
GoBench: A Benchmark Suite of Real-World Go
Concurrency Bugs

Ting Yuan†‡, Guangwei Li†‡, Jie Lu†∗, Chen Liu†‡, Lian Li†‡∗, and Jingling Xue§
† State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences

‡ University of Chinese Academy of Sciences, Beijing, China
§ University of New South Wales, School of Computer Science and Engineering, Sydney, Australia

† {yuanting, liguangwei, lujie, liuchen17z, lianli}@ict.ac.cn § jingling@cse.unsw.edu.au

Abstract—Go, a fast growing programming language, is often
considered as “the programming language of the cloud”. The
language provides a rich set of synchronization primitives, mak-
ing it easy to write concurrent programs with great parallelism.
However, the rich set of primitives also introduces many bugs.

We build GOBENCH, the first benchmark suite for Go concur-
rency bugs. Currently, GOBENCH consists of 82 real bugs from 9
popular open source applications and 103 bug kernels. The bug
kernels are carefully extracted and simplified from 67 out of these
82 bugs and 36 additional bugs reported in a recent study to pre-
serve their bug-inducing complexities as much as possible. These
bugs cover a variety of concurrency issues, both traditional and
Go-specific. We believe GOBENCH will be instrumental in helping
researchers understand concurrency bugs in Go and develop
effective tools for their detection. We have therefore evaluated
a range of representative concurrency error detection tools using
GOBENCH. Our evaluation has revealed their limitations and
provided insights for making further improvements.

Index Terms—benchmarks, concurrency bugs, the Go language

I. INTRODUCTION

The Google-born Go [1] is an open-source programming
language, which has gained much attention recently. It is one
of the fastest growing programming languages in the software
industry and is often regarded as “the programming language
of the Cloud” [2]. Many popular cloud systems, such as
the software container platform Docker [3] and the cluster
manager Kubernetes [4], are written in Go.

Go is designed with concurrency in mind. Its designers
aim to make concurrent programming easier and less error-
prone by introducing two built-in concurrency constructs, i.e.,
goroutines and channels. Goroutines are lightweight threads
managed by the Go runtime. Channels provide CSP-style mes-
sage passing mechanisms [5]–[7] for communication between
goroutines. Although traditional shared memory concurrency
is also available, channel-based mechanisms are strongly rec-
ommended instead. It was believed that communication via
message passing can make concurrent programming simpler
and more reliable. However, recent surveys [8], [9] show that
channel-based mechanisms introduce as much, if not more,
concurrency bugs than traditional shared memory mechanisms.

Go provides a rich set of concurrency primitives. Mixing
traditional locking and channel-based message passing mech-
anisms has introduced Go-specific bugs (e.g., communication
∗Corresponding authors.

deadlocks and channel misuse). For instance, communication
deadlocks caused by channels account for more than 50% of
deadlock bugs in Go applications [8], [9], but this problem
was often overlooked in the past. On the other hand, the Go
language and its associated tooling only provide only a basic
solution for detecting concurrency bugs, including a runtime
race detector and a toy global deadlock detector exist. While
techniques and tools [10]–[14] have recently been proposed to
detect concurrency bugs in Go, much needs to be done.

We believe that a benchmark suite can be instrumental
in helping researchers understand well concurrency bugs in
Go and develop effective tools for their detection. Hence,
GOBENCH. To the best of our knowledge, this is the first
benchmark suite for Go concurrency bugs. There are two
test suites, a real test suite, GOREAL, consisting of 82 real-
world concurrency bugs, and a kernel test suite, GOKER,
consisting of 103 extracted bug kernels. These bugs cover a
variety of concurrency bugs, especially Go-specific bugs, such
as communication deadlocks and channel misuse.

For GOREAL, its 82 bugs are taken from 9 popular real-
world Go applications. For each bug, we have created a Docker
image to expose it on a single host machine using a go test
command or a test script written by the original developers (for
a complex bug) to ensure portability and reproducibility.

For GOKER, we have created 103 bug kernels representing
103 bugs (one bug per kernel), with 67 selected from the
82 bugs in GOREAL and 36 selected from a recent study on
Go concurrency bugs [9]. How and why these selections are
made will be explained later in the paper. For each bug kernel,
we have extracted and simplified its bug-relevant code from
its corresponding source code, by preserving its bug-inducing
complexities (e.g., the root cause and the bug-triggering calling
sequence) as much as possible. As all the bug kernels can be
compiled normally, no test scripts need to be provided.

In summary, this paper makes the following contributions:

• We introduce GOBENCH, the first benchmark suite
to facilitate understanding and detecting concurrency
bugs in Go. GOBENCH is publicly available at
https://github.com/timmyyuan/gobench.

• We introduce a new taxonomy of Go concurrency bugs
according to their Go-specific root causes, providing
guidelines behind the development of GOBENCH.

978-1-7281-8613-9/21 c© 2021 IEEE CGO 2021, Virtual, Republic of Korea

Accepted for publication by IEEE. c© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

187



• We have evaluated a range of representative tools for
finding Go concurrency bugs using GOBENCH. Our eval-
uation has revealed their limitations and provided insights
for developing improved bug-detection tools.

The rest of this paper is organized as follows. Section II
reviews concurrency constructs in Go and examines different
types of concurrency bugs using examples. Section III intro-
duces GOBENCH. Section IV evaluates existing concurrency
bug-detection tools using GoBench. Section V reviews the
related work and Section VI concludes the paper.

II. BACKGROUND

Go is a statically typed, compiled programming language
designed for concurrent programming. It offers a rich set
of concurrency primitives, supporting both CSP-style concur-
rency and traditional shared memory mechanisms. The rich
set of concurrency primitives not only facilitates concurrent
programming but also bring in many concurrency bugs. In
this section, we briefly introduce common concurrency mech-
anisms in Go and illustrate different types of concurrency bugs.

A. Goroutine

Goroutine is the concurrency unit in Go, a lightweight
thread managed by the Go runtime. Unlike system threads,
goroutines are cheaper to create. It is common to have hun-
dreds of thousands of goroutines running on a single machine.

We can create a goroutine, by adding simply the keyword
go before a function call, to run it concurrently with other
functions. In practice, goroutines are often created using
anonymous functions, declared in other functions. All local
variables declared before an anonymous function are accessi-
ble inside. These variables are potentially shared between a
parent goroutine and a child goroutine executing the anony-
mous function, resulting potentially in Go-specific data races.

