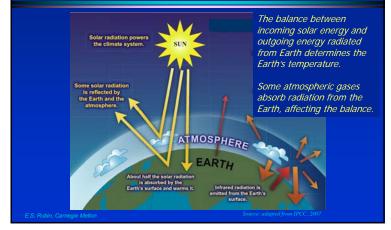
Global Climate Change: Impacts, Challenges and Opportunities

Edward S. Rubin Department of Engineering and Public Policy Carnegie Mellon University Pittsburgh, Pennsylvania, USA

Plenary Presentation to the


XVI Congreso de Investigadores en Economía Social (CIRIEC-España) Valencia, Spain October 19, 2016

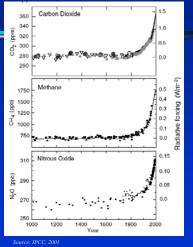
Fundamentals of global climate change

Motivating Questions

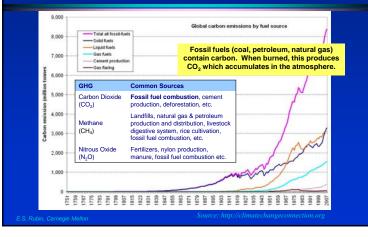
- What do we mean by "global climate change" and what are its causes?
- What are the current and future impacts of climate change that give us concern?
- What measures and policies can we pursue to reduce or avoid dangerous impacts?
- What is the outlook for actions to deal with climate change?

The Earth's Temperature is Set by a Global Energy Balance

1


The "Greenhouse Effect"

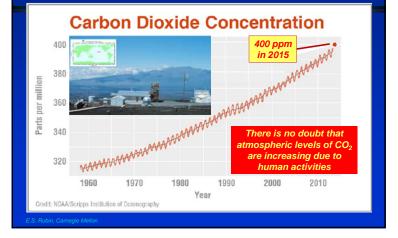
- Atmospheric gases that absorb Earth's radiation, and warm the planet, are called greenhouse gases
- They include carbon dioxide, methane, nitrous oxide, other trace gases, and water vapor
- Without natural levels of these gases the average temperature of Earth would be –19°C (instead of the actual 15°C)
- The additional 34°C of warming due to these gases is called the "greenhouse effect"


Atmospheric GHG Levels

Greenhouse gas (GHG) concentrations in the atmosphere have been increasing rapidly as a result of human activities.

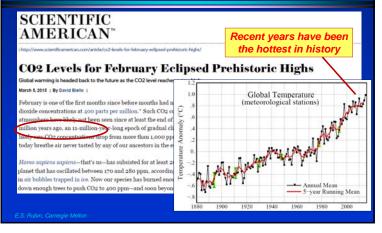
Once in the atmosphere, these gases are not easily or quickly removed.

We have been putting GHGs into the atmosphere at an increasing rate

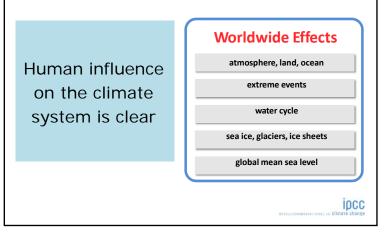


Contribution of GHGs to Total Global Warming Potential CO₂ from Energy Use is the Dominant Greenhouse Gas

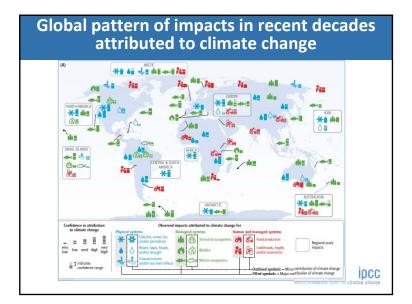
(values based on 100-year GWP) Source: USEPA. 2007 CO2 CH4 N20 Others Combined emissions commonly expressed as equivalent CO₂

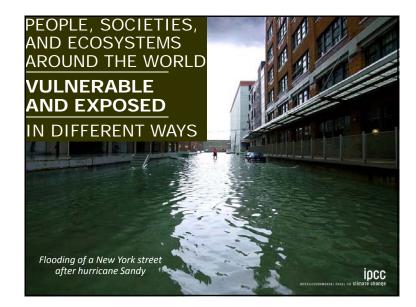

The Mauna Loa CO₂ Record

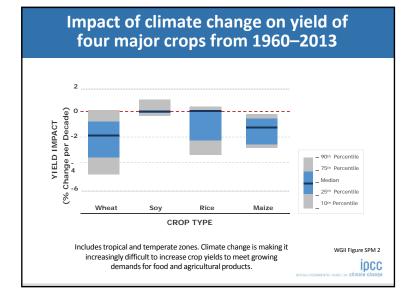
Global GHG emissions growth has accelerated despite reduction efforts

