
GIT tutorial

David Parsons, Soraya Arias, Thomas Calmant

November, 2017

Contents

1 Preamble 2

2 First steps 2

2.1 Basic configuration . 2

2.2 Create your very first git repository . 2

2.3 And now your first commit . 3

2.4 Discarding changes . 4

2.5 Unstage files . 5

2.6 Playing with the index . 6

2.7 Commit your work using git-gui . 8

3 You are not alone 9

3.1 Setup . 9

3.1.1 Create your account . 9

3.1.2 Fork the project . 10

3.1.3 Clone the repo . 10

3.2 Introduction . 10

3.3 Simple commits / push / pull . 11

3.4 Working copy and index / tracked and untracked files / .gitignore 13

3.5 Merge without conflict . 16

3.6 Merge with conflict resolution . 20

3.6.1 Manual conflict resolution by editing files . 21

3.6.2 Manual conflict resolution with a merge tool . 22

3.6.3 Pushing the resolved conflict . 24

3.7 Branches . 25

4 Conclusion 31

1

1 Preamble

This practical work will illustrate git usage in 2 completely independent sections:

• In section 2, you will create your own git repository and manipulate the staging area to create your

first commits.

• In section 3, you will learn how to collaborate through a central remote repository (push, fetch, merge),

resolve conflicts and manipulate basic branches.

2 First steps

2.1 Basic configuration

Many things can be configured in git, but the most basic and almost mandatory configuration is to tell git

who you are, i.e. your committer name and email address.

If you fail to do that, git will complain over and over about it.

$ git config --global user.name "<user name>"
$ git config --global user.email "<user email>"

You can also configure the default editor used by git for editing commit messages, if you don’t like the

default (vi). For example, one convenient editor on linux or mac is nano:

$ git config --global core.editor nano

On windows you can use notepad:

$ git config --global core.editor notepad

Note that when you run git config with the --global option, it sets the configuration globally (in your

~/.gitconfig). Without this option, it will set it for the current git repository only (in .git/config).

2.2 Create your very first git repository

Make sure you create a directory for this practical work and go (cd) into it.

Now, initialize a new git repository and have a look at what happened:

$ git init
Initialized empty Git repository in ...

$ ls -A
.git

$ git status
On branch master

Initial commit

nothing to commit (create/copy files and use "git add" to track)

That’s it, you have a (local) git repository at the ready !

2

2.3 And now your first commit

Git is often kind enough to hint you about what you should/could do next (depending on the current status).

It just told you that you could: create/copy files and use "git add" to track, so let’s do that:

$ echo "Hello World !" >> hello
$ git status
On branch master

Initial commit

Untracked files:

(use "git add <file>..." to include in what will be committed)

hello

nothing added to commit but untracked files present (use "git add" to track)

So, we’ve created a file and git tells us it is untracked. Now it’s telling us to: use "git add" to track.

$ git add hello
$ git status
On branch master

Initial commit

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

new file: hello

We’ve just staged file hello, that is, we’ve sent it to the commit preparation area (the staging area, a.k.a.

the index).

We can now commit our work. This will create a new commit from the content of the staging area

$ git commit

This opened the editor you have configured as git’s core editor and prompts you to Please enter the commit

message for your changes.

A reasonable way to summarize our changes could be: ”Add file hello”. Type this is your editor, then

save and exit.

[master (root-commit) 2c86770] Add file hello

1 file changed, 1 insertion(+)

create mode 100644 hello

That’s it, you’ve committed your first piece of work ! Now let’s inspect the repository:

$ git status
On branch master

nothing to commit, working tree clean

$ gitk&

3

Git is telling you that your working tree [is] clean. That means that all your files are in the

unmodified state, i.e. that you have no files in states staged, modified or untracked.

2.4 Discarding changes

Let’s edit file hello and see what happens:

$ echo "Bonjour !" | cat >> hello
$ git status
On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: hello

no changes added to commit (use "git add" and/or "git commit -a")

$ gitk&

Git tells you that you have changes not staged for commit: file hello state is now set to modified.

Tool gitk represents this by adding a red patch on top of your last commit. Note the message in place

of the log message: Local uncommitted changes, not checked into the index.

4

Notice also that git prompts you to either use "git add <file>..." to update what will be committed

or use "git checkout -- <file>..." to discard changes in working directory. Let’s try the second option

(i.e. discard changes):

$ git checkout -- hello
$ git status
On branch master

nothing to commit, working tree clean

Git has indeed discarded our changes, they are lost,... forever.

Most git commands are safe, this means that you can not lose anything you are tracking with git. But

of course, there are exceptions.

git checkout, when used with file names, is one such exception. Here, you have explicitly told git to

replace whatever was in your working directory’s version of file hello with the last commit version of the

same file. You have just what you’ve asked for.