B. Concurrency Primitives

Table I summarizes the basic synchronization primitives in
Go. These can be used in shared-memory and message-passing
concurrency. Those for shared-memory are packaged in the
sync library, including mutual exclusive locks (i.e., Mutex
and RWMutex), conditional variables (i.e., Cond), and atomic
memory operations (i.e., atomic). These constructs are also
available in languages such as Java and C/C++. Once is a new
primitive to guarantee that a function is only executed once.
When Once.Do(foo) is invoked multiple times, foo is
executed only for the first invocation. Waitgroup is similar
to thread join, where a goroutine can be used to wait for a set
of goroutines in the Waitgroup to finish.

For message-passing, Go uses statically-typed channels to
send and receive messages across the goroutines. Channels
can be buffered or unbuffered. Buffered channels are asyn-
chronous. Thus, sending (receiving) operations to a buffered
channel will not block unless the buffer is full (empty). On the
other hand, the sender (receiver) of an unbuffered channel will
block if there is no corresponding receiver (sender) available.
A channel can be set to nil or closed. Receiving messages

TABLE I
CONCURRENCY PRIMITIVES IN GO.

Model Primitive Semantic

Shared
memory

Mutex a mutual exclusive lock
RWMutex a reader/writer lock
atomic an atomic memory operation
Cond a condition variable
Once exactly one action per object

WaitGroup
waiting for multiple
goroutines to finish

Message
passing

chan
a channel for exchanging data
between concurrent goroutines

select
waiting on multiple channel
operations

from a closed channel will get an empty response immediately
and receiving messages from a nil channel will block the
receiver forever. Moreover, a new switch-like select
statement can be used for communication across the multiple
channels. A select statement waits for multiple channels,
blocking until it can use one of its waited channels (non-
deterministically) or when it can execute a default case.

This rich set of concurrency primitives enables high-level
concurrency patterns to be implemented in multiple ways.
However, misuse of these primitives often leads to concurrency
bugs, as evident in this paper and previous studies [8], [9].

C. Concurrency Bugs

Following [8], [9], [15], we classify Go concurrency bugs
into blocking and non-blocking bugs. We can further differ-
entiate bugs in each category according to their root causes.

1) Blocking Bugs: These include (a) resource deadlocks
(due to misuse of locks), (b) communication deadlocks (due to
misuse of synchronization or channels), (c) mixed deadlocks
(due to, e.g., misuse of both locks and channels). The former
two are the two main sources of deadlocks [15]–[18]. A
goroutine leak occurs when it waits to receive messages from
a channel (post to a channel) forever, as no sender (receiver)
is available. Without loss of generality, we consider goroutine
leaks as a special case of blocking bugs.

a) Resource Deadlocks: A resource deadlock occurs
when a set of goroutines block each other where each is wait-
ing for resources held by some others in the set. Traditional
resource deadlocks, such as double locking or acquiring locks
in conflict orders (AB-BA deadlock), have been well studied
and can be detected with existing techniques [19]–[23].

In Go, there are Go-specific resource deadlocks. For a read-
write lock, RWMutex, a write lock request is given a higher
priority than a read lock request and a goroutine can acquire
the same read lock multiple times without causing double
locking. Therefore, a new type of resource deadlocks can result
when a goroutine (G1) tries to acquire a write lock between
the two read lock requests from another goroutine (G2). G1’s
write lock request will be blocked since G2 has already held a
read lock. However, G2’s second read lock request will also be
blocked since G1’s write lock request has a higher priority. For
convenience, such deadlocks are referred to as RWR deadlocks.

188



1 type statusManager struct {
2 podStatusesLock sync.RWMutex
3 podStatusChannel chan bool
4 }
5 func (s *statusManager) Start() {
6 for i := 0; i < 2; i++ {
7 s.syncBatch()
8 }
9 }

10 func (s *statusManager) syncBatch() {
11 <-s.podStatusChannel
12 - s.DeletePodStatus()
13 + go s.DeletePodStatus()
14 }
15 func (s *statusManager) DeletePodStatus() {
16 s.podStatusesLock.Lock() // G1 blocks
17 defer s.podStatusesLock.Unlock()
18 }
19 func (s *statusManager) SetPodStatus() {
20 s.podStatusesLock.Lock()
21 defer s.podStatusesLock.Unlock()
22 s.podStatusChannel<-true // G3 blocks
23 }
24 func main() {
25 s := NewStatusManager()
26 go s.Start() // G1 starts
27 go s.SetPodStatus() // G2 starts
28 go s.SetPodStatus() // G3 starts
29 }

a) Simplified source code b) Steps to trigger deadlock

Fig. 1. A mixed deadlock from Kubernetes (bugID Kubernetes#10182) [24].

b) Communication Deadlocks: In communication dead-
locks, messages are the resources for which goroutines wait.
There is a set of goroutines where each is waiting for a mes-
sage from another in the set. Most communication deadlocks
in Go are due to misuse of channels, although traditional
communication deadlocks caused by condition variables Cond
and WaitGroup also exist [9]. Unlike resource deadlocks,
communication deadlocks are less studied in the literature.

By default, channels are unbuffered. The send (receive)
operation of an unbuffered channel in a goroutine will block
until another goroutine receives data from (sends data to) the
channel. If a corresponding receiver (sender) is no longer
available, the sender (receiver) goroutine will block forever,
resulting in so-called goroutine leaks.

c) Mixed Deadlocks: Mixed deadlocks involve channels
and other concurrency primitives such as locks. They can be
difficult to detect and there are no effective tools available.

Figure 1 illustrates a real deadlock bug extracted from
Kubernetes (Table III). Figure 1(a) gives the simplified
source code and Figure 1(b) depicts how the deadlock is trig-
gered. There are 4 goroutines. The main goroutine creates the 3
goroutines G1, G2, and G3 at lines 26, 27, and 28, respectively.
G1 first receives messages from podStatusChannel (line
11) and then tries to acquire podStatusesLock (line 16).
G2 and G3 have the same entry function. Both goroutines
acquire podStatusesLock (line 20) first and then post
to podStatusChannel (line 22). In Figure 1(b), G1 first
receives messages from G2 from podStatusChannel and
then continues execution. If G3 has successfully acquired
podStatusesLock before G1, then a deadlock occurs: G1

is waiting to acquire podStatusesLock held by G3, and
G3 is waiting to post to podStatusChannel (supposed
to be received by G1). The official fix is to create another
goroutnie to acquire podStatusesLock (line 13).

