Type RAKZB

Three-phase impedance relay

A ground-fault relay which activates this reconjection relay is included in one version of RAKZB. For the other yersions one can use a separate external ground current relay to control the reconnection relay. A LED marked " Δ " indicates when the relay measures phase-to-phase voltage. A LED marked "Y" indicates when the relay measures voltage to neutral. A blocking relay which when activated, prevents operation for fuse failure and power swings.

DESIGN

RAKZB can be obtained in different versions for one or two impedance steps. The following modules are included;

RXZK 4
Static impedance relay built up with analogous and digital circuits. The relay has three separate measuring circuits (R, S, T) on three identical printed circuit boards, each equipped with an output relay and a diode output. One common printed circuit boand takes care of the common operations such as auxiliary voltage supply, blocking of operation, rough setting of the reach (A) and the voltage circuit Δ / Y reconnection. The relay has no input transformers in the voltage circuit. Instead a Y-connected resistance chain f the voltage circuit is used which is galvanically connected with the auxiliary voltage circuit.

Therefore the auxiliary voltage circuit must be galvanically separated from other dc voltage and ground. On the relay there are two LEDs which indicate the connection of the relay: Δ or Y . The operate value of the relay is set with knobs on the front of the relay.

A - one knob for stepwise ($5,10,20,40,80$ ohm) rough setting of the reach in the forward direction

B - three knobs, one for each measuring circuit R, S, T for continuous fine adjustment (4.5 to 10.5) of the reach in forward direction

D - three knobs, one for each measuring circuit $\mathrm{R}, \mathrm{S}, \mathrm{T}$ for continuous setting (-0.2 to +1.0) of the reach in the reverse direction

Fig. 1 Setting knobs A,B,D and LEDs on RXZK 4

RXME 18
Auxiliary relay with indicating flag and two normally open contacts. Used in the trip circuit.

RXKE 1
Time-lag relay with two normally open contacts. Used to delay the trip function.

RXIG 2
Current relay which measures the zero sequent current and has two transfer contacts. Used to control the reconnection relay to switch the voltage circuit from the phase-to-phase voltage(4) to the voltage to neutral (Y) at ground-faults.

RXSF 1
Alarm relay with indicating flags and normally open contacts. Used in the trip circuits of the two step version. At the start operation of the impedance steps RXSF 1 also gives alarm.

RXTUG 2H
$\mathrm{Dc} / \mathrm{Dc}$ converter with galvanically separated inpus and outputs. Used to supply the electronic circuit with auxiliary voltage.

RTQTC 061
A transformer module which contains three airgap transformers for the current circuit. The module can be obtained for the current $\mathrm{I}_{\mathrm{a}}=$ $0.5 \mathrm{~A}, 1 \mathrm{~A}, 2.5 \mathrm{~A}$ or 5 A .

RTXP 18

Test switch. At testing the test switch RTXH 18 is inserted into this test device. The test device has sequence controlled contacts. When the test handle is inserted into the test device the alarm and trip circuits are opened. Thereafter the current transformers circuits are short-circuited. Then the measuring current and the measuring voltage supply to the relay is interrupted. The test device and the test handle are included in the test system COMBITESF.

MODE OF OPERATION

The operation is determined both by the connectioh and type of fault. In resonant grounded networks the relay normally is Δ connected and operates for two- or three phase faults. In solidly grounded networks the relay normally is Δ-connected but will be Y connected by a ground current relay at ground-faults.

The voltage phases R, S, T and the neutral N are connected directly to the star-connected voltage divider in RXZK 4.

In the transformer unit RTQTC 061 the current is fed over a model impedance and a current which is proportional to the voltage is obtained which then is supplied to RXZK 4.

In the voltage circuit (3) phase-to-phase voltages are originated by subtraction of the phase voltages e.g. $U_{R T}=U_{R}-U_{T} \cdot$

Through the external controllable Δ / Y reconnection relay (4) the voltage to neutral or the phase-to-phase voltage is copveyed to the measuring units for each phase.