2.5 Unstage files

Let’s re-do our changes and, this time, stage them:

$ echo "Bonjour !" | cat >> hello
$ git stage hello
$ git status
On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: hello

5

Git prompts us with yet another option: unstage. But the syntax of the corresponding command is not

the best one could expect !

git reset is a very powerful (and pretty evolved) tool that is not part of today’s agenda. Actually, you

should not use it in any other setting than the one above, i.e. to unstage files.

And, by the way, would you not prefer to have an unstage command to unstage files ?

Let’s create a new (alias) command and try it out:

$ git config --global alias.unstage "reset HEAD --"
$ git unstage hello
Unstaged changes after reset:

M hello

$ git status
On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: hello

no changes added to commit (use "git add" and/or "git commit -a")

2.6 Playing with the index

Again, let’s re-stage our changes:

$ git stage hello
$ git status
On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: hello

$ gitk&

6

In gitk, a set of staged changes is represented as a green patch with the message Local changes checked

in to index but not committed.

We can continue to edit the same file:

$ echo "Buenos dias !" | cat >> hello
$ git status
On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: hello

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: hello

You now have 3 different versions of file hello: the first one is that of your last (and only) commit, the

second one is in your staging area and the third one is in your working directory.

git diff allows you to visualize the differences between these versions. Try out the following:

$ git diff
diff --git a/hello b/hello

index bd6cb7c..d219b78 100644

--- a/hello

+++ b/hello

@@ -1,2 +1,3 @@

Hello World !

Bonjour !

+Buenos dias !

7

$ git diff HEAD
diff --git a/hello b/hello

index d7407a1..d219b78 100644

--- a/hello

+++ b/hello

@@ -1 +1,3 @@

Hello World !

+Bonjour !

+Buenos dias !

$ git diff --staged
diff --git a/hello b/hello

index d7407a1..bd6cb7c 100644

--- a/hello

+++ b/hello

@@ -1 +1,2 @@

Hello World !

+Bonjour !

You could also visualize the same information with a graphical tool such as meld with the difftool

command

2.7 Commit your work using git-gui

Tool git-gui is a nice lightweight graphical user interface you can use to prepare your commits and commit

them.

First, launch git-gui:

$ git gui&

Now, prepare a commit with both the modifications we’ve made (”Bonjour” and ”Buenos dias”). You can

do that by clicking on the icon next to the filename hello in the upper-left pane (Unstaged Changes). This

8

is strictly equivalent to the command git stage hello. Note that file hello now shows in the bottom-left

pane (Staged Changes). You can also visualize what happened using git status.

Finally, commit your changes: write your log message in the bottom-right text area and click the Commit

button.

You should end up with the following result:

$ gitk&

3 You are not alone

In the first section (see section 2), you’ve created your own git repository and run some basic git commands,

all of them having local effect only. Everything you did was strictly local to your computer.

Even though git does provide you with interesting functionalities when working locally, it is when you

are contributing to a project involving more than one people that git shows its full potential.

The following series of exercises will illustrate the usage of git with a toy python development project.

To reproduce the workflow of a real development project, attendees will need to work in groups of two:

developer A (Dev.A) and developer B (Dev.B), two developers of the toy project.

3.1 Setup

This practical work can be carried out using either gitlab.inria.fr or github.com (inria members should prefer

gitlab.inria.fr). However, the choice has to be made on a per-group basis since the chosen platform will be

used to share Dev.A’s and Dev.B ’s work.

3.1.1 Create your account

Gitlab.inria.fr

• Sign in using iLDAP (https://gitlab.inria.fr)

• Create an RSA key pair:

9

$ ssh-keygen -t rsa

• Upload your rsa public key (https://gitlab.inria.fr/profile/keys)

Github.com

• Create your GitHub personal account (https://github.com/)

• Create an RSA key pair:

$ ssh-keygen -t rsa

• Upload your rsa public key (https://github.com/settings/keys → New SSH key)

3.1.2 Fork the project

The base project you will build upon is located at https://gitlab.inria.fr/sed-ral/tpgitsedra or

https://github.com/david-parsons/tpgitsedra.

However, you do not have write permission on either of these projects, you will hence need to fork one. Of

course, since Dev.A and Dev.B will be collaborating to the same project, only one of them should create

the fork for the group.

Dev.B : Fork the project by clicking on the fork button in the upper bar (gitlab) or upper right corner

(github) of the project page.

Now Dev.B has his own copy of the project. In order to give Dev.A write permissions to the project,

Dev.B needs to add Dev.A to the project’s list of collaborators: Settings → Members (gitlab) or Settings

→ Collaborators (github).

