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Cyber—physical systems typically target a dedicated purpose; their embedded real-time control system, such
as an automotive control unit, is designed with a well-defined set of functionalities. On the software side,
this results in a large amount of implicit and explicit static knowledge about the system and its behavior
already at compile time. Compilers have become increasingly better at extracting and exploiting such static
knowledge. For instance, many optimizations have been lifted up to the interprocedural or even to the whole-
program level. However, whole-program optimizations generally stop at the application—kernel boundary:
control-flow transitions between different threads are not yet analyzed.

In this article, we cross the application—kernel boundary by combining the semantics of a real-time op-
erating system (RTOS) with deterministic fixed-priority scheduling (e.g., OSEK/AUTOSAR, ARINC 653,
nITRON, POSIX.4) and the explicit application knowledge to enable system-wide, flow-sensitive compiler
optimizations. We present two methods to extract a cross-kernel, control-flow—graph that provides a global
view on all possible execution paths of a real-time system. Having this knowledge at hand, we tailor the
operating system kernel more closely to the particular application scenario. For the example of a real-
world safety-critical control system, we present three possible use cases. (1) Runtime optimizations, by
means of specialized system calls for each call site, allow one speed up the kernel execution path by 28%
in our benchmark scenario. Furthermore, we target transient hardware fault tolerance with two automated
software-based countermeasures: (2) generation of OS state assertions on the expected system behavior, and
(3) a system-wide dominator-region based control-flow error detection, both of which leverage significant
robustness improvements.
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1. INTRODUCTION

Embedded real-time control systems are special-purpose systems: the built-in comput-
ers are dedicated to specific, predefined tasks [Marwedel 2006; Cooling 2003]. Thus, it
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; BufferType buf; app.c | appo,/

: |

3: TASK(TaskA) { |

4: char val = readData(); I TASK TaskA {

5. if (val == '\n’) { : PRIORITY = 0;

6: dispaich buf.finalize(); | TYPE = BASIC;

7 ActivateTask(TaskB); I AUTOSTART = TRUE;
8: P — | SCHEDULE = FULL;
9: } : };

10: buf.append(val); I

11: TerminateTask(); é I TASK TaskB {

12: ‘

13 } 5 w PRIORITY = 10;

: ®© ‘ TYPE = BASIC;
14: TASK(TaskB) { I A
15: buf.print(); 1 SCHEDULE = FULL;
16: TerminateTask(); ———— : b
17: } |
18: I TASK TaskC {

19:  TASK(TaskC) { | PRIORITY = 1;
20: action c(); | TYPE = BASIC;
21: TerminateTask(); I SCHEDULE = FULL;
22: } ! };

|

Fig. 1. A small OSEK system with three tasks. TaskA receives data and fills a buffer, which is processed by
TaskB. TaskC is never activated. The right-hand side shows the static system configuration.

is possible (and common practice) to tailor both the hardware and system software of
an embedded system to its specific needs in order to keep per-unit hardware costs as
low as possible [Broy 2006].

In the software, the “special-purposeness” of an embedded system manifests in the
large amount of implicit/explicit static knowledge that we have available already
at compile time: the structure of the application code is typically static by nature.
With respect to predictability, standards for embedded software development, such as
MISRA-C [MISRA 2004], favor static data over stack-based or heap-based memory
allocation, prohibit the use of function pointers, and suggest using constants whenever
possible.

Thanks to whole-program analyses (WPAs), modern compilers can extract and exploit
this static structure of the application to perform a great deal of interprocedural opti-
mizations, such as constant folding, caller-site inlining, or elimination of dead code and
data. Such optimizations become particularly effective if they are applied per thread
[Shivers 1988], that is, if the compiler is made aware of the OS-managed control flows of
the application and their respective entry points [Erhardt et al. 2011]. This is generally
possible in embedded real-time systems, as the set of control-flows is also static: The
real-time operating system (RTOS) itself is tailored toward the specific application; all
HW/SW events are prioritized and mapped to a finite set of threads, interrupt-service
routines (ISRs), semaphores, or other system objects. This makes it possible to allocate
all system objects at compile time in static arrays and address them by their constant
index value. The automotive OSEK/AUTOSAR [OSEK/VDX Group 2005; AUTOSAR
2013] RTOS standards, for instance, suggest this technique to keep the RAM overhead
as low as possible. Figure 1 exemplifies such an OSEK-based system consisting of three
tasks.

1.1. Problem Statement

Nevertheless, even a control-flow—sensitive WPA cannot provide a complete picture,
as it does not cover control-flow transitions between different threads. These transi-
tions are executed and managed by the OS scheduler on behalf of a syscall (e.g., post-
ing a semaphore) and, thus, outside of the semantics of the programming language.
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The common assumption is that the kernel might switch at any time to any other
thread; thus, the compiler cannot derive constraints about interthread control-flow
transitions.

However, while this pessimistic assumption is true for general-purpose operating sys-
tems that employ probabilistic scheduling of a dynamically changing set of threads (e.g.,
Linux, Windows), industry RTOS standards typically demand fixed-priority scheduling
of a well-defined set of possible tasks, thus, are generally deterministic. In Figure 1, for
example, the AUTOSTART thread TaskA sets thread TaskB ready (ActivateTask(TaskB),
line 7). As the static priority 10 of TaskB is higher than the static priority 0 of TaskA,
we know at compile time that, at this point, the kernel of an event-driven RTOS will
always dispatch to TaskB. Furthermore, as TaskB is activated only from TaskA (and
itself does not activate any other task), we also know that, upon termination of TaskB
(TerminateTask(), line 16), the execution will always continue in TaskA. A compiler
that is aware of these facts could optimize the code to not invoke the kernel scheduler
at these points. Even further, the compiler could inline the user-code of TaskB into
TaskA and completely eradicate the respective system calls and the — then dead — TaskB
object. Similarly, the compiler could detect that thread TaskC is also dead (the kernel
will never dispatch to it); thus, it could also be eradicated. Eventually, the system from
Figure 1 will be collapsed into a single thread, so that even the scheduler is no longer
needed.

This basic example is, of course, simplistic. For instance, it does not contain any ISR
that may activate a task at any time. Nevertheless, even with ISRs, it is typically possi-
ble in an event-triggered real-time system to derive some knowledge about inter-thread
transitions in order to exploit this knowledge for truly global cross-kernel control-flow
system optimizations.

1.2. About This Article

In this article, we describe two approaches to construct a global control-flow graph
(GCFG) of a static fixed-priority, event-triggered real-time system. In addition to an
ordinary (control-flow—sensitive) control-flow graph (CFG), the GCFG also incorporates
the RTOS semantics, including interrupts and synchronization primitives, to model the
control flow even across multiple threads and kernel invocations.

We show how, once obtained, the GCFG can be employed to speed up kernel activa-
tions in our benchmark system by 28%. It can also be employed to harden the kernel
against transient hardware faults. Our software-based system-state assertions reduce
the silent data corruption count by 45% for an already hardened system. A control-flow
error-detection detection schema mechanism on the GCFG improves the silent data
corruption (SDC) count by 14.

The presented optimizations are possible only by the whole-system view of the GCFG.
Further measures only applicable on the system level, such as checking for specification
conformity, are possible. In short, the GCFG information enables the lifting of optimiza-
tions, like dead code elimination, pointer-alias analysis, or constant propagation, from
the (interprocedural) function level to the (interthread) system level.

This article is an extended version of our LCTES’15 conference paper [Dietrich et al.
2015b], in which we have already presented the System-State Enumeration approach to
construct the GCFG (Section 3.2). This approach is precise, but can become intractable
for larger systems due to its worst-case exponential complexity. In this article, we
extend the previous work by the System-State Flow Analysis (Section 3.3), an alter-
native dataflow-based analysis to construct the GCFG that trades preciseness for a
polynomial runtime. We also present an additional application scenario for the GCFG
in Section 4.3 and new evaluation results in Section 5.
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Table I. (Incomplete) List of System Services Provided by the OSEK API.
Not All Control Flows are Allowed to Invoke All System Services

System Service Arguments Brief Description

ActivateTask TaskID Task — TaskID — is activated. If the current task is preemptable, an
immediate reschedule operation takes place.

