
Git and GitHub
CS 4411

Spring 2020

If that doesn’t fix it, git.txt contains the phone number of a friend of mine who understands git. Just wait through a few minutes
of “It’s really pretty simple, just think of branches as...” and eventually you’ll learn the commands that will fix everything.

Outline for Today
• Git overview

• Git vs. GitHub

• Basic Git commands

• Conflicts and merges

• Branches

• Recovering from errors

Git Model
Remote repo

Local repo

A B C

Head

Commits

A B

Commit C:
/src/grass/process.c
/src/grass/process.h
/src/apps/mt.c

Makefile
src
|---apps
|---earth
|---grass
| |---process.c
| |---process.h
|---lib

C

Head

Repo contents

“Working tree”

Origin

Making a Commit
Remote repo

Local repo

A B C

Head

A B C D

Origin

Commit D:
/src/apps/mt.c
/src/apps/myprogram.c
/src/make/Makefile.apps

Head

D

push

Git with GitHub
GitHub repo: etremel/egos

Local repo

Origin

GitHub repo: jsmith/egos

A B C

Head

E

Fork

Local repo

A B C

Origin

Head

E

A B C

Head

A B C D

Head

D

Outline
• Git overview

• Git vs. GitHub

• Basic Git commands

• Conflicts and merges

• Branches

• Recovering from errors

Getting Started with Clone
• git clone: Create a new local repository by copying a remote repo

• Result: New folder named “ejt64-egos” in current directory,
containing new git repo

• Contents identical to repo on server

• Origin set to https://github.coecis.cornell.edu/cs4411-
2020sp/ejt64-egos.git

$ git clone https://github.coecis.cornell.edu/cs4411-2020sp/ejt64-egos.git

Protocol Path to repository on server Server

HTTPS or SSH?

• Easy to start, no setup required

• Must enter username and password every time you pull or push

• Once set up, no username or password required

• Need to create an SSH key on your
computer and add it to your Cornell
GitHub account

$ git clone https://github.coecis.cornell.edu/cs4411-2020sp/ejt64-egos.git

$ git clone git@github.coecis.cornell.edu:cs4411-2020sp/ejt64-egos.git

Add and Commit
1. Make changes to files

2. Choose some changed files that you’re ready to “publish”

3. git add the changed files

4. git commit and write a message

~/egos$ vim src/apps/mt.c
~/egos$ vim src/grass/process.c
~/egos$ git add src/apps/mt.c
~/egos$ git commit Commit E:

/src/apps/mt.c

Pull and Push
• At first, a commit is only on your local repo

• git push copies commits to the “origin” remote repo

• git pull downloads commits from origin and applies them

A B

Local repo

C D

Head

A B C D

Head Origin repo

A B

Partner’s repo

C D

Head
push

pull

Understanding Git Status
~/egos$ git status
On branch master
Your branch is up to date with 'origin/master'

Changes to be committed:
 (use "git reset HEAD <file>…" to unstage)

 modified: src/grass/process.c

Changes not staged for commit:
 (use "git add <file>…" to update what will be committed)

 modified: src/grass/disksvr.c

Untracked files:
 (use "git add <file>…" to include in what will be committed)

 src/apps/myprogram.c

Current branch

Whether you have
unpushed commits

Changes you have
added with git add

git knows a file has
changed, but you

haven’t added it yet

New files you have not
yet added in any commit

Git Status After a Commit
~/egos$ git status
On branch master
Your branch is 1 commit behind 'origin/master'

Changes not staged for commit:
 (use "git add <file>…" to update what will be committed)

 modified: src/grass/process.c

Untracked files:
 (use "git add <file>…" to include in what will be committed)

 src/apps/tags
 src/grass/tags

You made a commit,
but haven’t pushed

These files still haven’t
been added to any commit

After your last commit,
you continued editing

this file

Ignoring Files You’ll Never Add
• Some files you never want

to commit: ctags files,
compiled output, LaTeX aux
files…

• Git will keep bothering you
about them in git status

• Add a file named
.gitignore to the root
of your repo, and then add
it to a commit

https://www.atlassian.com/git/tutorials/saving-changes/gitignore

~/egos$ cat .gitignore
ctags files
tags
LaTeX junk
*.aux
*.log
*.bbl
The debug log directory
logs/
Object files in the build dir
build/**/*.o
~/egos$

https://www.atlassian.com/git/tutorials/saving-changes/gitignore
https://www.atlassian.com/git/tutorials/saving-changes/gitignore
https://www.atlassian.com/git/tutorials/saving-changes/gitignore

Diff: What Am I Committing?
~/egos$ git diff
diff --git a/src/lib/queue.c b/src/lib/queue.c
index c638853..19106c3 100644
--- a/src/lib/queue.c
+++ b/src/lib/queue.c
@@ -19,7 +19,7 @@ struct element {
 void queue_init(struct queue *q){
 q->first = 0;
 q->last = &q->first;
- q->nelts = 0;
+ q->num_elements = 0;
 }

 /* Put it on the wrong side of the queue. I.e., make it the next
@@ -34,7 +34,7 @@ void queue_insert(struct queue *q, void *item){
 }
 e->next = q->first;
 q->first = e;

First file with
changes

Line number
skipped to

Deleted from original
(last commit)

Added in current
state of file

Skip ahead again
to line 34

Diff Details

• Shows differences only for that file

• Why does it give no results? I know I made changes!

