
GIS suitability modeling to support a pipeline route selection

Americo Gamarra Penn State University MGIS Candidate

> Advisor: Dr. Patrick Kennelly Capstone Project Proposal

October, 2014

Overview

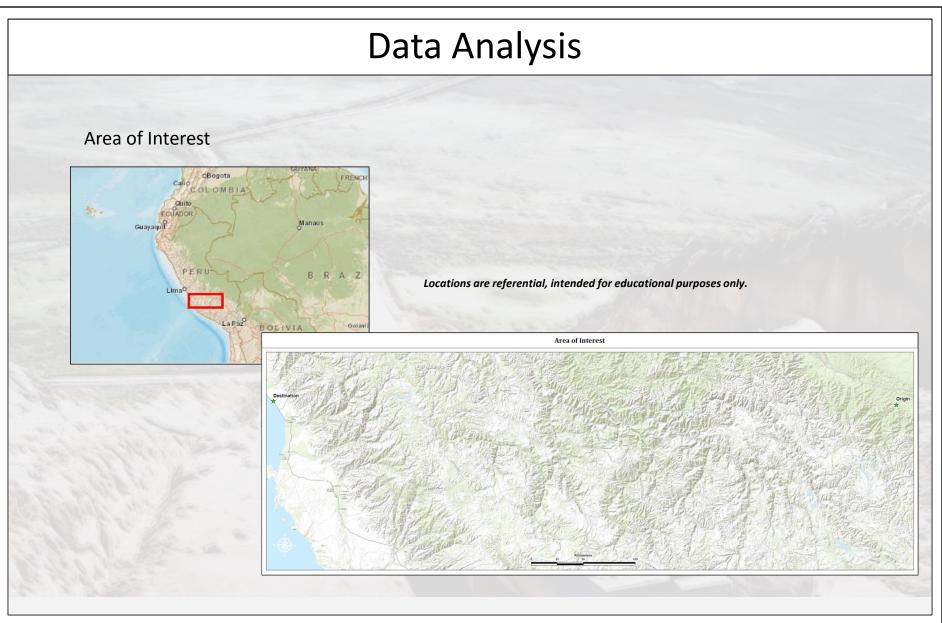
- 1) Background
- 2) Objective
- 3) Data Analysis
- 4) Methodology
- 5) Data Processing
- 6) Results and Products
- 7) Data Sharing
- 8) Opportunities for future improvement
- 9) Project Timeline
- 10) References

Background

- Pipelines are used to transport large volumes of oil or gas over long distances.
- Selecting the optimum pipeline route is the first key step in the pipeline design and construction. An effective route will have direct impact financially, and throughout the pipeline life cycle during construction and operations phases.
- "Choosing the shortest, most direct route is always a goal for capital expenditure reasons, but many important goals exist simultaneously in the route selection project and at times these goals may conflict" (Yildirim, 2007).
- Spatial information has always played an important role in pipeline routing, from traditional paper maps where engineers would "draw" the route, to geo-processing models that automate the engineers criteria to identify the route.

Background

- The use of GIS to support the pipeline route selection has extensively been discussed, and it continues to be an area of research as GIS technologies continues to evolve, data availability improves, and the criteria or conditions (terrain, geographic, geophysical, anthropological, etc.) are never the same for different pipeline projects.
- Peru is a country where the larger oil/gas fields are located in the Amazon region, and pipelines have been built to transport product to the coast facilities throughout the Andes mountains. Pipeline route design is always a challenge because of the difficult geography.



Objective

Use GIS technologies to support the Engineering department to identify the best route for a future pipeline in the south of Peru, which would start in a known location in the Amazon forest and would arrive at another known location on the coast. Consider engineering requirements (topography, elevation, slopes) as well as legal, environmental, archaeological and social constraints.

To accomplish this objective these are the main tasks:

- Gather data and information required.
- Generate maps to support "traditional" route identification.
- Create a geo-processing model to automatically identify the route or corridors for pipeline
- Share findings and outputs with involved areas throughout the company by using traditional paper maps describing routes (Alignment Sheets) and also using web map applications.