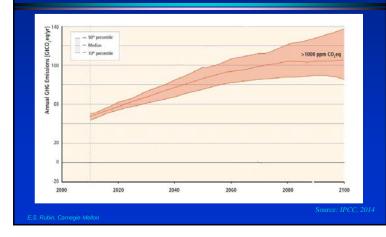


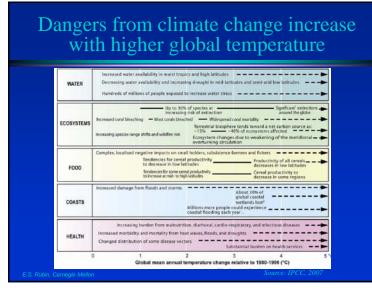
Current CO₂ Levels and Global Temperature are at Historical Highs


Conclusions from the 2014 IPCC Fifth Assessment Report



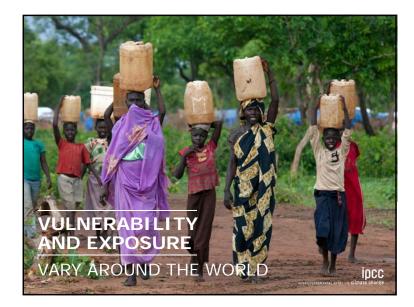

The Intergovernmental Panel on Climate Change (IPCC) has been studying climate change impacts for over 25 years

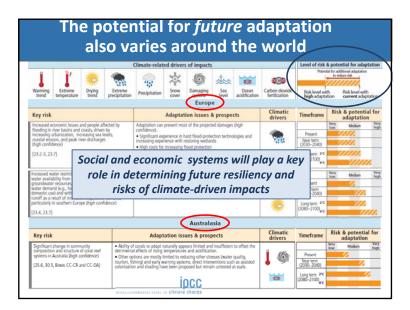




Predicted Temperature Changes for a Doubling of Atmospheric CO₂ Concentration 706 50N 30N 10N 105 30S 50S Without mitigation, global mean surface temperature may increase by 3.7° to 4.8°C over the 21st century 705 30E 60E SOF 120E Temperature Increase (C)

<u>Baseline projections</u>: Continued increases in GHG emissions and concentrations




Rotterdam, The Netherlands

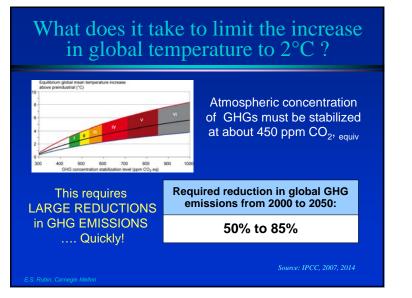
Tuvalu, in the South Pacific

IPU nate char

What Options Do We Have ? *Option 1:* Adaptation (adjust to changes)

The Climate Policy Framework


• 1992 U.N. Framework Convention on Climate Change called for "stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system"

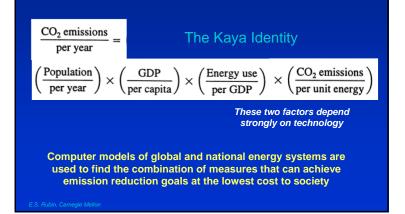

*192 countries are parties to the convention

What Options Do We Have ? Option 2:

Mitigation (reduce GHG emissions)

How do we define "dangerous anthropogenic interference"?

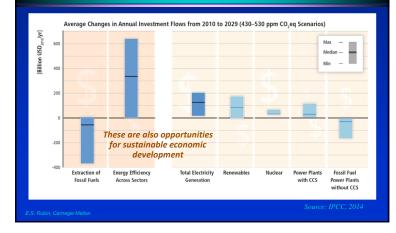
Why are such large emission reductions needed for stabilization?


- Unlike conventional air pollutants, most GHGs are not quickly removed by natural processes —so they remain in the atmosphere for centuries or more
- So, to stabilize atmospheric *concentrations*, GHG <u>emissions</u> must be reduced dramatically

<u>Analogy</u>: To stabilize the water level in a slow-draining bathtub, the faucets must be tightened to a trickle or the water level will continue to rise

E.S. Rubin, Carnegie Mellon

General Strategies for Reducing Emissions



Technologies Needed to Mitigate CO₂ Emissions

- Technologies and social systems that reduce the demands for energy in all sectors of the economy
- Technologies that use energy more efficiently
- Technologies to produce and use energy sources with low or no GHG emissions (e.g., renewables)
- Technologies for CO₂ capture and sequestration at power plants and other large industrial facilities

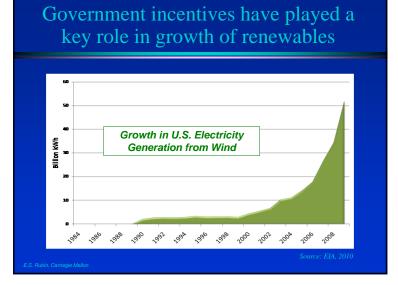
How do government actions influence technology deployment and innovation?

