two r.v.s Y and Z, with corresponding CDFs, F(x) and G(x). Assume also that there is
some auxiliary r.v. H with CDF W(x). We de�ne a new r.v. XW , representing the di�erence between F(x) and
G(x), as

XW (F, G) = F(H) − G(H).

Note, that the auxiliary r.v. H may coincide with one of the r.v.s Y and Z, i.e., W(x) may be equal to F(x) or
G(x).

De�nition 2. CVaRα distance at some con�dence level α ∈ [0, 1), between distributions of two r.v.s Y and Z
with corresponding CDFs FY and GZ is de�ned as

dWα (F, G) = ‖XW (F, G)‖α , (4)

where H is an auxiliary r.v. with CDF WH .

3 Distribution Approximation by a Finite Mixture

3.1 CVaRα -distance Minimization

This section presents a method of approximating CDF F with the mixture Fp , by �nding weights p in the
mixture. Other parameters of the mixture (such as mean and variance in case of Gaussian mixtures) are as-
sumed to be estimated using EM or maximum likelihood. The objective is to minimize the CVaRα distance (4)
between F and Fp . It will be shown later in the paper, that the resulting problems of �tting the mixture, are
convex programming problems. In this section, only two types of constraints are considered. The �rst type
of constraints, simply assures that each element of vector p is positive, and the second type of constraints
assures that the elements of p sum to 1. The CVaRα constraints will be added in the next section.

We approximate CDF F(x) with the mixture Fp(x) by �nding weights p in the following minimization
problem:

min
p
dWα (F, Fp)

s.t. (5)

pT1 = 1
p ≥ 0

Further we prove that, function Q(p) = dWα (F, Fp) is a convex function of weights p.

Proposition 3.1. Q(p) = dWα (F, Fp) is a convex function of p.

Proof. Let λ ∈ [0, 1]. From the de�nition of Fp(x) and properties of CVaR norm:

Q(λp + (1 − λ)p̂) = dWα (F, Fλp+(1−λ)p̂) = ‖XW (F, Fλp+(1−λ)p̂)‖α =



368 | Giorgi Pertaia and Stan Uryasev

= ‖F(H) − Fλp+(1−λ)p̂(H)‖α = ‖F(H) −
m∑
j=1

(λpj + (1 − λ)p̂j)Fj(H)‖α =

= ‖λ[F(H) −
m∑
j=1

pjFj(H)] + (1 − λ)[F(H) −
m∑
j=1

p̂jFj(H)]‖α ≤

≤ λ‖F(H) −
m∑
j=1

pjFj(H)‖α + (1 − λ)‖F(H) −
m∑
j=1

p̂jFj(H)‖α =

= λQ(p) + (1 − λ)Q(p̂).

The idea of using the CVaRα - norm to �t the �nite mixtures, was �rst explored by V. Zdanovskaya and S.
Uryasev in an unpublished report.

3.2 CVaRα -constraint

This section adds CVaRα constraints to the problem (5). The CVaRα constraints ensure a speci�ed heaviness
of the tail. For example, if some portfolio loss distribution is approximated by a mixture, CVaRα constraints
guarantee that CVaRα of the �tted mixture will be greater than or equal to the speci�ed threshold.

Let Xp be a r.v. having CDF of the mixture of distributions Fp(x), de�ned by (1).

Proposition 3.2. CVaRα(Xp) is a concave function of p.

Proof. Using the de�nition of CVaRα and X

CVaRα(Xλp+(1−λ)p̂) = min
C

C + 1
1 − α

∫
R

[
x − C

]+dFλp+(1−λ)p̂(x)

 =

= min
C

C + 1
1 − α

∫
R

[
x − C

]+d
( m∑

j=1
(λpj + (1 − λ)p̂j)Fj(x)

) =

= min
C

C + 1
1 − α

m∑
j=1

(λpj + (1 − λ)p̂j)
∫
R

[
x − C

]+dFj(x)

.

Let

zj(C) = 1
1 − α

∫
R

[
x − C

]+dFj(x),

then

CVaRα(Xλp+(1−λ)p̂) = min
C

C +
m∑
j=1

(λpj + (1 − λ)p̂j)zj(C)

 =

= min
C

λ[C +
m∑
j=1

pjzj(C)] + (1 − λ)[C +
m∑
j=1

p̂jzj(C)]

 ≥
≥ λmin

C

C +
m∑
j=1

pjzj(C)

 + (1 − λ) min
C

C +
m∑
j=1

p̂jzj(C)

 =

= λCVaRα(Xp) + (1 − λ)CVaRα(Xp̂).
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Again,we are given the randomvariable Y and its distribution F thatwewant to approximatewith themixture
distribution Fp. The goal is to construct a mixture Fp such that, CVaRα(k)(Xp) ≥ CVaRα(k)(Y), where Xp is a
r.v. with distribution Fp and α(k) ∈ {α1, ..., αK} is some set of con�dence levels. Adding CVaRα constraints
to the problem (5) we have,

min
p
dWα (F, Fp) (6)

s.t.
CVaRα(k)(Xp) ≥ CVaRα(k)(Y), k = 1, . . . , u

pT1 = 1
p ≥ 0

The objective function in (6) is convex and the feasible region is the intersection of convex sets, thus (6) is a
convex optimization problem.