1. Measuring and control inputs
2. Setting circuit for the reach
3. Voltage circuit "subtraction circuit"
4. $\Delta /$ Y-reconnection relay
5. Analog signal processor
6. Square wave converter
7. Phase comparator (exclusive -OR)
8. Pulse generator (Oscillator)
9. Pulse counter
10. Summation point
11. Drive circuit with reset delay
12. Circuit for output blocking
13. Output relay and diode output
14. Airgap transformer
15. Circuit for setting of the compensation degree

Fig. 2 Block diagram
The quantities U1, U2 and U3 are developed in the analog signal processor (5) according to the formulae:
$\mathrm{U}_{\mathrm{I}}=\mathrm{I} \mathrm{Z}_{\mathrm{f}}-\mathrm{U} \quad \mathrm{U}_{2}=\mathrm{I} \mathrm{Z}_{\mathrm{r}}-\mathrm{U}$
$U_{3}=\frac{U_{1}+U_{2}}{2}=\mathrm{I} \times \frac{Z_{f}+Z_{r}}{2}-U$

The operation of the relay is based on the relative differ \&nce of the angle between the vectors $\mathrm{U} 1, \mathrm{U} 2$ and U 3 .

U1 and U2 gives a circular or lens characteristic while U\$ gives the modified lens characteristic.

The three measuring quantities derived in block (5) afe converted in the square wave converter (6) into square wave signals and fed to the phase comparator circuit (7) which controls the pulse counters (9) so that these obtain a number of pulses from the oscillator (8). The phase angle measurement is done with the puls generator (8) and two binary counters (9), one for the circle or lens and the other for the extra circle in the modified lens characteristic. The counters are preset for a certain number of pulses. If any of the counters in a phase reaches its limit value (some redundancy) this puls is locked in and output signal is obtained over a relay contact or diode output. The relay can be blocked by an external signal. It can also be blocked if the auxiliary voltage will be too low or if the current will be lower than $0.2 \mathrm{I}_{\mathrm{a}}$.

The relay has a setting D which determines the revers $\&$ reach Zr . $Z_{r}=-D Z f$.

Fig. 3 Circular characteristic

$$
90^{\circ}<\arg U_{2}-\arg U_{1}<270^{\circ}
$$

Fig. 4 Modified lens characteristic $135^{\circ}<\arg U_{2}-\arg U_{1}<225^{\circ}$ and that $90^{\circ}<\arg U_{3}-\arg U_{1}<270^{\circ}$

Recommended operate curves for different applications

(a) 3-phase fault and normal duty
(b) = states 2-phase fault and when $K=1$, also 1-phase fault

Fig. 5. Normally the circular characteristic is used. I the figure $Z_{r}=Z_{f}$ and $\alpha=60^{\circ}$

Fig. 6. The offset characteristic is used when different reaches in the forward and reverse direction are required. In the figure $Z_{r}=+0.2 Z_{f}$ and $\alpha=60^{\circ}$

Fig. 7. To obtain better margin between the reach of the relay and the load impedance, in some cases a relay with the characteristic angle $\alpha=75^{\circ}$ is preferred.
. n the figure $Z_{r}=+0.2 Z_{f}$

Fig. 8. In long lines the modified lens characteristic may be preferred which also gives a better margin between the reach of the relay of the load impedance.
In the figure $Z_{r}=+0.2 Z_{f}$ and $\alpha=60^{\circ}$

Fig. 9. As underexcitation protection select a relay with $\alpha=60^{\circ}$ and reversed relay current.
In the figure $Z_{r}=0,2 Z_{f}$.

Table 1. Measuring quantities and reaches at different types of faults

Type of fault
Diode indication
Example on fault current and voltage fed to the relay

Table 2 Limits of reaches as a function of type of

Current 12	At 36-fault 50 Hz ohms/phase	At 2ϕ-fault 50 Hz ohms/phase
0.54	5.4-204	4.8-178
1 A	2,7-10\%	2,4-89
2.5 A .	1, 1-61	0.95-35.6
5A	0.54-2p.4	0.48-17.8

Table 3. Design of circular and modified lens characteristic.
The circle is obtained with 1 as centre. The Modified lens is obtained with a combination of 3 circles with 2,3 and 4 as centra.