2) Non-blocking Bugs: Most non-blocking concurrency
bugs in Go are traditional concurrency bugs caused by in-

1 - for _, c := range checks {
2 + for i := range checks {
3 + c := checks[i]
4 go func() {
5 validateCheckInTxn(&c.Name)
6 }()
7 }
8 }

Fig. 2. A data race from CockroachDB#35501 [25], caused by an
anonymous function.

1 func (s *fsSource) Stop() {
2 close(s.donec)
3 - s.donec = nil
4 }
5 func (s *fsSource) Start() {
6 go func() {
7 select {
8 case <-s.donec:
9 return

10 }
11 }()
12 }

Fig. 3. A data race from Istio#8967 [26], caused by channel misuse.

correct shared memory protection, e.g., data races and order
violations. There has been a large body of research [27]–[32]
on detecting such bugs. The Go compiler has implemented a
classic dynamic race detector [33]. Nevertheless, it remains to
be an open and challenging problem as how to effectively and
efficiently detect such bugs (as evaluated in Section IV).

Some traditional concurrency bugs can occur due to Go-
specific features. For instance, anonymous functions and some
go libraries (e.g., testing) introduce implicitly shared data,
leading potentially to data races. Figure 2 illustrates a data race
from CockroachDB [34]. The race condition is highlighted
in red: access to variable c in the parent goroutine at line 1
races with the access to c in the child goroutine (created by
the anonymous function at line 4) at line 5. This race can be
avoided by introducing a local copy of c at line 3.

Despite their scarcity, non-blocking bugs can occur due
to misuse of channels. Figure 3 illustrates a race from

189



Istio [35]. The member function Stop (lines 1 - 4) of
of fsSource closes the channel donec and then sets it to
nil. The other member function Start (lines 5 - 12) receives
messages from that channel (line 8). Setting a channel to nil
is not safe when there are concurrent communication opera-
tions on that channel. Thus, a race occurs when an instance
of fsSource executes the two functions concurrently. To fix
the bug, the developers have simply removed line 3.

III. GOBENCH

We introduce GOBENCH, the first benchmark suite for Go
concurrency bugs. GOBENCH consists of two test suites: (1)
GOREAL (the real test suite) containing 82 bugs collected
from 9 real-world applications, and (2) GOKER (the kernel
test suite) containing 103 bugs captured by small bug kernels.

For GOREAL, we have created a Docker image for each
bug to allow it to be exposed on a single host machine using
a go test command or a test script written by the original
developers to ensure portability and reproducibility.

For GOKER, we have created 103 small bug kernels repre-
senting 103 bugs (one bug per kernel), with 67 selected from
the 82 bugs in GOREAL and 36 selected from the concurrency
bugs in Go reported in a recent study [9]. We will explain this
selection process below (Section III-B). For each bug kernel,
we have extracted and simplified its bug-relevant code from
its corresponding source code, by preserving its bug-inducing
complexities (e.g., the root cause and the bug-triggering calling
sequence) as much as possible. It is non-trivial to extract such
a bug kernel from a buggy application with millions of lines
of code, as explained also in Section III-B.

Table II summarizes the bugs in GOBENCH (i.e., GOREAL
and GOKER) according to a new taxonomy of Go concurrency
bugs classified in terms of their Go-specific concurrency
primitives (Table I). GOBENCH is representative, covering a
diverse range of blocking and non-blocking bugs with different
root causes. We have put a special emphasis on new Go-
specific bugs, such as communication and mixed deadlocks.
These bugs, caused by channel-based message passing, are
common in Go but are not well studied in the literature.

Below, we describe how we have developed GOREAL
(Section III-A) and GOKER (Section III-B).

A. GOREAL

We have built GOREAL based on a wide range of represen-
tative concurrency bugs found in real-world applications.

We consider a set of 9 popular open-source projects listed in
Table III, which cover a broad range of applications in cloud
computing, from library and storage systems to containers and
cluster managing systems. We have selected these projects
since they are widely used in practice (e.g., Kubernetes,
Docker, and Istio), or have a very high number of stars
on GibHub (e.g., Hugo). We also include Serving, a well-
known project in a new area of cloud computing.

To collect their concurrency bugs, we search all the pull
requests in the GitHub repositories of these projects using
the following keywords: “deadlock”, “goroutine leak”, and

TABLE II
BUGS IN GOBENCH (WITH THE NUMBER OF BUGS OF EACH TYPE GIVEN).

Suite Bug Type (#Bugs)

GOREAL

Blocking (40)

Resource
Deadlock (9)

Double Locking (7)
AB-BA Deadlock (2)

Communication
Deadlock (21)

Channel (16)
Condition Variable (2)
Channel & Context (2)
Channel &
Condition Variable (1)

Mixed
Deadlock (10)

Channel & Lock (8)
Channels &
WaitGroup (2)

Non-blocking
(42)

Traditional (24) Data race (22)
Order Violation (2)

Go-specific (18)
Anonymous Function (4)
Channel Misuse (6)
Special Libraries (8)

Total 82

GOKER

Blocking (68)

Resource
Deadlock (23)

Double Locking (12)
AB-BA Deadlock (6)
RWR Deadlock (5)

Communication
Deadlock (29)

Channel (17)
Condition Variable (2)
Channel & Context (8)
Channel &
Condition Variable (2)

Mixed
Deadlock (16)

Channel & Lock (13)
Channel &
WaitGroup (2)
Misuse WaitGroup (1)

Non-blocking
(35)

Traditional (21) Data race (20)
Order Violation (1)

Go-specific (14)
Anonymous Function (4)
Channel Misuse (6)
Special Libraries (4)

Total 103

TABLE III
NINE STUDIED PROJECTS.

