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Summary. The estimation of average treatment effects based on observational data is extremely important in
practice and has been studied by generations of statisticians under different frameworks. Existing globally effi-
cient estimators require non-parametric estimation of a propensity score function, an outcome regression function
or both, but their performance can be poor in practical sample sizes. Without explicitly estimating either functions,
we consider a wide class calibration weights constructed to attain an exact three-way balance of the moments
of observed covariates among the treated, the control, and the combined group. The wide class includes ex-
ponential tilting, empirical likelihood and generalized regression as important special cases, and extends survey
calibration estimators to different statistical problems and with important distinctions. Global semiparametric
efficiency for the estimation of average treatment effects is established for this general class of calibration esti-
mators. The results show that efficiency can be achieved by solely balancing the covariate distributions without
resorting to direct estimation of propensity score or outcome regression function. We also propose a consistent
estimator for the efficient asymptotic variance, which does not involve additional functional estimation of either
the propensity score or the outcome regression functions. The proposed variance estimator outperforms existing
estimators that require a direct approximation of the efficient influence function.
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1. Introduction

Studying the effect of an intervention or a treatment is central to experimental scientists. While a randomized
trial is a gold standard to identify average treatment effects, it may be infeasible, or even unethical, to
conduct in practice. Observational studies are common in econometrics, social science, and public health,
where the participation of intervention is only observed rather than manipulated by scientists. A typical
concern for inferring causality in an observational study is confounding, where individual characteristics
such as demographic factors can be related to both the treatment selection and the outcome of interest. In
these cases, a simple comparison of sample averages from the two intervention groups can lead to a seriously
biased estimate of the population average treatment effects.

When the treatment selection process depends entirely on observable covariates, there are two broad
classes of strategies for estimating average treatment effects, namely outcome regression and propensity score
estimation. When a linear model is assumed for the outcome given covariates, the coefficient for treatment
status provides an estimate of average treatment effects when all relevant confounders are controlled and
when there is no effect modifiers. In general, more complex regression models can be used for predicting
unobservable potential outcomes, while the average treatment effects can be estimated by averaging predicted
outcomes (Oaxaca; 1973; Blinder; 1973). An alternative class of strategies is based on the propensity score,
which is the probability of receiving treatment given covariates. Rosenbaum and Rubin (1983) showed that
adjusting the true propensity score can remove all bias due to confounding. They also showed that the true
propensity score balances the covariate distributions between the two treatment arms. Propensity score can
be used for subclassification (Rosenbaum and Rubin; 1984; Rosenbaum; 1991), matching (Rosenbaum and
Rubin; 1985; Abadie and Imbens; 2006), and weighting (Rosenbaum; 1987; Hirano et al.; 2003). However,
propensity score based methods may not be efficient in general.
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To study efficient estimation, semiparametric efficiency bounds were derived independently by Robins
et al. (1994) and Hahn (1998). Interestingly, the efficient influence function for the average treatment
effects involves both the propensity score and the outcome regression functions. This motivated subsequent
development of methods involving a combination of propensity score and outcome regression modeling
(Robins et al.; 1994; Hahn; 1998; Bang and Robins; 2005; Qin and Zhang; 2007; Cao et al.; 2009; Tan;
2010; Graham et al.; 2012; Vansteelandt et al.; 2012). Recently, Chan (2013), Han and Wang (2013), Chan
and Yam (2014) and Han (2014) considered methods that can accommodate multiple non-nested models of
the propensity score and outcome regression at the same time. Many recent methods focus on improving
covariate balance within the propensity score and outcome regression frameworks (Qin and Zhang; 2007;
Tan; 2010; Chan; 2012; Graham et al.; 2012; Vansteelandt et al.; 2012; Han and Wang; 2013; Chan and
Yam; 2014). Imai and Ratkovic (2014) argue that the estimation of propensity score parameters with a
specification of outcome model does not align well with the original spirit of propensity score methodology as
discussed in Rubin (2007). They proposed a covariate balancing propensity score method for the estimation
of propensity score parameters, which balances covariates for an overidentified moment restriction without
assuming an outcome model.

All methods mentioned so far require specification of either a propensity score model, an outcome model,
or both. Consistency of the estimators requires some underlying models to be correctly specified. Since the
estimand of interest is the average treatment effects, and the propensity score or the outcome models are
just intermediate steps, it is natural to question whether the correctness of the intermediate models were
necessary for producing correct inference. Nonparametric estimators are developed to provide valid inference
in large samples without relying on parametric assumptions in the intermediate steps of estimation. Hahn
(1998), Hirano et al. (2003), Imbens et al. (2006), Chen et al. (2008) have considered various nonparametric
estimators for the average treatment effects. Although the validity of estimation does not rely on any para-
metric assumption on the propensity score and outcome models, their methods require sieve approximations
of those unknown conditional functions, as these functions appear explicitly in the semiparametric efficient
inference functions (Robins et al.; 1994; Hahn; 1998). An important observation has been made by Hirano
et al. (2003) that the celebrated inverse probability weighted estimator of Horvitz and Thompson (1952)
is globally semiparametric efficient when a sieve maximum likelihood propensity score estimator is used.
Global semiparametric efficiency is more desirable than local semiparametric efficiency which requires the
correct specification of parametric models. An implication of Hirano et al. (2003) is that global efficiency
can be achieved by solely estimating the propensity score nonparametrically, without requiring to estimate
the outcome model, which also appears in the efficient influence function. An efficient estimator is adapted
from the Horvitz-Thompson estimator, a simple estimator used by decades of statisticians. Alternatively,
Imbens et al. (2006) and Chen et al. (2008) showed that globally efficient estimators can be constructed
from nonparametric estimators of the outcome model only. A combination of nonparametric estimators of
the propensity score and outcome models can also produce globally efficient estimators (Imbens et al.; 2006;
Chen et al.; 2008).

The existing globally efficient estimators do not require correct specification of propensity score or out-
come regression models in large samples, but the need to specify a nonparametric approximation of either
or both functions is still present. It has been shown that estimators for average treatment effects can have
substantial bias when either functions are poorly estimated (Kang and Schafer; 2007; Ridgeway and McCaf-
frey; 2007). It is natural to question whether nonparametric estimation of these functions is even necessary,
and whether they can be replaced by an alternative simple balancing criterion which is inherited from the
unknown propensity score function. Although estimators that improve balance of covariate distribution are
discussed in recent papers (Qin and Zhang; 2007; Tan; 2010; Graham et al.; 2012; Vansteelandt et al.; 2012;
Han and Wang; 2013; Imai and Ratkovic; 2014; Chan and Yam; 2014), their methods require paramet-
ric modeling of the propensity score model or the outcome model. Nonparametric methods for improving
covariate balance have been studied widely in the survey sampling literature (Deming and Stephan; 1940;
Deville and Särndal; 1992; Kim and Park; 2010; Hainmueller; 2012). The recent paper of Hainmueller (2012)
focused on using the implied weights of the raking estimator of Deming and Stephan (1940) to preprocess
data for estimating the treatment effects on the treated. Since he focused on preprocessing, he did not study
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statistical inference and estimation efficiency.
The class of survey calibration estimators is simple to implement, conceptually appealing, and has been

used by survey statisticians for decades for different applications than the estimation of average treatment
effects. Survey calibration weights typically minimize the distance from indetermined weights to a set of
pre-specified design weights, subject to moment conditions. For missing data applications, there is no known
design weights, and calibration usually requires estimating inverse probability weights, see Chan and Yam
(2014) for a recent review. The connections between the survey calibration estimators and several non-
survey applications are recently rediscovered (Breslow et al.; 2009; Lumley et al.; 2011; Hainmueller; 2012;
Saegusa and Wellner; 2013; Chan and Yam; 2014), but important theoretical properties have not been fully
understood. In particular, it is unclear whether achieving covariate balance alone without an estimation of
propensity score or outcome regression models can lead to globally semiparametric efficient estimators. This
is an important theoretical property that has been established for estimators that involve nonparametric
estimation of propensity score or outcome models (Hirano et al.; 2003; Imbens et al.; 2006; Chen et al.;
2008), but it is also well-known that exact matching with replacement and with a fixed number of matches
can attain covariate balance but is inefficient in general (Abadie and Imbens; 2006).

There are two substantial gaps in the literature of nonparametric inference for average treatment effects
that we aim to fill in this article. First, we show that a broad class of calibration estimators which solely
targets on covariate balancing can attain semiparametric efficiency bound without explicitly estimating the
propensity score or outcome regression functions. Compared to the seminal paper of Hirano et al. (2003)
who showed that globally efficient estimation can be achieved by a nonparametric adaptation of a simple
estimator by Horvitz and Thompson (1952), which has been used by statisticians for decades, we show
that a globally efficient estimator can be adapted from another class of simple estimators pioneered by
Deming and Stephan (1940). However, our work contains three very different conceptual aspects compared
to existing survey calibration methods. The first important difference is that the proposed weights minimize
a distance measure from a set of misspecified, uniform weights, whereas the original survey calibration
estimators minimizes distance from the design weights, which are the unknown inverse propensity score
weights for the evaluation problem. Therefore, our formulation does not involve the estimation of the
unknown propensity score function. By minimizing the distance to uniform baseline weights, we improve
robustness by avoiding extreme weights that typically ruin the performance of Horvitz-Thompson estimators
with maximum likelihood estimated weights. The uniform baseline weights are misspecified unless the
treatment is randomized, and the usual theory for survey calibration that requires a correctly specified
baseline weights are therefore inapplicable. The mathematical proofs for the theorems are therefore very
different from the existing results. Second, we reformulate the problem as the dual of the original calibration
problem, which is a separable programming problem subject to linear constraints. The dual, as discussed in
the optimization literature, is an unconstrained convex optimization problem. This reformulation allows us
to provide a simple and stable algorithm for practical usage and streamlines the mathematical proofs. Third,
we consider a growing number of moment conditions as opposed to a fixed number of moment conditions for
survey calibration. The growing number of moment conditions is necessary for removing asymptotic bias
associated with misspecified design weights while at the same time attaining global efficiency.

An equally important contribution of our paper is a novel nonparametric variance estimator for inter-
val estimation and hypothesis testing. While there are plenty of point estimators for estimating average
treatment effects, the problem of nonparametric estimation of efficient variance has received little attention
because it is difficult. A consistent plugged-in estimator proposed by Hirano et al. (2003) involves the
squared inverse of estimated propensity score function and can perform extremely poorly in small samples
as shown in the simulation studies in Section 5. In a local semiparametric efficiency framework, consistent
variance estimation often requires both the propensity score and outcome regression models to be correctly
modeled despite point estimators that are often doubly robust. Due to these difficulties, many authors
proposed novel point estimators while leaving the variance estimation unattended. Bootstrapping may be
used but is typically computationally intensive and may not be practical to implement for large data sets.
Others have suggested that the estimated weights shall be treated as fixed weights (see for example, Section
3.4 of Hainmueller, 2012). However, statistical inference can be very misleading. The variability of the
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estimated weights can be substantial, and in fact we illustrate using a real example in Section 6.2 to show
that the standard error of the treatment effects can be underestimated by more than five fold if the weights
are treated as fixed. Our proposed variance estimator is both novel and important for statistical inference
in practice. It does not require direct nonparametric estimation of either the propensity score or outcome
regression models. This is in contrast to Hirano et al. (2003), whose point estimator does not require non-
parametric estimation of outcome regression function but that additional functional estimation is required
for interval estimation. We show that the proposed estimator is consistent to the semiparametric variance
bound and its validity does not depend on any parametric models; it outperforms existing estimators which
require direct approximation of the efficient influence function.

The paper is organized as follows. In Section 2, we shall introduce the notations and a class of the calibra-
tion estimators, discuss related estimators that have been proposed in the literature, explain philosophical
and practical differences between calibration and propensity score modeling, and study the large sample
properties of the calibration estimators. A consistent asymptotic variance estimator is proposed in Section
3. In Section 4, we study three extensions of the problem: the estimation of weighted average treatment
effects, treatment effects on the treated, and the estimation for multiple comparison groups. Simulation re-
sults will be presented in Section 5 and analyses of the National Health and Nutrition Examination Survey
and the famous Lalonde (1986) data for the effect of job training on income are presented in Section 6. Some
final remarks are given in Section 7.

The proposed methods can be implemented through an open-source R package ATE available from the
Comprehensive R Archive Network (http://cran.r-project.org/package=ATE).