3.1.3 Clone the repo

Finally, both Dev.A and Dev.B can clone the repository Dev.B has created.

NB: You will find the url of your git repository by clicking on Clone or download → Clone with SSH

$ git clone <your-git-repo-url>
Cloning into ’tpgitsedra’...

remote: Counting objects: 6, done.

remote: Total 6 (delta 0), reused 0 (delta 0), pack-reused 6

Receiving objects: 100% (6/6), done.

$ cd tpgitsedra/

3.2 Introduction

The aim of this little toy project is to implement a trivial sphere class. The code is already prepared, as

a skeleton with commented code. All you have to do is, when asked so, to uncomment lines of code by

removing the character # at the beginning of the line. You need to follow the chronological order of the

exercises and uncomment code with the corresponding (increasing) step number. There is one important

thing you need to know about python: it relies on indentation to delimit blocks of code. So, take care to

not mess up indentation: use 4 spaces as one level of indentation and do not mix spaces and tab characters,

only use spaces.

The best setup to follow this tutorial is to have Dev.A and Dev.B next to each other, on two different

workstations (it is also possible to share one workstation, though it’s less convenient). Both Dev.A and

Dev.B should have a terminal window opened, as well as the text editor of their choice. Be aware that

10

some of the git operations will change the files in your working copy. Some editors are aware of that and

display a warning when trying to edit the obsolete content of a file which has changed on disk, while other

editors may not. In any case, you should take care to always refresh the content of the edited files in the

editor after git operations and before editing them.

3.3 Simple commits / push / pull

When you are ready and inside your freshly cloned git repository’s working directory, look at the online

help of the code:

$./runsphere -h
usage: runsphere [-h] [-v] [-s] [-d] [--load LOAD] [--save SAVE] [radius]

Sphere properties computation

positional arguments:

radius Sphere radius

optional arguments:

-h, --help show this help message and exit

-v get volume

-s get surface

-d get diameter

--load LOAD load from file

--save SAVE save to file

Let’s instantiate a sphere of radius 1.5:

Dev.A$./runsphere 1.5
<sphere.sphere.Sphere object at 0x7f3ba927a190>

Traceback (most recent call last):

File "./runsphere", line 25, in <module>

print " radius is %s" % my_sphere.radius

AttributeError: ’Sphere’ object has no attribute ’radius’

Right now the sphere class is not implemented and doesn’t even have a radius. Let’s code a bit: Dev.A

starts by uncommenting step 1 in sphere/sphere.py, adding a radius member variable to the sphere. Once

done, Dev.A can check the state of his/her working copy:

Dev.A$ git status
On branch master

Your branch is up-to-date with ’origin/master’.

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: sphere/sphere.py

Untracked files:

(use "git add <file>..." to include in what will be committed)

sphere/__init__.pyc

sphere/sphere.pyc

11

no changes added to commit (use "git add" and/or "git commit -a")

Git tells us that we have one file modified in our working copy (sphere.py), and two untracked files with

the .pyc extension, which are generated by python.

Dev.A adds the modified file to the git index, commits, and pushes the modification to the server

repository:

Dev.A$ git add sphere/sphere.py
Dev.A$ git commit -m "add radius property"
[master e2150ce] add radius property

1 file changed, 1 insertion(+), 1 deletion(-)

Dev.A$ git push
Counting objects: 4, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 380 bytes | 0 bytes/s, done.

Total 4 (delta 1), reused 0 (delta 0)

To git+ssh://[...]/tpgitsedra.git

fa0cae7..e2150ce master -> master

Dev.A can inspect the situation with git status, as seen before, or with git log:

Dev.A$ git log
commit e2150ce668b7a924b650fed032448cdb69f49469

Author: DevA <DevA@inria.fr>

Date: Fri Jan 22 10:46:33 2016 +0100

add radius property

commit fa0cae7418f84302325610d6947cd266f28df751

Author: Matthieu Imbert <matthieu.imbert@inria.fr>

Date: Fri Jan 22 10:34:13 2016 +0100

initial import

Dev.A can also use the gitk graphical tool to look at the history. We use option --all because it will

be easier later to see both our local branch(es) and the remote tracking one(s):

Dev.A$ gitk --all &

12

Don’t close this gitk, we will use it during the whole tutorial session. You can continuously monitor the

status of the local repository in gitk (hit <F5> to refresh). Let Dev.B open a gitk as well, and keep it

open for the whole session:

Dev.B$ gitk --all &

Now let Dev.B get Dev.A’s work into his local repository:

Dev.B$ git pull
remote: Counting objects: 4, done.

remote: Compressing objects: 100% (4/4), done.

remote: Total 4 (delta 1), reused 0 (delta 0)

Unpacking objects: 100% (4/4), done.