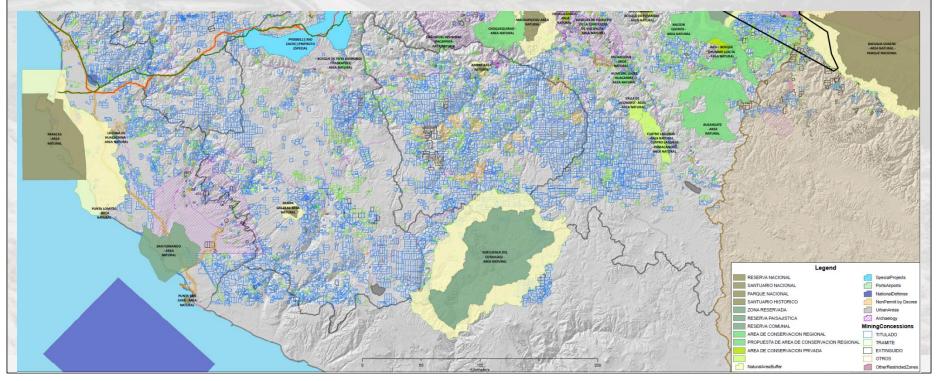
Data Analysis

Data Required

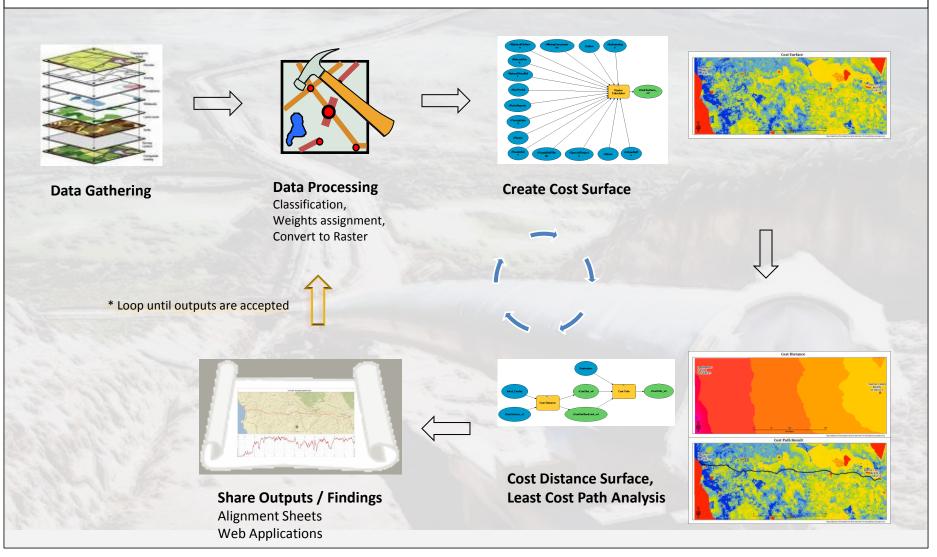
The data required to identify the best pipeline route depends on the engineering requirements and other criteria considered for the analysis.

Engineering constraints

- Avoid areas which elevation is above than 5,000 meters (16,400 feet)
- Avoid terrain slopes larger than 35 degrees, optimum being less than 5 degrees.
- From logistics perspective, avoid areas 20 km (or more) away from roads. Preferred areas are within 5 km to existing roads. Minimize roads crossings.
- Preferred areas are those with no or low risk geohazards, and try to avoid areas with high risk of land slides, sand dunes movement, tectonic faults, etc.
- Preferred areas are where historically rain is no greater than 500 mm per year.


Environmental, legal, archaeological, and social constraints

- Avoid environmental sensitive areas like national parks, reserves, sanctuaries, lakes, and minimize river crossings.
- Avoid any urban or populated areas, but areas within 5 km are preferred.
- Avoid national projects, non-permit, national defense, ports and airports.
- Minimize crossing areas with active mining concessions.
- Avoid national archaeological zones and areas with high risk for social conflicts