3.3 Cardinality Constraint

In certain applications, it might be important to limit the number of distributions in the �tted mixture, or
otherwise, the number of nonzero weights in the mixture. This section presents a variant of model (5) with
constraints on the maximum number of nonzero weight in p. Initially, a mixture withm distributions if �tted
to the data, using some standard method, for example maximum likelihood. Next, the problem (5) is solved
with additional constraint that only M ≤ m weights in p are allowed to be nonzero.

Let us denote

card(p) =
m∑
i=1

g(pi), where g(pi) =
{

1 if pi > 0
0 if pi ≤ 0

.

Problem (5) with cardinality constraint is rewritten as

min
p
dWα (F, Fp) (7)

s.t.
card(p) ≤ M

pT1 = 1
p ≥ 0

Equivalently:

min
p
dWα (F, Fp) (8)

s.t.
m∑
j=1

rj ≤ M

rj ∈ {0, 1}, j = 1, . . . ,m
pj ≤ rj , j = 1, . . . ,m

pT1 = 1,
p ≥ 0.

Problem (8) is a mixed integer programming problem (MIP) and can be solved using standard MIP solvers.
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4 Case Study: Fitting Mixture by minimizing CVaRα-distance
This section solves problem (6) that �ts the �nite mixture to an empirical CDF. The empirical cumulative
distribution for some sample Ȳ = {y1, . . . , yn} is de�ned as,

Fn(Ȳ) = 1
n

n∑
i=1

1{y≥yi}, (9)

where n is the number of observations and 1{*} is an indicator function. This case study uses the data consid-
ered in the research paper [15] and the corresponding case study https://www.ise.u�.edu/uryasev/research/
testproblems/�nancial_engineering/. Portfolio Safeguard (PSG) version 2.3 http://aorda.com is used to solve
the optimizationproblemsandMATLAB for plotting anddatamanagement. The case study codes anddata are
posted at http://www.ise.u�.edu/uryasev/research/testproblems/advanced-statistics/. We used PSGs pre-
coded CVaR function to set the constraints on the mixture. In this case study, the CVaRα-distance with α = 0
is considered. The distributions in themixture are chosen to beNormal (Gaussian) and therefore the resulting
mixture is the Gaussian mixture

Fp(x) =
m∑
j=1

pjΦ(x, µi , σi), (10)

whereΦ(x, µi , σi) is anormal CDFwithmean µi and standarddeviation σi. Parameters µi and σi are estimated
with EM algorithm. The estimated parameters of the mixture are in Table 1.

Table 1: Parameters of normal distributions in the mixture �tted with EM.

j µj σj pj
1 0.0020 0.0014 0.1970
2 0.0100 0.0046 0.1882
3 0.0344 0.0144 0.2382
4 0.0583 0.0206 0.2581
5 0.0957 0.0365 0.1185

For the mixture with parameters in Table 1 and the empirical distribution, we have calculated CVaR0.9,
CVaR0.95, CVaR0.99 and CVaR0.995, see Table 2.

Table 2: CVaRs of empirical distribution and normal mixture �tted by the EM algorithm. CVaRα(k)(Xp) is the CVaR of mix-
ture with con�dence α(k) and CVaRα(k)(Y) is the CVaR of empirical distribution. The entries in “Di�erence" column are
CVaRα(k)(Xp) − CVaRα(k)(Y).

k α(k) CVaRα(k)(Xp) CVaRα(k)(Y) Di�erence

1 90% 0.1118 0.1115 0.0002
2 95% 0.1300 0.1292 0.0007
3 99% 0.1626 0.1666 -0.0040
4 99.5% 0.1735 0.1814 -0.0079

Table 2 column “α(k)" contains con�dence levels. In the column “CVaRα(k)(X)" are CVaRs of the mix-
ture and column “CVaRα(k)(Y)" contains CVaRs of the empirical distribution. The column labeled as “Dif-
ference" shows the di�erence between CVaR of mixture and CVaR of empirical distribution (CVaRα(k)(Xp) −
CVaRα(k)(Y)).

https://www.ise.ufl.edu/uryasev/research/testproblems/financial_engineering/
https://www.ise.ufl.edu/uryasev/research/testproblems/financial_engineering/
http://aorda.com
http://www.ise.ufl.edu/uryasev/research/testproblems/advanced-statistics/
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Further, the CVaR distance, as given in Problem (6), is minimized with respect to the weights. CVaRs of
the mixture are constrained to be greater or equal to the empirical CVaRs

min
p
dWα (Fn , Fp) (11)

s.t. CVaRα(k)(Xp) ≥ CVaRα(k)(Y), k = 1, . . . , u

pT1 = 1
p ≥ 0

Optimal weights of the mixture, obtained by solving (11), are given in Table 3.