From git+ssh://[...]/tpgitsedra

fa0cae7..e2150ce master -> origin/master

Updating fa0cae7..e2150ce

Fast-forward

sphere/sphere.py | 2 +-

1 file changed, 1 insertion(+), 1 deletion(-)

Dev.B hasn’t done anything yet, so there’s no need to merge concurrent commits, and git just needs

to perform a Fast-forward.

3.4 Working copy and index / tracked and untracked files / .gitignore

Back to Dev.A. When running git status we’re continuously annoyed by the .pyc files. Let’s tell git

to ignore them. For this, add a .gitignore file at the root of the local git repository, with the following

13

content:

*.pyc

Now look at the state of our working copy:

Dev.A$ git status
On branch master

Your branch is up-to-date with ’origin/master’.

Untracked files:

(use "git add <file>..." to include in what will be committed)

.gitignore

nothing added to commit but untracked files present (use "git add" to track)

We can see that the .gitignore file is already in action (no more mention of untracked .pyc files), but

it is not yet being tracked by git.

Dev.A adds .gitignore to the index:

Dev.A$ git add .gitignore

But before commiting, we realize that we want to add a comment to the .gitignore file: Edit it and

add a comment line:

ignore python generated files

*.pyc

Now let’s look at the situation:

Dev.A$ git status
On branch master

Your branch is up-to-date with ’origin/master’.

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

new file: .gitignore

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: .gitignore

This shows us that:

• We have added a first version of .gitignore to the index (without the comment)

• We have a modified version of .gitignore in our working copy (with the added comment)

You can try:

• git diff to get the diff between the working copy and the index: the comment line.

14

• git diff --staged to get the diff between the index and the current branch HEAD: the *.pyc line.

• git diff HEAD or git diff master to get the diff between the working copy and the HEAD of branch

master: the two lines of the .gitignore file.

Let’s finish by adding Dev.A’s last modification to the index and commit. We could do so the same way

as before. Instead, this time, we will use the graphical tool git gui to stage our modifications and commit

them:

Dev.A$ git gui &

In this tool, you can stage files / individual hunks / individual lines of codes to be commited. You

can click on the .gitignore filename in both unstaged changes pane and staged changes pane, to see the

diffs. Click on the .gitignore icon in the unstaged changes pane to add the file. Then by clicking on

the .gitignore filename in the staged changes, you can review what will be commited. You can type the

commit message “add a git ignore” in the commit message pane, and click the commit button. Do not click

on the push button yet.

After this is done, we get a blank git gui window, all panes are empty, which shows us that there is

nothing to commit. On the command line:

Dev.A$ git status
On branch master

Your branch is ahead of ’origin/master’ by 1 commit.

(use "git push" to publish your local commits)

nothing to commit, working directory clean

git status tells us that our working directory is clean, there’s nothing to commit, and also that our

local branch master is ahead of remote branch origin/master of the server repository by one commit.

15

3.5 Merge without conflict

Now, let Dev.A and Dev.B work concurrently to develop the Sphere code.

Dev.A implements an str method (which in python allows customizing the way objects print them-

selves) by uncommenting step 2. At the same time Dev.B implements the surface method by uncomment-

ing step 3.

Dev.B develops, commits and pushes first:

Dev.B$ git commit sphere/sphere.py -m "add surface method"
[master 247f173] add surface method

1 file changed, 1 insertion(+), 1 deletion(-)

Dev.B$ git push
Counting objects: 4, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 381 bytes | 0 bytes/s, done.

Total 4 (delta 1), reused 0 (delta 0)

To git+ssh://[...]/tpgitsedra.git

e2150ce..247f173 master -> master

Dev.A also develops and commits:

Dev.A$ git commit sphere/sphere.py -m "add __str__ method"
[master 1786302] add __str__ method

1 file changed, 2 insertions(+), 2 deletions(-)

At this point Dev.A’s local repository only knows of the state of the server repository at the time when

Dev.A did his last sync operation (here, a push). It does not know about what Dev.B has just pushed. If

Dev.A tries to push:

Dev.A$ git push
To git+ssh://[...]/tpgitsedra.git

! [rejected] master -> master (fetch first)

error: failed to push some refs to ’git+ssh://[...]/tpgitsedra.git’

hint: Updates were rejected because the remote contains work that you do

hint: not have locally. This is usually caused by another repository pushing

hint: to the same ref. You may want to first integrate the remote changes

hint: (e.g., ’git pull ...’) before pushing again.

hint: See the ’Note about fast-forwards’ in ’git push --help’ for details.

git push notices that the server repository has changed since Dev.A’s last sync (because Dev.B pushed

to it) and hence fails.