TerminateTask - The current task terminates itself. An immediate reschedule
operation takes place.

ChainTask TaskID The atomic combination of ActivateTask(TaskID) and
TerminateTask().

GetResource ResID Acquires the resource identified by ResID.

ReleaseResource ResID Leaves the critical region associated with the resource ResID.

The dynamic priority of the calling task is changed and a
reschedule takes place for preemptable tasks.
DisableAllInterrupts - Disables all interrupts.
EnableAllInterrupts — The inverse operation to DisableAllInterrupts.

2. SYSTEM MODEL

To achieve sound GCFG analyses, the underlying RTOS has to provide four basic
properties: first, a deterministic scheduling policy, as, for example, fixed-priority pre-
emptive scheduling. Second, all system objects must be declared before runtime, either
in some dedicated configuration file or unambiguously in the application code itself.
Third, system-service calls must be explicit, that is, indirect invocations via function
pointers are not allowed. Finally, system objects must be referenced with compile-time
constant identifiers or link-time constant addresses.

In practice, these requirements are already fulfilled or easy to achieve for event-
triggered, hard real-time control systems — they are basically a technical consequence
of predictability thus, already mandated by the dominant coding and RTOS stan-
dards of the domain. Examples include ARINC 653 (avionics), which prescribes fixed-
priority scheduling within its time partitions [AEEC 2003]; xITRON (automation con-
trol, automotive) [Takada and Sakamura 1995]; and OSEK/AUTOSAR (automotive)
[OSEK/VDX Group 2005; AUTOSAR 2013], but also the POSIX.4 real-time extensions
(with SCHED_FIFO). Without loss of generality, we therefore describe our approach in
the following on the example of the system model mandated by the OSEK-OS standard.

In our current implementation, the GCFG is constructed for a single core (OSEK-OS
specifies a single core-system). However, our approach would also work for multicore
systems with strictly partitioned scheduling, such as AUTOSAR 4.0 [AUTOSAR 2013].

2.1. Overview of OSEK-0S

OSEK-OS [OSEK/VDX Group 2005] has been the dominant industry standard for
automotive RTOS for the last two decades. Originally intended for single-core, single-
application systems, it has been extended for spatial and temporal isolation and multi-
core support in AUTOSAR-OS [AUTOSAR 2013], but the core API and concepts re-
mained unchanged. Thus, all of the following equally hold for AUTOSAR-OS—based
systems.

OSEK specifies terminology and the API for a completely statically configured event-
triggered RTOS. For a specific automotive application, all system objects and their
configuration have to be declared at compile-time in a compile time language, the OSEK
Implementation Language (OIL) [OSEK/VDX Group 2004]. From this specification, the
concrete RTOS instance is typically derived by a generator.

At runtime, the application manipulates the OS state by invoking system services,
which influences the system behavior (Table I gives a short overview).

Control-Flow Abstractions: ISRs and Tasks. OSEK offers two main control-flow ab-
stractions: ISRs and tasks (traditionally called threads). ISRs are activated by the
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hardware and fall into two classes: category-1 ISRs, which are not allowed to call sys-
tem services; and category-2 ISRs, which are synchronized with the kernel. Tasks have
a statically assigned priority, are allowed to use all system services, and are invoked
according to a fixed-priority preemptive scheduling policy.

On each new activation, tasks start from the very beginning until their (self-)termi-
nation. Each task is configured to be either nonpreemptive (enforcing run-to-completion
semantics) or fully preemptive (see SCHEDULE = FULL in Figure 1). Preemption points
can be either synchronous, for example, caused by an explicit activation of a higher-
priority task (e.g., ActivateTask(TaskB), line 7), or asynchronous, if a higher-priority
task is activated inside an ISR. Recurring, periodic, or aperiodic task activations can
be triggered with the help of statically configured Alarms.

Synchronization Primitives: Global Lock and Resources. Inter task synchronization
can be realized either by a coarse-grained global interrupt lock or more fine-grained
Resource objects. Based on a stack-based priority-ceiling protocol, OSEK resources
ensure mutual exclusion while preventing deadlocks and priority inversion. Through
the acquisition of a resource, a task raises its dynamic priority to the ceiling priority
of the resource — the highest static priority of all tasks that can obtain the resource.

The OSEK specification defines four conformance classes (BCC1, BCC2, ECCI1,
ECC2) describing the minimum requirements of the features provided by the sys-
tem. BCC1/2 allows only basic tasks, which have a strict run-to-completion semantic.
ECC1/2 introduces extended tasks, which are, furthermore, allowed to sleep on Event
objects. In this work, we achieved different conformance classes for our two analysis
methods: For our system-state enumeration (SSE) analysis, we target the conformance
class ECC1 (i.e., extended tasks, but only with one task per priority). For the system-
state flow (SSF) analysis, we target the BCC1 conformance class (i.e., basic tasks with
one task per priority) plus the aforementioned resource concept. In principle, the other
conformance classes could be supported as well; however, we have not yet implemented
this.

Sources of Information. With these system objects at hand, we can construct real-
time systems, composed of ISRs and tasks, which are activated by external or software
signals and coordinated using interrupt blocks or resources. The OIL file statically
defines and configures all objects, providing coarse-grained application knowledge. To
achieve more fine-grained knowledge on the overall system behavior, a detailed analysis
of the kernel-task interaction is necessary.

3. FINE-GRAINED INTERACTION KNOWLEDGE

One piece of fine-grained information about the application is interaction knowledge:
how the application interacts with the kernel and the kernel’s reaction. This section
describes the (GCFG and presents two methods to extract it from the application’s
structure and system configuration: first, the SSE analysis, an expensive, but more
precise method; second, the SSF) analysis, being of polynomial time, but resulting in
more actually infeasible GCFG paths.

3.1. Global Control-Flow Graph

In many modern compilers, CFGs [Allen 1970] are the vehicle to capture the program
logic of single functions. CFGs are directed graphs with basic blocks (BBs) as nodes
and a single entry node. The functions’ code is partitioned into BBs, in which the code
in one BB can only be executed linearly. From a high-level perspective, an edge in the
CFG between two BBs has an execution-order semantic; in every execution trace, two
BBs can only follow each other, if and only if there is an edge in the CFG.
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TaskA (priority: 0)

val = readData();
if (val != "\n’)

buf.finalize();

TaskC (priority: 1)

(7]
\

TerminateTask();

TaskB (priority: 10)

C. Dietrich et al.

ActivateTask(...); GCFG
: [o]
7 N T o
empty
Py [10) [____] Computation
buf.append(val); [ System Call

TerminateTask();

Fig. 2. The GCFG representation of the system shown in Figure 1. Dotted lines are part of the local CFG,
but not part of the GCFG. The “dead” TaskC is not part of the GCFG at all.

We develop the GCFG semantic from the observation that the CFG expresses the BB
execution order within a function. With a function call, control is transferred from the
caller’s to the callee’s CFG. The interprocedural control-flow graph (ICFG) is formed by
connecting all BBs in a program; it captures the execution order on the program level
and respects control transfers caused by function calls. From the OS perspective, the
ICFG expresses the execution order on the task (or thread) level. By rescheduling, the
OS switches control between two tasks, and therefore between their ICFGs. The GCFG
is one level higher; it expresses the execution order on the system level. If and only if
there is an edge in the GCFG between two basic blocks, they may be executed directly
after each other on the real hardware. Nevertheless, like regular CFGs, the GCFG can
include infeasible paths.

In Figure 2, an example GCFG is shown for the application from Figure 1. TaskA
has been assigned a low priority, while TaskB has a high priority. When the application
does not interact with the kernel, the GCFG corresponds to the CFG execution order
(e.g.,0 —> ®,0 — @®). Any system-service invocation (@, @, @, ®) requires the kernel to
react. In the case of ActivateTask (@), a task with higher priority is activated. According
to the OSEK specification, the kernel scheduler chooses TaskB and dispatches to its
entry block (@ — @). After TaskB has terminated itself with TerminateTask (®), the
execution of TaskA is resumed (® — @). Here, we can observe that edges present in the
CFG (@ — @) are not necessarily part of the GCFG: block ® cannot execute directly
after block @ on the system level.