Data Analysis

Data Required

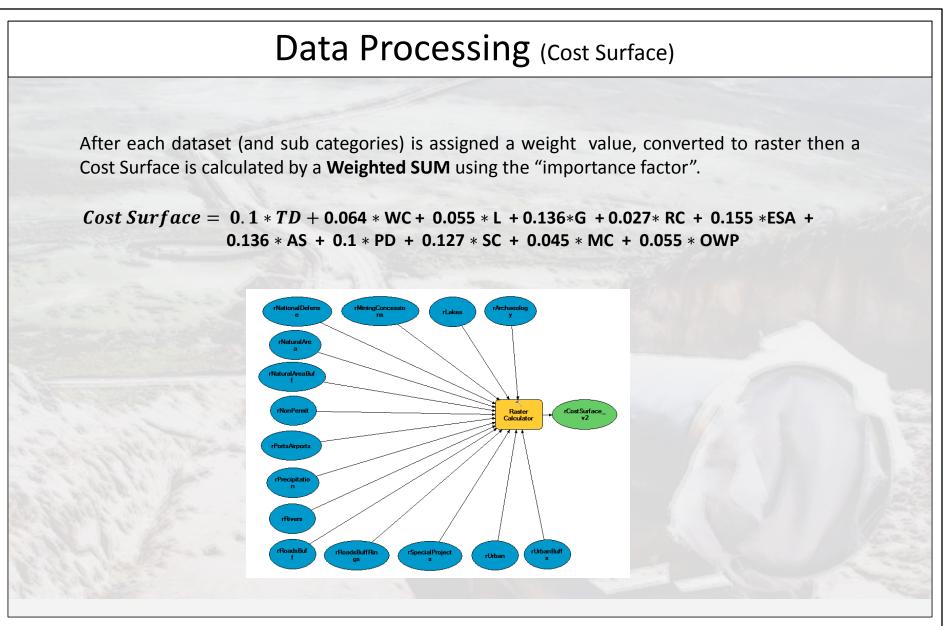
Based on the criteria the information required includes: 30m DEM, derived slopes, roads, geological hazards, weather/rain conditions, environmentally sensitive areas, mining concessions, archaeological zones, rivers and streams, areas with social conflicts, urban/populated areas.

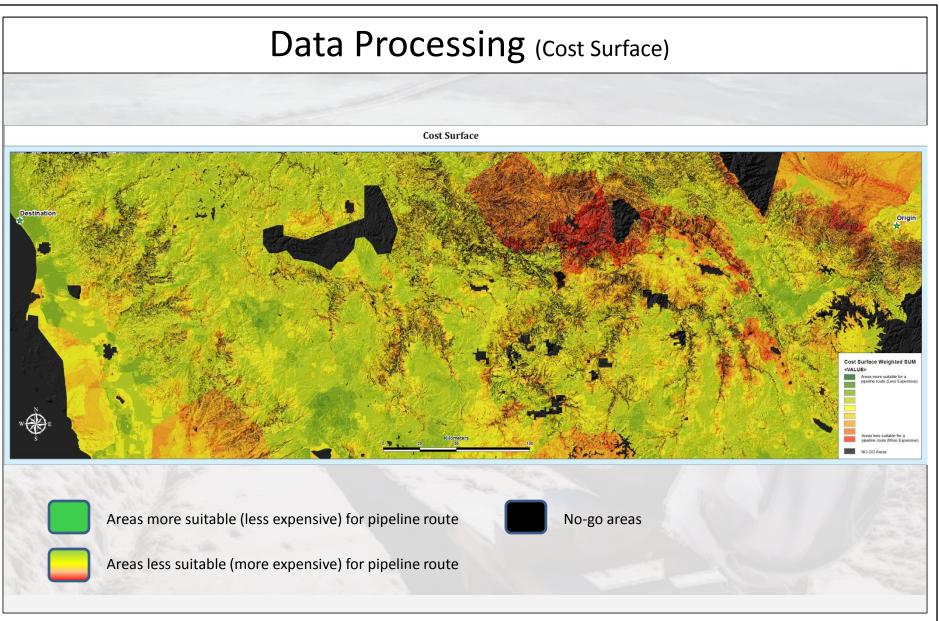
Methodology

Data Processing (Data Classification)