2. Point Estimation

2.1. Notations and basic framework
Let T be a binary treatment indicator. We define Y (1) and Y (0) to be the potential outcomes when an
individual is assigned to the treatment or control group respectively. The population average treatment
effects is defined as τ , E(Y (1)−Y (0)). The estimation of τ is complicated by the fact that Y (1) and Y (0)
cannot be observed jointly. The potential outcome Y (1) is only observed when T = 1, and Y (0) is only
observed when T = 0. The observed outcome can be represented as Y = TY (1) + (1− T )Y (0). In addition
to (T, Y ), we assume that a vector of covariates X is observed for everyone, and T is typically dependent
on (Y (1), Y (0)) through X. We assume the full data {(Ti, Yi(1), Yi(0),Xi), i = 1, . . . , N} are independent
and identically distributed, and the observed data is {(Ti, Yi,Xi), i = 1, . . . , N}. The following assumption
is often made for the identification of τ :

Assumption 1. (Unconfounded Treatment Assignment) Given X, T is independent of (Y (1), Y (0)).

Based on Assumption 1, the semiparametric efficiency bound for estimating τ has been developed by
Robins et al. (1994) and Hahn (1998). Let π(x) , P(T = 1|X = x) be the non-missing probability,
also known as the propensity score, and m1(x) , E[Y (1)|X = x], m0(x) , E[Y (0)|X = x] are the con-
ditional mean functions. Conventional statistical methods for estimating τ involves modeling of π(X),
(m1(X),m0(X)) or both, based on different representations of τ :

τ = E
[

TY

π(X)
− (1− T )Y

1− π(X)

]
(1)

= E[m1(X)−m0(X)] (2)

= E
[

TY

π(X)
− T − π(X)

π(X)
m1(X)− (1− T )Y

1− π(X)
− T − π(X)

1− π(X)
m0(X)

]
. (3)

The inverse probability weighted estimators (Horvitz and Thompson; 1952; Hirano et al.; 2003) have
been constructed based on (1); the regression prediction estimators (Oaxaca; 1973; Imbens et al.; 2006) have
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been proposed based on (2); and the augmented inverse probability weighted estimators (Robins et al.; 1994;
Bang and Robins; 2005; Cao et al.; 2009) have been proposed based on (3).

Based on Assumption 1, another important feature for the propensity score π(X) is that

E
[
Tu(X)

π(X)

]
= E

[
(1− T )u(X)

1− π(X)

]
= E[u(X)] . (4)

Recently, many authors have proposed estimators by combining (1) and (4) in various creative manners
under the propensity score framework, see Qin and Zhang (2007), Tan (2010), Chan (2012), Graham et al.
(2012), Vansteelandt et al. (2012), Han and Wang (2013), Imai and Ratkovic (2014) and Chan and Yam
(2014). Since (4) often defines an overidentifying set of moment restrictions, estimation is generally done
within the generalized method of moments or the empirical likelihood framework. These methods require
modeling and estimation of the propensity score but the proposed method does not.

2.2. A general class of calibration estimators
Let D(v, v0) be a distance measure, for a fixed v0 ∈ R, that is continuously differentiable in v ∈ R, non-
negative, strictly convex in v and D(v0, v0) = 0. The general idea of calibration as in Deville and Särndal
(1992) is to minimize the aggregate distance between the final weights w = (w1, . . . , wN ) to a given vector of
design weights d = (d1, . . . , dN ) subject to moment constraints. The minimum distance estimation is closely
related to generalized empirical likelihood as discussed in Newey and Smith (2004). In survey applications,
the design weights are known inverse probability weights. In the estimation of average treatment effects,
the inverse probability weights are di = π(Xi)

−1 if Ti = 1 or di = (1− π(Xi))
−1 if Ti = 0, for i = 1, . . . , N ,

which are unknown and need to be estimated. A recent paper by Chan and Yam (2014) discussed the
calibration methods with design weights estimated by maximum likelihood approach. Here we consider
a different formulation. To circumvent the need to estimate the design weights, we consider a vector of
misspecified uniform design weights d∗ = (1, 1, . . . , 1), and construct weights w by solving the following
constrained minimization problem:

Minimize
N∑
i=1

D(wi, 1) ,

subject to the empirical counterparts of (4), that are

1

N

N∑
i=1

Tiwiu(Xi) =
1

N

N∑
i=1

u(Xi) and
1

N

N∑
i=1

(1− Ti)wiu(Xi) =
1

N

N∑
i=1

u(Xi) .

The choice of uniform design weights is based on a few observations. First, if the counterfactual variables
are observable for everyone, we can estimate τ by the sample mean of Y (1) − Y (0) which assigns equal
weights. Also, the need for estimating π(x) is not needed when the design weights are assumed to be
uniform. Moreover, by minimizing the aggregate distance from constant weights, the dispersion of final
weights is controlled and extreme weights are less likely to obtain. In contrast, extreme weights cause
instability in Horvitz-Thompson estimators with maximum likelihood weights under model misspecification.
However, the choice of uniform design weights also poses unique challenges. When the number of matching
conditions is fixed, Hellerstein and Imbens (1999) showed that an empirical likelihood calibration estimator
with misspecified design weights yields inconsistent estimators in general. To circumvent this theoretical
difficulty, we consider matching uK which is a K(N)-dimensional function of X, K(N) increases to infinity
when N goes to infinity yet with K(N) = o(N).

The constrained optimization problem stated above is equivalent to two separate constrained optimization
problems:

Minimize
N∑
i=1

TiD(Npi, 1) subject to
N∑
i=1

TipiuK(Xi) =
1

N

N∑
i=1

uK(Xi) , (5)
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and

Minimize
N∑
i=1

(1− Ti)D(Nqi, 1) subject to
N∑
i=1

(1− Ti)qiuK(Xi) =
1

N

N∑
i=1

uK(Xi) . (6)

Furthermore, to efficiently implement the method, we consider the dual problems of (5) and (6). The reason
is that the primal problems (5) and (6) are convex separable programming with linear constraints, and Tseng
and Bertsekas (1987) showed that the dual problems are unconstrained convex maximization problems that
can be solved by efficient and stable numerical algorithms.

Let D(v) = D(v, 1), f(v) = D(1− v) and its derivative be f ′(v), ∀v ∈ R. The dual solutions are given as
follows. For i such that Ti = 1,

p̂K(Xi) ,
1

N
ρ′(λ̂T

KuK(Xi)) ,

where ρ′ is the first derivative of a strictly concave function

ρ(v) = f((f ′)−1(v)) + v − v · (f ′)−1(v) (7)

and λ̂K ∈ RK maximizes the following objective function

ĜK(λ) , 1

N

N∑
i=1

[
Tiρ(λ

TuK(Xi))− λTuK(Xi)
]
. (8)

Similarly, for i such that Ti = 0,

q̂K(Xi) ,
1

N
ρ′(β̂T

KuK(Xi)) ,

and β̂K ∈ RK maximizes the following objective function

ĤK(β) , 1

N

N∑
i=1

[
(1− Ti)ρ(β

TuK(Xi))− βTuK(Xi)
]
. (9)

According to the first order conditions of the maximizations of (8) and (9), we can easily check that the
linear constraints in (5) and (6) are satisfied. We define the proposed empirical balancing estimator for τ to
be

τ̂K ,
N∑
i=1

{Tip̂K(Xi)Yi − (1− Ti)q̂K(Xi)Yi}.

The relationship (7) between ρ(v) and f(v) = D(1−v) is shown in Appendix B, where we also show that
strict convexity of D is equivalent to strict concavity of ρ. Since the dual formulation is equivalent to the
primal problem and will simplify the following discussions, we shall express the estimator in terms of ρ(v)
in the rest of the discussions. When ρ(v) = − exp(−v), the weights are equivalent to the implied weights of
exponential tilting (Kitamura and Stutzer; 1997; Imbens et al.; 1998). When ρ(v) = log(1 + v), the weights
correspond to empirical likelihood (Owen; 1988; Qin and Lawless; 1994). When ρ(v) = −(1 − v)2/2, the
weights are the implied weights of the continuous updating estimator of generalized method of moments
(Hansen; 1982; Hansen et al.; 1996), and also minimizes the squared distance function. When ρ(v) =
v − exp(−v), the weights are equivalent to the inverse of a logistic function.

Despite the close connections with generalized empirical likelihood, the calibration estimator has several
important differences compared to the generalized empirical likelihood literature. In econometrics, gen-
eralized empirical likelihood is often employed for estimating a p-dimensional parameter by specifying a
q-dimensional estimating equation, where q > p ≥ 1. However, we are not estimating the target parameter
τ by directly solving an overidentified estimating equation. The calibration conditions in (5) and (6) can
be regarded as a K-dimensional moment restriction with a degenerate parameter of interest, and (8) and
(9) are essentially degenerate cases of generalized empirical likelihood with only the auxiliary parameters λ
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and β appearing but not the target parameter τ . Even though the generalized empirical likelihood estima-
tion problem is undefined because the moment restrictions are not functions of target parameters, implied
weights can still be constructed. In econometrics, the generalized empirical likelihood estimators are usually
solutions to saddlepoint problems and can be difficult to compute. In our case, λ̂ and β̂ are solutions to
unconstrained convex maximization problems rather than a saddlepoint problem and can be computed by
a fast and stable Newton-type algorithm. Moreover, the generalized empirical likelihood literature mainly
deals with a fixed number of moment restrictions, but the dimension K of moment restrictions increases
with N in our present consideration. Furthermore, the moment restrictions are misspecified for finite K in
our case, but most theoretical results for generalized empirical likelihood are derived under a correct model
specification and are therefore inapplicable.

2.3. Related estimators
Existing globally efficient estimators following the expressions (1), (2) and (3) have been proposed so far
without considering (4). For instance, it follows from (1) that we can estimate τ provided that a non-
parametric estimator for π(X) is available. Denote π̂(X) a series logit estimator (Geman and Hwang; 1982;
Newey; 1994, 1997). Hirano et al. (2003) suggested that τ can be estimated by

τ̂HIR =
1

N

N∑
i=1

[
TiYi

π̂(Xi)
− (1− Ti)Yi

1− π̂(Xi)

]
.

Alternatively, it follows from (2) that the average treatment effects τ can be estimated provided that a non-
parametric estimator for m1(X) and m0(X) are available. Under Assumption 1, m1(X) = E[Y |X, T = 1]
and m0(X) = E[Y |X, T = 0]. Therefore, m1(x) and m0(x) can be estimated using data from the treated
group and the control group respectively by polynomial series estimators (Newey; 1994, 1997), denoted by
m̂1(x) and m̂0(x). Imbens et al. (2006) suggested the estimator

τ̂INR , 1

N

N∑
i=1

[m̂1(Xi)− m̂0(Xi)] ,

where the average is taken over the full sample, including the observations for which Yi(1) and Yi(0) are not
observed, and as a result τ̂INR is called an imputation estimator in Imbens et al. (2006). Chen et al. (2008)
considered a more general setting for M-estimation under moment restrictions and proposed an estimator
by first projecting estimating equations onto basis functions of a series estimator, which is similar to τ̂INR

estimating treatment effects. Hahn (1998) proposed a different estimator by first estimating the three
conditional expectations E[Y T |X = x],E[Y (1 − T )|X = x] and π(x), and used these estimated conditional
expectations to estimate the two regression functions m1(x) and m0(x). Since m0(x) = E[Y (1 − T )|X =
x]/(1− π(x)) and m1(x) = E[Y T |X = x]/π(x), Hahn (1998) suggested the estimator

τ̂H , 1

N

N∑
i=1

Ê[Y T |X = Xi]

π̂(Xi)
− Ê[Y (1− T )|X = Xi]

1− π̂(Xi)
.

Imbens et al. (2006) further suggested a modified estimator τ̂mod, that combines the features of τ̂INR and
τ̂HIR, defined by

τ̂mod =
1

N

N∑
i=1

[
Tim̂1(Xi)

π̂(Xi)
− (1− Ti)m̂0(Xi)

1− π̂(Xi)

]
.

It has been shown by Imbens et al. (2006) that τ̂HIR, τ̂INR, τ̂mod and τ̂H attains the semiparametric
efficiency bound for the estimation of τ under Assumption 1 and some regularity conditions, and they all
admit the following asymptotic expansion

1

N

N∑
i=1

[
TiYi

π(Xi)
− Ti − π(Xi)

π(Xi)
m1(Xi)−

(1− Ti)Yi

1− π(Xi)
− Ti − π(Xi)

1− π(Xi)
m0(Xi)

]
+ op(N

−1/2) .
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The estimators mentioned are all globally semiparametric efficient, which holds for arbitrary π(x), m0(x)
and m1(x) subject to some mild smoothness conditions. It is different from local semiparametric efficient
estimators, where semiparametric efficiency holds only for a restricted submodel, usually under the correct
specification of parametric models for π(x), m0(x) and m1(x).