Let’s look at the situation graphically: Dev.A presses key <F5> in gitk:

16

Dev.A can fetch the state of the remote branches (from the server repository):

Dev.A$ git fetch
remote: Counting objects: 4, done.

remote: Compressing objects: 100% (4/4), done.

remote: Total 4 (delta 1), reused 0 (delta 0)

Unpacking objects: 100% (4/4), done.

From git+ssh://[...]/tpgitsedra

e2150ce..247f173 master -> origin/master

Now, again, Dev.A presses key <F5> in gitk:

17

We can see that there are two lines of development:

• branch master, our local line of development, not yet pushed to the server repository

• branch origin/master, the master branch of the server repository, which has diverged, since Dev.B

has already pushed to the server repository

Dev.A needs to merge his local modifications with the remote ones:

Dev.A$ git merge

Git opens the editor configured as core.editor (default depends on operating system), with a boilerplate

text:

Merge remote-tracking branch ’refs/remotes/origin/master’

Please enter a commit message to explain why this merge is necessary,

especially if it merges an updated upstream into a topic branch.

#

Lines starting with ’#’ will be ignored, and an empty message aborts

the commit.

A merge results in a merge commit, so git proposes a default merge commit message that you can leave

as is or customize. Once you’ve completed the message, save the comment and quit the editor:

Auto-merging sphere/sphere.py

Merge made by the ’recursive’ strategy.

18

sphere/sphere.py | 2 +-

1 file changed, 1 insertion(+), 1 deletion(-)

In this case, Dev.A and Dev.B modifications are in different parts of the file, so they can be merged

automatically.

Pressing <F5> in gitk:

Now, it’s time to push:

Dev.A$ git push
Counting objects: 11, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (10/10), done.

Writing objects: 100% (11/11), 1.00 KiB | 0 bytes/s, done.

Total 11 (delta 4), reused 0 (delta 0)

To git+ssh://[...]/tpgitsedra.git

247f173..2921972 master -> master

Pressing <F5> in gitk:

19

And for Dev.B :

Dev.B$ git pull
remote: Counting objects: 11, done.

remote: Compressing objects: 100% (10/10), done.

remote: Total 11 (delta 4), reused 0 (delta 0)

Unpacking objects: 100% (11/11), done.

From git+ssh://[...]/tpgitsedra

247f173..2921972 master -> origin/master

Updating 247f173..2921972

Fast-forward

.gitignore | 2 ++

sphere/sphere.py | 4 ++--

2 files changed, 4 insertions(+), 2 deletions(-)

create mode 100644 .gitignore

3.6 Merge with conflict resolution

Now both Dev.A and Dev.B start developing concurrently a volume method, by uncommenting step 4.

This line has a bug: 4/3 * 3.1416 is wrong because from left to right, 4/3 is first computed, and as both

operands are integer, the integer division is used, so the result is 1. Dev.A will use the buggy version while

Dev.B detects this error and fixes it by replacing with 4.0/3.0 * 3.1416.

Dev.A commits and pushes first

Dev.A$ git commit sphere/sphere.py -m "add volume method"
[master 25bcaab] add volume method

20

1 file changed, 1 insertion(+), 1 deletion(-)

Dev.A$ git push
Counting objects: 4, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 361 bytes | 0 bytes/s, done.

Total 4 (delta 2), reused 0 (delta 0)

To git+ssh://[...]/tpgitsedra.git

2921972..25bcaab master -> master

Dev.B commits, then tries to push, which fails because Dev.A has pushed meanwhile.

Dev.B$ git commit sphere/sphere.py -m "add volume method"
[master 39683f4] add volume method

1 file changed, 1 insertion(+), 1 deletion(-)

Dev.B$ git push
To git+ssh://[...]/tpgitsedra.git

! [rejected] master -> master (fetch first)

error: failed to push some refs to ’git+ssh://[...]/tpgitsedra.git’

hint: Updates were rejected because the remote contains work that you do

hint: not have locally. This is usually caused by another repository pushing

hint: to the same ref. You may want to first integrate the remote changes

hint: (e.g., ’git pull ...’) before pushing again.

hint: See the ’Note about fast-forwards’ in ’git push --help’ for details.

So Dev.B needs to fetch and merge:

Dev.B$ git fetch
remote: Counting objects: 4, done.

remote: Compressing objects: 100% (4/4), done.

remote: Total 4 (delta 2), reused 0 (delta 0)

Unpacking objects: 100% (4/4), done.

From git+ssh://[...]/tpgitsedra

2921972..25bcaab master -> origin/master

Dev.B$ git merge
Auto-merging sphere/sphere.py

CONFLICT (content): Merge conflict in sphere/sphere.py

Automatic merge failed; fix conflicts and then commit the result.

The automatic merge that we have seen in the previous section is not possible here, since both developers

have modified the same portion of code. So this merge needs manual conflict resolution.