Centre	Equatlons for the coordinations of the centra	Equations for the radii of the circles
	$\begin{aligned} & R=\frac{Z_{f}}{2}(1-D) \cos \alpha \\ & x=\frac{Z_{f}}{2}(1-D) \sin \alpha \end{aligned}$	$r=\frac{(1+0) 2 f}{2}$
2	$\begin{aligned} & R=\frac{Z_{f}}{2}[(1-D) \cos \alpha-(1+D) \sin \alpha] \\ & x=\frac{z_{f}}{2}[(1-D) \sin \alpha+(1+D) \cos \alpha] \end{aligned}$	$r=\frac{(i+D) \mathrm{Zf}}{\sqrt{2}}$
3	$\begin{aligned} & R=\frac{Z_{f}}{4}(3-0) \cos \alpha \\ & X=\frac{Z_{f}}{4}(3-0) \sin \alpha \end{aligned}$	$r=\underline{\text { (1+ } \mathrm{DI} \text { Z } \mathrm{f}}$
4	$\begin{aligned} & R=\frac{Z_{f}}{2}[(1-0) \cos \alpha+(1+0) \sin \alpha] \\ & X=\frac{Z_{f}}{2}[(1-0) \sin \alpha-(1+0) \cos \alpha] \end{aligned}$	$r=\frac{(1+D) 2 f}{\sqrt{2}}$

a

Fig 10 Circular (a) and modified lans(b)
characteristics
Fig $10 \begin{aligned} & \text { Circular (a) and modified } \\ & \text { characteristics }\end{aligned}$ fons $(b) ;$

b

INSTALLATION

On acceptance, the relay should be inspected with respect to physical damage and, thereafter, should be stored in its box in a dry space and in a temperature of between $10-25^{\circ} \mathrm{C}$ until it is to be installed.

All internal connections between the units are alreddy made on delivery and only the external connections remain to be made.

Protective relays which are supplied ready-installed in a relay cubicle are jointly tested with the other components in the cubicle. Additional joint tests during installation are not negessary. This simplifies installation and permits rapid commissioning.

RAKZB is to be connected according to the terminal diagrams.

MAINTENANCE

Under normal conditions, RAKZB requires no special naintenance but should be protected against dust, moisture and corrosive atmosphere. The covers should be mounted correctly in place and the holes in the covers blanked off with removable plastic plugs.

When inserting or removing units, as when resetting, deconnection etc., care must be taken to prevent unwanted operation. Normally, the relay should be disconnected but it is often sufficient to block the trip circuit with an RTXB type trip-block plug, which is inserted in the test switch.

In exceptional cases, burned contacts can be dressed with a diamond file or a very fine cut file. Emery cloth or the like should not be used, as grains of emery can become affixed to the contacts and cause malfunction. Under normal operate conditions and in noncorrosive atmospheres, maintenance tests are recomm\&nded every second year.

SETTING, TESTING AND COMMISSIONING

Equipment for the tests

For the test recommended here, the following equipment is suitable:

- Secondary injection testing set, e.g. type TURH, see fnformation RK 915-300 E.
- Multi-purpose instrument.
- Time-recorder, e.g. AEG Sekundenmesser.
- Test-plug handle type RTXH 18.
- Trip-block plug type RTXB.
- Ammeter test plug type RTXM.
- Variable resistor
- Cadacitor

Check and testing

The following checks, settings and tests are made pefore the relay
can be put into service:

- General inspection
- General check of connections
- Setting of the relay
- Secondary injection test of the relay
o Primary tests
- Test on dc circuits

General inspection

Check that all components according to the circult diagram and apparatus list are included and that there is no visfle damage on the relay. also check that the plug-in units have the correct data (rated voltages, impedance range and time-scales) acc. to the apparatus list.

General check of connection

Check that the external wiring is in accordance with the circuit diagram. The polarity of the auxiliary voltage connected to the relay should be checked. Check also carefully that phase currents and voltages are correctly connected to the relay.

Check that the current ratio of the CT's and the voltage ratio of the VT's stated on the rating plates of the transformers correspond to the values stated in the drawings.

It is assumed that the external circuits have already been checked with regard to insulation between phases and between phases and ground.

Measure the resistance of the current circuits from the cubicle terminals. At 5 A rated secondary currents a resistance of 0.5-1 ohm would be expected for the external circuits. For the internal circuits in the cubicle a very low resistance value should be
measured.

Check also that no interruption of the current circuits occur when the RTXH 18 test-plug handle is inserted and withdrawn from the RTXP 18 test switch.