Locally efficient estimators have been proposed that incorporates (4) in the estimation under the propen-
sity score or outcome regression framework. Qin and Zhang (2007) proposed an empirical likelihood estimator
that matches the sample moment of covariates and the propensity score, where the propensity score param-
eters are estimated by maximum likelihood approach. Since the propensity score is estimated, the empirical
likelihood estimator does not guarantee efficiency improvement even when additional moment restrictions
are added. Chan (2012) proposed a modified empirical likelihood estimator that guarantees the asymptotic
variance to be non-increasing whenever additional moment conditions are included. Han and Wang (2013)
and Han (2014) showed that the empirical likelihood estimator of Qin and Zhang (2007) is multiply robust.
A related but different class of generalized empirical likelihood estimators is shown to be multiply robust by
Chan and Yam (2014), where the propensity score parameters are estimated by maximizing the underlying
likelihood. Tan (2010) and Graham et al. (2012) over-parameterize the propensity score model by includ-
ing contributions of the outcome regression model as predictors in their extended propensity score models.
Estimation of the parameters in those extended propensity score models is done by the method of moments
or empirical likelihood, based on estimating equations defined by different moment balancing constraints.
Imai and Ratkovic (2014) noted that the inclusion of outcome model in propensity score modeling does not
align with the original spirit of the propensity score methods (Rubin; 2007). Instead of over-parameterizing
the propensity score model, they constructed an over-identified set of estimating equations which combines
the likelihood score equation of the propensity score with additional moment balancing conditions.

Survey calibration improves a given set of design weights by calibration weights that satisfy certain
moment constraints. Many survey calibration estimators correspond to special cases of ρ(v). The exponential
tilting calibration estimator is often known as raking, which dates back to Deming and Stephan (1940)
and Deville et al. (1993). The empirical likelihood calibration estimator is discussed in Chen and Sitter
(1999), Wu and Sitter (2001) and Chen et al. (2002), among others. The quadratic ρ(v) gives rise to the
generalized regression estimator of Cassel et al. (1976). A general formulation of calibration estimators is
given in Deville and Särndal (1992) and Kim and Park (2010). These estimators are usually used to improve
finite sample estimates when population totals of auxiliary variables are known. The connections between
the survey calibration estimators and some non-survey applications were recently rediscovered (Breslow
et al.; 2009; Lumley et al.; 2011; Hainmueller; 2012; Saegusa and Wellner; 2013; Chan and Yam; 2014).
Breslow et al. (2009) and Saegusa and Wellner (2013) studied calibration for outcome dependent sampling
in epidemiology. Lumley et al. (2011) studied connections with genetic epidemiology and measurement
error problems. Hainmueller (2012) used calibration for pre-processing data for program evaluation. Chan
and Yam (2014) reviewed the connections among many calibration-type estimators proposed independently
in survey sampling, biostatistics and econometrics literature for a missing response problem, in which the
missing data mechanism is modeled parametrically.

2.4. Philosophical differences and practical implications
Although the calibration weights in Section 2.2 are also constructed from moment balancing conditions as
in certain propensity score methodologies, there is a fundamental difference in the modeling philosophy that
leads to important practical implications in the estimation of average treatment effects. Philosophically, the
calibration weights are constructed without any reference to a propensity score model. It ignores the explicit
link between the weights in the treated and the control groups that are present in propensity score modeling.
Practically, it leads to an exact three-way balance between the treated, the controls and the combined group
for finite samples as well as asymptotically, whereas finite-sample exact three-way balance is not guaranteed
for propensity score modeling in general. Furthermore, calibration can be viewed as a unification of the
existing globally efficient estimations that are constructed from different modeling strategies as discussed in
Section 2.3.
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To illustrate the first idea, we consider a general class of weighting estimators N−1
∑N

i=1{Tiw1(Xi)Yi −
(1 − Ti)w0(Xi)Yi}. If the true propensity score π(X) is known, we set w1(X) = (π(X))−1 and w0(X) =
(1 − π(X))−1, so that the corresponding weighting estimator is an unbiased estimator for τ based on (1).
The propensity score setting confines the weight functions w1(x) and w0(x) in the following relationship:

w0(x) = (1− (w1(x))
−1)−1 . (10)

When a propensity score model π(x; γ) is assumed, and γ̂ is an estimate of γ, the Horvitz-Thompson
estimator sets w1(x) = π−1(x; γ̂) and w0(x) = (1−π(x; γ̂))−1. It follows that (10) is satisfied. Under model

misspecification, C1 = N−1×
∑N

i=1 Tiπ
−1(Xi; γ̂) and C0 = N−1×

∑N
i=1(1−Ti)(1−π(Xi; γ̂))

−1 can be very
different from 1, therefore it has been suggested that w1(x) = [C1π(x; γ̂)]

−1 and w0(x) = [C0(1−π(x; γ̂))]−1

which are ratio-type inverse probability weighting estimators. However, these weight functions do not
satisfy (10) unless C1 = C0 = 1. In fact, the ratio-type inverse probability weighting estimator is a special
calibration estimator that requires propensity score modeling to be discussed in Section 7. The class of
calibration estimators in Section 2.2 does not rely on propensity score modeling in the first place, and
the weights w1(x) = ρ′(λ̂TuK(x)) and w0(x) = ρ′(β̂TuK(x)) do not satisfy (10) in general. We note that
one of the two weights can correspond to the inverse probability weight from a propensity score model,
but it is generally impossible to have both sets of weights to be consistent with a single propensity score
model. Therefore, for any fixed K, the calibration estimator for the average treatment effects cannot be
locally efficient. Despite this seemingly undesirable property, we shall show that τ̂ is globally semiparametric
efficient when K is allowed to increase with N . Existing globally efficient estimators are all locally efficient
for any fixed dimension of approximation, but the calibration estimator sacrifices local efficiency by ignoring
the link (10), while achieving exact three-way balance in finite samples. Note that the true propensity score
attains the exact three-way balance in (4), but the estimated propensity scores typically do not achieve
exact three-way balance in finite samples. While the Horvitz-Thompson estimator with maximum likelihood
weights is globally efficient and three-way balance should hold for extremely large samples, the balance can
be quite poor for practical sample sizes. In our current proposal, the exact three-way balance holds for finite
samples as well as asymptotically, which is a reason why our asymptotic results for the point and variance
estimators hold well even for finite samples.

To further illustrate the balancing properties of estimators, suppose that π(γTx) is a propensity score
model. The expression (4) leads to

E(b1(T,X; γ)) , E
[(

T

π(γTX)
− 1

)
X

]
= 0 , (11)

E(b2(T,X; γ)) , E
[(

1− T

1− π(γTX)
− 1

)
X

]
= 0 , (12)

E(b3(T,X; γ)) , E
[(

T

π(γTX)
− 1− T

1− π(γTX)

)
X

]
= 0 . (13)

Suppose we estimate γ by solving each of the just-identified system of estimating equations defined by
moment conditions (11), (12) and (13), and denote the corresponding estimators to be γ̂1, γ̂2 and γ̂3; that is,

γ̂j satisfies N
−1×

∑N
i=1 bj(Ti,Xi; γ̂j) = 0, for j = 1, 2, 3. Note that, however, N−1×

∑N
i=1 bj(Ti,Xi; γ̂j′) ̸= 0

for j ̸= j′. The covariate balancing propensity score of Imai and Ratkovic (2014) shares the same spirit
of γ̂3, and the inverse probability tilting method of Graham et al. (2012) shares the same spirit of γ̂1. In
general, matching one set of moment conditions creates two-way balance, but does not guarantee three-
way balance between the treated, the controls and the combined group. However, a lack of three-way
balance can adversely affect the quality of the final estimate since the average treatment effects is defined
for the combined population, and the data for Y (1) and Y (0) are only available for the treated and controls
respectively. We shall further illustrate this point by the simulation studies in Section 5. On the other hand,
four-or-more-way balance is not necessary because asymptotic efficiency is attained by three-way balance as
shown in Theorem 1 in Section 2.5.
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Since b3 = b1 − b2, balancing any two systems out of (11), (12) and (13) can lead to a balance of the
remaining system. Therefore, by considering an overidentified combined system of estimating functions b1
and b2, one can estimate γ by using generalized method of moments or empirical likelihood, and we denote
the corresponding estimator by γ̂12. However, it is typical that

1

N

N∑
i=1

bj(Ti,Xi, γ̂12) ̸= 0, j = 1, 2, 3,

because the generalized method of moment estimator does not solve that corresponding overidentified system
exactly, and therefore the exact three-way balance is typically not achieved.

For the calibration estimator, however,

N∑
i=1

Tip̂K(Xi)uK(Xi) =
N∑
i=1

(1− Ti)q̂K(Xi)uK(Xi) =
1

N

N∑
i=1

uK(Xi) ,

by construction, and exact three-way balance can naturally be achieved.
Several remarks are in order. First, when the propensity score model is misspecified, which is likely in

practice, γ̂j converges in probability to γ∗
j , j = 1, 2, 3, which are different in general. Therefore, covariate

balancing based on one of (11), (12) or (13) can lead to very different results. For balancing an over-
identified system of equations using the empirical likelihood, there is no guarantee that the γ estimate is√
N -consistent (Schennach; 2007) under a misspecified propensity score model. Calibration is similar to

using γ̂1 for reweighting the treated and γ̂2 for reweighting the controls when the propensity score model
is misspecified, but our proposed non-parametric calibration method does not involve propensity score
estimation.

Despite the dissimilarities in the weighting aspects compared to propensity score methodologies, calibra-
tion can be viewed as a unification of the existing globally efficient estimation that are constructed from
two very different strategies: weighting and prediction. As discussed in Section 2.3, τ̂HIR is a weighting
estimator, τ̂INR is based on prediction, τ̂H and τ̂mod are based on a combination of the two strategies. Let
m̃1(X) and m̃0(X) be weighted least square estimators for Y against uK(X) among the treated and controls
with weights p̂K(X) and q̂K(X) respectively. It follows that

N∑
i=1

Tip̂K(Xi)Yi −
N∑
i=1

(1− Ti)q̂K(Xi)Yi

=
N∑
i=1

Tip̂K(Xi)m̃1(Xi)−
N∑
i=1

(1− Ti)q̂K(Xi)m̃0(Xi)

=
N∑
i=1

m̃1(Xi)− m̃0(Xi) .

The first equality holds from the score equation of weighted least squares, and the second equality holds
because of the exact three-way balance. Therefore, calibration unifies τ̂HIR, τ̂INR, τ̂H and τ̂mod by a rather
unexpected way of relaxing the propensity score and outcome regression estimations.

2.5. Large sample properties of calibration estimators
To show the large sample properties, we need the following technical assumptions in addition to Assumption
1.

Assumption 2. E[Y (1)2] < ∞ and E[Y (0)2] < ∞.
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Assumption 3 (Distribution of X). The support X of r-dimensional covariate X is a Cartesian
product of r compact intervals.

Assumption 4. π(x) is uniformly bounded away from 0 and 1, i.e. there exist some constants
1

η1
,

inf
x∈X

π(x),
1

η2
, sup

x∈X
π(x) such that

0 <
1

η1
≤ π(x) ≤ 1

η2
< 1 ∀x ∈ X

where X is the support of X.

Assumption 5. π(x) is s-times continuously differentiable, where s > 13r.

Assumption 6. m0(x) and m1(x) are t-times continuously differentiable, where t > 3r
2 .

Assumption 7. K = O (Nν) and
1

s

r
− 2

< ν <
1

11
.

Assumption 8. ρ is a strictly concave function defined on R i.e. ρ′′(γ) < 0, ∀γ ∈ R, and the range of
ρ′ contains [η2, η1] which is a subset of the positive real line.

Assumptions 1-7 or their analogues also appeared in Hahn (1998), Hirano et al. (2003) and Imbens
et al. (2006). Assumption 1 is required for the identification of the average treatment effects. Assumption
2 is required for the finiteness of asymptotic variance. Assumptions 3 and 4 are required for uniform
boundedness of approximations. Assumption 4 is an overlap condition that is necessary for the nonparametric
identification of the average treatment effects in the population. If there exists a region of X such that
the probability of receiving treatment is 0 or 1, the treatment effects cannot be identified unless some
extrapolatory modeling assumptions are imposed. In that case, one could define a subpopulation with
a sufficient overlap so that the average treatment effects can be estimated nonparametrically within this
subpopulation. Assumptions 5 and 6 are required for controlling the remainder of approximations with
a given basis function. They are standard assumptions for multivariate smoothing where the order of
smoothness required increases with the dimension of X. There is usually no a-priori reason to believe that
the π(x), m1(x) andm0(x) are not smooth in x. Also the dimension ofX is not restricted by the assumptions,
unlike in the kernel estimation of π(x) discussed in Chen et al. (2013), in which their assumptions imply that
the dimension of X cannot be greater than 4. Assumption 7 is required for controlling the stochastic order
of the residual terms, which is desirable in practice because K grows very slowly with N so that a relatively
small number of moment conditions is sufficient for the proposed method to perform well. Assumption 8
is a mild assumption on ρ which is chosen by the statisticians and includes all the important special cases
considered in the literature. In contrast, the theoretical results for Hahn (1998), Hirano et al. (2003), Imbens
et al. (2006) and Chen et al. (2008) were developed only for linear or logistic models for propensity score.