Project #Lines
(KLOC)

#Bugs
(GOREAL/GOKER) Description

Kubernetes [4] 3,340 21/25 Container manager
Docker [3] 1,067 5/16 Container framework
Hugo [36] 99 2/2 Static site generator
Syncthing [37] 80 2/2 File synchronization system
Serving [38] 1,171 11/7 Serverless computing
Istio [35] 222 7/7 Service mesh
CockroachDB [34] 1,594 13/20 Distributed SQL database
Etcd [39] 533 10/12 Distributed key-value store
Grpc-go [40] 98 11/12 RPC library

“blocking” for blocking bugs, and “race”, “atomic”, and “con-
currently” for non-blocking bugs. In GitHub, a pull request is a
request for merging one branch into another. Developers often
submit a pull request after having fixed an issue. Our keyword-
based search has generated a total of 5,100 pull requests,
with 1,074 on blocking issues and 3,026 on non-blocking
issues. We have inspected all the 1,074 blocking-related pull
requests and 1108 non-blocking-related pull requests in the last
two years. In addition, we have taken advantage of 152 pull
requests transformed from the commits published in [9] for the
five common projects considered, Kubernetes, Docker,
CockroachDB, Etcd, and Grpc-go. Finally, a pull request
is selected for further investigation by us if (1) it addresses a
real concurrency bug (as it was merged into the main trunk),
(2) there is a detailed description on how to reproduce the
bug, and (3) there is a test function as the entry point (i.e.,
effectively the main function) to expose the bug. In the end,
a total of 386 pull requests have been selected.

190



For each selected pull request related to a project, we then
try to reproduce its corresponding bug. To this end, we roll
back the project to the buggy version, i.e., the version before
the pull request was merged. We extract the bug-triggering
test function based on the pull request and run it in both the
buggy application and the fixed version. A bug is considered
to be reproduced if the test function fails in the buggy version
but succeeds in the fixed version. For a blocking bug, its bug-
triggering test function usually checks for its execution time. In
this case, the test function fails if it cannot run to completion
in a given period of time. For a non-blocking bug, we rely
on Go’s built-in dynamic race checker if it is race-related and
observe the symptoms described in the pull request (e.g., a
runtime panic) otherwise. We also further verify the failed
traces to confirm that the bug has been triggered.

We have succeeded in reproducing 82 bugs out of 386 pull
requests. For the remaining 304 bugs that we have failed to
reproduce, there are various reasons behind:

• 180 bugs: We failed to reproduce these bugs after tens of
thousands of runs according to the given instructions.

• 78 bugs: These bugs are system-specific, often involving
too many system-specific code modifications.

• 27 bugs: These bugs can only be triggered under specific
running environments, such as a cluster or a continuous
integration system when running stress testing.

• 12 bugs: These bugs do not have their associated test
functions. For each bug, the test function submitted by
the developers is used to verify the correctness of newly
added code instead of triggering the reported bug. When
the developers have submitted the corresponding test case
function later, the code repository has changed a lot since.

• 6 bugs: These bugs depend on some third-party libraries,
which are no longer available.

• 1 bug: This is not a bug for the latest version of Go.
Finally, for each bug, we create a Docker image to allow it

to be reproduced on a single host machine using a go test
command or a test script written by the original developers.

B. GOKER

GOKER consists of 103 bug kernels (one bug per kernel),
with 67 bugs taken from GOREAL and 36 bugs taken from
a recent study on real-world Go concurrency bugs [9]. Their
code sizes range from 17 LOC to 246 LOC, with an average
of 72 LOC. Unlike the bugs in GOREAL, the bugs in GOKER
take much less time to expose. Thus, GOKER is expected to
facilitate understanding concurrency bugs in Go and develop-
ing effective tools for their detection.

When building GOKER, we have ignored a total of 15 bugs
in GOREAL, since they (1) rely on third-party libraries as in
Grpc-go, (2) result in duplicated bug kernels, (3) use more
than 10 goroutines, or (4) have complex interactions with other
goroutines involving, for example, gRPC and reflection.

We describe below how to create a bug kernel from a bug. It
is important to emphasize that it is non-trivial to extract such
a bug kernel from a buggy application with millions of lines
of code, especially we would like to the bug kernel to preserve

Fig. 4. Steps required for triggering etcd#7492.

the same level of bug-inducing complexities in the original bug
application (in terms of the root cause and calling sequence).

We now describe how to build a bug kernel by an example.
1) Bug etcd#7492: We quote the discussion (from the

original developers) regarding the issue below:

There’s a deadlock in assignSimpleTokenToUser. The
function acquires lock as.simpleTokensMu and posts to
addSimpleTokenCh (suppose that the channel is full so
it blocks). If the goroutine simpleTokenTTL-Keeper.run
happens to hit <-tokenTicker.C, it will try to acquire
simpleTokensMu while calling delete-TokenFunc. Since
only the goroutine simpleToken-TTLKeeper.run can drain
addSimpleTokenCh, the lock is never released.

Figure 4 depicts how the bug is triggered. There are
5 goroutines (G1, G2, G3, G4, and the main gorou-
tine), 1 mutex (t.simpleTokensMu), and 2 channels
(tm.addSimpleTokenCh and tokenTicker.c). Here,
tm.addSimpleTokenCh is a bufferedc channel of size 1,
and tokenTicker.c is for receiving ticker message from
the system at regular intervals. G1 waits for messages from
tm.addSimpleTokenCh and tokenTicker.C. When a
ticker message has arrived, G1 tries to acquire the mutex
t.simpleTokensMu. G2, G3 and G4 all acquire this same
mutex and send messages to tm.addSimpleTokenCh. A
deadlock results if G4 acquires the mutex before G1 and the
buffered channel tm.addSimpleTokenCh is full.

2) Abstract Data Structure: As shown in Figure 5,
the channel tm.addSimpleTokenCh and mutex
t.simpleTokensMu are defined in type tokenSimple
(lines 4 - 7) and simpleTokenTTLKeeper (lines
14 - 22), respectively. Go uses composition and
interfaces to achieve code reuse and polymorphism.
simpleTokenTTlKeeper is composed in tokenSimple
(line 5). Structure tokenSimple, which implements the
interface TokenProvider (lines 8 - 10), is composed
in structure authStore (line 12). We will preserve such
composition and interfaces in the extracted bug kernel.

191



1 type TokenProvider interface {
2 assign()
3 }
4 type tokenSimple struct {
5 simpleTokenKeeper *simpleTokenTTLKeeper
6 simpleTokensMu sync.RWMutex
7 }
8 func (t *tokenSimple) assign() {
9 t.assignSimpleTokenToUser()

10 }
11 type authStore struct {
12 tokenProvider TokenProvider
13 }
14 type simpleTokenTTLKeeper struct {
15 tokens map[string]time.Time
16 - addSimpleTokenCh chan string
17 + addSimpleTokenCh chan struct{}
18 - resetSimpleTokenCh chan string
19 - deleteSimpleTokenCh chan string
20 - stopCh chan chan struct{}
21 deleteTokenFunc func(string)
22 }

Fig. 5. Abstracted types in etcd#7492.