Setting of the relay

General The impedances in the network are converted to the secondary side of the instrument transformers by means of the formula:

$$
Z_{\text {sec }}=\frac{-_{\text {sec }}}{U_{\text {prim }}} \times \frac{I_{\text {prim }}}{I_{\text {sec }}} \times z_{\text {prim }}
$$

In a network with lines tied at an intermediate location as shown in Fig. 11 consideration has to be taken to the increase in measured impedance due to the power fed into the system at the teed-point. In case of a fault at point F, the relay at point A senses the impedance
$Z=Z_{L 1}+\left(\frac{\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{B}}}{\mathrm{I}_{\mathrm{A}}}\right) Z_{\mathrm{F}}=Z_{\mathrm{L} 1}+\left(1+\frac{\mathrm{I}_{\mathrm{B}}}{\mathrm{I}_{\mathrm{A}}} \quad Z_{\mathrm{F}}\right.$
where I_{A} and I_{B} are the fault currents from station A and B respectively, $z_{\mathrm{L} 1}$ is the impedance of the first line section and z_{F} is
the impedance of the second line section up to the fault location.

Point A

$$
z_{\text {faut }}=Z_{L 1}+\left(1+\frac{I_{B}}{I_{A}}\right) z_{F}
$$

Fig. 11 Impedances in network with intermediate infeed

Determination of setting factors

Impedance setting
a) Determine settings Z_{f} and Z_{r} which make the relay operate for all relevant faults within the protected zone. Generally, the proper values of Z_{f} and Z_{r} are most easily found by geometrical
design.
The operate characteristic of RAKZB with modified lens char3 acteristic can be designed with the aid of the formulae in Table
b) Check that the operate characteristic gives sufficient margin
against the load impedance. If RAKZB can be reconnected to measure phase-to-neutral voltages and phase currents, the 3-phase reach of the relays should under all load conditions as a maximum be equa. to 50 per
cent of the load impedance.
The minimum load impedance $Z_{\text {load (min) }} \mid$ in ohms per phase is
calculated from the formula
$z_{\text {load }}(\min)=\frac{\mathrm{U}^{2}}{\mathrm{~S}_{\text {max }}}$
where
$\mathrm{U}=$ line voltage in kV
$S_{\text {max }}=$ max. apparent load in MVA
c) Calculate the ratio $\frac{A}{B}$
$\frac{A}{B}=Z_{f} \times \frac{I_{a} \times \sqrt{3}}{0.2 \times f}$ where Z_{f} is the forward reach in ohms/phase for 3-phase faults
d) Choose a setting factor A equal to or less than 10 times the calculated ratio $\frac{A}{\bar{B}}$ (nearest settable number)
e) Insert the selected value of A in the formula acc, to c) above and
calculate the B-factor.
f) Insert the calculated figures for A and B in the formula and check that the chosen value Z_{f} is obtained, i.e.
$Z_{f}=\frac{f \times 0.2}{I_{a} \times \sqrt{3}} \times \frac{A}{\bar{B}}$ ohms/phase for 3-phase flaults

Example on

 calculationExample 1

RAKZB as back-up short-circuit protection for generator

Fig. 12 RAKZB as back-up S/C protection for generafor
Data:
Rated frequency $=50 \mathrm{~Hz}$
Ratio of voltage transformers: $\frac{16}{\sqrt{3}} / \frac{0.1}{\sqrt{3}} \mathrm{kV}$
Ratio of current transformers: 2500/5A
Short-circuit voltage of step-up transformer: 10%
Current scale factor of RAKZB, $\mathrm{I}_{\mathrm{a}}=5 \mathrm{~A}$
For this application, a circular characteristic with $Z_{r}=-Z_{f}$ (fig. 5) should be used due to the phase shift of the apparent fault impedance in case of faults on the high voltage side.