Table 3:Weights of the mixture calculated with CVaRα-distance minimization (6).

j pj
1 0.1936
2 0.2911
3 0.1226
4 0.2071
5 0.1857

objective: 0.030791

The CVaRs for the resulting mixture are shown in Table 4, alongside the CVaRs for the corresponding
empirical distribution.

Table 4: CVaRs of empirical distribution and normal mixture �tted by minimizing CVaR distance with CVaR constraints.
CVaRα(k)(Xp) is the CVaR of mixture with con�dence α(k) and CVaRα(k)(Y) is the CVaR of empirical distribution. The entries
in “Di�erence" column are CVaRα(k)(Xp) − CVaRα(k)(Y).

k α(k) CVaRα(k)(X) CVaRα(k)(Y) Di�erence

1 90% 0.126 0.1115 0.0145
2 95% 0.1428 0.1292 0.0136
3 99% 0.1715 0.1666 0.0049
4 99.5% 0.1814 0.1814 0.0000

Table 4 shows that CVaR constraints are satis�ed, i.e. CVaRα(k)(X) ≥ CVaRα(k)(Y), k = 1, . . . , 4. How-
ever only the CVaR with α = 99.5% is active (CVaR99.5%(X) = CVaR99.5%(Y) = 0.1814), for other CVaRs the
inequality is strict.

The quantile-quantile (QQ) plots are used to visually compare quantiles of empirical distribution and
quantiles of �tted mixture. QQ plots graph the quantiles of one distribution against quantiles of another
distribution (pair of quantiles are evaluated for the same probability). If the two distributions are identical,
the points (pairs of quantiles) will form a straight line with 0 intercept and 45 degree slope.

Figure 1 shows the QQ plot for the mixture �tted with just EM algorithm. The quantiles of empirical dis-
tribution are on “Y" axis and quantiles of �tted mixture are on “X" axis. The mixture is �tted well in the
center of the distribution, since in the center, the mixture quantiles and empirical quantiles form a straight
line with 45 degree slope. However, the points corresponding to the quantiles of the right tails are above the
45 degree line, i.e. the mixture �ted with just EM algorithm has thinner tails than the empirical distribution
(mixture quantiles are smaller for the same probability values). Figure 2 shows the QQ plot for the mixture
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Figure 1: QQ plot of mixture with parameters calculated with EM. “X" axis shows quantiles of the mixture and “Y" axis shows
quantiles of the empirical distribution.

Figure 2: QQ plot of the mixture with parameters calculated by minimizing CVaR0-distance as de�ned in (11). “X" axis shows
quantiles of the mixture and “Y" axis shows quantiles of empirical distribution.

�tted with the CVaR constraints. In this case, the quantiles on tails are closer to the empirical, however the
quantiles towards center are below the line, indicating that quantiles in the center of the mixture are larger
than corresponding quantiles in the empirical distribution.

Similar to QQ plots we show CVaR to CVaR plot, which graphs two distribution CVaRs against each other
(evaluated for the same α values). The idea behind CVaR to CVaR plot is identical to QQ plots.

Figure 3 shows CVaR to CVaR plot of the mixture �tted with EM andmixture �tted with CVaR constraints.
The CVaRs of the mixture �tted with CVaR constraints are heavier or equal to the empirical CVaRs. In this
�gure the points corresponding to the CVaRαs are above the line, except for the last point, that is on the line.
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Figure 3: This is the analog of QQ plots, but CVaRs are plotted instead of the quantiles. Horizontal axis shows CVaRs of the em-
pirical distribution and the vertical axis shows CVaRs of the mixtures. The star symbols (*) shows CVaRs of the original mixture
�tted with EM. The empty circle symbols (o) shows CVaRs of mixture �tted by minimizing CVaR distance with CVaR constraints.

This indicates that only the last CVaRα constraint (α(4) = 99.5%) is active and other CVaRs are heavier (larger)
than speci�ed in the right hand side of the constraints.

5 Conclusion
We presented a new method for �tting mixture distributions using CVaR distance. To assure that tails of
the mixture distribution are as heavy as tails of empirical distribution, we used CVaR constraints on the
mixture distribution. We also considered a cardinality constraint specifying that the number of distributions
with nonzero weights in the mixture is bounded by some constant. We proved that the CVaR of the mixture
is a concave function with respect to the weights of mixture. The case study illustrated �tting of the mix-
ture with CVaR constraints of 90%, 95%, 99%, 99.5% con�dence levels. The case study demonstrated that
the suggested procedure ensures that the tails of the �ttedmixture are as heavy as speci�edby the constraints.
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