G1 [semacquire]:
.../auth.newDeleter.func1(...)
.../auth.(*simpleTokenTTLKeeper).run(...)
created by .../etcd/auth.NewSimpleTokenTTLKeeper

G4 [chan send]:
.../auth.(*simpleTokenTTLKeeper).addSimpleToken(...)
.../auth.(*tokenSimple).assignSimpleTokenToUser(...)
.../auth.(*tokenSimple).assign(...)
.../auth.(*authStore).Authenticate(...)
created by .../etcd/auth.TestHammerSimpleAuthenticate

Fig. 6. Dumped stack traces of G1 and G4 (simplified).

However, we will skip structure members irrelevant to
the underlying bug. For simpleTokenTTLKeeeper, the
3 members defined in lines 18 - 20 are omitted. For a typed
channel, we replace its original type with an empty structure
(i.e., string with struct{} here) to avoid unnecessary
dependencies (lines 16 and 17). Such abstraction is applied
to tokenSimple and the other types related to the bug.

3) Preserving Call Traces: We will try to preserve the
same bug-triggering traces in the extracted bug kernel. When a
program asserts or timeouts, the Go runtime will dump the call
traces of the running goroutines, starting from the points where
they are forked. In our example, Figure 6 gives the dumped
stack traces of the two blocking goroutines. G1 is created in
function NewSimpleTokenTTLKeeper, which is called in
function setupAuthStore. The mutex under consideration
is acquired in function newDeleterFunc.func1, which is
invoked in simpleTokenTTLKeeper.run.

Figure 7 gives the simplified code for forking G1. In
function setupAuthStore (lines 55 - 60), object t of
structure tokenSimple is created at line 56. At line 57,
an object of structure NewSimpleTokenTTLKeeper is
created and composed in t. The anonymous function (lines 40
- 43) returned from newDeleter is passed as an argument to
the constructor. Note that the function will acquire the mutex
t.simpleTokensMu. In Go, functions as first-class citizens
are frequently assigned to variables or passed as arguments.
Such dependencies are preserved in the extracted kernel.

23 func (tm *simpleTokenTTLKeeper) run() {
24 tokenTicker := time.NewTicker(time.Nanosecond)
25 defer tokenTicker.Stop()
26 for {
27 select {
28 case <-tm.addSimpleTokenCh:
29 m.tokens["1"] = time.Now()
30 case <-tokenTicker.C:
31 for t, _ := range tm.tokens {
32 tm.deleteTokenFunc(t)
33 delete(tm.tokens, t)
34 }
35 ... ...
36 }
37 }
38 }
39 func newDeleter(t *tokenSimple) func(string) {
40 return func(tk string) {
41 t.simpleTokensMu.Lock()
42 defer t.simpleTokensMu.Unlock()
43 }
44 }
45 func NewSimpleTokenTTLKeeper(deletefunc func(string))
46 *simpleTokenTTLKeeper {
47 stk := &simpleTokenTTLKeeper{
48 tokens: make(map[string]time.Time),
49 addSimpleTokenCh: make(chan bool, 1),
50 deleteTokenFunc: deletefunc,
51 }
52 go stk.run() // G1
53 return stk
54 }
55 func setupAuthStore() *authStore {
56 t := &tokenSimple{}
57 t.simpleTokenKeeper = NewSimpleTokenTTLKeeper(
58 newDeleter(t))
59 return &authStore{tokenProvider: t}
60 }

Fig. 7. Simplified code snippet for forking G1 (with run as its entry and
setupAuthStore and NewSimpleTokenTTLKeeper as its callers)

61 func (tm *simpleTokenTTLKeeper) addSimpleToken() {
62 tm.addSimpleTokenCh <- struct{}{}
63 }
64 func (t *tokenSimple) assignSimpleTokenToUser() {
65 t.simpleTokensMu.Lock()
66 t.simpleTokenKeeper.addSimpleToken()
67 t.simpleTokensMu.Unlock()
68 }
69 func (as *authStore) Authenticate() {
70 as.tokenProvider.assign()
71 }

Fig. 8. Simplified code snippet of G2, G3, and G4 (forked via the same
anonymous function, which invokes Autheticate).

In the constructor (lines 45 - 54), the member
deleteTokenFunc is initialized to the input function
(line 50), then it forks the goroutine G1 at line 52. In
G1’s entry function run (lines 23 - 38), the goroutine
waits for messages from multiple channels via the select
statement (lines 27 - 36). When a ticker message from
tokenTicker.C arrives, G1 invokes its member function
deleteTokenFunc (line 32), i.e., the anonymous function
returned from newDeleter. G1 is then blocked at line 41,
trying to acquire the mutex t.simpleTokensMu.

Similarly, we extract the simplified code snippet
of G2 (identical as G3 and G4) as shown in
Figure 8. The entry function Authenticate invokes
tokenSimple.assignSimpleTokenToUser (lines 64
- 68) at line 70. The callee function acquires a lock (line 65)
first, and then invokes addSimpleToken (line 66) where

192



72 func TestEtcd7492(t *testing.T) {
73 ... ...
74 as := setupAuthStore() // Fork G1
75 var wg sync.WaitGroup
76 - wg.Add(len(users))
77 + wg.Add(3)
78 - for u := range users {
79 + for i := 0;i < 3; i ++ {
80 - go func(user string) {
81 + go func() { // Fork G2, G3, and G4
82 defer wg.Done()
83 - ... ...
84 - _, err := as.AuthInfoFromCtx(ctx)
85 - if err != nil {
86 - t.Fatal(err)
87 - }
88 - }(u)
89 + as.Authenticate()
90 + }()
91 }
92 - time.Sleep(time.Millisecond)
93 wg.Wait()
94 ... ...
95 }

Fig. 9. Simplified code snippet of the main goroutine.

a message is posted to tm.addSimpleTokenCh (line
62). We try to preserve the inter-procedural control flows
of the application in the extracted bug kernel. As such, the
bug-triggering call traces as shown in Figure 6 are preserved.

4) Simplifying Control Flows: In the bug kernel, only
the statements directly related to the bug are included (and
all irrelevant statements are skipped). Figure 9 gives the
simplified code snippet for the main goroutine. The function
setupAuthStore is invoked at line 74, which will fork G1

in a callee function. We preserve the waitGroup primitive
and change the number of goroutines in the wait group to
3, the minimum needed to trigger the bug (lines 76 - 77).
The number of iterations of the for loop (line 78 - 79) is
modified accordingly. In each loop iteration, a goroutine is
forked via the anonymous function (lines 80 - 81), with its
body containing now a direct call to Authenticate (line
89). The loop will fork G2, G3, and G4 to trigger the error.