Define µ0 , E[Y (0)], µ1 , E[Y (1)], σ2
1(X) = V ar(Y (1)|X) and σ2

0(X) = V ar(Y (0)|X), which are finite
by Assumption 2. We have the following theorem.

Theorem 1. Under Assumptions 1-8, we have

(a)
N∑
i=1

{Tip̂K(Xi)Yi − (1− Ti)q̂K(Xi)Yi}
p→ τ ;

(b)
√
N

(
N∑
i=1

{Tip̂K(Xi)Yi − (1− Ti)q̂K(Xi)Yi} − τ

)
d→ N (0, Vsemi), where
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Vsemi , E
[
(m1(X)−m0(X)− τ)2 +

σ2
1(X)

π(X)
+

σ2
0(X)

1− π(X)

]
attains the semi-parametric efficiency bound

as shown in Robins et al. (1994) and Hahn (1998).

A detailed proof of Theorem 1 will be provided in the supplementary materials. We note that our
global efficiency result is substantially more general than existing results in the literature, in which global
efficiency for weighting estimators has only been established for two particular estimators for the propensity
score: the series least square estimator (Hahn; 1998; Chen et al.; 2008), and the maximum likelihood
series logit estimator (Hirano et al.; 2003; Imbens et al.; 2006). The proof of lemma B.2 in Chen et al.
(2008) relies crucially on the least square property of the projection of T on the approximation basis.
The validity of the result in Hirano et al. (2003) requires a key fact about the least square projection of
−E(Y (1)|X = x)π−1(x)

√
π(x)(1− π(x)) onto a transformed approximation basis

√
π∗(x)(1− π∗(x))uK(x),

where π∗(x) is defined in terms of the limit of a maximum likelihood estimator under a logistic regression
model. Their projection argument yields an asymptotically negligible residual term only when the series
maximum likelihood logit estimator is used. We are able to establish the global efficiency results for any
strictly concave ρ satisfying Assumption 8 because we employed a different and more delicate projection
argument. We studied a weighted least square projection of −E(Y (1)|X = x) and −E(Y (0)|X = x) onto
the original approximation basis uK(x), where ρ only enters the weights of the projection, but not the
approximation basis. Our projection argument yields an asymptotically negligible residual term when the
weights of the projection are bounded from above and below, which was established under our regularity
conditions. Theorem 1 holds even when the ρ functions used for computing p̂K and q̂K are different.
However, we do not recommend this in practice, because each ρ(v) corresponds to a measure of distance
D(v) from the unit weight, and usually there is not any justifiable reason for choosing a different measure
for the two treatment groups.

3. A nonparametric variance estimator

By Theorem 1, the proposed estimator attains the semiparametric efficiency bound with the following

asymptotic variance: Vsemi , E
[
(m1(X)−m0(X)− τ)2 +

σ2
1(X)

π(X)
+

σ2
0(X)

1− π(X)

]
. Since the variance involves

unknown functions π(x),m1(x) and m0(x), plug-in estimators typically involve nonparametric estimation
of functions other than π(x), as in Hirano et al. (2003). One of the advantages of our proposed point
estimator is that we do not need to directly estimate those functions, and it would be nice to have a variance
estimator that also does not involve any additional estimates of nonparametric functions. Moreover, existing
nonparametric estimators that require estimation of π(x) often fail in practice, as illustrated in Table 4 of
Section 5. A particular thorny issue is that the asymptotic variance estimators often depend on the squared
inverse of estimated propensity score, and the instability caused by extreme inverse weights is even magnified.
In this section, we shall study a consistent asymptotic variance estimator that can be computed easily from
the point estimator and avoids the problem of extreme weights.

Define

gK1(T,X;λ) , Tρ′(λTuK(X))uK(X)− uK(X) ,

gK2(T,X;β) , (1− T )ρ′(βTuK(X))uK(X)− uK(X) ,

gK3(T,X, Y ; θ) , Tρ′(λTuK(X))Y − (1− T )ρ′(βTuK(X))Y − τ

gK(T,X, Y ; θ) ,

 gK1(T,X;λ)
gK2(T,X;β)

gK3(T,X, Y ; θ)

 ,

where θ , (λ, β, τ)T . Also define θ̂K , (λ̂K , β̂K , τ̂K)T , θ∗K , (λ∗
K , β∗

K , τ∗K)T and τ∗K , E[TNp∗K(X)Y − (1−
T )Nq∗K(X)Y ].
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Note that θ̂K satisfies

1

N

N∑
i=1

gK(Ti,Xi, Yi; θ̂K) = 0.

Taylor series expansion on the left hand side at θ∗K yields

0 =
1

N

N∑
i=1

gK(Ti,Xi, Yi; θ
∗
K) +

1

N

N∑
i=1

∂gK(Ti,Xi, Yi; θ̃K)

∂θ
(θ̂K − θ∗K) , (14)

where θ̃K = (λ̃K , β̃K , τ̃K)T lies on the line joining θ̂K and θ∗K . We shall show in the supplementary material
that

1

N

N∑
i=1

∂gK(Ti,Xi, Yi; θ̃K)

∂θ
= E

[
∂gK(T,X, Y ; θ∗K)

∂θ

]
+ op(1) , (15)

where

E
[
∂gK(T,X, Y ; θ∗K)

∂θ

]
=

(
A2K×2K , B2K×1

C1×2K , D1×1

)
,

and

A2K×2K ,
(
E[Tρ′′((λ∗

K)TuK(X))uK(X)uT
K(X)], 0K×K

0K×K , E[(1− T )ρ′′((β∗
K)TuK(X))uK(X)uT

K(X)]

)
,

B2K×1 , 02K×1 ,

C1×2K , (E[Tρ′′((λ∗
K)TuK(X))Y uT

K(X)],−E[(1− T )ρ′′((β∗
K)TuK(X))Y uT

K(X)]) ,

D1×1 , −1 .

However, note that we are only interested in the limiting behavior of V ar(
√
N(τ̂K−τ∗K)), which is the last

element of V ar(
√
N(θ̂K − θ∗K)) when N ↑ ∞, this leads us to consider the last row of E

[
∂gK(T,X,Y ;θ∗

K)
∂θ

]−1

which is (
C1×2K ·A−1

2K×2K ,−1
)
= (LK , RK ,−1) ,

where

LK , E[Tρ′′((λ∗
K)TuK(X))Y uT

K(X)] · E[Tρ′′((λ∗
K)TuK(X))uK(X)uT

K(X)]−1 ,

RK , −E[(1− T )ρ′′((β∗
K)TuK(X))Y uT

K(X)] · E[(1− T )ρ′′((β∗
K)TuK(X))uK(X)uT

K(X)]−1 .

Since limK→∞ E[gK(T,X, Y ; θ∗K)]T ] = 0 (the zero vector), by (39) in the supplementary material we
could get:

lim
K→∞

V ar(
√
N(τ̂K − τ∗K)) (16)

= lim
K→∞

(LK , RK ,−1)E[gK(T,X, Y ; θ∗K)gTK(T,X, Y ; θ∗K)]

 LT
K

RT
K

−1


= lim

K→∞
(LK , RK ,−1)PK

 LT
K

RT
K

−1

 ,
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where PK , E[gK(T,X, Y ; θ∗K)gTK(T,X, Y ; θ∗K)].

This motivates us to define our estimator for the asymptotic variance by:

V̂K , (L̂K , R̂K ,−1)P̂K

 L̂T
K

R̂T
K

−1

 ,

where

L̂K ,
[
1

N

N∑
i=1

Tiρ
′′(λ̂T

KuK(Xi))u
T
K(Xi)Yi

]
×

[
1

N

N∑
i=1

Tiρ
′′(λ̂T

KuK(Xi))uK(Xi)u
T
K(Xi)

]−1

,

R̂K , −

[
1

N

N∑
i=1

(1− Ti)ρ
′′(β̂T

KuK(Xi))u
T
K(Xi)Yi

]
×

[
1

N

N∑
i=1

(1− Ti)ρ
′′(β̂T

KuK(Xi))u
T
K(Xi)uK(Xi)

]−1

,

P̂K , 1

N

N∑
i=1

gK(Ti,Xi, Yi; θ̂K)gTK(Ti,Xi, Yi; θ̂K) .

Although the construction of the proposed variance estimator did not start with a direct approximation
of the influence function, the variance estimator can be written as V̂K = N−1 ×

∑N
i=1 φ̂

2
CAL(Ti,Xi, Yi; θ̂)

where

φ̂CAL(T,X, Y ) = −(LK ,−RK ,−1)gK(T,X, Y ; θ̂)

= gK3(T,X, Y ; θ̂)− LKgK1(T,X; λ̂) +RKgK2(T,X; β̂) ,

which is an estimator of the efficient influence function:

φeff (T,X, Y ) =
TY

π(X)
− (1− T )Y

1− π(X)
− τ + (T − π(X))β(X) , (17)

β(X) = −
[
m1(X)

π(X)
+

m0(X)

1− π(X)

]
.

Comparing φeff and φ̂CAL, the proposed variance estimator would have a good performance if−LKgK1(T,X; λ̂)+

RKgK2(T,X; β̂) is a good but indirect approximation of (T − π(X))β(X). This is particularly true because
of approximation results that are established in the proof of Theorem 1 for the terms (29) and (30) given in
Appendix A. In summary, we have the following theorem:

Theorem 2. Under Assumptions 1-8 with Assumption 2 being strengthened to E(Y 4(1)) < ∞ and
E(Y 4(0)) < ∞, V̂K is a consistent estimator for the asymptotic variance Vsemi.

The proof of Theorem 2 is given in the supplementary material. The strengthened condition in Theorem
2 is mainly used in (71) in the supplementary material so as to ensure the consistency of the asymptotic
variance; and this condition is mild and naturally holds for practical samples. The results illuminated the
advantages of using the proposed variance estimator for statistical inference. We note that the proposed
variance estimator can pair with any globally efficient estimators for valid inference, since all of them are
asymptotically equivalent. However, the computation of the proposed estimator only requires intermediate
input from the calibration estimation and does not require direct estimation of propensity score or outcome
regression function, therefore it pairs naturally with the calibration estimators.
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4. Related estimation problems

In this section we illustrate that calibration weighting can be easily extended to several related problems.
All proofs of the main theorems in this section are very similar to that of Theorem 1, and they are omitted.
The estimators for asymptotic variances in this section, namely V g

semi, V
π
semi, V

ATT
semi , and Vjl for i, l ∈ J =

{0, . . . , J − 1} , J ≥ 2, and their corresponding consistent estimation results can be derived similarly by
using the approach founded in Theorem 2.

4.1. Weighted average treatment effects
Our estimator can be easily extended to estimate a weighted average treatment effects

τgWATE =

∫
E[Y (1)− Y (0) | X = x]g(x)dF (x)∫

g(x)dF (x)

where g is a known function of the covariates. To estimate τgWATE , we can define p̂K = N−1ρ′
(
λ̂T
KuK(X)

)
and q̂K = N−1ρ′

(
β̂T
KuK(X)

)
, with λ̂K and β̂K being replaced by maximizers of slightly different objective

functions:

ĜK(λ) , 1

N

N∑
i=1

[
Tiρ(λ

TuK(Xi))− λT ūg
K

]
and

ĤK(β) , 1

N

N∑
i=1

[
(1− Ti)ρ(β

TuK(Xi))− βT ūg
K

]
,

where ūg
K =

∑N
i=1 g(Xi)uK(Xi)/

∑n
i=1 g(Xi). Therefore, p̂K and q̂K satisfies

N∑
i=1

Tip̂K(Xi)uK(Xi) = ūg
K (18)

and
N∑
i=1

(1− Ti)q̂K(Xi)uK(Xi) = ūg
K .

Define τ̂gWATE =
∑N

i=1 Tip̂K(Xi)Yi −
∑N

i=1(1− Ti)q̂K(Xi)Yi. The following theorem states that τ̂gWATE

is efficient.

Theorem 3. Under Assumptions 1-8, |g| is bounded from above and that E [g(X)] > 0. Then we have

(a) τ̂gWATE

p→ τWATE;

(b)
√
N (τ̂gWATE − τWATE)

d→ N (0, V g
semi), where

V g
semi , 1

E [g(X)]
2E
[
g(X)2 (m1(X)−m0(X)− τwate)

2
+

σ2
1(X)g(X)2

π(X)
+

σ2
0(X)g(X)2

1− π(X)

]
attaining the

semi-parametric efficiency bound as shown in Theorem 4 of Hirano et al. (2003).

4.2. Treatment effects on the treated
To estimate the average treatment effects among the treated subpopulations, we estimate

τATT = E(Y (1)− Y (0)|T = 1) =

∫
E[Y (1)− Y (0)|X = x]π(x)dF (x)∫

π(x)dF (x)
,
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where the last equality follows from Assumption 1. Therefore, when the propensity score is known, τATT is
a special case of τWATE with g(x) = π(x), and one can estimate τATT by τ̂πWATE . Following Theorem 3, we
have the following results for τ̂πWATE .