For the construction of the GCFG, we have to answer two questions: (1) How do we
partition the application code into blocks? (2) What edges have to be drawn between
these blocks?

For the code partitioning, we use an adaptation of the atomic basic block (ABB)
concept introduced by Scheler and Schroder-Preikschat [2010]. An ABB is a control-
flow super structure that subsumes one or more BBs, forming a single-entry—single-exit
(SE-SE) region; it has exactly one distinguished entry BB and one exit BB. Besides
these two blocks, no BB has a preceding or succeeding block outside of the ABB region.
Every BB is member of exactly one ABB. As an adaptation of the original ABB concept,
we construct and connect the ABBs differently for the whole application at once:

(1) A function that contains a system call is a system-relevant function. Each function
that calls a system-relevant function is a system-relevant function itself.
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(2) We iterate over all basic blocks of all functions in the application: each basic block
that contains system calls and/or calls to system-relevant functions is split directly
before and after those locations into subsequent parts (see ABBs ®, ®, and ® in
Figure 2).

(3) Depending on their content, we assign a type to each basic block: system-call block,
function-call block, or computation block.

(4) We collect adjacent computation blocks into SE-SE regions.

(5) Each system-call block is an ABB, which contains a single system-call; each
function-call block is an ABB, which contains a single function call; and each SE-SE
region of computation blocks is an ABB.

(6) Within a function, the ABBs are connected into a local CFG corresponding to the
connections of their entry and exit BBs.

After this construction, we have a local ABB-graph for each function within the appli-
cation code. By the distinction of system-relevant functions, calls to system-irrelevant
functions and subsystems are fully subsumed into computation ABBs. This subsump-
tion not only reduces the number of blocks that we have to consider, but also sharpens
the focus on the application logic that is visible to the OS. Interaction with the kernel is
only possible in system-call blocks. Each system-call block has only computation blocks
as direct neighbors.

The identification of SE-SE regions of computation blocks is possible by matching
of control-flow patterns [Scheler and Schrioder-Preikschat 2010], intersection of domi-
nance and post-dominance regions, or from the program-structure tree [Johnson et al.
1994].

In Figure 2, the green blocks are ABBs. In the example, readData() is no system-
relevant function; therefore, block @ is not split before and after the function call,
subsuming the internal logic of readData(). The empty ABB @ is the result of the split
operation that was performed because of the ActivateTask system call. Inserting empty
ABBs ensures that each function-call and system-call block has only computation blocks
as neighbours.

3.2. System-State Enumeration

To construct the GCFG, we combine three sources of information: (1) the system seman-
tics, as defined by the OSEK specification; (2) the static system configuration, which
is specified in the OIL file; and (3) the application logic, described by the local ABB
graphs.

As the first combination method, we present the SSE. Briefly explained, the SSE
computes all possible system states ahead of time and creates a state-transition graph.
The resulting states are partitioned into groups depending on the ABB that they are
currently executing. A GCFG edge between two ABBs exists, if and only if at least one
state in the state group of the source ABB has an edge to a state in the state group of
the target ABB.

Abstract System State Representation. The basis of the SSE analysis is the Abstract
System State (AbSS) representation, which subsumes all relevant behavioral informa-
tion of the system for single points within the control flow. Figure 3 depicts a single
system state for the system from Figure 2. Each task declared in the OIL file is assigned
a record with fields capturing its current task state and dynamic priority. For OSEK,
each task can also hold zero or more resources, which are used to calculate the dynamic
priority. The resume-point field contains the ABB to be executed next in the context of
the task. Preempted tasks will continue their execution at this point. The resume point
of the currently running task is the next block to be executed in the system context;
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AbSS; TaskA TaskB TaskC S
Task .
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Priority 0 10 1
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ABB Return - = =
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Interrupt Next ABB ®
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systemSemantics : — { }

Fig. 3. A detailed view of an Abstract System State (AbSS). The systemSemantics function maps an input
ADbSS to a set of follow-up states.

the next ABB. The return stacks store return ABBs, which are pushed on function calls.
Interrupt block indicates whether interrupts (ISR2s) are currently enabled, which is
system-wide information.

SSE Algorithm: Basic Concept. The enumeration of all system states is achieved by
the repetition of a step function until a fix point is reached (no new AbSSs appear). The
step function pops one state from a working stack, calculates all subsequent states,
inserts edges into the AbSS graph, and pushes the follow-up states onto the working
stack if they were newly discovered. The calculation of follow-up states is based on
three functions:

systemSemantics : State —> {State}
schedule : State — State
execute : State — {State}

The systemSemantics function maps the input state to a set of follow-up states, and
is composed of the execute and the schedule function:

systemSemantics(x) — {schedule(y) | y < execute(x)}

The schedule function updates the dynamic priorities according to the resource
occupation states, and chooses the next running task according to the scheduling rules
mandated by OSEK. The execute function captures the influence of executing the next
ABB. For each of the three block types, different rules apply.

For system-call blocks, all nonterminating system calls set the resume point of the
currently running task to the computation block following in the local CFG. In Figure 3,
the resume point of TaskA was set by the ActivateTask in ABB @. Then, execute
transforms the input state according to the system-call type and arguments. This is
enabled by the constraint that all system calls must be constant in location, type, and
their arguments. In the example, execute evaluates the TerminateTask system call and
returns a single state: TaskB is suspended and its resume point is reset. The schedule
operation marks TaskA as the running task, and ABB @ will be executed next.

Function-call blocks push their single CFG-successor block onto the ABB return
stack. When the execution of the called function reaches a computation block without
CFG successors (exit node), an ABB is popped from the stack as the resume point.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 35, Publication date: January 2017.



Global Optimization of Real-Time Systems by RTOS-Aware Control-Flow Analysis 35:9

Although computation blocks seem harmless, their execute semantic is the most
complex. While all system-call and function-call blocks have a single successor, due to
the ABB split operation, computation blocks may have several successors. For every
CFG successor, execute emits a single follow-up state in which the next ABB is set to
the successor block.

Furthermore, interrupts (alarms and ISR2s) occur only in computation blocks. With
function-call and system-call blocks, we capture only the uninterruptible, atomic mo-
ment of control transfer between system-relevant functions or tasks. Therefore, all
asynchronous signals are handled within computation blocks.

Interrupt Handling. In order to support interrupts in the system analysis, we create
a virtual task for every ISR defined in the OIL description. These tasks are configured
as nonpreemptable tasks, with fully disabled interrupts, and with the highest possible
priority in the system. Therefore, our ISRs cannot be nested, which is one possible
implementation according to the OSEK specification. For each declared alarm, we
create an ISR containing a single ActivateTask() call.

The activation of an interrupt that is synchronized with the kernel can be treated
like an asynchronous system call made by the hardware. If interrupts are enabled in
the input state, execute emits one follow-up state for each ISR and each alarm, for
which the virtual ISR task is set to ready. The resume point of the interrupted task
is not changed; the interrupt will return to the exact same computation block. Then,
schedule will always jump to the entry of the handler function, which is executed in a
run-to-completion semantic.

With firing every interrupt source in every computation block, we are on the safe side
if no information is available about timing, minimal interarrival times, and execution
times of computation blocks or interrupt handlers. By leaving the resumption point
untouched, we capture multiple activations of a single interrupt and activations of
multiple interrupts. Nevertheless, this approach has the drawback of a significant
state explosion.

To ease this shortcoming, we provide the possibility to give additional coarse-grained
information about the system configuration. The developer can declare groups of tasks;
each group handles a single physical event. The interrupt that activates a group cannot
fire again until all tasks in the task group have finished their execution. Providing this
information is a qualitative statement about the execution time; the deadline of the
task group’s execution is shorter than the minimal interarrival time of the activating
interrupt. As future work, quantitative timing information, such as the block worst-
case execution times (WCETs) and precise interrupt timings, could be used to rule out
some interrupt activations from the analysis.