There are two ways to manually solve the conflict.

3.6.1 Manual conflict resolution by editing files

The first way is to edit the conflicting file (sphere/sphere.py) directly. Git puts some markers at conflict(s)

location(s):

return 4/3 * 3.1416 * self.radius ** 3

• The line(s) between <<<<<<< HEAD and ======= are Dev.B ’s version (HEAD on local branch

master) before the merge

21

• The line(s) between ======= and >>>>>>> refs/remotes/origin/master are the version in re-

mote branch origin/master before the merge

Here, we keep Dev.B ’s version, save the file, add it and commit, but do not push yet:

Dev.B$ git add sphere/sphere.py
Dev.B$ git commit
[master e390720] Merge remote-tracking branch ’refs/remotes/origin/master’

3.6.2 Manual conflict resolution with a merge tool

The second way to manually solve the conflict is to use a merge tool, such as meld, kdiff3, xxdiff or

p4merge. To try this second method, Dev.B needs to revert his local repository’s state to the state it was

in before the manual merge, i.e. before the last commit. This can be done with git reset. Be sure to check

what happens at every step using gitk --all (<F5> to refresh) and don’t forget the ^ after HEAD):

Dev.B$ git reset --hard HEADˆ
HEAD is now at 39683f4 add volume method

Dev.B can see that the previous merge commit is still there, but is now dangling, no ref points to it.

To suppress this dangling commit:

Dev.B$ git gc
Counting objects: 34, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (32/32), done.

Writing objects: 100% (34/34), done.

Total 34 (delta 10), reused 6 (delta 0)

Here, to really view the result, you need to press <shift-F5> in gitk, which completely reloads the refs,

while <F5> updates the values of the refs, but still displays old refs even if they have disappeared.

Now Dev.B can try to merge once again:

Dev.B$ git merge
Auto-merging sphere/sphere.py

CONFLICT (content): Merge conflict in sphere/sphere.py

Automatic merge failed; fix conflicts and then commit the result.

To run a graphical merge tool:

Dev.B$ git mergetool

When you run git mergetool, git will try to find a merge tool (among a list of supported ones) and

automatically launch it for each conflicting file. Edit and save the result for every file.

Here is an example with meld:

22

The exact content of the 3 (or 4) columns of the merge tool depend on the merge tool used. In meld for

example, with the default configuration, 3 versions of the file are shown:

• your local version on the left (opened read-only)

• the remote version on the right (opened read-only)

• the central column is initialized with the common ancestor of the conflicting file. When pressing save,

the central column is saved as the merged file.

You can change this default configuration to suit your personal tastes, for example:

$ git config --global merge.tool meld
$ git config --global mergetool.meld.cmd ’meld $LOCAL $MERGED $REMOTE’

With this configuration, the center column will not be initialized with the common ancestor, but with the

merged file.

Here’s another configuration example, if you want to use p4merge (e.g. on windows):

$ git config --global merge.tool p4merge
$ git config --global mergetool.p4merge.path "C:/Program Files/Perforce/p4merge.exe"

Git automatically adds the resolved files to the index. This can also be changed with:

$ git config --global mergetool.meld.trustExitCode false

23

In this case, git will ask if the merge was successful after closing the merge tool.

Finally, you need to commit:

Dev.B$ git commit
[master c168e58] Merge remote-tracking branch ’refs/remotes/origin/master’

3.6.3 Pushing the resolved conflict

Dev.B$ git push
Counting objects: 5, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (5/5), done.

Writing objects: 100% (5/5), 571 bytes | 0 bytes/s, done.

Total 5 (delta 2), reused 2 (delta 0)

To git+ssh://[...]/tpgitsedra.git

25bcaab..c168e58 master -> master

Dev.A$ git pull
remote: Counting objects: 5, done.

remote: Compressing objects: 100% (5/5), done.

remote: Total 5 (delta 2), reused 0 (delta 0)

Unpacking objects: 100% (5/5), done.

From git+ssh://[...]/tpgitsedra

25bcaab..c168e58 master -> origin/master

Updating 25bcaab..c168e58

Fast-forward

sphere/sphere.py | 2 +-

1 file changed, 1 insertion(+), 1 deletion(-)

Here’s how it looks in Dev.A’s gitk once Dev.B has pushed the merge and Dev.A has pulled it:

24

3.7 Branches

Dev.B wants to start a branch named use math constants to refactor the code to use the constant math.pi

instead of 3.1416 everywhere in the code. Right now, Dev.B plans this branch to remain local. This is just

an area for a short work which is planned to be merged in master and published once finished.