Corollary 4. Under Assumptions 1-8, we have

(a) τ̂πWATE
p→ τATT ;

(b)
√
N(τ̂πWATE − τATT )

d→ N (0, V π
semi), where

V π
semi , 1

E [π(X)]
2E
[
π(X)2 (m1(X)−m0(X)− τATT )

2
+ σ2

1(X)π(X) +
σ2
0(X)π(X)2

1− π(X)

]
attaining the

semi-parametric efficiency bound as shown in Theorem 2 of Hahn (1998).

Note that E(Y (1)|T = 1) is estimated by
∑N

i=1 Tip̂K(Xi)Yi where p̂K satisfies (18) with g(x) = π(x),

and this estimate is more efficient than the estimator
∑N

i=1 TiYi/
∑N

i=1 Ti when π(x) is known, because one
can calibrate the treated subpopulation to ūπ

K and use the full data to improve estimation efficiency.
When π(x) is unknown, however, the weighted average treatment effects estimator cannot be used. Since

we want to estimate the subpopulation of the treated, it is natural to calibrate the control group to the
treated by redefining the objective function:

ĤK(β) , 1

N

N∑
i=1

[
(1− Ti)ρ(β

TuK(Xi))− βT ū1K

]
,

where ū1K =
∑N

i=1 Tiu(Xi)/
∑N

i=1 Ti. The calibration estimator for estimating the treatment effects on the

treated is τ̂ATT =
∑N

i=1 TiYi/
∑N

i=1 Ti−
∑N

i=1(1−Ti)q̂(Xi)Yi. The next theorem states that τ̂ATT is globally
efficient when the propensity score is unknown.

Theorem 5. Under Assumptions 1 to 8, we have

(a) τ̂ATT
p→ τATT ;

(b)
√
N(τ̂ATT − τATT )

d→ N (0, V ATT
semi ), where

V ATT
semi , 1

E [π(X)]
2E
[
π(X) (m1(X)−m0(X)− τATT )

2
+ σ2

1(X)π(X) +
σ2
0(X)π(X)2

1− π(X)

]
attaining the

semi-parametric efficiency bound as shown in Theorem 1 of Hahn (1998).

4.3. Multiple treatment groups
The calibration methods can also be easily generalized to situations with multiple treatment groups. Let
Ti ∈ J = {0, . . . , J − 1} where J ≥ 2 is an integer. Define µj = E[Y (j)], mj(x) = E[Y (j)|X = x], πj(x) =
P (T = j|X = x) , σ2

j (x) = V ar(Y (j)|X = x), j ∈ J , and τjl = µj − µl which is the average treatment
effects between treatments j and l. Calibration weights can be defined for any j ∈ J by

p̂jK(Xi) =
1

N
ρ′(λ̂j

KuK(Xi))

where λ̂j
K ∈ RK maximizes the objective function:

Ĝj
K(λj) =

1

N

N∑
i=1

[I(Ti = j)ρ((λj)TuK(Xi))− λT ūK ], j ∈ J .
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That is, we calibrate moments of uK(X) for each group to the full data. Estimators for µj , j ∈ J are
defined as

µ̂j ,
N∑
i=1

I(Ti = j)p̂jK(Xi)Yi, j ∈ J ,

and the estimator for the average treatment effects between treatment j and l is τ̂jl , µ̂j − µ̂l.

Theorem 6. Under Assumptions 1 to 8 with π(x) and (m1(x),m0(x)) replaced by πj(x) and mj(x) for
j ∈ J , respectively,

(a)

N∑
i=1

{
I(Ti = j)p̂jK(Xi)Yi − I(Ti = l)p̂lK(Xi)Yi

}
p→ τjl;

(b)
√
N

(
N∑
i=1

{I(Ti = j)p̂jK(Xi)Yi − I(Ti = l)p̂lK(Xi)Yi} − τjl

)
d→ N (0, Vjl), where

Vjl , E

[
(mj(X)−ml(X)− τjl)

2 +
σ2
j (X)

πj(X)
+

σ2
l (X)

πl(X)

]
.

Estimators for the weighted average treatment effects and the treatment effects of the treated can also
be easily extended to multiple treatment groups.

5. Simulations studies

In this section we present results from simulation studies to investigate the finite sample performance of
various weighting estimators and standard error estimators.

The first set of simulation scenarios was similar to those in Kang and Schafer (2007) for the estimation of
a population mean. Sample size for each simulated data set was 200 or 1000, and 10000 Monte Carlo datasets
were generated for each scenario. For each observation, a random vector Z = (Z1, Z2, Z3, Z4) was generated
from the standard multivariate normal distribution. The potential outcome Y (1) was generated from a
normal distribution with mean 210+b(Z) and unit variance, where b(Z) = 27.4Z1+13.7Z2+13.7Z3+13.7Z4;
Y (0) was generated from a normal distribution with mean 200− 0.5b(Z) and unit variance. An individual
was assigned to treatment T = 1 with probability exp(η0(Z))/(1+exp(η0(Z))), where η0(Z) = −Z1+0.5Z2−
0.25Z3 − 0.1Z4. The observed outcome was Y = TY (1) + (1 − T )Y (0). Instead of observing covariates Z,
we were only able to observe non-linear transformations X1 = exp(Z1/2), X2 = Z2/(1 + exp(Z1)), X3 =
(Z1Z3/25 + 0.6)3 and X4 = (Z2 + Z4 + 20)2. Denote X , (X1, X2, X3, X4). We compared the Horvitz-
Thompson estimator (HT)

τ̂HT =
1

N

N∑
i=1

TiYi

π̂(Xi)
− 1

N

N∑
i=1

(1− Ti)Yi

1− π̂(Xi)
,

the ratio-type inverse probability weighting estimator (IPW)

τ̂IPW =

∑N
i=1 Ti(π̂(Xi))

−1Yi∑N
i=1 Ti(π̂(Xi))−1

−
∑N

i=1(1− Ti)(1− π̂(Xi))
−1Yi∑N

i=1(1− Ti)(1− π̂(Xi))−1
,

and the calibration estimators (CAL) with ρ(v) = −e−v (exponential tilting; ET), ρ(v) = log(1+v) (empirical
likelihood; EL), ρ(v) = −(1 − v)2/2 (quadratic; Q) and ρ(v) = v − e−v (inverse logistic; IL). For HT and
IPW estimators, we used a working logistic regression for propensity score model, and we considered six
different ways to estimate the propensity score parameters: i. The maximum likelihood estimator (γ̂MLE); ii.
The moment estimator solving the empirical counterpart of (11) that balances the covariates of the treated
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and the full data (γ̂1F ); iii. The moment estimator solving the empirical counterpart of (12) that balances
the covariates of the controls and the full data (γ̂0F ); iv. The moment estimator solving the empirical
counterpart of (13) that balances the covariates of the treated and the controls (γ̂10); v. The generalized
method of moment estimator for the overidentified system (11) and (12) that balances the covariates of the
treated, the controls, and the full data (γ̂10F ); vi. The covariate balancing propensity score estimator of Imai
and Ratkovic (2014) for an overidentified system defined by (13) and the likelihood score equation (γ̂CBPS).
We presented the average bias and root mean squared error of the estimators over 10000 simulations, and
the following standardized imbalance measures (Rosenbaum and Rubin; 1985; Imai and Ratkovic; 2014):

Imb10 =


(

1

N

N∑
i=1

[(Tiw1i − (1− Ti)w0i)Xi]
T

)(
1

N

N∑
i=1

XiX
T
i

)−1(
1

N

N∑
i=1

(Tiw1i − (1− Ti)w0i)Xi

)
1/2

,

Imb1F =


(

1

N

N∑
i=1

[(Tiw1i − 1)Xi]
T

)(
1

N

N∑
i=1

XiX
T
i

)−1(
1

N

N∑
i=1

(Tiw1i − 1)Xi

)
1/2

,

and

Imb0F =


(

1

N

N∑
i=1

[1− (1− Ti)w0i)Xi]
T

)(
1

N

N∑
i=1

XiX
T
i

)−1(
1

N

N∑
i=1

[1− (1− Ti)w0i]Xi

)
1/2

,

where w1i are the weights for the treated, which is π̂−1
i for HT; (π̂i ×

∑N
j=1 Tj π̂

−1
j )−1 for IPW; and p̂i for

calibration. And w0i are the weights for the controls, which is (1 − π̂i)
−1 for HT; ((1 − π̂i) ×

∑N
j=1(1 −

Tj)(1− π̂j)
−1)−1 for IPW and q̂i for calibration. Three imbalance measures were considered which measure

three-way imbalance between the treated, the controls, and the full data. We examined all three measures
because there is no guarantee that minimizing one imbalance measure could lead to a reduction in the others,
as discussed in Section 2.4. A total imbalance measure is defined by (Imb210 + Imb21F + Imb20F )

1/2. Table
1 and 2 show the simulation results for N = 200 and N = 1000 respectively, using a linear specification of
covariates u5 = (1, X1, X2, X3, X4) for both propensity score modeling and for calibration estimation.

The results showed that the Horvitz-Thompson estimators could worsen the problem of imbalance when
the propensity score was estimated by maximum likelihood, or by method of moment that only balances a
particular group to the full data. Balancing the treated to the full data only led to a noticeable improvement
in estimating E(Y (1)) but the estimator of E(Y (0)) performed very poorly, as the imbalance between the
controls and the full data actually increased. Therefore, the performance of the average treatment effects
estimator was also very poor. Directly balancing the treated and the controls performed much better, and
reduced the imbalance between the particular groups and the full data since the covariate distribution of
the full data is a convex combination of the covariate distributions of the treated and controls. Generalized
method of moment estimators (γ̂10F , γ̂CBPS) had more imbalance than balancing solely for the treated
and controls, because the generalized method of moment estimates did not exactly solve the corresponding
overidentified systems of equations. The calibration estimators achieved the exact three-way balance by
design. In general, the mean squared errors of the estimates of average treatment effects were positively
correlated with the overall imbalance. Finally, the exponential tilting estimator performed the best among
the calibration estimators.

Next, we focused on the performance of weighting estimators under three sets of covariate specifications:

(a) u5(X) = (1, X1, X2, X3, X4),
(b) u9(X) = (1, X1, X2, X3, X4, X

2
1 , X

2
2 , X

2
3 , X

2
4 ),

(c) u15(X) = (1, X1, X2, X3, X4, X
2
1 , X

2
2 , X

2
3 , X

2
4 , X1X2, X1X3, X1X4, X2X3, X2X4, X3X4).
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Table 1. Comparison of weighting estimators for the Kang and Schafer scenario, n = 200.
E(Y(1)) E(Y(0)) E(Y(1)-Y(0)) Imbalance*100

Estimator Bias RMSE Bias RMSE Bias RMSE (1,0) (1,F) (0,F) Total
Unweighted -10.09 10.68 -5.06 5.34 -5.03 6.38 85 43 42 104
HT(γ̂MLE) 25.52 264.87 -4.93 8.36 30.45 266.19 165 145 31 228
HT(γ̂1F ) -2.2 3.87 78.98 > 999 -81.17 > 999 454 0 454 642
HT(γ̂0F ) > 999 > 999 -1.25 1.92 > 999 > 999 > 999 > 999 1 > 999
HT(γ̂10) 1.3 7.38 0.65 7.79 0.65 4.9 0 21 21 30
HT(γ̂10F ) -3.38 7.36 -6.68 8.31 3.3 10.97 41 25 29 59

HT(γ̂CBPS) -5.33 10.57 -4.89 7.81 -0.44 13.59 54 35 31 74
IPW(γ̂MLE) 1.7 9.65 -1.87 2.5 3.57 10.72 32 33 12 49
IPW(γ̂1F ) -2.17 3.86 -1.38 3.65 -0.79 4.96 33 0 34 47
IPW(γ̂0F ) 10.53 21.49 -1.3 1.96 11.83 22.46 89 90 1 126
IPW(γ̂10) -1.33 3.41 -1.87 2.65 0.54 4.44 0 11 11 16
IPW(γ̂10F ) -2.41 4.06 -2.14 2.73 -0.27 4.43 11 12 11 20

IPW(γ̂CBPS) -2.79 4.7 -2.24 2.85 -0.56 4.67 18 13 13 26
CAL(ET) -1.45 3.56 -1.95 2.46 0.5 4.29 0 0 0 0
CAL(EL) -1.72 3.76 -1.54 2.17 -0.19 4.36 0 0 0 0
CAL(Q) -0.52 3.38 -2.49 2.9 1.97 4.77 0 0 0 0
CAL(IL) -2.08 3.83 -1.18 1.87 -0.9 4.34 0 0 0 0