Final GCFG Construction. Once the stepping function has reached a fix point, we
have enumerated all possible system states. Based on the resulting state graph, we
can construct the GCFG by partitioning all system states into state groups depending
on their next ABB field. In each group, all states will execute the same ABB next. We
add GCFG edges between the ABBs @) and @ if any state in group @) has at least
one successor in the state group of ABB @. The GCFG edge expresses: after @) has
executed, it is possible to execute @) next.

Figure 4(a) shows a state-transition graph for a system consisting of three ABBs. This
graph is the direct result of the SSE stepping function. In Figure 4(b), the state groups
are drawn next to their ABBs; S3 and S6 belong to the state group of ABB @. Since a
state—state transition exists between S1 and S3, we insert a GCFG edge between ABB
@ and ABB @. ABB @ has a self-loop, since S2 can be followed directly by S4.

The fusion of all states within an ABB state group represents the expected system
behavior at the entry of the respective ABB. The resulting predictive ABSS is a union
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Fig. 4. The abstract system states in the state-transition graph are partitioned into state groups according
to their “Next ABB” field. A GCFG edge links two ABBs if any state Sn in the ABB’s state group has at least
one successor in the other’s group.

of the individual (task) information fields of each involved AbSS. If a field provides
different values in different states, we insert a “no information” marker leading to an
imprecise state for this task field; otherwise, the task’s state is unambiguous at this
point. To give an example: if a task is marked as ready in S3, but suspended in S6,
the predictive AbSS cannot provide information about this task; the task’s state is not
predictable at ABB @. On the other hand, if a task is denoted as suspended in each
AbSS of a group, it is surely known to be suspended on entry of the corresponding ABB.

3.3. System-State Flow Analysis

The SSE, presented in the previous section is of exponential time complexity since it
enumerates all possible system states. Therefore, a faster GCFG construction method,
which may be more imprecise, is desirable. The SSF analysis is a regular dataflow anal-
ysis that uses already discovered GCFG edges to propagate the system state through
the system.

For the SSF analysis, we put some further restrictions on the use of system services
and the placement of system calls. Each ABB within a system-relevant function has to
be reachable only from a single task; the task’s CFGs have to be disjoint. Furthermore,
the dynamic priority of the running task, which is influenced by OSEK’s resource
protocol, has to be constant for each ABB in the task’s ICFG. Combined, we must
know the currently running task for every ABB (abb.task) and its priority (abb.prio).
Relaxing these restrictions and support for higher conformance classes than BCC1 is
a topic of further research.

The imprecise states, which are used for the SSE to capture our knowledge at the
beginning of each ABB, is the basic data structure for the SSF analysis. If we do not
know the task state of a task, we mark it as unknown. Furthermore, the resume point
of a task becomes a set of ABBs: the task will execute one of the following blocks in the
next step. The next ABB field (resume point of the currently running task) has a set
with exactly one entry; surely suspended tasks have an empty set.

Similar to the SSE, the systemSemantics function captures the OS behavior. The
execute function, which modifies the AbSS according to the system call, is almost the
same as for the SSE analysis; only minor adaptations were necessary. For example,
the ActivateTask () system call adds the entry ABB of the task to the resume-point set
if the task is suspended or unknown. When executing computation blocks, we use the
ICFG successor blocks instead of the function-local successor blocks, which eliminates
the need for an abstract call stack, but decreases the preciseness of the analysis.
The interrupt activation within computation blocks is handled differently, and will be
explained later on.
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ALGORITHM 1 (a) Adapted schedule Operation for the SSF Analysis That Schedules
on Imprecise System States. schedule : State —> {State}
Require: in_abss: imprecise AbSS to schedule upon
1: possible_blocks « [] /l List of tuples of the form (ABB, surely_ready)
2: // Phase 1: Collect possible blocks
3: for task in all_tasks do

4: if task_state(in_abss, task) is unknown then

5: for abb in resume_points(in_abss, task) do

6: possible_blocks append (abb, false)

7: end for

8: else if task_state(in_abss, task) is (ready A running) then

9: min_prio < min({abb.prio | abb € resume_points(in_abss, task)})
10: for abb in resume_points(in_abss, task) do

11: // Only the block with the lowest dynamic priority is surely ready.
12: surely_ready < (abb.prio == min_prio)

13: possible_blocks append (abb, surely_ready)

14: end for

15:  end if

16: end for

17: // Phase 2: Sort blocks by priority; highest priority to the front.
18: possible_blocks <« sort(possible_blocks, sort_by = abb.prio)

19: // Phase 3: Dispatch to each ABB until the first surely running block
20: return_abss <« []

21: used_blocks <« [] /I Already dispatched ABBs

22: for (abb, surely_ready) in possible_blocks do

23: next_abss = copy(in_abss)

24: // Dispatch virtually to each possible ABB

25:  task_state(next_abss, abb.task) < running

26: resume_points(next_abss, abb.task) < {abb}

27:  remove_resume_points(next_abss, used_blocks)

28: return_abss append next_abss

29: used_blocks append abb

30: if surely ready then

31: return return_abss
32:  end if
33: end for

The schedule operation has to be modified to work on imprecise system states. In
Algorithm 1(a), the used scheduler is given in pseudo-code and operates on a single
imprecise system state and emits several possible followup states. The scheduler works
in three phases.First, a list of possible candidate blocks is generated. For each block, we
store the information regarding whether the belonging task is surely ready. All tasks
with unknown task states are not surely running (line 6). For ready and running tasks,
only the block with the lowest dynamic priority is surely ready (line 12). In phase 2,
the possible blocks are sorted by their dynamic priority. In phase 3, we “virtually”
dispatch, by emitting an AbSS, to all candidates until we find the first surely running
ABB. The emitted AbSS is modified to reflect the influence of the dispatching operation.
The target task must be surely running (line 25) and has only the target ABB as
resume point. Furthermore, we have to remove all resume points from the AbSS that
were already considered in other follow-up states (line 27). If remove_resume_points ()
eliminates the last resume point of an task, it is known to be surely suspended. In the
end, we have a list of possible follow-up AbSSs.
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The special case in phase 1 for ready and running tasks solves a problem involving
two tasks: we stop considering blocks after we have encountered the first surely ready
block (line 30). If we have a surely ready task with two resume points at a high priority
and low priority and a second unknown task with a block at a medium priority, we
have to emit three follow-up states for each involved block since it is not sure that the
first task will resume in the high-priority block.

ALGORITHM 1 (b) The System-State Flow Analysis. The SSF is a Data-flow Analysis
That Adds the GCFG Edges Used for the Analysis During Its Traversal of the Graph.
It Results in the GCFG.
Require: initial state :: system state // Initial system state after Start0S()

1: // System states are stored for blocks and for edges

2: state_before = empty map of type (ABB — system state)

3: edge_states = empty map of type ((ABB, ABB) — system state)

4: working_stack = empty stack

5: // Set up the working stack and fake the inputs for the initial block

6

7

8

: initial_abb = running_abb(initial _state)
: state_before[initial_abb] = initial_state
: edge_states[(initial_abb, initial_abb)] = initial _state
9: push(working stack, initial _abb)
10: // Run the fixpoint iteration until the working stack is empty
11: while not isEmpty(working_stack) do
12:  abb = pop(working_stack)
13:  state_before[abb] = merge_states(edge_states[(*, abb)])
14:  followup_states = system_semantic(state_before[abb])
15:  for next_state in followup_states do

16: next_abb = running_abb(next_state)

17: if (abb, next_abb) ¢ gcfg_edges then

18: new _gcfg_edge(abb, next_abb)

19: end if

20: if next_state # edge_states[(abb, next_abb)] then
21: edge_states[abb, next_abb] = next_state

22: push(working_stack, next_abb)

23: end if

24: end for
25: end while

The systemSemantics function is embedded into the SSF analysis, which is depicted
in Algorithm 1(b). The analysis is a working-stack algorithm with two additional data
structures. state_before stores the imprecise system state describing the system just
before the execution of the ABB. edge_states stores the imprecise system state that
“flows” from one ABB to the next. The before state is the combination of all incoming
edge states.