Assume that RAKZB is set to 70% of the 3-phase load impedance and that the relay is Δ-connected.
$Z_{\text {load }}=\frac{U^{2}}{S}=\frac{16^{2}}{60}=4.27$ ohms/phase
Primary setting: $4.27 \times \frac{70}{100}=2.99 \mathrm{ohms} /$ phase
Secondary setting:
$Z=\frac{100}{16000} \times \frac{2500}{5} \times 2.99=\underline{9.33}$ ohms $/$ phase
$\frac{A}{B}=9.33 \times \frac{5 \times \sqrt{3}}{0.2 \times 50}=8.1$

Chose $A=80$
$B=\frac{0.2 \times 50 \times 80}{5 \times \sqrt{3} \times 9.34}=9.9$
Check:

$$
\frac{0.2 \times 50}{5 \times \sqrt{3}} \times \frac{80}{9.9}=9.33 \mathrm{ohms} / \text { phase }
$$

RAKZB as back-up impedance protection for line
Data:

$$
\begin{aligned}
&=3.8+\mathrm{j} 30 \text { ohms/phase } \\
&=32+\mathrm{j} 110 \mathrm{ohms} / \text { phase } \\
& \mathbf{R}_{\mathrm{f}}=20 \text { ohms (at earth-faults) } \\
& \mathrm{S}=150 \mathrm{MVA} \text { (maximum) } \\
& \text { where }
\end{aligned}
$$

$\begin{aligned} & \text { positive-sequence impedance of the protected zone in } \\ & \text { ohms/phase }\end{aligned}$
$\begin{gathered}\text { zero-sequence impedance of the protected zone in } \\ \text { ohms/phase }\end{gathered}$
$\mathrm{R}_{\mathrm{f}}=\begin{gathered}\text { additional } \\ \text { resistance) }\end{gathered}$
$\mathrm{S}=$ apparent power resistance (arc and towerling foot
$\mathrm{U}_{\text {prim }} / \mathrm{U}_{\mathrm{sec}}: \frac{220000}{\sqrt{3}} / \frac{110}{\sqrt{3}} \mathrm{v}, 50 \mathrm{~Hz}$
$\mathrm{I}_{\text {prim }} / \mathrm{I}_{\mathrm{sec}}: 400 / 1 \mathrm{~A}, 50 \mathrm{~Hz}$

The reverse reach shall be limited to about 10 ohms/phase.

RAKZB is assumed to have rated current $1 A$, modifiled lens characteristic, $\alpha=60^{\circ}$, and relay for reconnection to Y-mode in case of
ground-faults. ground-faults.

Min. load impedance:
$z_{\text {load }(\min)}=\frac{\mathrm{U}^{2}}{\mathrm{~S}_{\max }}=\frac{220^{2}}{150}=323$ ohms/phase
$z_{\text {sec }}=\frac{110}{220000} \times \frac{400}{1} \times z_{\text {prim }}=0.2 \times z_{\text {prim }}$
Secondary impedances:

$$
\begin{array}{rlrl}
\mathrm{Z}_{1 L} & =(3.8+\mathrm{j} 30) \times 0.2=0.76+\mathrm{j} 6=6.05 & \angle 83^{\circ} \text { ohm } / / \text { phase } \\
& =(32+j 110) \times 0.2=6.4+\mathrm{j} 22=22.9 & \angle 74^{\circ} \text { ohm } / \mathrm{s} / \text { phase } \\
R_{f} & =20 \times 0.2=4 \text { ohms }
\end{array}
$$

Loop impedance in case of earth-fault with $R_{f}=20$ ohms primary:
$z_{\text {loop }}=z_{1}+\frac{z_{0}-z_{1}}{3}+R_{f}($ see table 1)

$$
z_{\text {loop }}=\frac{2 z_{1}+z_{0}}{3}+R_{f}
$$

$$
Z_{\text {loop }}=\frac{2(0.76+j 6)+6.4+j 22}{3}+4
$$

$$
=6.64+j 11.33=13.1 \quad \angle 60^{\circ} \text { ohms }
$$

$$
Z_{(\text {load }) \min }=323 \times 0.2=64.6 \text { ohms } / \text { phase }
$$

A loop impedance setting of 13.1 ohms for single-phase faults coresponds to $Z_{f}=\frac{13.1}{2}=6.55$ ohms per phase for 2 -phase faults. The following points on the R-X diagram (fig. 13) are established:
A $Z=6.55 \quad \angle 60^{\circ}$ ohms/phase on the 2-phase characteristic
B $Z=\begin{gathered}6.05 \\ \text { and } 3 \text {-phase characteristic }\end{gathered} 83^{\circ}$ ohms/phase on the 2-phase |characteristic
$\begin{aligned} \mathrm{C}: & 4 \text { ohms loop resistance for single-phase fault to } \text { cover } \\ & \text { close up earth-faults, corresponding to } \frac{4}{2}=2 \text { oh ns/phase } \\ & \text { on the 2-phase characteristic }\end{aligned}$
D $X_{\text {reverse }}<2$ ohms/phase

Fig. 13 Selected operate characteristic for RAKZB
The point $R=2$ ohms/phase and the requirement $X_{\text {reverse }}=2$ ohms/phase determine the operate characteristic and result in a setting which overreaches the required zone. However, the load impedance is far beyond the 3 -phase reach, and the setting therefore gives no load encroachment problems.