Reducing GHG emissions will require major new investments

"Technology Policy" Options

Direct Government Funding of Research and Development (R&D)

- R&D contracts with private firms
- R&D grants and contracts with universities
 Intramural R&D
- conducted at gov't laboratoriesR&D contracts with
- consortia (2 or more of the actors above)


Direct or Indirect Support for Commercialization and Production; Indirect Support for Development

- Patent protection
- R&D tax credits
- Production subsidies or tax credits to firms bringing
- new technologies to marketTax credits or rebates for
- new technology buyers
 Government procurement
- Demonstration projects

Support for Learning and Diffusion of Knowledge and Technology

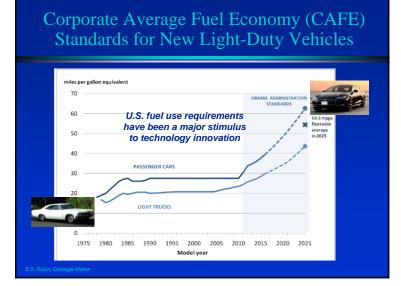
- Education and training
- Codification and transfer of knowledge
- Technical standardsetting (non-regulatory)
- Technology and/or industrial extension services
- Publicity and consumer information
- Provide "carrots" to incentivize innovation & technological change
- · Policies influence different phases of the innovation process

E.S. Rubin, Carnegie Me

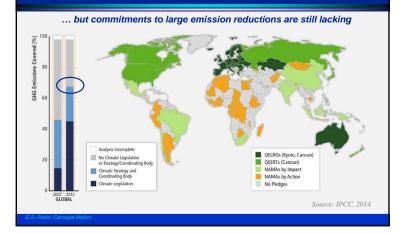
Regulatory policies have had a major impact on energy efficiency and emissions

Energy Demand Sectors and Technologies	
BUILDINGS (Residential & Commercial)	TRANSPORTATION SYSTEMS
Lighting	Light-duty vehicles
Water heating	Trucks, buses, locomotives
Cooking	Aircraft
Refrigeration	Marine vessels
Space heating	INDUSTRIAL PROCESSES
Air conditioning	Electricity use (motors, drives, etc.)
Ventilation	Process heat and fuel use
Appliances	Cogeneration systems
Building structures	New process technology

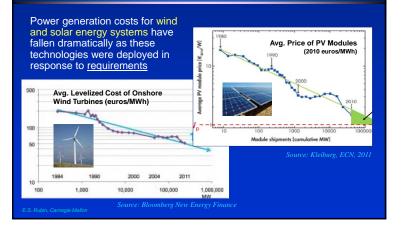
Regulatory Policy Options


Includes Economy-wide or Sector-wide Measures, plus Technology-specific Regulations and Standards; e.g.,

- Emissions tax
- Fuels tax
- Cap-and-trade program
- Technology portfolio standards
- Technology performance standards (for pollutant emission rates, efficiency, or other measures)
- Provide "sticks" to incentivize innovation & technological change
- Also influence different phases of the innovation process


E.S. Rubin, Carnegie Mello

Performance Standards Reduced Refrigerator Energy Use Significantly



Increasing percentage of global emissions are covered by mitigation plans and strategies ...

Renewable Portfolio Standards for Electric Power Systems

Key Elements of the Paris Accord

(COP 21, December 2015)

- World nations agreed to binding commitments for "nationally determined contributions" to GHG emission reductions and measures to achieve them
- New plans every five years to cut emissions beyond previous levels
- Rich countries to help developing nations by providing \$100 billion/yr in "climate finance" by 2020, and more after 2025
- Between 2050 and 2100, limit GHGs emitted by human activities to what can be absorbed naturally

E.S. Rubin, Carnegie Mellon

Mission Innovation R&D Areas

So What Will the Future Bring?

- The Paris Agreement is an important step in the effort to mitigate climate change
- Need for <u>strong policy drivers</u> to spur innovation and deployment of clean and sustainable technologies
- Adaptation and effective social-economic systems also are needed to reduce climate change impacts
- WATCH THIS SPACE FOR FUTURE UPDATES