After pushing the initial ABB (line 6) onto the stack, we pop ABBs from the stack
until it is empty. For the examined ABB, we merge all incoming edge states (line 13)
and apply the systemSemantics function to the result. For each possible follow-up state,
we add a GCFG edge to the resume point of the running task if it is not already present
(line 18). If there is no edge state for this GCFG edge or it differs from the stored one,
we update (line 21) the edge state and push the follow-up ABB onto the working stack.
During the algorithm, we gradually discover that more GCFG edges and the system
states become more imprecise until we have reached the fix point.

In our flow-graph, we have at most #ABBs + #ABBs? system states, and each system
state has O(#tasks) variables with a fixed domain and #tasks resume-point sets, each
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set having a maximum of #ABBs items. In each step, we change, in the worst case,
only a single fixed-domain variable to unknown or add only a single ABB to a resume-
point set. Therefore, we need at most O((#ABBs - #tasks) - #ABBs?) iteration steps with
polynomial complexity itself. In total, our SSF analysis has polynomial runtime.

The presented approach would also work if interrupts are modeled the same way
as in the SSE analysis. However, this approach would render the analysis nearly
useless, since ISR entry and exit points are connected to all computation blocks. On
these merge points within the GCFG, the system state would flow and mix until the
states lost all precise information. We ease this problem by spawning a separate SSF
analysis for each ISR activation. The subordinate SSF analysis starts with the before
state of the computation block and stops with the follow-up state of the ISR exit block.
The nonpreemptable ISR activation becomes a complex system call. Even with the
spawning of subordinate SSF analyses, the overall analysis remains polynomial. After
the (main) work stack is empty, we add all visited ISR activation and termination edges
to obtain a complete GCFG.

3.4. GCFG Construction Summary

The result of both methods, SSE and SSF analysis, is a GCFG and a set of before-system
states. Like in the SSE analysis, further information about interrupt activations can be
supplied to the SSF by the developer to assist the GCFG construction. Nevertheless, the
SSF-GCFG will most likely have more edges as a result of the system-state merging,
but all SSE-GCFG edges will be included in the SSF-GCFG; the SSF-GCFG is a more
imprecise overapproximation of the actual GCFG.

4. APPLICATION SCENARIOS

With the system analysis, we have gained two pieces of fine-grained knowledge about
the interaction between application and kernel. First, GCFG edges, with system-call
blocks as sources, represent all possible scheduling decisions after returning from the
system call. Second, the predictive system states, computed for every ABB, describe
the system before the block is executed. With this fine-grained information, we can
optimize the whole system to different nonfunctional properties. In the following, we
present three different optimizations that are enabled by the fine-grained information.
The measures are discussed in detail next; the evaluation follows in Section 5.

4.1. System-Call Specialization

Most OSEK implementations are shipped as library operating systems. The library,
which might be tailored with the coarse-grained knowledge from the OIL file, is linked
against the application to generate the system image. System services are implemented
as library functions and a system call boils down to a function call (see Figure 5(a)).
The system-service implementation has to be generic, since the OS developer has no
control over from which context the function is called.

With fine-grained interaction knowledge at hand, our system generator automati-
cally tailors the system calls more specifically to the application behavior in order to
speed up the kernel execution paths. Instead of calling the generic system service,
we insert a specialized service at the call site. This decoupling enables us to use the
interaction knowledge for selecting the minimum necessary functionality at that point.

In Figure 5(b), we specialize the ActivateTask system call from the running example.
Since ABB @ has only one direct successor at TaskB, we do not have to call the scheduler;
we already know the result and, therefore, directly dispatch TaskB. Furthermore, from
the fact that all GCFG edges lead to the entry block of TaskB, we know that we will never
resume but always start TaskB from the beginning. As the references to system objects
are inserted as constants, the compiler might even inline the dispatching mechanism
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Fig. 5. System-call specialization uses the GCFG to extract possible scheduling decisions and generate
tailored system service instances for each call site. In our example, TaskB is known to be the highest-priority
task at ABB @, and can be dispatched without invoking the scheduler.

here. In cases in which the generator does not have enough information to insert a
specialized version of the system service, it falls back to a default implementation.

Not only scheduler invocations can be avoided. Other complex system operations are
substituted by mechanisms that only update the system state with a precalculated
result of the operation. For example, if the dynamic priority of a task is unambiguous
after a ReleaseResource system call, we do not have to determine it at runtime, but
can update the OS state with a constant value. Depending on the OS implementetion,
this might boil down to a single memory write at a constant address.

However, even if the result of a scheduling operation cannot be calculated completely
at compile time, we allow a partial specialization of the schedule operation. From the
GCFG edges, we can tell all possible scheduling outcomes. This information is used
to tailor a scheduling operation that checks only for potentially runnable tasks. As
their number is typically much lower than the total number of tasks, this particularly
pays off if the scheduler’s computational complexity depends on the number of tasks
(e.g., O(n)). The downside of this tailoring is an increased code memory use, due to the
extensive specialization.

4.2. Assertions on the Predicted System State

In addition to the kernel execution time, the resilience against transient hardware
faults is a nonfunctional property of the operating system: can the kernel detect, or even
recover, from a bit flip in its data structures? Caused by shrinking hardware structure
sizes and lower operating voltages, the problem of transient hardware faults becomes
increasingly important for automotive and other safety-critical control applications.

Software-based dependability measures allow for selective and resource-efficient ro-
bustness improvements. Generally, such measures—for example, triple modular redun-
dancy and checksumming—are dynamic by nature; they check integrity by comparison
of dynamically computed values. With fine-grained interaction knowledge at hand, we
have compile-time information about the dynamic behavior of the application. There-
fore, we can derive constraints that must hold for all possible execution paths. We
enforce these constraints with runtime assertions at each system call. The predictive
system states express the knowledge that we have about the system before an ABB is
entered. Checkable pieces of the system state are, for example, the task state or the
resumption points of the preempted task.
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Fig. 6. Kernel enter and leave hooks, which are executed atomically with the system-call, provide assertions
on the system state.

These assertions not only allow detection of corruptions in the kernel memory, but
also errors in the control flow. Undesired, faulty jumps beyond the next expected sys-
tem call, or even into another task’s control flow, are detectable if the predicted system
state does not match the current kernel state. This allows collection of different types
of constraints for each system-call block, and generation of code that is executed atom-
ically with the system call. We achieve atomicity by substituting the invocation at
system-call site with a code sequence that is enriched by kernel enter and kernel leave
hooks.

Figure 6 depicts such hooks, as well as the assertions on the tasks’ states for ABB @
and ABB @ of our running example. We extract the constraints for a system call by
inspecting different system states for enter and leave hook. The enter hook is filled with
the predictions of the system-call block itself. Since the leave hook is executed only after
the preemption point (PP), we use the predictive system state of the system call’s local
CFG successor. In the example (Figure 6), the enter hook is filled with constraints from
ABB @, while the leave hook uses the predictions from ABB @.

The independent collection of constraints for enter and leave hooks leads to duplicate
assertions. We can avoid double checks during a kernel activation to save run-time
and code size. Each synchronous kernel activation consists of the system call’s enter
hook, the system call itself, and a leave hook of the resumed task. In the example,
we return control from the termination point (TP) to the PP of TaskA. Therefore, the
TerminateTask() activation consists of enter hook ®, TerminateTask(), and leave hook .
We eradicate all assertions from leave hooks that are surely checked in all resuming
enter hooks. In the example, we do not check TaskA’s and TaskC’s task state in leave
hook @ since it is already checked in enter hook ®.

4.3. Control-Flow Monitoring with Dominator Regions

In addition to the system-state assertions, we have developed another measure to
harden a system against transient hardware faults, which exploits the GCFG informa-
tion for a system to detect control-flow errors.