• Answer: you have already git added your changes

~/egos$ git diff src/grass/process.c

~/egos$ git diff
~/egos$

~/egos$ git diff --staged
diff --git a/src/lib/queue.c b/src/lib/queue.c
index c638853..19106c3 100644
--- a/src/lib/queue.c
+++ b/src/lib/queue.c
@@ -19,7 +19,7 @@ struct element {

Un-Adding and Deleting
• Oops, I didn’t mean to add that file!

• Telling git you want to delete myprogram.c:

~/egos$ git add src/lib/queue.c
~/egos$ git reset HEAD src/lib/queue.c

~/egos$ git rm src/apps/myprogram.c
~/egos$ git status
On branch master
Your branch is up to date with 'origin/master'

Changes to be committed:
 (use "git reset HEAD <file>…" to unstage)

 deleted: src/apps/myprogram.c

Renaming
• Telling git you want to rename myprogram.c:

• Otherwise, git will think you deleted myprogram.c, and both
myprogram.c and newname.c will end up in the repo

~/egos$ git mv src/apps/myprogram.c src/apps/newname.c
~/egos$ git status
On branch master
Your branch is up to date with 'origin/master'

Changes to be committed:
 (use "git reset HEAD <file>…" to unstage)

 renamed: src/apps/myprogram.c -> src/apps/newname.c

Outline
• Git overview

• Git vs. GitHub

• Basic Git commands

• Conflicts and merges

• Branches

• Recovering from errors

Concurrent Changes
GitHub repo

My local repo

A B C

Head

A B C D

Head

D

Partner’s local repo

A B C E

Head

push

Possible Outcomes
• No conflicts, just merge
~/egos$ git pull
Editor pops up
Merge made by the 'recursive' strategy
 src/lib/queue.c | 14 +++++++-------
 1 file changed, 7 insertions (+), 7 deletions (-)

Partner’s local repo

A B C E

Head D

M

Merge branch 'master' of https://github.coecis.cornell.edu/etremel/egos.git

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit

Possible Outcomes
• Conflicting changes to the same file(s)

~/egos$ git pull
Auto-merging src/lib/queue.c
CONFLICT (content): Merge conflict in src/lib/queue.c
Automatic merge failed; fix conflicts and then commit the result
~/egos$ git status
On branch master
Your branch and 'origin/master' have diverged,
and have 1 and 1 different commits each, respectively.
…
Unmerged paths:
 (use "git add <file>..." to mark resolution)

 both modified: src/lib/queue.c

Conflict File Syntax
Inside queue.c:

void queue_add(struct queue *queue, void *item){
 struct element *e = calloc(1, sizeof(*e));

 e->item = item;
 e->next = 0;
<<<<<<< HEAD
 *queue->last = e;
 queue->last = &e->next;
 queue->nelts++;
=======
 *q->last = e;
 q->last = &e->next;
 q->num_elements++;
>>>>>>> 354a72479204de581ffa83551843b92e585506b8
}

Your local version of
conflicting lines

Origin repo’s version
of conflicting lines

Hash of commit from
origin that contains these

conflicting changes

HEAD means these
changes are in your
local HEAD commit

Merged lines
with no conflicts

Finishing the Merge
• Edit the file to choose a single version of the conflicting lines

• Make sure to delete the <<<<<<< and ======= lines!

• When you have resolved the conflict:

~/egos$ git add src/lib/queue.c
~/egos$ git commit
Write a message for the merge commit
~/egos$ git push

Outline
• Git overview

• Git vs. GitHub

• Basic Git commands

• Conflicts and merges

• Branches

• Recovering from errors

Git Branches
• Track different

sequences of commits
diverging from common
starting point

• Make explicit what
happened already when
you & your partner made
conflicting commits

• Let you choose when to
merge

A B C J

D

master

K

E

new-
feature

Branch Basics

• Creates a new branch, pointing to same

commit as master

• New commit goes on thread-develop,
master still points to last commit

~/egos$ git checkout -b thread-develop
Switched to a new branch 'thread-develop'

A B C

master

thread-
develop

~/egos$ git add src/apps/mt.c
~/egos$ git commit

A B C

master

thread-
develop

D

Branch Basics

• Changes your repo’s active branch to
master – you’ll notice the changes you
made to mt.c are gone

• This commit goes on master, and the
HEAD pointer for master moves up

~/egos$ git checkout master
Switched to branch 'master'
Your branch is up to date with 'origin/master'

A B C

master

thread-
develop

D

~/egos$ git add src/grass/process.c
~/egos$ git commit

J

Pushing and Pulling
• You want to push the commit on your new branch to GitHub:

• OK, do what it says

• After this point, git push will just work

~/egos$ git checkout thread-develop
Switched to branch 'thread-develop'
~/egos$ git push
fatal: The current branch thread-develop has no upstream branch.
To push the current branch and set the remote as upstream, use

 git push --set-upstream origin thread-develop

Why Was That Necessary?
• checkout -b only creates a branch on

your local repo

• GitHub repo won’t add a commit to a
branch that doesn’t exist

A B C J

D

master

Local repo
thread-
develop

A B C

master

GitHub repo

Origin

Push

“add this commit to
thread-develop”

?