Dataset	Source	Categories	Buffer	Add PixelValue Column	Weight	Convert to Raster	Raster	
Archaeology	Ministry of Culture	Main sites		Yes	9	Yes	rArchaeology	
Archaeology	Ministry or Culture	Minor sites	1	res	7	res		
Lakes	National Institute of Geography			Yes	100	Yes	rLakes	
Mining Concessions	National Institute of Geology	Active		Yes	7	Yes	rMiningConcessions	
Mining Concessions	National Institute of Geology	Non Active		Tes	3	res		
National Defense	National Institute of Geology			Yes	100	Yes	rNationalDefense	
Natural Area		Reserved Area Regional Conservation Private Conservation Others			5		rNaturalArea	
	Ministry of Enviromental Affairs	Community Reserve Landscape Reserve		Yes	8	Yes		
		National Sanctuary National Park National Reserve Historic Sanctuary			100			
Natural Area Buffer Zone	Ministry of Enviromental Affairs			Yes	7	Yes	rNaturalAreaBuffe	
	National Institute of Geography	Existing Pipelines RoW		Yes	0	Yes	rNonPermit	
Non Permit by Decree	National Institute or Geography	Other Restricted Areas		res	9	res	nvoneemik	
Ports and Airports	National Institute of Geography			Yes	100	Yes	rPortsAirports	
		0 to 50 mm		Yes	1			
Precipitation	National Service of Hydrology, Navigation and Weather	50 to 500 mm			3		rPrecipitation	
(historic rain statistics per year)		500 to 1000 mm			5	Yes		
(instancialitistatistics per year)	nangaloriana wealter	1000 to 3000 mm			7			
		more than 3000 mm			9			
Rivers	National Institute of Geography		Yes(40 m)	Yes	9	Yes	rRivers	
Roads	Ministry of Transportation		Yes(20 m)	Yes	9	Yes	rRoads	
Roads Buffer Rings		0 to 5,000 m	Yes	Yes	1		rRoadsBuffRings	
		5 to 10 km			4	Yes		
		10 to 15 km	165		6	165		
		15 to 20 km			7			
Special Projects	National Institute of Geology			Yes	9	Yes	rSpecialProjects	
Urban Areas	SUNARP (Real Estate and Public Registry)			Yes	100	Yes	rUrban	
		0 to 1,000 m			8		rUrbanBuffs	
Urban Areas Buffer Rings		1 to 3 km	Yes	Yes	5	Yes		
		3 to 5 km			3			

Data Processing (Weights Assignment)

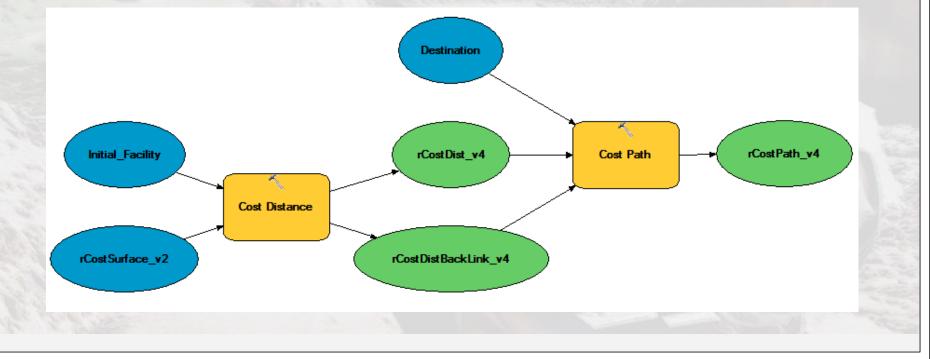

First each dataset gets an "importance factor" which is calculated by a direct comparison of each data set against all other datasets.


FACTOR		Weather Conditions	Logistics (Roads)	Geohazards	No of river crossings	ISensitive	Archaeologi cal Sites			Mining Concesions	Overlap with Other Projects		"Importance" FACTOR
Terrain Difficulty		1	1	1	2	0	0	1	1	2	2	11	10.0%
Weather Conditions	1		1	1	2	0	0	0	0	0	2	7	6.4%
Logistics (Roads)	1	1		0	1	0	0	0	0	2	1	6	5.5%
Geohazards	1	1	2		2	1	1	2	2	2	1	15	13.6%
No of river crossings	0	0	1	0		0	0	0	0	1	1	3	2.7%
Environ. Sensitive Areas	2	2	2	1	2		2	1	1	2	2	17	15.5%
Archaeological Sites	2	2	2	1	2	0		2	1	1	2	15	13.6%
Population Density	1	2	2	0	2	1	0		0	2	1	11	10.0%
Social Conflicts	1	2	2	0	2	1	1	2		2	1	14	12.7%
Mining Concesions	0	2	0	0	1	0	1	0	0		1	5	4.5%
Overlap with Other Projects	0	0	1	1	1	0	0	1	1	1		6	5.5%
	9	13	14	5	17	3	5	9	6	15	14	110	100%
	20	20	20	20	20	20	20	20	20	20	20		