Despite its code reduction, a bug kernel is extracted and
simplified to preserve (as much as possible) the level of com-
plexities of the bug-relevant code in the original application.
To detect the bug in this bug kernel, we will still need to
address the challenges faced in reasoning about object com-
position, first-class functions, indirect function calls, buffered
asynchronous channels, and thread interleavings.

IV. EVALUATION

To demonstrate the benefits of GOBENCH, we have evalu-
ated a number of representative open-source tools for detecting
concurrency bugs in GOBENCH. Our evaluation has revealed
their limitations and provided insights for improving these
tools. We have considered the following four tools:

• goleak [11]: This goroutine leak detector from Uber
declares that a deadlock has occurred if the main gor-
outine fails to finish within a pre-defined time period,
and reports the remaining user-defined goroutines as
being deadlocked. leaktest [12], which is embedded in
cockroachDB, is similar and thus omitted.

• go-deadlock [10]: This tool applies traditional techniques
to detect lock-related deadlocks, e.g., double locking and
AB-BA deadlocks. It also reports a deadlock if acquiring
a lock takes too long (30 seconds by default).

• dingo-hunter [13], [14]: This is a static verifier targeting
only communication deadlocks caused by channels.

• Go-runtime race detector (Go-rd): The Go-runtime pro-
vides a built-in thread sanitizer to detect races at runtime.

Currently, GOBENCH does not have any global deadlock
bug. For global deadlocks, the Go-runtime provides a built-in
global deadlock detector, Go-runtime deadlock detector, which
declares that a global deadlock has occurred when all the
running goroutines in the program cannot progress anymore.

Of the four bug-detection tools evaluated, goleak, go-
deadlock and Go-rd are dynamic while dingo-hunter is static.
For blocking bugs, goleak, go-deadlock and dingo-hunter
come into play. For non-locking bugs, Go-rd is the only open-
source tool that we are aware of for detecting data races.

We have used these four tools as follows. For each buggy
application/kernel in GOBENCH, its test function serves as
the main goroutine. For goleak, we insert a call to defer
goleak.VerifyNone(t) at the beginning of the test
function in a buggy application/kernel to detect any deadlock
based on its own timeout setting. For go-deadlock, we replace
sync.Mutex and sync.RWMutex in a Go program with
its own deadlock-aware versions, deadlock.Mutex and
deadlock.RWMutex, respectively. For Go-rd, we compile
a Go program by turning it on with the “-race” flag. Finally,
dingo-hunter uses a front-end to translate a Go program into
its MiGo IR, and then runs a verifier statically on a .migo
file thus generated. For all the 82 real-world applications
in GOREAL, its front-end has failed with many exceptions
such as “undeclared names”. Unfortunately, the front-end does
not seem to be capable of searching automatically for the
dependencies in large applications (Table III). For the 103
kernels in GOKER, however, dingo-hunter has managed to
generate the .migo files for 45 kernels only.

We have conducted our experiments to measure both the
efficiency and effectiveness of these tools for detecting bugs
in both GOREAL and GOKER. For efficiency, we present our
results in Figure 10. For effectiveness, we present our results
in Table IV (for detecting blocking bugs) and Table V (for
detecting non-blocking bugs, i.e., data races here).

We first present and analyze our results on efficiency and
effectiveness and then give a few observations.

A. Efficiency

Figure 10 shows the efficiency of the three dynamic tools
in finding the bugs in GOREAL and GOKER. Let T be a
tool used for finding the bug in a buggy application/kernel
P . Given its non-deterministic nature, T is applied to analyze
P for 10 times. During each analysis, P is run for up to
M = 100, 000 times. Let Ni (where i starts from 1) be the
number of runs taken in finding the bug or M otherwise during
the i-th analysis. The number of runs needed by T for finding
the bug in P is

∑10
i=1 Ni/10. Figure 10 gives the percentage

193



TABLE IV
BLOCKING BUGS REPORTED IN GOBENCH (“PRE” STANDS FOR PRECISION, “REC” STANDS FOR RECALL AND “F1” STANDS FOR F1-SCORE).

Suite Bug Type goleak go-deadlock dingo-hunter
#TP #FN #FP Pre (%) Rec (%) F1 (%) #TP #FN #FP Pre (%) Rec (%) F1 (%) #TP #FN #FP Pre (%) Rec (%) F1 (%)

GOREAL

Resource Deadlock 1 7 1 50.0 12.5 20.0 7 2 0 100.0 77.8 87.5 - - - - - -
Communication Deadlock 8 13 0 100.0 38.1 55.2 1 16 4 20.0 5.9 9.1 - - - - - -
Mixed Deadlock 3 6 1 75.0 33.3 46.2 4 3 3 57.1 57.1 57.1 - - - - - -
Total 12 26 2 85.7 31.6 46.2 12 21 7 63.2 36.4 46.2 - - - - - -

GOKER

Resource Deadlock 14 9 0 100.0 60.9 75.7 23 0 0 100.0 100.0 100.0 0 23 0 - 0.0 -
Communication Deadlock 20 9 0 100.0 69.0 81.6 0 29 0 - 0.0 - 1 28 0 100.0 3.4 6.7
Mixed Deadlock 9 7 0 100.0 56.3 72.0 6 10 0 100.0 37.5 54.5 0 16 0 - 0.0 -
Total 43 25 0 100.0 63.2 77.5 29 39 0 100.0 42.6 59.8 1 67 0 100.0 1.5 2.9

TABLE V
NON-BLOCKING BUGS REPORTED IN GOBENCH.

Suite Bug Type Go-rd
#TP #FN #FP Pre (%) Rec (%) F1 (%)

GOREAL
Traditional 23 1 0 100.0 95.8 97.9
Go-Specific 13 5 0 100.0 72.2 83.9
Total 36 6 0 100.0 85.7 92.3

GOKER
Traditional 21 0 0 100.0 100.0 100.0
Go-Specific 11 3 0 100.0 78.6 88.0
Total 32 3 0 100.0 91.4 95.5

distribution for the number of runs falling into each given
interval that is required by T for finding a bug in GOREAL
and GOKER.