Setting factors:

$$
\begin{aligned}
& \frac{A}{B}=Z_{f} \times \frac{I_{a} \times \sqrt{3}}{0.2 \times 50} \\
& =11 \times \frac{1 \times \sqrt{3}}{0.2 \times 50}=1.9
\end{aligned}
$$

($z_{f}=11 \mathrm{ohm} / \mathrm{ph}$ for 3-phase faults is taken from Fi\&. 13)
Choose $A=10$
$B=\frac{0.2 \times 50}{1 \times \sqrt{3}} \times \frac{10}{11}=5.25$
Check
$Z_{f}=\frac{0.2 \times 50}{1 \times \sqrt{3}} \times \frac{10}{5.25} 11 \mathrm{ohm} / \mathrm{ph}$

Directional test

The relay is provided with the COMBITEST test switch type RTXP 18 acc. to Catalogue B03-9510 E. The contact in the current circuits switch without interposing break and the contacts in the tripping circuits open when the test plug handle is inserted. The contacts are arranged in such a way that the relay is supplied with currents and voltages when the test plug handle is in the intermediate position.

When the test plug handle is fully inserted (the test position) all contacts in the test switch, except for the auxiliary d.c. supply of the relay, are open and by-passing bars interconnect adjacent contact blocks in the current circuits thereby short circuiting the secondary circuits of the instrument current transformers. When it is in the intermediate position, only the tripping circuits are opened. Consequently, when the test plug handle is fully inserted, the relay is completely disconnected from the instrument transformers.

A catch which holds the test plug handle in the intermediate position must be actuated to remove the test plug handle.

The operating characteristic of the measuring qlements shall be checked by secondary injection. The measurements can be performed as described in Test Instruction RK 654-101 E Checking of impedance relay RAKZB with the aid of test set type TURH.

The directional test described below is suitably carried out before the operate characteristics of the relay are checked and adjusted by secondary injection testing. Approximate settings in accordance with the calculated values are sufficiently accurate when performing the directional test.

A directional test shall be carried out before the commissioning is finalized. The test should be carried out with the line in service and with a load of more than 0.2 x rated load. The load should preferrably be slightly inductive in first quadrant of the $R-X$ diagram.

The test is carried out as follows:
Put in blocking pins type RXTB, in terminals 16 and 17 of the test device RTXP 18 to prevent tripping.

Switch the RAKZB relay to measure phase impedance, by activating the Δ / Y reconnection relay in RXZK 4.

Check that the diode marked "Y" on the RXZK 4 relay is lit.
Note carefully the setting of factor D on the $R A K Z B$ relay if the directional test is made after the secondary injection test. Set $\mathrm{D}=0.1$ for all three phases.

Connect a variable resistor (R), a capacitor (C) and a voltmeter (V) to the test wires of an RTXM ammeter test plug and to the neutral voltage terminal as shown in Fig. 14. Insert the RTXM test plug in the R-phase voltage terminal of the RTXP 18 test switch.

The circuit gives a forward phase shift of the R-phase voltage to the relay, i.e. the phase R measuring element will have its characteristic angle tilted in direction of the R -axis. A capacitange value is chosen which gives a phase shift roughly equal to the difference between the characteristic angle of the relay and the angle of the load impedance, see the table below.

Resistance (ohm)	Capacitance ($\mu \mathrm{F}$)	$\begin{aligned} & \text { Phase shift }\left({ }^{\circ}\right) \\ & 50 \mathrm{~Hz} \quad 60 \mathrm{~Hz} \end{aligned}$	
	2	58	53
	3	47	41
1000	4	38	33
	6	28	24
	Shorted	0	0
2200	6	14	11

Reduce the voltage Um until the ratio between Um and th \neq current to the relay correspond to the set forward reach Z_{f} exptessed in ohms per phase. If the load current is flowing in the forward direction (same direction as Z_{f}) the impedance relay should operate.