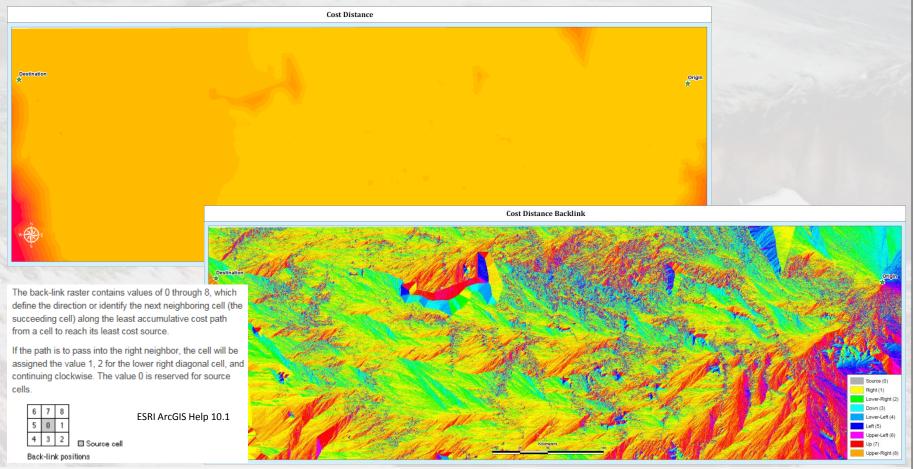
Data Processing (Weights Assignment)

Each dataset is classified in categories and each category is assigned a weight (from 0 to 10). No-go areas are assigned a value of 100.

SCORES CATEGORIES										
Terrain Difficulty (TC)			Logistics/Roads (L)		No River cross	ings (RC)				
Less than 5 degrees	0.5		Access within 5 km	1	One RV-Xing every 10 km or more				1	
5 to 10 degrees	1		Acces within 5 to 10 km	4	One RV-Xing every 5 to 10 km					
10 to 15 degrees	1.9		Access within 10 to 15 km	6	One RV-Xing every 1 to 5 km				6	
15 to 20 degrees	3.6		Access within 15 to 20 km	7	More than 1 RV-Xings every 1 km				8	
20 to 35 degrees	9		Access more than 20 km	8						
Greater than 35 degrees	100	No go								
			Geohazards (G)		Environmenta	l Sensitiv	e Areas	ESA)		
Weather conditions /Rain (WC) Do not exist any		0	No Env. Sensitive zones				1			
Less than 50 mm/year	0.5		Low	3	Other minor ser	nsitive zon	es		5	
50 to 500 mm/year	1.5		Medium	6	Buffer zones				7	
500 to 1000 mm/year	4		High	9	Reserved zone, landscape or community reserves				8	
1000 to 3000 mm/year	6				National Reserve, Park, Sanctuary, big water bodies (lakes, lagoons, ocean).			100	No go	
More than 3000 mm/year	8									
			Social Conflicts (SC)		Population de	nsity (PD)			
Archaelogical Zones (AZ)			Low Potential	2	More than 5 km to populated areas (towns)			1		
National archaeological zone	9		Moderate Potential	5	3 to 5 km to populated areas			3		
Minor archaelogical zones	7		High Potential	8	1 to 3 km to populated areas			5		
Non archaeological zones	0				0.5 to 1 km to populated areas		10			
					Less than 500 m				100	No go
Mining Concesions (MC)			Overlap with other proje	cts (OWP)						
No Mining Concesions	0		No overlaping	0						
Granted but not active	3		Overlaping with other Ro\	2						
Active	7		Overlaping with others	10						

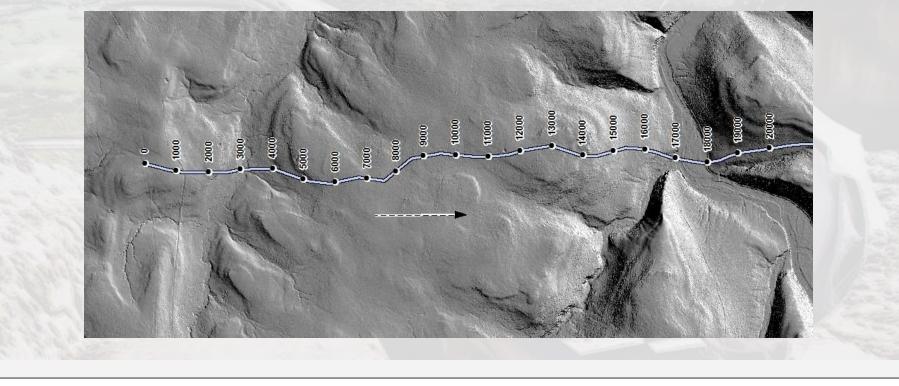


Data Processing (Cost Distance / Cost Path)