RMSE: root mean squared error; HT: Horvitz-Thompson estimators; IPW: ratio-type inverse probability
weighting estimators; CAL: calibration estimators. For HT and IPW estimators, propensity score parame-
ters were estimated in six ways: i. The maximum likelihood estimator (γ̂MLE); ii. The moment estimator
that balances the covariates of the treated and the full data (γ̂1F ); iii. The moment estimator that bal-
ances the covariates of the controls and the full data (γ̂0F ); iv. The moment estimator that balances the
covariates of the treated and the controls (γ̂10); v. The generalized method of moment estimator for an
overidentified system that balances the covariates of the treated, the controls, and the full data (γ̂10F ); vi.
The covariate balancing propensity score estimator of Imai and Ratkovic (2014) (γ̂CBPS). For calibration
estimators, ET: exponential tilting; EL: empirical likelihood; Q: quadratic; IL: inverse logistic.
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Table 2. Comparison of weighting estimators for the Kang and Schafer scenario, n = 1000.
E(Y(1)) E(Y(0)) E(Y(1)-Y(0)) Imbalance*100

Estimator Bias RMSE Bias RMSE Bias RMSE (1,0) (1,F) (0,F) Total
Unweighted -10.04 10.16 -5.01 5.07 -5.03 5.32 82 41 41 101
HT(γ̂MLE) 47.35 414.45 -4.76 5.38 52.1 415.16 241 227 19 334
HT(γ̂1F ) -2.79 3.19 -4.69 9.71 1.9 8.37 36 0 36 51
HT(γ̂0F ) 285.46 > 999 -1.11 1.28 286.57 > 999 > 999 > 999 0 > 999
HT(γ̂10) -2.05 3.01 -2.81 3.37 0.77 2.09 0 10 10 15
HT(γ̂10F ) 2.03 5.05 -6.62 7.37 8.65 11.37 44 24 25 57

HT(γ̂CBPS) 1.92 6.67 -4.74 5.48 6.66 10.37 39 27 19 52
IPW(γ̂MLE) 5.08 12.22 -1.84 1.97 6.91 13.21 44 47 7 66
IPW(γ̂1F ) -2.79 3.19 -2.51 2.69 -0.27 1.9 13 0 13 19
IPW(γ̂0F ) 13.25 21.36 -1.12 1.29 14.38 22.15 98 98 0 138
IPW(γ̂10) -1.44 2.05 -2.24 2.4 0.8 2.11 0 8 8 12
IPW(γ̂10F ) -1.25 2.14 -2.32 2.45 1.07 2.5 7 11 9 16

IPW(γ̂CBPS) -0.92 2.33 -2.25 2.41 1.33 2.76 10 12 9 18
CAL(ET) -1.97 2.49 -1.87 1.99 -0.09 1.96 0 0 0 0
CAL(EL) -2.11 3 -1.39 1.56 -0.73 2.59 0 0 0 0
CAL(Q) -0.81 1.7 -2.47 2.56 1.66 2.56 0 0 0 0
CAL(IL) -2.78 3.18 -1.1 1.27 -1.68 2.59 0 0 0 0

RMSE: root mean squared error; HT: Horvitz-Thompson estimators; IPW: ratio-type inverse probability
weighting estimators; CAL: calibration estimators. For HT and IPW estimators, propensity score parame-
ters were estimated in six ways: i. The maximum likelihood estimator (γ̂MLE); ii. The moment estimator
that balances the covariates of the treated and the full data (γ̂1F ); iii. The moment estimator that balances
the covariates of the controls and the full data (γ̂0F ); iv. The moment estimator that balances the covariates
of the treated and the controls (γ̂10); v. The generalized method of moment estimator for an overidentified
system that balances the covariates of the treated, the controls, and the full data (γ̂10F ); vi. The covariate
balancing propensity score estimator of Imai and Ratkovic (2014) (γ̂CBPS). For calibration estimators, ET:
exponential tilting; EL: empirical likelihood; Q: quadratic; IL: inverse logistic.

Table 3. Comparisons of weighting estimators for various covariate configurations
u5 u9 u15 (u5, u9) (u5, u15) (u9, u15)

Bias RMSE Bias RMSE Bias RMSE Corr Corr Corr
HT N=200 30.45 266.19 -1.41 19.29 3.41 20.47 0.04 <0.01 0.37

N=1000 52.1 415.16 -0.8 7.35 4.63 10.17 0.01 <0.01 0.35
IPW N=200 3.57 10.72 -0.10 4.73 -0.16 5.04 0.45 0.32 0.79

N=1000 6.91 13.21 0.36 2.10 0.51 2.47 0.20 0.11 0.75
CAL N=200 0.5 4.29 -1.39 4.46 -0.66 4.50 0.82 0.70 0.79

N=1000 -0.09 1.96 -0.76 1.97 -0.24 1.88 0.84 0.76 0.87

HT: Horvitz-Thompson estimator with propensity score estimated from maximum likelihood; IPW: ratio-
type inverse probability weighting estimator with propensity score estimated from maximum likelihood;
CAL: calibration estimator with exponential tilting.
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In theory, global efficiency is attained when the number of moment conditions K increases with the sample
size N , but intuition and theory both suggest that K cannot be too large. Hirano et al. (2003) and Imbens
et al. (2006) both suggest using K = Nν where ν < 1/9 for the inverse probability weighting estimators,
therefore the theory is in favor of u5 for N = 200 and 1000. Since vigorous theories for nonparametric inverse
probability weighting estimators have only been developed for maximum likelihood estimation, we limit our
discussion here to estimators where the propensity score parameters are estimated by maximum likelihood.
The results are shown in Table 3. While the existing theory suggested that K should be small for the sample
sizes considered, the performance of both HT and IPW estimators for u5 was quite poor, while calibration
estimations worked well, even for u5. Propensity score weighting estimators performed better for u9 and
u15, but the calibration estimators had uniformly smaller mean squared errors compared to that through the
propensity score methods. We examined the stability of the estimation procedure by estimating the sample
correlation of the same estimators under different covariate specifications. The correlations of HT estimators
between u5 and each of u9 and u15 were negligible, indicating that the inclusion of additional covariates
could change the estimates arbitrarily. The correlations of the IPW estimators were also quite low, except
for the correlation between u9 and u15. In contrast, the calibration estimators had high correlations under
different covariate specifications. Therefore, adding higher order terms of covariates did not dramatically
change the calibration estimate and its performance was minimally affected by the choice of K.

Next, we studied the performance of the proposed estimator for the efficient asymptotic variance Vsemi,
compared with a few other existing estimators. To describe the other estimators, we note that Vsemi =
E(φ2

eff ) where φeff is the efficient influence function given in (17). The variance estimator of Hirano et al.

(2003) is based on plugging in a propensity score estimate π̂(X) and a polynomial series estimate β̂(X). To
estimate β(X), they note that β(X) = E(Y ∗|X) where

Y ∗ = − TY

π2(X)
− (1− T )Y

(1− π(X))2
.

Therefore, they calculate Y ∗ by substituting π(X) with a nonparametric estimate π̂(X), and β(X) can be
estimated by a linear regression of Y ∗ on u(X), which is the same design matrix as in the logistic regression
model for π(X). The estimator of Hirano et al. (2003) is

V̂HIR =
1

N

N∑
i=1

[
TiYi

π̂(Xi)
− (1− Ti)Yi

1− π̂(Xi)
− τ̂2 + (Ti − π(Xi))β̂(Xi)

]2
.

An alternative plug-in estimator is to directly plug in π̂(X), m̂1(X) and m̂0(X) into the influence function,
instead of estimating β(X) which is a function of (π(X),m1(X),m0(X)). The conditional expectations
m1(X) and m0(X) can be estimated by polynomial series linear regression models of Y on u(X) among
the treated and controls respectively. We compared the plug-in estimators and the proposed estimator in
Table 4. The Hirano et al. estimator performed poorly for all covariate specifications and sample sizes,
the direct plug-in estimator performed poorly in covariate specification u5, and the proposed estimator
performed well in all covariate specifications and sample sizes. A hypothesis for explaining the failure
of the Hirano et al. estimator is that Y ∗ depends on the squared inverse of propensity score, which is
estimated very poorly and creates highly influential outlying values when the fitted propensity score is close
to zero. To understand whether the problem is solely caused by poorly estimated propensity scores, we
studied whether the performance of plug-in variance estimators can be improved when the propensity score
was known. A known propensity score did not solve the entire problem for the Hirano et al. estimator
because β(X) is still highly nonlinear in X and the sieve estimator for β(X) did not approximate β(X)
well enough in the given situations. To further understand the performance of estimators, we studied the
correlations between the true and the estimated influence functions. For estimators that showed a good
performance, the correlations were above 0.8 in general. The correlations were very low for the Hirano et
al. estimator because the sieve estimator for β(X) performed poorly. The direct plug-in estimator did not
perform well for covariate specification u5, because the propensity score was poorly estimated in that case.
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Table 4. Comparisons of variance estimators, where the true asymptotic variance was 54.
Covariate specifications

u5 u9 u15

Estimators N Estimate Correlation Estimate Correlation Estimate Correlation

HIR(MLE) 200 >999 0.06 822 0.11 792 0.07
1000 >999 -0.02 >999 0.19 >999 0.17

HIR(True) 200 511 0.12 888 -0.16 >999 -0.16
1000 328 0.19 532 -0.16 732 -0.15

Plug-in(MLE) 200 133 0.72 59 0.87 61 0.91
1000 494 0.47 59 0.88 59 0.92

Plug-in(True) 200 74 0.85 64 0.87 68 0.91
1000 71 0.80 65 0.85 61 0.92

Proposed 200 58 0.94 55 0.92 61 0.91
1000 59 0.92 56 0.95 57 0.96

HIR: the estimator of Hirano, Imbens and Ridder (2003), MLE: Maximum likelihood estimator for
propensity score; True: substituting in true propensity score and average treatment effects.

The results showed that φ̂CAL and the true (but practically unknown) efficient influence function were highly
correlated with correlation coefficients being greater than 0.9 for all simulation scenarios, and the estimated
standard deviations are consistently close to the true asymptotic standard deviation. Further simulations
(not included in the manuscript) showed that averages of the proposed variance estimates were very close
to the sampling variances, and the coverage of confidence intervals based on normal approximations were
close to the nominal levels.

We further considered an additional simulation scenario as in Hainmueller (2012). Six covariates Xj , j =
1, . . . , 6 were generated, where (X1, X2, X3) were multivariate normal with means zero, variances of (2, 1, 1),
and the covariances of X1 and X2, X1 and X3, X2 and X3, were 1, -1 and -0.5 respectively; X4 was uniformly
distributed on (-3,3), X5 was χ2(1)-distributed and X6 was Bernoulli random variable with mean 0.5. The
treatment indicator followed T = I(X1 + 2X2 − 2X3 −X4 − 0.5X5 +X6 + ϵ > 0) where ϵ ∼ N(0, 30). This
corresponds to the case with the largest imbalance between the treated and control groups in Hainmueller’s
simulation setting. The outcome distribution was Y = (X1+X2+X5)

2+η where η was the standard normal
random variable. The outcome did not differ between the treated and controls, and the average treatment
effects was zero. We compared the same set of estimators as in Table 1 and 2. We report the results for
n = 300 with a linear covariate specification (X1, . . . , X6) in Table 5. Similar to Tables 1 and 2 for the
Kang and Schafer scenario, the calibration estimators performed the best in terms of mean squared error
and created an exact three-way covariate balance.

6. Data analysis

6.1. A childhood nutrition study
We studied the performance of various weighting estimators using the 2007-2008 National Health and Nutri-
tion Examination Survey (NHANES), which is a study designed to assess the health and nutrition statuses
of children and adults in the United States. We studied whether participation of the National School Lunch
or the School Breakfast programs (hereinafter, “school meal programs”) would lead to an increase in body
mass index (BMI) for children and youths aged at 4 to 17. The school meal programs are intended to address
the problem of insufficient food access of children in low-income families. However, a potential unintended
consequence of the program is excessive food consumption which may cause childhood obesity. We analyzed
2330 children and youth at ages between 4 and 17, with a median age of 10, with 1284 (55%) participated
in school meal programs.

Covariates in the data include: child age, child gender, race (black, Hispanic versus others), families above
200% of the federal poverty level, participation in Special Supplemental Nutrition Program for Women,
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Table 5. Comparison of weighting estimators for the Hainmueller scenario, n = 300.