Pushing and Pulling
• You want to switch to a new branch your partner created

• Why didn’t that work?

~/egos$ git checkout thread-develop
error: pathspec 'thread-develop' did not match any file(s) known to git

~/egos$ git pull
Remote: Enumerating objects
…
From github.coecis.cornell.edu:etremel/egos
 * [new branch] thread-develop -> origin/thread-develop
Already up to date.
~/egos$ git checkout thread-develop
Branch 'thread-develop' set up to track remote branch 'thread-develop' from 'origin'
Switched to a new branch 'thread-develop'

Now the local repo
knows about the branch

Merging Branches
• Eventually, you’ll want to

merge your branch back
into master

• First, switch your current
branch to master

• Then, merge the feature

branch into master

A B C J

D

master

K

E

new-
feature

M

~/egos$ git pull
~/egos$ git checkout master

~/egos$ git merge new-feature
~/egos$ git push

Resolve any merge conflicts, same
as when you pull and see conflicts

Publish the merge commit, so
everyone else can see the merge

Repository Design with Branches
• In many software teams, master is the “stable” branch

• Each new feature or bug fix is developed on its own branch

• When tested and safe, branch is merged into master

• While developing on a branch, merge from master into your
branch to get updates and bugfixes

A B C J

E

K

F

M

D

L

Outline
• Git overview

• Git vs. GitHub

• Basic Git commands

• Conflicts and merges

• Branches

• Recovering from errors

Some Useful Incantations
• Oops! I made a commit but then made one small change

• Oops! I want to edit the message on the commit I just made

• Oops! I deleted a file and didn’t mean to

Do this BEFORE you push
$ git add changed-file.c
$ git commit --amend --no-edit

$ git commit --amend
Edit the message in your editor

$ git checkout path/to/file.c

Branch-Related Problems
• I just made a commit to master, but I should have put it on a new

branch instead

Create a new branch with the same state as master
$ git branch new-branch-name
Remove the latest commit from master
$ git reset HEAD~ --hard
Switch to the new branch, which still has the commit
$ git checkout new-branch-name

Branch-Related Problems
• I just committed to the wrong branch – I thought I was on the
queue-develop branch but I’m on the experiments branch

Undo the last commit, but leave files changed
$ git reset HEAD~ --soft
Stash the changed files, then move to the right branch
$ git stash
$ git checkout queue-develop
$ git stash pop
Commit the changes on the correct branch
$ git add queue.c queue.h
$ git commit

The Unnecessary Merge
• Make changes, commit, push…then realize your repo is stale

• Upon pull, you’re prompted to create a merge commit

$ git push
 ! [rejected] master -> master (fetch first)
 error: failed to push some refs to 'https://github.com/etremel/egos.git'
 hint: Updates were rejected because the remote contains work that you do
 hint: not have locally. This is usually caused by another repository pushing
 hint: to the same ref. You may want to first integrate the remote changes
 hint: (e.g., 'git pull ...') before pushing again.

$ git pull

Merge branch 'master' of https://github.com/etremel/egos.git

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit

The Unnecessary Merge
• If I had known to pull first, I wouldn’t have to merge!

• First, ensure the merge aborts without making a merge commit

• Either due to genuine conflict, or by deleting the merge commit
message and saving (empty commit message aborts the commit)

• Then:
$ git reset --hard
$ git reset HEAD^
$ git stash
$ git pull # no merge this time
$ git stash pop
$ git add foo.c bar.c # etc
$ git commit

Discard changes made by merge

Undo your last commit, leaving files changed

Stash your changes, then pull again

Re-do your commit on the new head

Further Reading
• Atlassian Git Tutorials:

 https://www.atlassian.com/git/tutorials

• Detailed documentation on every command:

 https://git-scm.com/docs

• Happy Git with R’s “Useful Git Patterns:”

 https://happygitwithr.com/workflows-intro.html

• Oh Shit, Git!?! (source of my error-recovery examples):

 https://ohshitgit.com/

https://www.atlassian.com/git/tutorials
https://git-scm.com/docs
https://git-scm.com/docs
https://git-scm.com/docs
https://git-scm.com/docs
https://happygitwithr.com/workflows-intro.html
https://happygitwithr.com/workflows-intro.html
https://happygitwithr.com/workflows-intro.html
https://ohshitgit.com/