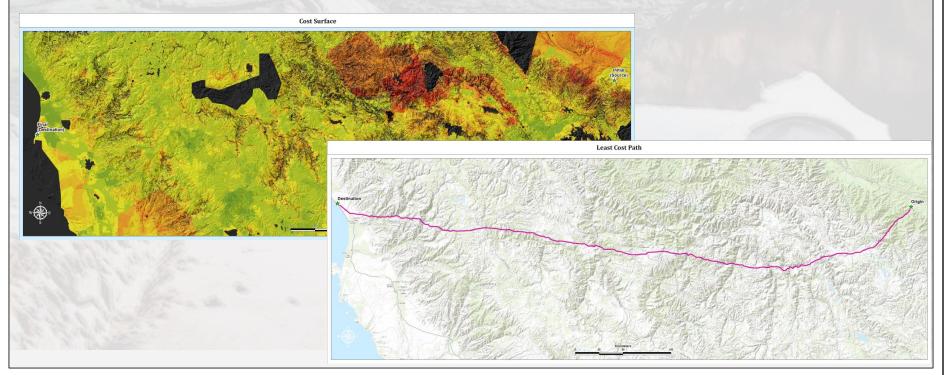

Using the Cost Distance Surface as input two geo processes take place to calculate the least cost path:

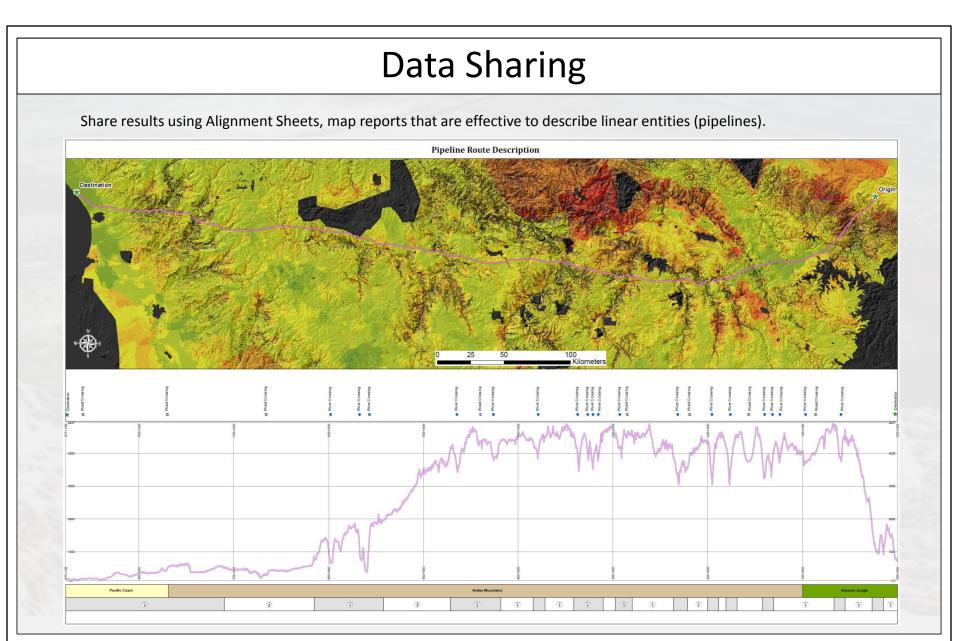
- Cost Distance (outputs: Cost Distance & Cost Distance Backlink) for an initial or source location.
- Cost Path (output: Least Cost Path)