For the control-flow monitoring, we identify regions within the GCFG that must be
entered through a single ABB. In this “root ABB,” a marker is set. The marker must be
present in all other ABBs that belong to this region. All blocks outside the region reset
the marker again. If a marker is not present while executing a block within the region,
the region was not entered through the root ABB; a fault must have occurred. Figure 7
shows an example of a control-flow region that sets a marker A in ABBpg, which is
checked within the rest of the region. If a transient hardware fault leads to a jump
from ABBy directly into the region, the marker is not present and we detect the fault.

First, we need to identify those control-flow regions in the GCFG that can only
be entered through a single block. Luckily, a well-known compiler technique called
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Fig. 7. Control Flow Region used for Fault Detection. Region A sets a marker A, which must be present in
all system-call blocks of that region. The marker is reset in all blocks outside the region. If a faulty control
flow jumps into the region, the marker is not present and the fault is detected.

dominator analysis [Prosser 1959] provides exactly the desired semantic, and fast
algorithms for its calculation are available [Lengauer and Tarjan 1979].

Within a CFG, a block A dominates a block B if and only iff all possible execution
sequences from the entry block visit block A before visiting block B. A block always
dominates itself. In Figure 7, ABBg dominates {ABBg, ABBc, ABBp}. ABBg is not
dominated by ABBp, since a execution path from ABB to ABBg can bypass ABBg.
From the dominance relationship, we can calculate the immediate dominator. The
immediate dominator of block A is its first predecessor that dominates block A. ABB4
is the immediate dominator of ABBg, while ABBgis the immediate dominator of ABBp.

We calculate the dominance relationship and the immediate dominators for the
system’s GCFG. The immediate-dominator information is expressed as the dominator
tree. In the dominator tree, each ABB is the child of its immediate dominator. Therefore,
an ABB dominates all of its children transitively. For the example CFG, Figure 7 also
includes the dominator tree.

In the dominator tree, we identify subtrees that have a system-call block as root node
and include more than one system-call block. For each subtree, we allocate a marker.
In our implementation, markers are single bits in a machine-word-sized variable. In
the region entry, we set the marker bit; outside the region, we clear it. We check the
presence of 32 markers at once with word-sized bit operations; if we are inside a region
and a marker is missing, we detected an error. Bit flips in the marker word might result
in a false-positive detected error, but will never propagate to a failure.

With this approach, we can only detect control-flow errors that jump into a region.
Control-flow errors that leave a region due to a fault cannot be detected since we clear
the marker bit in every outside block. As future work, we could clear the markers only
when the region is left to detect faulty region exits.

4.4. Further Use Cases

In addition to system-state asserts and control-flow monitoring, we condensed the
state-transition graph into a finite state machine that captures the exact scheduling
behavior of the RTOS for a particular application. This state machine facilitates in-
stance validation or can be transformed into a hardware component [Dietrich et al.
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Fig. 8. The flight-control application of the I4Copter quadrotor helicopter.

2015a]. Another direction of future research is the improvement of WCET analysis by
fine-grained interaction knowledge. Global flow information could assist cache analysis
and would allow us to analyze OS code in a flow-sensitive manner.

5. EVALUATION

As an evaluation platform, we use the existing dOSEK OS generator. It is designed
as a dependable OS that is resilient against transient hardware faults in memory and
registers [Hoffmann et al. 2015]. The generative approach of dOSEK is a perfect fit
for the presented analysis and optimizations. dOSEK is available in two basic configu-
rations: unprotected and protected. Only the protected variant includes dependability
measures against transient hardware faults. The presented analyses and optimizations
were integrated into dOSEK.

5.1. Scenario

For our evaluation scenario, we use the I4Copter [Ulbrich et al. 2011], a safety-critical
embedded control system (quadrotor helicopter) developed in an industry project with
Siemens Corporate Technology.

We analyze the task setup of the I4Copter control application (Figure 8): tasks are
activated both periodically and sporadically by interrupts. Intertask synchronization
is realized with OSEK resources; a watchdog task observes the remote control commu-
nication. In total, the scenario consists of 11 tasks, three periodic interrupts (alarms),
one sporadic interrupt, and one resource.

We replaced the application logic with checkpoint markers since we are only inter-
ested in the interaction between application and OS. The substitution does not change
the GCFG or the analysis, but touches only the contents of the computation blocks. The
ABB construction emits 86 ABBs and 52 system-call blocks.

5.2. Analysis Quality and Runtime

With our system analysis, we gather fine-grained knowledge about the interaction
between applications and the OS. We will quantify the amount of knowledge that we
can gather with our methods by comparing their predictive power regarding all system
execution sequences. The higher the predictive power of a method, the more impossible
execution sequences are sorted out.

The result of both analyses is a GCFG with ABBs as nodes. The lesser amount of
edges this graph has, the lesser amount of execution sequences are possible and the
higher is the predictive power of the GCFG. For example, the least informative GCFG,
with the worst predictive power, is the fully connected graph. It proposes that every
block—block transition is possible; every ABB can be followed by any other ABB. For our
evaluation scenario, the fully connected graph has 86 nodes and 7,396 edges, including
self loops, and does not reveal information about the system’s behavior.

Table IT shows the results for our evaluation scenario. We implemented both methods
within the dOSEK generator with the Python 3 scripting language. We measured the
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Table Il. Analysis Quality and Runtime for the Benchmark (86 System-call ABBs)

System-State Enumeration  System-State Flow

w/o Ann. w/ Ann. w/o Ann.  w/ Ann.
GCFG Edges 266 243 320 313
Analysis Runtime [s] 470.2 2.77 0.23 0.24
Memory Consumption [MiB]  3,539.91 43.21 0.65 0.65

Note: With more detailed application knowledge, we can construct sharper GCFGs.

analysis runtime on an 17-2600 with 3.4GHz, with one thread of execution. The memory
consumption is the increased space requirement for the Python objects that are created
during the analysis without garbage collection.

Without the qualitative information about the interarrival time of interrupts, which
was discussed in Section 3.2, the SSE constructs a GCFG with 266 edges, but uses over
3.5GB of memory and took over 7 minutes to complete. During the analysis, a state-
transition graph with 1,563,169 states and 2,098,236 transitions is constructed. With
the user-supplied annotations, the analysis consumes only a fraction of time and mem-
ory, while the number of GCFG edges is reduced by 8.65%. The state-transition graph
has 20,063 states and 23,876 transitions. This reduction results from the prohibition
of interrupt activations.

In contrast to the SSE analysis, the system-state flow analysis takes less than a
second for the evaluation scenario, regardless of the user-supplied annotation. Also,
the memory consumption stays below 1MiB. On the downside, the information value
of the resulting GCFG is lower. Since the SSE analysis is an overapproximation, we
know that all additional edges within the SSF-GCFG are superfluous. Without the
annotations, the SSF-GCFG is 20.3% larger than the SSE-GCFG; with the annotation,
at least 28.81% of the SSF edges are superfluous.

In addition to our I4Copter application, we analyzed a synthetic application with
a pathological structure as a stress test for our analyses. This generated OSEK-
conformant application consists of 250 tasks that are organized in 125 pairs. The
lower-priority thread of a pair is activated by a hardware-driven OSEK alarm (125
sporadic events) and drives a software counter that activates the pair’s high-priority
task. Between the pairs, we introduced 42 cross-pair dependencies, such as cross-pair
task activation and execution chaining.! For this synthetic application, the SSE was
unable to derive a GCFG. The SSF extracted the GCFG, which consists of 2,844 ABBs
and 61,016 edges, in 564 seconds.

5.3. Runtime and Code Size of Specialized Kernel Fragments

The presented methods increase the amount of application knowledge significantly. But
what influence can we take on the nonfunctional properties of the system? First, we
quantify the time the dOSEK kernel takes to execute. Therefore, the system executes
for three hyperperiods on an IA-32 emulator, while, at the same time, an execution
trace is recorded. During the benchmark, 411 system calls are issued.