E(Y(1)-Y(0)) Imbalance*100
Estimator Bias RMSE (1,0) (1,F) (0,F) Total
Unweighted 2.95 3.39 111 55 55 136
HT(γMLE) 0.15 3.07 25 19 18 38
HT(γ1F ) <-999 > 999 > 999 0 > 999 > 999
HT(γ0F ) > 999 > 999 > 999 > 999 0 > 999
HT(γ10) 0.1 1.9 0 14 14 20
HT(γ10F ) 0.34 1.81 17 14 13 26

HT(γCBPS) 0.38 1.84 21 16 16 31
IPW(γMLE) 0.21 2.34 23 18 17 35
IPW(γ1F ) -1.96 8 59 0 59 84
IPW(γ0F ) 0.5 5.76 61 61 0 86
IPW(γ10) 0.1 1.86 0 13 13 19
IPW(γ10F ) 0.36 1.77 17 14 13 26

IPW(γCBPS) 0.43 1.75 20 16 15 31
CAL(ET) 0.08 1.42 0 0 0 0
CAL(EL) 0.14 1.67 0 0 0 0
CAL(Q) 0.04 1.42 0 0 0 0
CAL(IL) 0.15 1.54 0 0 0 0

RMSE: root mean squared error; HT: Horvitz-Thompson estimators; IPW: ratio-type inverse probability weighting
estimators; CAL: calibration estimators. For HT and IPW estimators, propensity score parameters were estimated in
six ways: i. The maximum likelihood estimator (γ̂MLE); ii. The moment estimator that balances the covariates of the
treated and the full data (γ̂1F ); iii. The moment estimator that balances the covariates of the controls and the full data
(γ̂0F ); iv. The moment estimator that balances the covariates of the treated and the controls (γ̂10); v. The generalized
method of moment estimator for an overidentified system that balances the covariates of the treated, controls and the
full data (γ̂10F ); vi. The covariate balancing propensity score estimator of Imai and Ratkovic (2014) (γ̂CBPS). For
calibration estimators, ET: exponential tilting; EL: empirical likelihood; Q: quadratic; IL: inverse logistic.
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Table 6. The difference in average BMI between participants and non-participants of
school meal programs: NHANES 2007-2008 data

Imbalance ×100
Estimate SE 95% C. I. (1,0) (1,F) (0,F) Total

Naive 0.53 0.21 (0.11,0.95) 103 47 57 127
HT(MLE) -1.48 0.51 (-2.50,-0.46) 49 16 57 63
HT(CBPS) -1.38 0.50 (-2.38,-0.38) 42 20 36 53
IPW(MLE) -0.14 0.24 (-0.62,0.34) 7 7 26 16
IPW(CBPS) -0.1 0.23 (-0.56,0.36) 10 11 12 17
CAL(ET) -0.04 0.22 (-0.48,0.40) 0 0 0 0
CAL(EL) -0.06 0.22 (-0.50,0.38) 0 0 0 0
CAL(Q) 0 0.22 (-0.44,0.44) 0 0 0 0
CAL(IL) -0.08 0.22 (-0.52,0.36) 0 0 0 0

SE: standard error; CI: confidence interval; HT: Horvitz-Thompson estimator; IPW:
inverse probability weighting estimator; CAL: calibration estimator; MLE: maximum
likelihood estimator; CBPS: covariate balancing propensity score; ET: exponential tilt-
ing; EL: empirical likelihood; Q: quadratic; IL: inverse logistic. Standardized covariate
imbalance between treated and controls (10), treated and full data (1F), control and full
data (0F) and total imbalance are reported.

Infants and Children, participation in the Food Stamp Program, a childhood food security measurement
which is an indicator of two or more affirmative responses to eight child-specific questions in the NHANES
Food Security Questionnaire Module, health insurance coverage, and the age and sex of survey respondents
(usually an adult in the family). The estimated average difference in BMI between participants and non-
participants, together with standard error estimates and imbalance measures, are all given in Table 6.
Direct comparison showed that the mean BMI of participants was significantly higher than that of non-
participants, indicating that the program may lead to excessive food consumption. This particular finding
has a policy implication in that there is a need to redesign the school meal programs to promote a healthier
diet. Using a logistic propensity score model with a linear covariate specification, the Horvitz-Thompson
estimators using maximum likelihood estimation and the covariate balancing propensity score estimates
of Imai and Ratvokic (2014) both yielded a consistent, but opposite conclusion that the participation in
school meal programs led to a significantly lower BMI and possible malnutrition. This particular finding
has policy implications in that current school meal programs may fail in reducing the health disparities
for poorer children. The inverse propensity score weighted estimates (IPW) were much closer to zero than
the corresponding Horvitz-Thompson estimators, yielding a non-significant difference in BMI between the
participants and the non-participants. The use of different propensity score weighting estimators leads to
an inconclusive finding. The calibration estimators gave a consistent result that there is a negligible mean
BMI difference between the participants and the non-participants. A policy implication is that the current
school meal programs are implemented in an appropriate manner that provides assistance for the needed
without an unintended consequence of increasing childhood obesity.

6.2. A job training study
We further demonstrate the performance of various weighting estimators by estimating the treatment impact
of a labor training program data previously analyzed in Lalonde (1986) and Dehejia and Wahba (1999),
among many others.

The National Supported Work (NSW) Demonstration was a randomized experiment implemented in the
mid-1970s to study whether a systematic job training program would increase post-intervention income levels
among workers. Both intervention and control groups were present in the original NSW study. Lalonde
(1986) examined the extent to which analyses using observational data sets as controls would agree with the
unbiased results of a randomized experiment. His nonexperimental estimates were based on two observational
cohorts: the Panel Study of Income Dynamics (PSID) and Westat’s Matched Current Population Survey –
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Social Security Administration File (CPS). Detailed description of the two data sets was given in Lalonde
(1986) and Dehejia and Wahba (1999).

Dehejia and Wahba (1999) and others had analyzed the data set using different propensity score method-
ologies. Since calibration estimators are weighting estimators, we again limit our comparison only to other
weighting estimators based on propensity score modeling. We combined the three data sets and created a
group variable G having four categories: G = 1 for the treated in the NSW data (N = 185), G = 2 for the
controls in the NSW data (N = 260), G = 3 for the PSID data (N = 2490) and G = 4 for the CPS data
(N = 15992). Categories 2, 3 and 4 all served as control data because individuals in those groups did not
participate in the job training program offered in NSW. However, Categories 2, 3, 4 had substantially dif-
ferent covariate distributions. We considered the four categories in the combined data to illustrate that the
calibration methodology can be applied to handle multiple treatment groups. We studied whether PSID and
CPS can be used as the controls in the original NSW data, and we compared the estimates for the average
treatment effects in the NSW study population, which was treatment effects on the treated. We noted that
the treated and the control groups in the NSW data should have the same covariate distribution because
of randomization. Using this information, we calibrated the weights of the four groups to the combined co-
variate distribution of groups 1 and 2. We also compared our results to calibration estimators with weights
calibrated to the treatment group G = 1 only. Since there were four nominal group categories, we used
the multinomial logit model for propensity score modeling. Two covariate configurations were considered,
where the calibration estimators matched the same variables as in the propensity score models. The first
(linear) specification included age, an indicator for black race (black), an indicator for Hispanic race (hisp),
years of education (ed), an indicator for being married (married), an indicator for not having an academic
degree (nodegr), income in 1974 (re74), income in 1975 (re75), an indicator for zero income in 1974 (u74),
and an indicator for zero income in 1975 (u75). The second specification included all variables in the linear
specification with the following additional higher-order variables: age2, age3, ed2, re742, re752, ed×re74 and
u74×black. These variables were included in the final models for either PSID or CPS data in Dehejia and
Wahba (1999).

We estimated the average difference of income in 1978 between the treatment group (G = 1) and the
control groups (G = 2, 3, 4). We further examined the evaluation bias defined as the estimated mean
difference of outcome between the NSW control group (G = 2) and the observational control groups (G =
3, 4). The results are shown in Table 7. Direct comparisons were known to be severely biased, and had a huge
evaluation bias. All weighting estimators greatly reduced the estimated evaluation bias, but the Horvitz-
Thompson and inverse probability weighted estimator can yield very different estimates under the same
model. Also, the estimates can change dramatically in comparing the two specifications of propensity score
models. The calibration estimators yielded very similar estimates for both model specifications. Calibration
to the combined NSW group had lower estimated standard errors compared to calibration only to the treated
group. However, the estimates for the two calibration procedures were slightly different, probably because
they were referring to two slightly different populations. This was possibly due to the fact that the analysis
file of Dehejia and Wahba (1999) removed observations with a missing 1974 income, and the missingness
may be different in the treatment and control groups. Hence, the NSW treated and controls may not have
the same covariate distribution. In general, the standard errors of the propensity score estimators were much
larger than that of the calibration estimators.

An advantage of using weighting estimators is that statisticians can graphically assess whether covariate
balance is achieved. Figure 1 shows the weighted distributions of the four continuous covariates age, edu-
cation (ed), income in 1974 (re74) and income in 1975 (re75). We compared the IPW and the calibration
weighted distributions for the PSID and CPS data, with the empirical distributions of the combined NSW
sample. Propensity score modeling and calibration were done using the non-linear model specification as
in Dehejia and Wahba (1999). The calibration weighted distributions in both PSID and CPS data were
close to the empirical distributions from the NSW data. However, the IPW weighted distributions showed
a substantial difference for some variables, such as age, re74 and re75 in the PSID data and ed in the CPS
data. Even when we matched a small number of moment constraints, the calibration weights performed well
in matching the full covariate distributions between the non-experimental groups and the NSW data.
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Table 7. Average treatment effects and evaluation biases for the Lalonde (1986) data.
(a) Treatment effects

NSW data PSID data CPS data
Estimators Model Estimates SE Estimates SE Estimates SE
Unweighted 1794 671 -15205 657 -8498 583

HT 1 1600 827 2421 917 551 862
HT 2 1936 872 2136 1018 1071 711
IPW 1 1702 734 310 1095 1515 1014
IPW 2 1287 863 -830 1207 1534 745
CAL 1 1572 667 2557 716 1233 668
CAL* 1 1712 707 2425 743 1406 675
CAL 2 1454 642 2504 699 1178 754
CAL* 2 1874 705 2285 795 1527 738

(b) Evaluation biases
Unweighted -17000 391 -10292 349

HT 1 626 809 -1244 710
HT 2 342 998 -724 917
IPW 1 -1485 926 -279 527
IPW 2 2624 1085 -261 577
CAL 1 986 556 -338 487
CAL* 1 712 600 -306 512
CAL 2 1049 605 -276 617
CAL* 2 411 677 -347 592

SE: standard error; CI: confidence interval; HT: Horvitz-Thompson estimator with propen-
sity score estimated from maximum likelihood; IPW: ratio-type inverse probability weighting
estimator with propensity score estimated from maximum likelihood estimation; CAL: cali-
bration with exponential tilting, moments are calibrated to the combined NSW group; CAL*:
calibration with exponential tilting, moments are calibrated to the NSW treatment group.
Two model specifications are considered, 1: linear in covariates; 2: linear and higher-order
covariates as in Dehajia and Wahba (1999). Standard errors for HT and IPW estimators were
calculated by bootstrapping with 1000 replicates.

Table 8. Comparisons of standard error estimates for
the Lalonde (1986) data.

(a) Treatment Effects
NSW data PSID data CPS data

Proposed 667 716 668
Bootstrap 672 737 666
Fixed 643 300 111

(b) Evaluation Biases
Proposed 556 487
Bootstrap 612 500
Fixed 254 92

Bootstrap estimates were based on 1000 replicates.
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We further examined the performance of the proposed standard error estimators by comparing them
to bootstrap estimates based on 1000 replications and standard error estimates that treat the weights as
given and fixed. The corresponding results for the calibration estimator under the linear specification are
given in Table 8. The proposed standard error estimates were very close to the bootstrap standard errors,
but the standard error estimators which treated the weights as if they were fixed can greatly underestimate
the variability of the calibration estimators. For instance, when we ignored the variability of the estimated
weights, the standard error estimates for the CPS data were much smaller because of their large sample
sizes. However, the true estimation variability can be more than 6 times larger because the weights were
constructed by calibrating to the combined NSW data which had a much smaller sample size. Therefore,
ignoring estimation variability of calibration weights can lead to a misleading inference. For a correct
inference, one cannot rely on variance estimates that treat the weights as fixed, which was suggested in
Section 3.4 of Hainmueller (2012).

7. Discussions

We studied a large class of calibration estimators for efficient inference of the average treatment effects.
Calibration weights removes imbalance in pretreatment covariates among the treated, controls and the
combined group. By directly modifying the misspecified uniform weights, we do not directly model or
estimate the propensity score. We show that balancing covariate distribution alone can achieve global
semiparametric efficiency, and we also propose a consistent asymptotic variance estimator which outperforms
other estimators that involve direct approximation of the influence function.

While we considered calibration estimators that modify the uniform weights, calibration can be con-
structed to modify the Horvitz-Thompson weights. However, this formulation requires an additional direct
modeling and estimation of propensity score. If π̂(x) is an estimated propensity score function, a class of
calibration weights can be defined by

p̂K(Xi) =
1

Nπ̂(Xi)
ρ′
(
λ̂TuK(Xi)

)
, for i when Ti = 1 ,

where λ̂K ∈ Rk maximizes the objective function

ĜK(λ) =
1

N

N∑
i=1

[
Ti

π̂(Xi)
ρ
(
λTuK(Xi)

)
− λTuK(Xi)

]
;

and

q̂K(Xi) =
1

N(1− π̂(Xi))
ρ′
(
β̂TuK(Xi)

)
, for i when Ti = 0 ,

where β̂K ∈ RK maximizes the objective function

Ĥ(β) =
1

N

N∑
i=1

[
1− Ti

1− π̂(Xi)
ρ
(
βTuK(Xi)

)
− βTuK(Xi)

]
.