If no function is obtained, pull out the RTXM test plug and the RTXP pins. Insert the RTXH 18 test handle in the test switch to short-circuit the current circuits. Reverse the current to phase R of RAKZB by interchanging the wires to terminals $3 B$ and $4 B$ on the RTXP 18 test device.

Note: Ensure that the wire on the protection side i.e. B side are changed and not on the A side as this will give an open current transformer secondary, which is very dangerqus.

Pull out the handle, insert the RTXP blocking pins and the RTXM test pin and repeat the test.

The same test is made for phase S and T.
Reset the factor D to its proper value.
If the load current is flowing in the reverse direction, the connections which give operation of the relay are first established for all three phases. The wires to terminals 3B-8B are then interchanged as described above.

Fig. 14 Connections for directional test of RAKZB dcc. to diagram 7422 005-CB.
Note: Test terminals 9-12 are for some versions of RAKZB used for the voltage circuits!

The dc circuits for trip and alarm functions should be checked. The trip circuits should, if possible, be checked by tripping the associated breaker(s) when the relay operates.

Reset the indicating flags.
The impedance protection can now be put into servick.

Rated voltage U_{n}
Characteristic angle
Operate characteristic
Modified lens
minor/major axis ratio
Current scale factor I_{a}
Lowest operate current
Reach setting formulae in forward direction Z_{f}
in reverse direction Z_{r}

Setting range
Accuracy
Reset ratio
Transient overreach at I $>\mathrm{I}_{\mathrm{a}}$

Operate time at
$0.1<Z_{s} / Z_{f}<100$
$0.5<\mathrm{I} / \mathrm{I}_{\mathrm{a}}<30$
Reset time
Permitted auxiliary voltage deviation

Permitted ambient temperature

Percent change in operate value per \% auxiliary voltage change
per ${ }^{\circ} \mathrm{C}$ temperature change
No change between -20% and +10
$\%$ of rated value

Overload capacity
continuous/l s
$3 \times \mathrm{I}_{\mathrm{a}} / 70 \times \mathrm{I}_{\mathrm{a}}$
Power consumption
Current measuring circuit
Voltage measuring circuit
Auxiliary voltage circuit
$0.05 \mathrm{VA} /$ phase at $\mathrm{I}=\mathrm{I}_{\mathrm{a}}$
$0.24 \mathrm{VA} / \mathrm{phase}$ at U_{n}
12 W (incl. RXTUG 2 H
Auxiliary voltage dc
Electronic circuits EL $\quad 24,48,55,110,125$ or 250 N

$\stackrel{2<}{\stackrel{2}{7}}$

3-PHASE SHORT-CIRCUIT PROTECTION 3-FAS KORTSLUTNINGSSKYDD

01 RTXP 18 107 RXTUG $2 H$ 33 RTOTC 061
$\begin{array}{ll}119 & \text { RXZK 4 } \\ 131 & \text { RXME 18 }\end{array}$
327 RTXE 61

1) TRIPPING OF CB ETT.

UTL. AV bRytare min.
2) ALARM ETC.
3) ALARM loss of auxiliary voltage

Signal hJalp SPantingesbortfall
4) CONNECTED WHEN RXZKK 4 ARE AASLUTEN NAR RXZK 4 MÁTER FASSPANNING (Y)
5) BLOCKING RELAY IN BLOCKING DOSITION 6) RTXE INCLUDED AT RL= $48-55 \mathrm{~V}$ OR 220-2SOV
RTXE INGAR VID RL-48-55V ELLER 220-250V

71

TERMINAL UTIAG	at aux. voltage el VID HüLPSPAZNNINGEL	
114	24 V RESP.	110 VCC
113	48 V	125 VDC
112	55 V -	220VDC
111		250 VDC

Circuit diagram $7422005-\mathrm{CB}$ (AK 654001 -CB)

Circuit diagram 7422 005-EB (RX 654 001-EB)