Table III shows the average time the system remains in the kernel for a system call.
We measure the time in instructions, although this number is not linearly correlated to
execution time on modern pipelined, out-of-order processors. Nevertheless, instruction
counts are more comparable over different hardware versions. Further, many of the
mentioned CPU features are not yet available for embedded platforms, which are
mainly used for real-time systems.

INote that these numbers would be extremly high for a real-world system. OSEK conformance mandates
support for 16 tasks and even leading proprietary implementations support not more than 255.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 2, Article 35, Publication date: January 2017.



Global Optimization of Real-Time Systems by RTOS-Aware Control-Flow Analysis 35:19

Table Ill. Code Size of the dOSEK Kernel and Runtime for Three Hyperperiods
Unprotected dOSEK (SSE) Protected dOSEK (SSE) Protected dOSEK (SSF)

Code Size Runtime Code Size Runtime Code Size Runtime
(Bytes) (Instructions) (Bytes) (Instructions) (Bytes) (Instructions)
Baseline 33,263 31,347 67,966 114,308 67,966 114,308
+ Specialize 10,859 23,688 24,458 81,962 31,135 87,872
+ Dom. Regions 34,369 32,481 69,200 115,743 69,088 115,393
+ Assertions 46,331 38,842 81,884 124,372 79,099 122,272

Note: System analysis was done with user supplied annotations and the specified analysis method.

The unprotected dOSEK needs 31,347 instructions for the whole benchmark. If we
enable the system-call specialization (SSE) with support for instantiating a partial
scheduler, we gain 24%.

The improvement for the protected dOSEK is even larger, since the protected kernel
operations are much more expensive compared to the unprotected system. It starts on
average with 114,308 instructions for the unmodified, but protected, dOSEK system.
Specialization (SSE) reduces the kernel time by 28%.

Inlining the system service into the system-call sites has an impact on the code
size. dOSEK always creates an inlined instance of the system service for each call site.
This inlining increases the resilience against hardware faults by avoiding function calls
within the kernel execution. For the benchmark, baseline JOSEK requires 33,263 bytes
of program memory for the unprotected, and 67,966 bytes for the protected variant.
Compared to this, the system-call specialization reduces the code size for each system
call to 10,859 bytes (unprotected, SSE), respectively, 24,458 bytes (protected, SSE).
Using the more imprecise SSF analysis results in a smaller performance benefit in
the specialized system. Conversely, the overhead on state assertions and dominator
regions decreases, since less knowledge is available with the SSF-GCFG.

Of course, when integrated into a commonly developed library-based OSEK, the
system-call specialization will in general not reduce the code size. Nevertheless, the
code overhead per system-call site will be in the same range as for dOSEK.

5.4. SDC Count Decrease

The enrichment of the system with system-state assertions is a measure against tran-
sient hardware faults. Therefore, we used the FaiL* [Schirmeier et al. 2015] fault
injection framework for an extensive injection campaign on the presented evaluation
scenario. We used a single-event, single-bit fault model, which emulates transient
hardware faults caused by radiation or voltage fluctuations. According to our fault
model, a single-bit flip occurs at one point in time in one location that is visible on the
instruction set architecture. As locations, we not only examine the memory, but also
general-purpose registers, the flag register, and the instruction pointer.

The benchmark scenario, which was augmented with checkpoint markers, runs for
three hyperperiods, and simultaneously, visits 172 checkpoints. It is the task of the
OS to adhere to this checkpoint sequence, even in the presence of hardware faults. If
the kernel cannot provide the correct activation order or corrupts the application data,
and is not able to detect the fault, we record an SDC. If the fault was not benign, but
the kernel detected it, we hand over control to the application; the fault is not counted
as an SDC.

With FaiL*, we executed the system with the deterministic BOCHS [Lawton 1996]
IA-32 emulator. Into each execution, we injected one single-bit flip into the operating
system’s memory or registers and observed the system’s reaction. Due to the focus
on the OS execution, the replacement of the application logic does not influence the
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Fig. 9. Absolute SDC Counts. Influence of inserting state assertions and dominator-region-based control-
flow monitoring on the unprotected dOSEK (left) and the protected dOSEK (right). SSE analysis was used.

results. For the benchmark, the injected faults cover the entire effective fault space.
For the fault injection, we always use the SSE-GCFG.

In Figure 9, we present the results of the injection campaign in absolute SDC
counts for different configurations. We start with the unprotected baseline dOSEK
with 1416.87 - 108 SDCs for the scenario. Nearly all of these SDCs stem from faults in
the main memory, since this variant does not protect the OS state at all.

The system-state assertion optimization inserts 748 assertions into 48 system-call
sites; 639 assertions were introduced into the enter hooks and 109 assertions into
the leave hooks. The insertions add 13,068 bytes of code to the system and increase
its runtime by 24% (see Table III). By spending these overheads, we reduce the SDC
count by 51%. These improvements originate mostly from the protective nature of the
measure on the OS state in memory (—728-108). In total, faults in registers, instruction
pointer, and flags are negligible for the unprotected dOSEK.

The control-flow monitoring identified 25 dominator regions and inserted region
checks into all 52 system-call sites, which resulted in a code-size increase of 1106B bytes
of code. The runtime increased by 3.62%, while the absolute SDC count dropped by 32%.

The protected dOSEK has several magnitudes better starting conditions. For the
baseline, the system reveals 0.12 - 10° SDCs for the benchmark. Due to encoded opera-
tions, memory SDCs dropped significantly, while the other fault locations remained on
the same level as in the unprotected system.

If we insert the same number of assertions into the protected dOSEK, we can further
reduce the number of SDCs by 45%. Here, the improvements stem from reducing
register and instruction-pointer faults (—39%, —77%) that occur during the kernel
operation. The system-state assertions are able to detect incorrect or incomplete results
directly after they have been written back to memory in the kernel leave hooks.

The insertions of control-flow-region checks into the encoded dOSEK revealed an
SDC decrease of 14%.

A combination of control-flow monitoring and system-state assertions did not reveal
a significant increase in robustness. For the unencoded dOSEK, adding control-flow
monitoring to the system-state assertion variant showed another decrease of SDCs by
5% (encoded: —3%).

6. DISCUSSION

One of the main challenges in analyzing OSEK systems with the SSE approach is
the size explosion of the state-transition graph. In theory, a system could have an
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exponentially higher amount of states compared to the number of tasks and basic
blocks. Therefore, measures to ease this exponential burden are crucial.

6.1. Design Recommendations to Tackle the State Explosion

With the ABB abstraction, we reduce the number of blocks in the system significantly.
Subsuming blocks that do not interact with the kernel sharpens the focus on the
application—kernel interaction and abstracts from the application’s microstructure.
Whole library hierarchies and algorithms can be hidden within a single ABB. As a
general design principle, we further recommend avoiding system calls that modify the
kernel state, deep in the call hierarchy. Although deeply buried system calls do not
impede our analysis, they still result in many split basic blocks and thus complex and
confusing GCFGs. Often, such hidden system calls reveal surprising side effects and
activation sequences. In order to reduce the complexity of the analysis — thus of the
entire system—we suggest planning the real-time application in large computation
blocks, which are not sliced by synchronous syscalls.

6.2. Dynamic Task Preemption and Interrupts

Our approach does support indeterminism caused by interrupts and subsequent task
activations, which may also lead to dynamic preemption of the running task. Our goal
is to extract and exploit as much static knowledge as possible to constrain the real
indeterminism. By analyzing the interrupt handler code, our system generator knows
the tasks that are potentially activated dynamically and, thus, also the tasks that
potentially are preempted at runtime (i.e., have a lower priority and may be running
when the interrupt arrives).

Nevertheless, as interrupt requests fork the state-transition graph in every compu-
tation block, they are the main driver of state explosion. However, in real-time systems,
interrupts are rarely totally unpredictable, which opens many optimization possibili-
ties for further state reduction. In order to maintain analyzability, developers already
have to determine minimal and maximal interarrival times. Furthermore, parts of the
application are synchronized with these signals. With the simple task-group annota-
tion, we let the developer already express this knowledge about signal-signal handling
causality, which in the case of safety-critical systems has to be determined anyway.