Dev.B can create the branch with git branch use math constants then switch to it with git checkout

use math constants. Or do both in one command:

Dev.B$ git branch

* master

Dev.B$ git checkout -b use_math_constants
Switched to a new branch ’use_math_constants’

Dev.B$ git branch
master

* use_math_constants

Now Dev.B replaces 3.1416 by math.pi in method surface, saves the file, and commits:

Dev.B$ git add sphere/sphere.py
Dev.B$ git commit -m "use math.pi in surface"
[use_math_constants 91e2897] use math.pi in surface

1 file changed, 1 insertion(+), 1 deletion(-)

At the same time Dev.A implements method diameter by uncommenting step 5 in the code (The bug in

the diameter computation is intentional, don’t fix it yet). Dev.A then saves the file, commits, and pushes:

25

Dev.A$ git commit sphere/sphere.py -m "add method diameter"
[master 0af2d68] add method diameter

1 file changed, 1 insertion(+), 1 deletion(-)

Dev.A$ git push
Counting objects: 4, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 365 bytes | 0 bytes/s, done.

Total 4 (delta 2), reused 0 (delta 0)

To git+ssh://[...]/tpgitsedra.git

c168e58..0af2d68 master -> master

Dev.B can merge Dev.A’s work in his master branch (a fast-forward in this case):

Dev.B$ git checkout master
Switched to branch ’master’

Your branch is up-to-date with ’origin/master’.

Dev.B$ git pull
remote: Counting objects: 4, done.

remote: Compressing objects: 100% (4/4), done.

remote: Total 4 (delta 2), reused 0 (delta 0)

Unpacking objects: 100% (4/4), done.

From git+ssh://[...]/tpgitsedra

c168e58..0af2d68 master -> origin/master

Updating c168e58..0af2d68

Fast-forward

sphere/sphere.py | 2 +-

1 file changed, 1 insertion(+), 1 deletion(-)

Then Dev.B wants to update his git branch use math constants with the new version: In this situ-

ation Dev.B can avoid a merge and rebase instead:

Dev.B$ git checkout use_math_constants
Switched to branch ’use_math_constants’

Dev.B$ git rebase master
First, rewinding head to replay your work on top of it...

Applying: use math.pi in surface

Rebasing branch use math constants is a rewrite of its history. This can be done here with no harm

because this is a local branch. This would be an issue on a published branch, so keep in mind that even

though rebasing is a very useful tool, published commits should never be rebased.

In the following screenshot, you may notice that our original commit (third line) whose parent was the

last merge commit is now dangling (no branch is pointing to it either directly or indirectly) and was replaced

by a brand new commit with the same commit message but whose parent is the commit with message ”Add

method diameter”

26

Dev.B now replaces 3.1416 by math.pi in method volume, saves the file and commits:

Dev.B$ git commit sphere/sphere.py -m "use math.pi in volume"
[use_math_constants 76e5ff6] use math.pi in volume

1 file changed, 1 insertion(+), 1 deletion(-)

At the same time Dev.A wants to start a branch named serialization to add support for saving /

loading Sphere instances to disk. Dev.A doesn’t know yet if it’s a good idea, so this branch may just be

a sandbox to explore a new idea. It may later be abandoned, remain local for a long time, be merged in

master, or be published as a separate branch to allow for other developers to contribute to it. There is no

need to decide it right now. This branch will stay local to Dev.A unless explicitly pushed to the server

repository (see later).

Dev.A$ git checkout -b serialization
Switched to a new branch ’serialization’

Dev.A$ git branch
master

* serialization

Dev.A implements method dump by uncommenting step 6. Dev.A then saves the file and commits:

Dev.A$ git commit sphere/sphere.py -m "add method dump"
[serialization 764feed] add method dump

1 file changed, 2 insertions(+), 2 deletions(-)

27

At this point Dev.A and Dev.B share a cup of coffee and talk about their code. Dev.B thinks that his

branch use math constants is ready to be merged in master. Dev.B also notices the bug in implementation

of method diameter and opts to fix it. Finally, Dev.A and Dev.B agree to publish branch serialization

on the server repository so that Dev.B can work on it (without merging it in master yet).

First Dev.A publishes his branch serialization

Dev.A$ git push --set-upstream origin serialization
Counting objects: 4, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 360 bytes | 0 bytes/s, done.

Total 4 (delta 2), reused 0 (delta 0)

To git+ssh://[...]/tpgitsedra.git

* [new branch] serialization -> serialization

Branch serialization set up to track remote branch serialization from origin.

Dev.B fixes method diameter, by returning self.radius * 2 and saves the file.

At that point in time, Dev.B realizes he is on branch use math constants while he intended to commit

this fix on branch master. He thus tries to checkout master:

Dev.B$ git checkout master
error: Your local changes to the following files would be overwritten by checkout:

sphere/sphere.py

Please, commit your changes or stash them before you can switch branches.