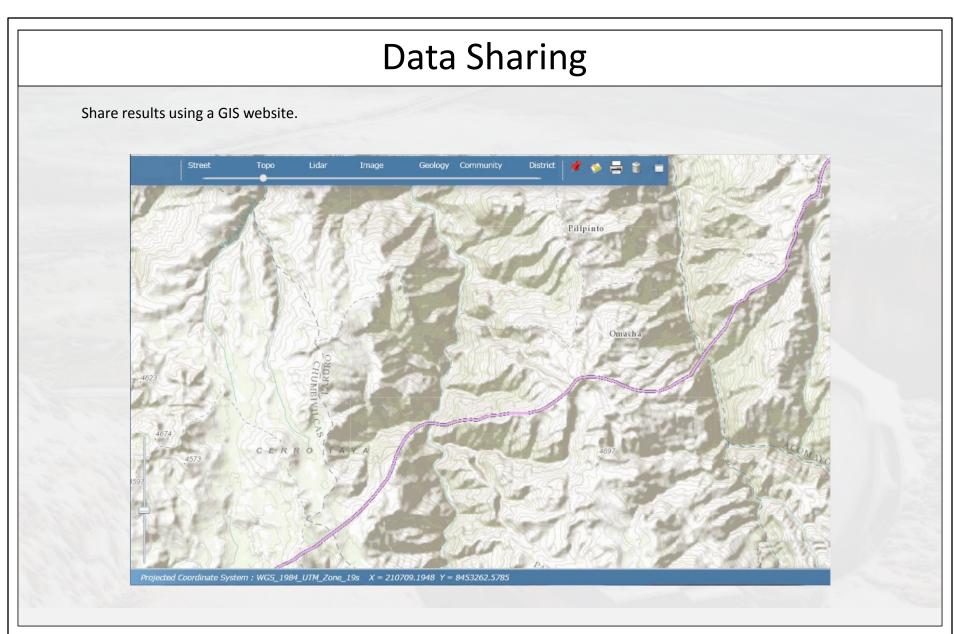
Data Processing (Cost Distance)


Cost Distance & Cost Distance Backlink

Data Processing (Cost Path)


- Least Cost Path is then converted from raster to a polyline.
- The polyline is then converted to a "calibrated line" or Linear Referencing entity (XYZM Polyline), where Z values are gathered from the input 30m DEM and M values (3D distance) are calculated for each vertices.




Preliminary Results and Products

Some preliminary attempts have been done as a "prove of concept" for this project, and Engineering department considers two main products for decision making about the pipeline route.

- Cost Surface
- Least Cost Path (XYZM Polyline) as a reference for pipeline route.

Opportunities for Future Improvement

- Data Refinement
 - Public data (available through Peruvian government institutions) might not fulfill requirements of this project specially for Rivers/Streams and Roads.
 - Search for additional data sources.
 - Test hydrology tools to delineate streams/rivers beds.
- Weights assignment
 - Weights assignment will continue to change in a "fine-tune" process in order to better reflect reality.
- Data sharing
 - Design Alignment Sheet Template, as per final user requests
 - Web GIS app design (Using Microsoft Silverlight)
- Results Comparison
 - Compare route calculated by computer against route(s) manually identified by engineers, and hopefully compare against final route. Identify ways to improve suitability model

Project Timeline

- Data Gathering and initial analysis 09/2014
- Prove of concept, project proposal and peer review 10/2014
- Data and suitability model refinement 12/2014
- Data sharing (alignment sheets and GIS website design). 02/2015
- Project Presentation 04/2015

References

BERRY, J. K., 2003, "Applying AHP in Weighting GIS Model Criteria" (http://www.innovativegis.com/basis/supplements/bm_sep_03/t39_3_ahpsupplement.htm)

BYRON, S., 2010, "Risk-based pipeline routing improves success probability" (<u>https://gis.e-education.psu.edu/sites/default/files/capstone/byron_Oil_%26_Gas_Journal_0.pdf</u>)

CHURCH, R.L., LOBAN, S.R. and LOMBARD, K., 1992, An interface for exploring spatial alternatives for a corridor location problem.

FULLER, D.O., WILLIAMSON, R., JEFFE, M. and JAMES, D., 2003, Multi-criteria evaluation of safety and risks along transportation corridors on the Hopi Reservation. Applied Geography

INGEMMET (Instituto Geologico Minero y Metalurgico del Perú) (http://geocatmin.ingemmet.gob.pe/geocatmin/)

GAMARRA, A., 2011 "GIS is a tool for pipeline management" (http://proceedings.esri.com/library/userconf/proc11/papers/3729_197.pdf)

GOODCHILD, M., 2001, Geographic Information Systems and Science.

MALCZEWSKI, J. and OGRYCZAK, W., 1996, The multiple criteria location problem

Opara, T., 2013, "Pipeline Routing using GIS and Remote Sensing" (http://www.edc.uri.edu/nrs/classes/nrs409509/509_2013/Opara.pdf)

YILDIRIM V., 2007, "GIS BASED PIPELINE ROUTE SELECTION BY ARCGIS IN TURKEY" (http://proceedings.esri.com/library/userconf/proc07/papers/abstracts/a2015.html)