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All data are shown in

teragrams CH4 (TgCH4) for emissions and sinks
parts per billion (ppb) for atmospheric concentrations

1 teragram (Tg) = 1 million tonnes = 1×1012g
2.78 Tg CH4 per ppb

Disclaimer
The Global Methane Budget and the information presented here are intended for those interested in 
learning about the carbon cycle, and how human activities are changing it. The information contained 

herein is provided as a public service, with the understanding that the Global Carbon Project team make 
no warranties, either expressed or implied, concerning the accuracy, completeness, reliability, or suitability 

of the information.
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The methane context

• After carbon dioxide (CO2), methane (CH4) is 
the second most important greenhouse gas 
contributing to human-induced climate 
change. 

• For a time horizon of 100 years, CH4 has a 
Global Warming Potential 28 times larger 
than CO2. 

• Methane is responsible for 20% of the global 
warming produced by all greenhouse gases so 
far.

• The concentration of CH4 in the atmosphere 
is 150% above pre-industrial levels (cf. 1750).

• The atmospheric life time of CH4 is 9±2 years, 
making it a good target for climate change 
mitigation

• Methane also contributes to tropospheric 
production of ozone, a pollutant that harms 
human health and ecosystems. 

• Methane also leads to production of water 
vapor in the stratosphere by chemical 
reactions, enhancing global warming.

Updated to 2012

Sources : Saunois et al. 2016, ESDD; Kirschke et al. 2013, NatureGeo.; IPCC 2013 5AR; Voulgarakis et al., 2013



Top-down budget

Ground-based 
data from 
observation 
networks (AGAGE, 
CSIRO, NOAA, 
UCI, LSCE, others).

Satellite data 
(SCIAMACHY, 
GOSAT)

Agriculture and 
waste related 
emissions, fossil 
fuel emissions 
(EDGARv4.2, 
USEPA, GAINS, 
FAO).

Fire emissions 
(GFED3 & 4s, 
FINN, GFAS, FAO).

Biofuel estimates

Ensemble of 11 
wetland models, 
following the 
WETCHIMP 
intercomparison

Model for 
Termites 
emissions

Other sources 
from literature

Suite of eight 
atmospheric 
inversion models 
(TM5-4DVAR (JRC 
& SRON), LMDZ-
MIOP, PYVAR-
LMDz, C-Tracker-
CH4, GELCA, 
ACTM, TM3, 
NIESTM).

Ensemble of 30 
inversions (diff. 
obs & setup) 

From Kirschke et 
al., (2013) Long-
term trends and 
decadal variability 
of the OH sink.

ACCMIP CTMs 
intercomparison.

Soil uptake & 
chlorine sink 
taken from  the 
literature

An ensemble of tools and data to estimate 
the global methane budget

Atmospheric 
observations

Methane sinks Inverse models 
Biogeochemistry 
models & data-
driven methods

Emission 
inventories

Bottom-up budget



CH4 Atmospheric Growth Rate, 1983-2012

Source: Saunois et al. 2016, ESSD (Fig. 1)

• Slowdown of  
atmospheric
growth rate 
before 2006

• Resumed increase
after 2006
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2000-2006: 
0.6±0.1 ppb/yr

2007-2012: 
5.5±0.6 ppb/yr

Atmospheric 
observations
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Atmospheric concentrations (top plot): 

• Methane concentrations rose even faster 
in 2014 and 2015, more than 10 ppb/yr.

• The recent atmospheric increase is 
approaching the RCP8.5 scenario

Anthropogenic emissions (bottom plot): 

• EDGARv4.2 infers an increase in emissions 
that is roughly twice as  fast as EPA and 
GAINS-ECLIPSE5a before 2010 

• Bottom-up inventories are higher than any 
RCPs scenarios, except RCP8.5 

Anthropogenic Methane Emissions & RCPs

Atmospheric 
observations

Emission 
inventories Source: based on Saunois et al. 2016, ERL; Meinshausen et al., 2011

http://cdiac.ornl.gov/trends/emis/meth_reg.html


Observed Concentrations Compared to IPCC Projections



Decadal
emissions

& sinks



Global Methane Budget 2003-2012

http://www.globalcarbonatlas.org

http://www.globalcarbonatlas.org


Source: Saunois et al. 2016, ESSD (Fig 3); 

Biogeochemistry 
models & data-
driven methods

Mapping of the largest methane source categories

Emission 
inventories



Source: Saunois et al. 2016, ESSD; 

Poulter et al, ERL  in review

Biogeochemistry 
models & data-
driven methods

• Wetlands are the largest natural global CH4 source

• Emission from an ensemble carbon-cycle models
constrained with remote sensing surface water and
inventory-based wetland area data.

• The resulting global flux range for natural wetland
emissions is 153–227 TgCH4/yr for the decade of 2003–
2012, with an average of 185 TgCH4/yr.

