
GITLAB CI FOR
DUMMIES

Dummy = Jon Mason
Dummy != Bruce Ashfield (debatable)

Dummies

Jon Mason● Arm (very smart people)● OpenEmbedded Board Member● Co-maintainer of meta-arm layer

Bruce Ashfield● Xilinx● Maintainer of Yocto Project kernel, meta-
virtualization layer

Note:

You are not a dummy. I am a dummy. This took
way longer that it should have, mostly
because...I am a dummy. Learn from my
mistakes to speed up your deployment and not
be a dummy.

What is Gitlab?

Web based source code management (SCM), similar to github. As the name implies, it is
used for git based source code.

Why Gitlab?

● Free

● Open Source

● Has robust features like wikipages and...CI/CD

What is this CI/CD?

Continuous integration (CI) is the practice of merging all developers' working copies to a
shared mainline

Continuous delivery (CD) is a software engineering approach in which teams produce
software in short cycles, ensuring that the software can be reliably released at any time
and, when releasing the software, without doing so manually

Put simply, it is a extremely frequent building and testing of software patches as part of
the process of integrating them into a shared tree

Why is this useful for open source projects?

Maintainers of projects can get dozens (possibly hundreds) of patches daily. Identifying
and removing faulty ones prior to releasing them to the public can avoid development
issues with the wider developer community.

This process enables patches to be built and tested prior to integration, finding bugs
BEFORE they break other developers of the shared code.

Drawbacks

● In a perfect world, we would have enough computing resources to compile and test
every patch, weeding out the problematic ones as they arrive.● Unfortunately, this isn’t feasible, as each CI/CD run can take hours and dozens
(perhaps hundreds) of patches arrive daily. So, they must be tested in batches. This
increasing the difficulty of determining faulty patches and requiring more manual
intervention.

● For example, there were 97 patches pulled into poky between 05/10-
05/17/21. If we compiled each one, for each qemu machine, and it only took
an hour (which it takes way more), it would add up to 1067 (97 * 11 * 1).
(note: 168 hours/week)

Gitlab CI

GitLab CI/CD is a tool built into GitLab for software development

Free (if you run everything on your own hardware, more about this later)

Alternatives to Gitlab CI

● Github workflow● Jenkins and LAVA● Many others

Current Users of Gitlab CI in YP/OE

• Meta-arm

• Meta-security

• WIP

• Meta-zephyr (personally maintained)

• Yocto Project kernel releases

Screen cap of working and failing pipelines

Screen cap of working/failing individual pipeline

Screen cap of working job

Screen cap of failing job

Screen cap of meta-zephyr

Screen cap of testimage

I'm sold, how do I set this up?

Gitlab Runner
Gitlab Executor

Gitlab Runner

A runner is a lightweight, highly-scalable agent that picks up a CI job through the
coordinator API of GitLab CI/CD, runs the job, and sends the result back to the GitLab
instance.

https://docs.gitlab.com/ee/ci/runners/README.html

Gitlab Executor

● GitLab Runner implements a number of executors that can be used to run your builds
in different scenarios○ SSH○ Shell○ VirtualBox○ Parallels○ Docker○ Kubernetes○ Custom

● https://docs.gitlab.com/runner/executors/README.html

https://docs.gitlab.com/runner/executors/README.html

Screen Cap of executor types

Screen Cap of Executor configs

How to get Gitlab CI building and running Yocto/OE

Gitlab CI config file

KAS

Gitlab CI config file

Basically, a way to run shell scripts

Screen Cap of .gitlab-ci.yml

KAS

Tool provides an easy mechanism to setup bitbake based projects● clone and checkout bitbake layers● create default bitbake settings (machine, arch, ...)● launch minimal build environment, reducing risk of host contamination● initiate bitbake build process

Configuration via a yml file

Screen cap of KAS yml file

KAS Docker

● Docker image created by the KAS project with all of the dependencies to build a
Yocto image, as well as KAS installed

Benefits of Developing this way

● Very reproducible builds

● Minimal environment and no dependency on installed packages

● Can use sstate and dl_dir

Cool features

Scheduling runs

Emails from failed/newly working runs

Screen cap of scheduling runs

Screen cap of email of failed/working run

Debugging in Gitlab CI

Running docker locally to reproduce issue

jdm@athena:~$ sudo docker run -it --name kas-test --volume /yocto/downloads:/builds/persist/downloads --volume
/yocto/sstate-cache:/builds/persist/sstate --volume /yocto/repos:/builds/persist/repos --volume /yocto/toolchains:/builds/
persist/toolchains --privileged ghcr.io/siemens/kas/kas /bin/bash
builder@ea0827034b68:~$ git clone https://gitlab.com/jonmason00/meta-arm.git -b downstream
Cloning into 'meta-arm'...
remote: Enumerating objects: 579, done.
remote: Counting objects: 100% (579/579), done.
remote: Compressing objects: 100% (244/244), done.
remote: Total 7374 (delta 344), reused 529 (delta 310), pack-reused 6795
Receiving objects: 100% (7374/7374), 1.49 MiB | 7.77 MiB/s, done.
Resolving deltas: 100% (4204/4204), done.
builder@ea0827034b68:~$ cd meta-arm/
builder@ea0827034b68:~/meta-arm$ SSTATE_DIR=/builds/persist/sstate DL_DIR=/builds/persist/downloads kas build
ci/qemuarm64-secureboot.yml:ci/testimage.yml

Potential Problems

Can’t share sstate with non-container users using KAS

Difficult/impossible to access failing docker image

Improvements?

Running in tmpfs
Runqemu working in non-privlidged container
Optimal number of runners on a single host

THANKS
https://gitlab.com/jonmason00/meta-arm/-/pipelines

To see more info on Gitlab CI running on meta-arm

https://gitlab.com/jonmason00/meta-arm/-/pipelines

Additional Runner Config

Gitlab Runner and executor docker from shell

● $ sudo docker run -d --name gitlab-runner --restart always -v
/var/run/docker.sock:/var/run/docker.sock gitlab/gitlab-runner:latest● $ sudo docker exec -it gitlab-runner gitlab-runner register --non-interactive --tag-list
"aarch64,arm64" --run-untagged --url "https://gitlab.com/" --registration-token
"h6Gmqf7YwibKJG2vYwfH" --executor "docker" --docker-image
"ghcr.io/siemens/kas/kas" --description internal-meta-arm-runner

	Slide 1
	Dummies
	Note:
	What is Gitlab?
	Why Gitlab?
	What is this CI/CD?
	Why is this useful for open source projects?
	Drawbacks
	Gitlab CI
	Alternatives to Gitlab CI
	Current Users of Gitlab CI in YP/OE
	Screen cap of working and failing pipelines
	Screen cap of working/failing individual pipeline
	Screen cap of working job
	Screen cap of failing job
	Screen cap of meta-zephyr
	Screen cap of testimage
	I'm sold, how do I set this up?
	Gitlab Runner
	Gitlab Executor
	Screen Cap of executor types
	Screen Cap of Executor configs
	How to get Gitlab CI building and running Yocto/OE
	Gitlab CI config file
	Screen Cap of .gitlab-ci.yml
	KAS
	Screen cap of KAS yml file
	KAS Docker
	Benefits of Developing this way
	Cool features
	Screen cap of scheduling runs
	Screen cap of email of failed/working run
	Debugging in Gitlab CI
	Potential Problems
	Improvements?
	Slide 36
	Additional Runner Config
	Gitlab Runner and executor docker from shell