$\xrightarrow[H]{3<}$

3-PHASE DELAYEO SHORT-CIRCUIT PROTEE TION
3-FAS FOROROUT KORTSLUTNINGS. 3-FAS F
SKYOD

1) TRIPPING OF CB ETC.
2) ALARM ETC.
3) ALARM LOSS AUXILIARY vOLTAGE
SIGNAL HJALPSPÁNNINGSBORTFALL 4) BLOCKING RELAY IN BLOCKING POSITION 5) RTXE INCLUDED AT RL=48-55V 5) RTXE INCLUD RTXE INGAR MD
ELLER $220-250 \mathrm{~V}$

IERMINAL UTTAG	AT AUX. VOLTAGE EL VID HJÄLPSPÄNNING EL	
114	24 V RESP.	110 V DC
113	48 V	125 V 0 C
112	55 V	220 VC
111		250 V DC

1) TRIPPING OF CB:S ETC
2) TRIPMNG OF CB:S ETC
${ }^{21}$ ALARM TRIPPNG STEP 1
3) ALARM IRIPPNG STEP 1
SIGNAL UTLOSNING STEG
4) ALARM TRIPPNG STEP 2

SIGNAL UTÜ̇SNING STEG 2
4) ALARM START STEP 1

SIGNAL START STEG 1
5) ALARM START STEP 2
6) ALARM LOSS OF AUXILIARY VOLTAGE

SIGNAL HLALLPSPȦNNINGSBORTFALL
7) CONNECTED WHEN RXZKK $\&$ ARE ANSLUTEN NÄR RXZK 4 MÄTER ANSLSPANNING (Y)
g) blocking relay in blocking BLOSKING
POSITON
blockeringsrelä i blockeranoe lüge 9) FORB. VID/WIRING AT RL $=220-250 \mathrm{~V}$ 01FÖRB VIO/WIRING AT RL $=110-125 \mathrm{~V}$ 11) FÖRB VID/WIRING AT RL $=48-55$
12)

3-PHAKE SHORT-CIRCUIT PROTECTION 3-FAS KORTSLUTNING5SKYDD

1) TRIPP|NG OF CB ETC. utloswing av brytare m.n.
2) alartietc. SIGYAL M.IT.
3) Alart hoss of auxiliary voltage SIGHAL HJALPSPANNINGSBORTFALL
4) blocking relay in blocking position blockeringsrela I blockeranoe lage

Terminal diagram 7422 005-ACA (RK 654 001-AC)

3-Phase delayed short-circuit PROTECTION 3-FAS FÖRDROST KORTSLUTNINGSSKYDD
i) TRIPPING DF CB ETC. UTLOSNING AV BRYTARE R.M.
2) ALART ETC

SIGNAL H.
3) alarn los of auxiliart voltage SIGNAL HJTLPSPANNINGSBORTFALL
5) BLOCKING RELAY in blocking position BLOCKERINGSRELA I bLOCKERANDE LAGE

Terminal diagram 7422 005-CBA (RK $654001-C B$)

3-PHASE DELAYED Short-c lecuit PROTECTION 3-FAS FÖRDRUJT KORTSLUTNIMGSSKYDO

1) TRIPPING OF CB ETC. utlósning av brytare n.n.
2) ALARM ETC. SIGNN TI.R.
3) alarm loss of auxiliary yoltage SIGNAL HJALPSPANNINGSBORTFALL
4) blocking relay in blocking position blockeringspela i blockeqande lage

Terminal diagram 7422 005-BBA (RK $654001-\mathrm{EB}$)

Terminal diagram 7422 006-DBA (RK 654 002-DB)
3-PMASE DELATED 2 STEP SHORT-CIRCUIT PROTECTION 3-FAS FORCRROST 2 STEGS KORTSLUTNINGSSKTDO

1) TRIPPING OF CB ETC. UTLOSNING AV BRYTARE ITH

ALART TRIPPING STEP I
SIGNAL UTLOSNING STEG
ALARM TRIPPING STEP 2
SIGNAL UTLZESNING STEG 2
ALARM START STEP 1
SIGNAL START STEG I
5) ALARH START STEP 2 SIGNAL START STEG 2
6) ALARTI LOSS OF AUXILIARY vdLTAGE SIGNAL HJALPSPANWING5BORTHALL
7) BLOCKING RELAY IN BLCrYINE POSIIION BLOCKERINGSRELA I BLOCKERANOE LAGF

ABB Network Control \& Protection