Aborting

This is a classic situation in git, when you have saved a file while being on a branch (use math constants)

but what you really want is to apply the modification to another branch (master). As the message says,

you can stash your modifications before switching branch, and then apply the stash. Or, more rapidly, you

can use option -m to checkout the other branch while retaining the modifications in your working copy:

Dev.B$ git checkout -m master
M sphere/sphere.py

Switched to branch ’master’

Your branch is up-to-date with ’origin/master’.

Dev.B$ git commit sphere/sphere.py -m "fix buggy diameter computation"
[master 74fde24] fix buggy diameter computation

1 file changed, 1 insertion(+), 1 deletion(-)

Dev.B then wants to merge branch use math constants in master.

Dev.B$ git merge use_math_constants
Auto-merging sphere/sphere.py

Merge made by the ’recursive’ strategy.

sphere/sphere.py | 4 ++--

1 file changed, 2 insertions(+), 2 deletions(-)

28

Dev.B now pushes:

Dev.B$ git push
Counting objects: 12, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (12/12), done.

Writing objects: 100% (12/12), 1.07 KiB | 0 bytes/s, done.

Total 12 (delta 6), reused 0 (delta 0)

To git+ssh://[...]/tpgitsedra.git

0af2d68..dbcd3e0 master -> master

Dev.B now wants to get branch serialization:

Dev.B$ git checkout serialization
error: pathspec ’serialization’ did not match any file(s) known to git.

Dev.B needs to first fetch the server repository state:

Dev.B$ git fetch
remote: Counting objects: 4, done.

remote: Compressing objects: 100% (4/4), done.

remote: Total 4 (delta 2), reused 0 (delta 0)

Unpacking objects: 100% (4/4), done.

From git+ssh://[...]/tpgitsedra

* [new branch] serialization -> origin/serialization

Now Dev.B can switch to branch serialization:

29

Dev.B$ git checkout serialization
Branch serialization set up to track remote branch serialization from origin.

Switched to a new branch ’serialization’

Dev.B adds function loadSphere by uncommenting step 7, saves the file, commits and pushes:

Dev.B$ git commit sphere/sphere.py -m "add function loadSphere"
[serialization a2db349] add function loadSphere

1 file changed, 3 insertions(+), 3 deletions(-)

Dev.B$ git push
Counting objects: 4, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 376 bytes | 0 bytes/s, done.

Total 4 (delta 2), reused 0 (delta 0)

To git+ssh://[...]/tpgitsedra.git

764feed..a2db349 serialization -> serialization

Dev.A fetches all branches:

Dev.A$ git fetch --all
Fetching origin

remote: Counting objects: 16, done.

remote: Compressing objects: 100% (16/16), done.

remote: Total 16 (delta 8), reused 0 (delta 0)

Unpacking objects: 100% (16/16), done.

From git+ssh://[...]/tpgitsedra

764feed..a2db349 serialization -> origin/serialization

0af2d68..dbcd3e0 master -> origin/master

Here is the result in Dev.A’s gitk:

30

Dev.A can now update their branch serialization with the one from the server, and update their

branch master with the one from the server:

Dev.A$ git branch
master

* serialization

Dev.A$ git merge
Updating 764feed..a2db349

Fast-forward

sphere/sphere.py | 6 +++---

1 file changed, 3 insertions(+), 3 deletions(-)

Dev.A$ git checkout master
Switched to branch ’master’

Your branch is behind ’origin/master’ by 3 commits, and can be fast-forwarded.

(use "git pull" to update your local branch)

Dev.A$ git merge
Updating 0af2d68..dbcd3e0

Fast-forward

sphere/sphere.py | 6 +++---

1 file changed, 3 insertions(+), 3 deletions(-)

Here is the final result in Dev.A’s gitk:

4 Conclusion

You have performed a lot of basic and reasonably advanced git operations in a scenario with a central git

repository.

To go further, you can study a few things that we did not cover here:

• Moving or removing files

• Stashing

31

• Tagging

• Cherry-Picking

• Rewriting history (interactive rebasing)

• Checkout an explicit commit (leading to a detached head situation)

• Bisecting

32

	Preamble
	First steps
	Basic configuration
	Create your very first git repository
	And now your first commit
	Discarding changes
	Unstage files
	Playing with the index
	Commit your work using git-gui

	You are not alone
	Setup
	Create your account
	Fork the project
	Clone the repo

	Introduction
	Simple commits / push / pull
	Working copy and index / tracked and untracked files / .gitignore
	Merge without conflict
	Merge with conflict resolution
	Manual conflict resolution by editing files
	Manual conflict resolution with a merge tool
	Pushing the resolved conflict

	Branches

	Conclusion