This type of calibration procedure is discussed in detail in Chan and Yam (2014). We now focus on the
special case that K = 1 and u , uK ≡ 1, together with λ and β being set as scalar parameters. The
balancing equation for the treated becomes

1

N

N∑
i=1

Ti

π̂(Xi)
ρ(λ̂) = 1 .

Therefore, ρ(λ̂) = (N−1 ×
∑N

i=1 Tiπ̂
−1(Xi))

−1 and the corresponding calibration weight is p̂K(Xi) =

(π̂(Xi) ×
∑N

i=1 Tiπ̂
−1(Xi))

−1. Similarly, q̂K(Xi) = ((1 − π̂(Xi)) ×
∑N

i=1(1 − Ti)(1 − π̂−1(Xi))
−1)−1. This
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yields the ratio-type IPW estimator. Therefore, the construction of IPW from HT estimators can be viewed
as a calibration procedure. When π̂ is a series logit estimator, Hirano et al. (2003) and Imbens et al. (2006)
show that the ratio-type IPW estimator is globally asymptotically efficient. Note that u is one-dimensional
regardless of sample sizes. Therefore, when π is estimated by a series logit estimator, global efficiency can
be achieved when uK has a fixed dimension. However, our global efficiency results require uK to have an
increasing dimension with N because propensity score was not directly estimated.

Our results show that a class of calibration weights yield globally efficient estimators which are first-order
equivalent. An interesting extension is to study higher-order bias and optimality for the general class of
estimators. Although the class of calibration estimators is related to generalized empirical likelihood, we
cannot apply the higher-order theory of Newey and Smith (2004) for two reasons. First, moment conditions
are assumed to be correctly specified in Newey and Smith (2004) while the moment conditions for calibration
are misspecified for any finite K. While Schennach (2007) studied model misspecification, the number of
moment conditions is fixed in both Newey and Smith (2004) and Schennach (2007), but is increasing for our
calibration estimator. The latter problem is particularly thorny because there can be multiple first-order
negligible terms that affect the higher-order bias in different ways. This challenging problem will be studied
in a separate investigation.

In practice, we suggest to choose uK(X) to be the first and possibly higher moments of candidate
covariates. When the covariate distributions of the treated and the controls differ only by a mean shift,
matching the first moment of X would be sufficient for removing imbalance. When the variances differ,
one can also match the second moment. Matching moments of covariate distributions are intuitive to non-
statisticians. We can also graphically check whether the choice of uK(X) is sufficient as in Figure 1. A
noticeable difference in the weighted distributions comparing the treated and the controls would suggest
that additional moment conditions are needed. Furthermore, we can choose K by a graphical method or by
cross-validation. Since the parameter K controls the number of moment conditions for matching to eliminate
the bias from confounding, the choice of K is therefore analogous to the selection of number of confounders
in regression modeling, for which a graphical method was discussed in Crainiceanu et al. (2008). Inspired
by that paper, we propose the following graphical method for choosing K. From the unweighted sample,
we calculate the total standardized imbalance measure for each candidate uK(X), and rearrange them in
a descending order of the imbalance measure. Then for k = 1, 2, . . ., we plot the point estimates and the
95% confidence intervals by matching the first k moment conditions. The bias would vanish when enough
moment conditions are balanced, therefore the difference between consecutive point estimates will stabilize.
Identify a region such that the the difference between consecutive point estimates is small, and within this
region we can choose K such that the corresponding confidence interval is the shortest. Alternatively, K
can be chosen by cross-validation. The moment conditions are matched in a training subset of the full data,
while the weights are created in a complementary testing set and a total imbalance measure is calculated
for the test data. This process is repeated over different partitions of data, and we choose K such that
the average imbalance measure is minimized. While K can be chosen by the above methods, we would like
to remark that Theorems 1 and 2 hold for a broad ranges of K and our simulation results show that the
performance of the calibration estimators are insensitive to the choice of K when all relevant covariates are
included. This is because our estimator involves the summation of linear functions of p̂K(Xi) and q̂K(Xi),
and the summation of functions of nonparametric estimators are typically insensitive to the selection of the
tuning parameter (Maity et al.; 2007), known as the double-smoothing phenomenon.
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A. Asymptotic expansion of the calibration estimators

The technical proofs for the lemmas and theorems are given in the supplementary materials. Here we present
an asymptotic expansion of the empirical balancing estimator, which will be the key to these proofs.

Define

G∗
K(λ) , E[π(X)ρ(λTuK(X))− λTuK(X)] = E[ĜK(λ)] ,

λ∗
K , arg max

λ∈RK
G∗

K(λ) and p∗K(x) , 1

N
ρ′((λ∗

K)TuK(x)) ,

H∗
K(β) , E[(1− π(X))ρ(βTuK(X))− βTuK(X)] = E[ĤK(β)] ,

β∗
K , arg max

β∈RK
H∗

K(β) and q∗K(x) , 1

N
ρ′((β∗

K)TuK(x)) ,

ΣK , (G∗
K)′′(λ∗

K) = E[π(X)ρ′′((λ∗
K)TuK(X))uK(X)uK(X)T ] ,

ΨK , −E[m1(X)π(X)ρ′′((λ∗
K)TuK(X))uK(X)] ,

QK(x) , ΨT
KΣ−1

K uK(x) ,

Π̃K , Ĥ ′′
K(β̃K) =

1

N

N∑
i=1

(1− Ti)ρ
′′(β̃T

KuK(Xi))uK(Xi)uK(Xi)
T ,

Ω̃K , −
∫
X
m0(x)(1− π(x))ρ′′(β̃T

KuK(x))uK(x)dF0(x) ,

D̃K(x) , Ω̃T
KΠ̃−1

K uK(x) ,

ΠK , (H∗
K)′′(β∗

K) = E[(1− π(X))ρ′′((β∗
K)TuK(X))uK(X)uK(X)T ] ,

ΩK , −E[m0(X)(1− π(X))ρ′′((β∗
K)TuK(X))uK(X)] ,

DK(x) , ΩT
KΠ−1

K uK(x).

Now we have the following decomposition of our empirical balancing estimator in Theorem 1(b),

√
N

(
N∑
i=1

{Tip̂K(Xi)Yi − (1− Ti)q̂K(Xi)Yi} − τ

)

=
1√
N

N∑
i=1

({NTip̂K(Xi)Yi −N(1− Ti)q̂K(Xi)Yi} − µ1 + µ0)

=
1√
N

N∑
i=1

{
(Np̂K(Xi)−Np∗K(Xi))TiYi −

∫
X
m1(x)π(x)(Np̂K(x)−Np∗K(x))dF0(x)

}
(19)

− 1√
N

N∑
i=1

{
(Nq̂K(Xi)−Nq∗K(Xi)) (1− Ti)Yi −

∫
X
m0(x)(1− π(x))(Nq̂K(x)−Nq∗K(x))dF0(x)

}
(20)

+
1√
N

N∑
i=1

{(
Np∗K(Xi)−

1

π(Xi)

)
TiYi − E

[
m1(X)π(X)

(
Np∗K(X)− 1

π(X)

)]}
(21)

− 1√
N

N∑
i=1

{(
Nq∗K(Xi)−

1

1− π0(Xi)

)
(1− Ti)Yi − E

[
m0(X)(1− π(X))

(
Nq∗K(X)− 1

1− π0(X)

)]}
(22)
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+
√
NE

[
m1(X)π(X)

(
Np∗K(X)− 1

π(X)

)]
(23)

−
√
NE

[
m0(X)(1− π(X))

(
Nq∗K(X)− 1

1− π0(X)

)]
(24)

+
√
N

∫
X
m1(x)π(x)(Np̂K(x)−Np∗K(x))dF0(x)−

1√
N

N∑
i=1

[Tiρ
′((λ∗

K)TuK(Xi))− 1]Q̃K(Xi) (25)

−
√
N

∫
X
m0(x)(1− π(x))(Nq̂K(x)−Nq∗K(x))dF0(x) +

1√
N

N∑
i=1

[(1− Ti)ρ
′((β∗

K)TuK(Xi))− 1]D̃K(Xi)

(26)

+
1√
N

N∑
i=1

[Tiρ
′((λ∗

K)TuK(Xi))− 1](Q̃K(Xi)−QK(Xi)) (27)

− 1√
N

N∑
i=1

[(1− Ti)ρ
′((β∗

K)TuK(Xi))− 1](D̃K(Xi)−DK(Xi)) (28)

+
1√
N

N∑
i=1

{
[Tiρ

′((λ∗
K)TuK(Xi))− 1]QK(Xi) +

m1(Xi)

π(Xi)
(Ti − π(Xi))

}
(29)

− 1√
N

N∑
i=1

{
[(1− Ti)ρ

′((β∗
K)TuK(Xi))− 1]DK(Xi) +

m0(Xi)

1− π(Xi)
(π(Xi)− Ti)

}
(30)

+
1√
N

N∑
i=1

(
TiYi

π(Xi)
− µ1 −

m1(Xi)

π(Xi)
(Ti − π(Xi))

)
(31)

− 1√
N

N∑
i=1

(
(1− Ti)Yi

1− π(Xi)
− µ0 −

m0(Xi)

1− π(Xi)
(π(Xi)− Ti)

)
(32)

Since
∑N

i=1 Tip̂K(Xi)Yi − µ1 and
∑N

i=1(1− Ti)q̂K(Xi)Yi − µ0 have a symmetric structure, we only need to
consider the terms (19), (21), (23), (25), (27) and (29), and then apply the similar arguments to the terms
(20), (22), (24), (26), (28) and (30). We shall show that the sum (31) + (32) behaves like an asymptotic
normal random variable, and the remaining terms are all of order op(1). A key challenge of the proof is to
show the asymptotic order of (29) and (30), because they link all the unknown functions (π(x),m1(x),m0(x))
with the calibration weights and balancing moment conditions. This is overcome by using a novel weighted
projection argument.

B. Dual formulation of calibration estimators

We derive the dual of the constrained optimization problem (5) by using the methodology introduced in
Tseng and Bertsekas (1987); the dual of (6) follows by a similar argument. DefineEK×N , (uK(X1), . . . , uK(XN )),

si , 1−TiNpi, i = 1, . . . , N , s , (s1, . . . , sN )
T
and f(v) , D(1− v), then we can rewrite the problem (5) as

min
s

N∑
i=1

Tif(si) subject to EK×N · s = 0 .

For every j ∈ {1, . . . , N}, we define the conjugate convex function (Tseng and Bertsekas; 1987) of Tjf(·)



Globally Efficient Nonparametric Inference of Average Treatment Effects 35

to be

gj(zj) = sup
sj

{zjsj − Tjf(sj)} = sup
pj

{−TjNpjzj + zj − Tjf(1− TjNpj)}

=sup
pj

{−TjNpjzj + zj − Tjf(1−Npj)}

=− TjNp∗jzj + zj − Tjf(1−Np∗j ) ,

where the third equality follows by noting that Tf(1−TNpj) = Tf(1−Npj), and p∗j satisfies the first order
condition:

−Tjzj = −Tjf
′(1−Np∗j ) ⇒ p∗j =

1

N

{
1− (f ′)

−1
(zj)

}
.

By defining ρ (z) , f
(
(f ′)

−1
(z)
)
+ z − z · (f ′)

−1
(z), then

gj(zj) = −Tjρ (zj) + zj .

By Tseng and Bertsekas (1987), the dual problem of (5) is

min
λ

N∑
j=1

gj(λ
TEj) =−max

λ

N∑
j=1

{
Tjρ

(
λTuK(Xj)

)
− λTuK(Xj)

}
=−max

λ
ĜK(λ) ,

where Ej is the j-th column of EK×N , i,e., Ej = uK(Xj).
Since D is strictly convex, f ′′(v) = D′′(1 − v), and hence f is also strictly convex and f ′ is strictly

increasing. Note that

ρ(v) = f((f ′)−1(v)) + v − v(f ′)−1(v) ⇔ρ (f ′(v)) = f(v) + f ′(v)− vf ′(v) ;

differentiating with respect to v both sides of the latter equation yields:

ρ′ (f ′(v)) f ′′(v) = f ′(v) + f ′′(v)− f ′(v)− vf ′′(v) = (1− v)f ′′(v) ,

which also implies

ρ′ (f ′(v)) = 1− v ,

since f ′′ > 0. Further differentiating with respect to v of the above equation, we get ρ′′ (f ′(v)) f ′′(v) = −1,
which implies

ρ′′(v) = − 1

f ′′ ((f ′)−1(v))
< 0 .

By also working backward, the convexity of D is equivalent to the concavity of ρ.