Wetland methane emissions



Source: Saunois et al. 2016 (Fig 4); 
Etiope (2015), Kirschke et al., 2013)

Biogeochemistry 
models & data-
driven methods

Mapping other natural sources

Termites
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Other natural sources not mapped here are freshwater emissions, permafrost and hydrates



Tropospheric 
OH

450-620 Tg/yr

Stratospheric 
chemistry

15-85 Tg/yr

Tropospheric 
chlorine

15-40 Tg/yr

Soil uptake
10-45 Tg/yr

Methane Sinks (2000s)

Source : Kirschke et al. 2013 Methane sinks



Fresh waters 122 [100%]

Wild animals 10 [100%]

Wild fires 3 [100%]

Termites 9 [120%]

Geological 40  [50%]

Oceans 3 [100%]

Permafrost 1 [100%]

Global methane emissions 2003-2012

 Natural wetlands

Other natural emissions

Biomass/biofuel burning

 Fossil fuel use 

 Agriculture & waste

167 [80%]185 [40%]

Top-down budget
Atmospheric inversions

559 TgCH4/yr [540-568]

Bottom-up budget
Process models, inventories, 

data driven methods
734 TgCH4/yr [596-884]

Mean [min-max range %]

64 [150%]199 [90%]

34 [55%]30 [30%]

105 [50%]121 [20%]

188 [65%]195 [15%]

Coal 42 [80%]

Gas & oil 79 [10%]

Rice         30 [10%]

Enteric ferm & manure 106 [20%]

Landfills & waste 59 [20%]

Source : Saunois et al. 2016, ESSD

Top-down budgetBottom-up budget

Bottom-up budget Top-down budget

(TgCH4/yr)

Mean [uncertainty=
min-max range %]

Mean [uncertainty=
min-max range %]



• Global emissions:

559 TgCH4/yr [540-568] for TD

734 TgCH4/yr [596-884] for BU

• TD and BU estimates generally agree

for wetland and agricultural emissions

• Estimated fossil fuel emissions are

lower for TD than for BU approaches

• Large discrepancy between TD and BU

estimates for freshwaters and natural

geological sources (“other natural

sources”)

Global Methane Emissions 2003-2012

Source: Saunois et al. 2016, ESSD (Fig 5) 

Top-down, left; Bottom-up, right

Inverse models 
Biogeochemistry 
models & data-
driven methods

Emission 
inventories



Regional Methane Sources (2003-2012)

• 60% of global methane emissions come from tropical sources

• Anthropogenic sources are responsible for 60% of global emissions.

Source: Saunois et al. 2016 ERL  (Fig 2) 

Top-down 
budget

Inverse models 



An interactive view of the methane budget

LINK : http://lsce-datavisgroup.github.io/MethaneBudget/

Top-down budget Bottom-up budget

Source: Saunois et al. 2016 ESSD; Dataviz group of LSCE

Inverse models 
Biogeochemistry 
models & data-
driven methods

Emission 
inventories



Regional Methane Sources (2003-2012)

• Largest emissions in Tropical 

South America, South-East Asia 

and China (50% of global 

emissions)

• Dominance of wetland

emissions in the tropics and 

boreal regions

• Dominance of agriculture  & 

waste in India and China

• Balance between agriculture & 

waste and fossil fuels at mid-

latitudes

• Uncertain magnitude of wetland emissions in boreal regions between TD and BU

• Chinese emissions lower in TD than in BU, African emissions larger in TD than in BU

Inverse models 
Biogeochemistry 
models & data-
driven methods

Emission 
inventories

Source: Saunois et al. 2016 ESSD (Fig 7) 



Sink
changes



Impact of OH change  in the methane sink ?

Source : Dalsoren et al., 2016

• Sustained OH increase can 

contribute to explain the the 

stagnation of atmospheric 

methane (before 2007)

• Stagnation or decrease in OH 

radicals can contribute to 

explain  : 

 the renewed increase of 

atmospheric methane 

since 2007

 The lighter atmosphere in 
13C isotope since 2007  

Key point: OH changes could have limited the emission changes necessary to 

explain the atmospheric methane variations



An accelerated atmospheric increase since 2014

Courtesy, Ed Dlugokencky, NOAA

1830 ppb reached in 2015

+12.5 ppb/yr in 2014

+10.0 ppb/yr in 2015

Challenging signal 

to analyse



Highlights

• Unlike CO2, atmospheric CH4 concentrations are rising faster than at any time in the past two
decades and, since 2014, are now above all but the most greenhouse-gas-intensive
scenarios.

• A likely major driver of the recent rapid rise in global CH4 concentrations is increased
biogenic emissions mostly from agriculture. Tropical regions play the most significant role as
contributors to the atmospheric growth. Other sources including emissions from the use of
fossil fuels have also increased.

• The role of methane sinks has to be further explored as a slower destruction of methane by
OH radicals in the atmosphere could have also contributed to the observed atmospheric
changes of the past decade.

• Methane global emissions were 559 TgCH4/yr [540-570] for 2003-2012 as inferred by an
ensemble of atmospheric inversions (top-down approach).

• Methane mitigation offers rapid climate benefits and economic, health and agricultural co-
benefits that are highly complementary to CO2 mitigation.

• Emission estimates from inventories/models (bottom-up approach) show larger global totals
because of larger natural emissions. Improved emission inventories and estimates from
inland water emissions are needed.



www.globalcarbonatlas.org

Explore GHG emissions at the global and country levels, compare among 
countries, visualize, and download data and illustrations (‘Emissions’ 
application). Also explore ‘Outreach’ and ‘Research’. Methane section to come.

Global Carbon Atlas

http://www.globalcarbonatlas.org/
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