For kubernetes#16851 and docker#27037 in GO-
REAL, we have used M = 1000, since their buggy applica-
tions take about 12 seconds and 200 seconds, respectively, in
a single run. Every other non-deadlock-related buggy applica-
tion/kernel takes at most 2 seconds to finish in a single run.

Therefore, dynamic tools can still be rather inefficient, as
they must still need to run a Go program multiple times in
order to reproduce certain concurrency bugs.

B. Effectiveness

Every buggy application/kernel in GOBENCH has exactly
one bug (without any true negative (TN)). Thus, we measure
the precision of a tool T in detecting bugs in GOREAL
(GOKER) in terms of the number of true positives (#TP),
the number of false positives (#FP), and the number of false
negatives (#FN) reported. For a bug in a buggy application/k-
ernel, we have an FN if T fails to report any bug. If T does
report a bug, we have a TP if the stack trace reported by
T is consistent with the original bug description and an FP
otherwise. For dingo-hunter, we consider every bug reported
as a TP optimistically, since its output is either YES or NO.

1) GOREAL: Let us examine the results in Tables IV and V
for GOREAL. According to Table II, GOREAL has 40 blocking
bugs and 42 non-blocking bugs. Overall, the four tools are not
as effective as expected in finding blocking and non-blocking
bugs (measured in terms of precision and recall given).

a) Blocking Bugs: We discuss the results of the three
tools in detecting the 40 blocking bugs in GOREAL (Table IV).

goleak has reported 14 bugs, including 12 TPs and 2 FPs.
This tool can find these 12 bugs, since their corresponding
test functions have reached developers’ exception-handling
code due to timeouts (set up by their developers), where
the tool has detected some goroutines participating in a
deadlock. However, goleak has also generated 2 FPs. Finally,

(a) GOREAL (b) GOKER

Fig. 10. Percentage distribution for the (average) number of runs falling into
each of the four given intervals that is needed by a tool in finding a bug.

goleak has missed 26 bugs (i.e., yielding 26 FNs). Among
the 26 FNs, 22 of them are because the main goroutine is
blocked in a deadlock, thus goleak cannot execute any further.
The 4 bugs grpc#1424, grpc#2391, grpc#1859, and
kubernetes#70277 are not reported because the develop-
ers set timeouts in the buggy function, and the program aborts
when timeout exception is detected. goleak fails to report those
cases since there are no goroutine leaks.

go-deadlock has reported 12 bugs correctly, including 7
resource dseadlocks (5 double locks, 2 AB-BA deadlock),
1 communication deadlock (cockroach#30452, where a
goroutine is blocked by a buffered channel), and 4 mixed
deadlocks (where a lock cannot be acquired in a given period
of time, i.e., 30 seconds by default). In addition, go-deadlock
has also generated 7 FPs: 6 as AB-BA deadlocks incorrectly
and 1 due to a lock timeout. Finally, go-deadlock has missed
22 bugs, including 2 resource deadlocks (1 due to the timeout
of its test function and 1 due to custom locking/unlocking),
16 communication deadlocks (as go-deadlock handles neither
channels nor the deadlocks related to uninstrumented libraries,
such as context.Context), and 3 mixed deadlocks (1
due to the timeouts of their test functions and 2 involving
sync.WaitGroup, which cannot be instrumented by go-
deadlock).

Finally, dingo-hunter fails to find any bug in GOREAL, since
it cannot obtain their .migo files, as discussed earlier.

b) Non-Blocking Bugs: We discuss the results of Go-rd
in finding the data races in GOREAL (Table V). As shown
in Table II, GOREAL consists of 42 non-blocking bugs, with
22 data races and 20 other bugs. Note that many non-blocking
bugs, such as order violations, also exhibit race-like behaviors,
and can thus be detected by a runtime race detector like Go-

194



rd. For the results given in Table V, we therefore assume
optimistically that Go-rd does not produce any false positives.

Of the 42 non-blocking bugs in GOREAL, 24 bugs are
traditional and 18 bugs are Go-specific (Table II). Go-rd has
detected all the 24 traditional bugs except a data race bug,
kubernetes#88331 (as the number of goroutines, 8128,
has exceeded what can be handled by Go-rd [41]). Go-rd has
failed to detect 5 Go-specific bugs: (1) serving#4973 and
serving#4908, due to a panic resulting from misuse of
the testing library (by calling, e.g. t.Errorf to print
testing logs after the test), (2) kubernetes#13058,
which is aborted due to misuse of sync.WaitGroup, and
(3) grpc#1687 and grpc#2371, which are not data-race
bugs (by sending a message to a closed channel and a nil
channel, respectively).

2) GOKER: Let us examine the results in Tables IV and V
for GOKER. According to Table II, GOKER consists of 68
blocking bugs and 35 non-blocking bugs. Again, the four tools
are not as effective as expected in finding these bugs (in terms
of the overall precision and recall as given).

a) Blocking Bugs: We discuss the results of the three
tools in detecting the 68 blocking bugs in GOKER (Table IV).
Note that each tool is more effective for GOKER than for
GOREAL (in terms of precision and recall achieved), as
expected.

goleak has found 43 bugs, including 14 resource deadlocks,
20 communication deadlocks and 9 mixed deadlocks, without
producing false positives. However, goleak has missed 25
bugs, as their test, i.e., main functions are blocked.

go-deadlock has found 29 bugs (without false positives),
including 23 resource deadlocks and 6 mixed deadlocks. It has
detected these mixed deadlocks due to its timeout mechanism
used. For example, cockroach#1055, which represents a
mixed deadlock involving WaitGroup, is found accidentally
this way, as is the case of cockroach#30452 in GOREAL.
go-deadlock has failed to catch 39 bugs, including 29 commu-
nication deadlocks and 10 mixed deadlocks (with 2 involving
WaitGroup).

For the 45 bug kernels that can be compiled by dingo-
hunter, dingo-hunter finds only 1 channel-related communi-
cation deadlock, crashes on 29 kernels (due to memory errors
and undefined references to the context library), and reports
no bugs at all in the remaining 15 kernels.

b) Non-Blocking Bugs: We discuss the results of Go-rd
in finding the data races in GOKER (Table V). As shown in
Table II, GOKER consists of 35 non-blocking bugs, including
21 data races and 14 other bugs.