Further knowledge of the peripheral-device behavior regarding interrupts could be
provided by IO protocols. Here, a logic of actions on application level could be derived.
For example, it could be defined that a “send buffer empty” interrupt could only occur
within a specific time after the associated SendMessage () function had been invoked.

6.3. Scalability of the SSE and SSF Analysis

As a rough estimation, we can assume that the SSE will scale linear in runtime to
the number of system states. We cannot deduce how large a system may be, to remain
manageable. Nevertheless, we already can handle real-world scenarios without having
further assistance by the developer. As a topic of further research, methods from the
symbolic-execution community could be applied to cut down on the analysis runtime,
and other methods could be developed to construct the GCFG.

In Section 5.2, we have seen that SSE and SSF analyses have different objectives.
While the first is slow but results in a more precise GCFG, the second works in polyno-
mial time but results in more infeasible paths; the resulting GCFG is not as informative
as in the SSE case. Furthermore, the SSF analysis currently imposes more strict lim-
itations onto the system and supports only conformance class BCC1 (no events and
waiting states). Nevertheless, the performance benefit for specialized system calls is
comparable for SSF analysis (23.13%) and SSE analysis (28.3%).
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6.4. Threats to Validity and Applicability

The major threat to validity of the experimental findings is that they are based on single
case study only. However, the flight control of our quadrotor flying vehicle is a real-
world safety-critical system that we have developed in close cooperation with Siemens
Corporate Technology [Ulbrich et al. 2011]. Thus, we consider it to be reasonably
representative for these kinds of applications in size and RTOS usage.

The major threats to the general applicability of our approach are the restrictions
we put on (1) the RTOS semantics and (2) the application structure. In essence, our
approach extracts and exploits inherent determinism that is available at compile time
due to the RTOS semantics and its utilization by the application. While this works
reasonably well for fixed-priority scheduling, the usefulness is limited on systems that
offer significantly less determinism, such as an RTOS with an earliest deadline first
(EDF) scheduler or any kind of scheduler that performs online acceptance tests. On the
application side, all interactions with the RTOS have to be detectable at compile time.
This forbids any sort of dynamic code loading, the invocation of syscalls via nontrivial
function pointers, and syscall arguments that are not computable at compile time.

For the domain of safety-critical embedded control systems, however, these re-
strictions impose little impact in practice—they are prescribed and demanded by
the relevant industry and safety standards anyway EDF scheduling, for instance, is
barely used in embedded control systems; the relevant industry standards (such as
OSEK/AUTOSAR, ARINC 653, uITRON, but also POSIX.4) all employ fixed-priority
scheduling; the usage of function pointers and any sort of dynamic code modifications
is discouraged by the relevant coding and safety standards (e.g., MISRA [2004] and
ISO 26262-4 [2011]). In summary, most of our requirements have to be fulfilled any-
way by embedded control systems that need to pass certification authorities. Here, our
approach can even support the development process: Incorrect API usage within the
application code, violating the specified RTOS semantic, is immediately uncovered by
the GCFG analysis.

Other current restrictions, such as multiple tasks per priority as well as multiple
task activations, are no conceptual problem for the SSE analysis. Multiple task per
priority can be mapped to the existing model by letting all tasks of one priority share a
common resource to serialize their execution. Multiple task activations can be modeled
by an activation queue within the AbSS, finally leading to a larger state graph.

7. RELATED WORK

Bertran et al. [2006] proposed a global view on the interaction between operating
system and application. They constructed a GCFG for a complex embedded system,
which was built on top of Linux. System-call entry points and library entry points
were connected to the corresponding call sites. On this GCFG, dead-code elimination
in terms of removing uncalled system calls and unreferenced library functions resulted
in a reduced code size of the system image. In contrast to this work, their analysis was
flow-insensitive and did not take the semantic of system calls into account. Basically,
they extended the CFG into the kernel, but not out of it.

Barthelmann [2002] makes use of the static semantics of an OSEK system to mini-
mize the task contexts to be saved at specific preemption points. A static analysis re-
veals an interference graph describing mutual preemptions of basic blocks, based on the
tasks’ static priorities. With this knowledge, an optimized intertask register-allocation
is performed, including context-switch code generation. Similar to our approach, appli-
cation knowledge is used to influence a nonfunctional property of an OSEK kernel. In
contrast to our work, the scheduling semantic of OSEK was used in a flow-insensitive
manner. This means that, the interference graph includes superfluous preemptions
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that are actually impossible according to a GCFG analysis. This approach corresponds
to the “System Configuration” case from Table II. Nevertheless, the paper describes a
first approach of a generative whole-system optimization taking both the application
and the OS into account.

The OSEK semantic also found attention in the area of formal methods and veri-
fication: Waszniowski and Hanzalek [2008] designed a model of the OSEK standard
targeting the UPPAAL model checker. They modeled all components as timed au-
tomata, also taking interprocess communication (OSEK events) into account. Their
main focus was the verification of different application properties and schedulability
analyses. Huang et al. [2011] modeled OSEK as communicating sequential processes
(CSP). The application subtasks were modeled without considering the internal appli-
cation structure; interrupts were excluded entirely. With this model, they could verify
different properties of their OSEK system, like dead-lock freedom and freedom of pri-
ority inversion. Regarding our approach, these models could provide a more formal
definition of the systemSemantics function.

System specialization was already discussed by the OS community for general-
purpose systems. Pu et al. [1988] developed the Synthesis kernel, which included a
code synthesizer that produced optimized code paths at runtime for often invoked sys-
tem calls, for example, read or write. Due to manual implementation of code templates,
which are then filled by the synthesizer, huge performance benefits result from shorter
kernel execution paths. In comparison to the dynamic Synthesis system, our approach
of the system-call specialization also takes the in-depth application knowledge into
account, but is executed offline. Pu et al. [1988] also mention the problem of code-size
explosion. McNamee et al. [2001] used Tempo, a partial evaluator for C programs, and
a set of specialization predicates to identify functions automatically for specialization
within the kernel. In their approach, the specialization was also done dynamically at
runtime, omitting detailed static application knowledge.

Several approaches to control-flow monitoring were developed for application logic.
Benso et al. [2001] employ regular-expression automata to check the correctness of
executed BB sequences of an application. Yau and Chen [1980] divided the CFG into
loop-free regions. For each region a database of possible paths is encoded and checked
during the execution. Several software signature mechanisms for single basic blocks
were proposed, for example, ECCA [Alkhalifa et al. 1999], CFCSS [Oh et al. 2002],
or YACCA [Goloubeva et al. 2003]. These methods maintain one or more runtime
signature registers, which are continuously updated and checked at the beginning
and the end of each basic block. CEDA [Vemu and Abraham 2008] uses dominance
information to lift signature-based schemes to larger SE-SE regions. Nevertheless,
it does not use dominator regions with multiple exits. All mentioned approaches only
consider the CFG of a single function or task, but could be extended to catch control-flow
errors on the ABB and GCFG level.

8. CONCLUSION

Real-time systems include a large amount of concealed static knowledge about their
dynamic behavior. With the presented methods, we make this knowledge accessible
for OSEK-like systems and exploit it to optimize nonfunctional system properties. We
presented two methods to calculate the global control-flow graph, which covers all pos-
sible system execution paths. The exponential system-state enumeration as well as the
polynomial system-state flow analysis combine application logic, the system configura-
tion, and the OS specification. We employ the fine-grained interaction knowledge to
inline specialized system services into the system-call sites. System-state asserts check
statically derived constraints at runtime, and control-flow checks based on dominator
regions improve the resilience against transient flow errors. With these applications
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of our fine-grained knowledge, we could speed up the kernel execution by 28% and
decrease the soft-error vulnerability by 47%.

Source Code and Raw Data

The analysis source code, which is published as free software under GPLv3+, is avail-
able at github.? The results that lead to the numbers in this article were calculated
by an automated experiment workflow. The dOSEK version used for all results in this
article have the git commit hash 54e0aa4. Raw results are available at our website.?
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