Go-rd has failed in detecting three Go-specific bugs,
kubernetes#13058 , grpc#1687, and grpc#2371, for
the same reasons why it has also failed for the same three
bugs included also in GOREAL (Section IV-B1b). However,
this time, Go-rd is successful in finding serving#4908 in
GOKER, since we did not manage to replicate entirely the
complex bug-inducing scenario that has caused Go-rd to fail
in GOREAL in the corresponding bug kernel in GOKER.

Fig. 11. A blocking bug in Serving caused by buffered channels and a
mutex (bugID serving#2137).

C. Observations

Several observations are in order. First, dynamic tools for
Go, which are often based on simple timeout mechanisms,
can find the deadlocks and data races in Go programs that
are triggered at runtime, making them suitable for continuous
integration testing. However, they may find some bugs rather
inefficiently (by making excessively many program runs) or
never find some bugs at all (by failing to exercise their
bug-inducing thread interleavings). Second, static tools are
appealing, as they can find potentially the bugs in a Go
program without running it. Unfortunately, many language
features in Go, such as first-class functions and channels,
introduce tremendous challenges to static analysis. In our eval-
uation, dingo-hunter, the only publicly available static tool,
performs poorly. Third, model checking techniques [42], [43],
which exhaustively exercise all possible message orderings
and thread interleavings, are capable of finding more bugs in
Go programs. However, for a Go program consisting of often
thousands of goroutines, with frequent exchanges of messages,
the state-explosion problem faced is daunting. Finally, buffered
channels and the multi-choice statement select in Go bring
non-determinism to a different level. A program may behave
very differently when messages are posted to a buffered
channel or received by a select statement in different orders
and timings, making it sometimes very difficult to reproduce
a bug. We illustrate this below with a real-world example.

Figure 11 illustrates a bug from the Serving applica-
tion. The bug involves 3 goroutines (the main goroutine,
G1, and G2), 2 mutexes (r1.lock and r2.lock), and 4
channels (the 2 buffered channels, b.pendingRequests
and b.activeRequests and the 2 unbuffered channels,
r1.accept and r2.accept). The main goroutine first

195



acquires r1.lock and forks G1. Then it acquires r2.lock
and forks G2. Next, it releases r1.lock and waits for
the r1.accept message from G1. G1 and G2 have the
same entry function and perform the same task. In each
goroutine, we first post messages to the two buffered channels
via b.pendingRequests and b.activeRequests, and
then acquire a lock (r1.lock for G1 and r2.lock for
G2) to perform a task. After the task is finished, the lock
is released and the goroutine posts a message to its assigned
channel (r1.accept for G1 and r2.accept for G2).

After G2 has posted to the buffered channel b.active-
Requests, if the buffer is full, G1 is blocked when posting to
the same channel. G2 is also blocked at acquiring r2.lock,
which is held by the main goroutine. Since G1 cannot progress,
the main goroutine will wait from channel r1.accept
forever, causing a deadlock. In practice, we often need to try
tens of thousands of times to trigger the bug. This bug can
only be triggered when several events (e.g., 2 locking events
and 4 messages here) are processed in a specific order.

To summarize, Go concurrency bugs are challenging to de-
tect. Traditional dynamic detection techniques can help report
a bug when the bug can be triggered at runtime. However, there
are no good solutions on how to reason about bug-triggering
test functions and thread interleavings. We believe GoBench
can provide insights on how to tackle this challenging problem.

V. RELATED WORK

Studies on the Go language. Tu et al. [9] conduct an
extensive empirical study on different types of concurrency
bugs in open-source Go applications. Dilley and Lange [8],
[9] study how different synchronization primitives are used in
Go applications. These studies have motivated our work.

There are several static analysis techniques [44], [45] and
verification frameworks [13], [14], [46], [47] for Go appli-
cations. Midtgaard et al. [44] introduce a modular approach
that can repeatedly analyze one goroutine at a time to reason
about communication between goroutines. The developers of
dingo-hunter [13], [14] model Go programs as communicating
finite state machines or a process calculus MiGo to further
verify potential communication mismatches. In their later
work [46], they have further extended this model to support
verification of safety and liveness issues. These approaches
are promising but they only provide partial support for the Go
language, as demonstrated in our evaluation. GOBENCH can
help researchers evaluate and further improve their approaches.

Benchmarks for concurrency bugs. There are many
benchmarks for concurrency bugs in different languages.
JBench [48] and DataRaceBench [49] focus on data races in
Java. RADBench [50] and JaConTeBe [15] are two benchmark
suites of concurrency bugs in real world C/C++ applications
and Java applications, respectively. In particular, RADBench
provides detailed instructions to reproduce bugs and JaCon-
TeBe provides bug-triggering test cases. TaxDC [51] focuses
on concurrency bugs in distributed systems, providing well
documented instructions for reproducing each bug. To the best
of our knowledge, GOBENCH is the first benchmark suite of

real-world Go concurrency bugs, including real-world buggy
applications and bug-triggering test functions in containers
to ensure portability. Moreover, we have manually created a
large set of small bug kernels, which are representative and
straightforward to reproduce and reason about.

Concurrency bug detection. There has been a great deal of
research on detection techniques for different concurrency is-
sues. For blocking bugs, resource deadlocks are well studied in
the past. Static approaches [19], [21] detect potential deadlocks
by checking cycles in lock dependency graphs, which are stat-
ically derived from the source code. Dynamic approaches [20],
[22] predict potential deadlocks from execution traces. Both
static and dynamic approaches suffer from false positives. The
work [23] tries to validate reported deadlocks by searching for
a bug-triggering interleaving scenario at runtime.

Compared to resource-deadlocks, communication deadlocks
are not well-studied. In general, it is undecidable to precisely
detect communication deadlocks [52]. Early detection tech-
niques [53], [54] focus on detecting communication deadlocks
for MPI-based message passing programs. The researchers
in [18] target communication deadlocks caused by condition
variables and propose a trace-based model-checking technique
to address the problem. Go introduces new features such as
buffered channels. Such Go-specific features, compounded fur-
ther by using channels and locks together, make it challenging
to detect communication deadlocks in Go applications.

Traditional race detectors, e.g., ThreadSanitizer [32] and
AccuLock [55], detect races at runtime by dynamically com-
puting vector clocks [56] to infer the happened-before relations
between instructions. A race condition is raised if no happen-
before relation exists between two instructions accessing the
same shared memory location (such that one of them is
a write). The Go runtime provides a built-in race detector.
DataCollider [27] reduces the runtime overhead by sampling,
at the cost of potentially missing real bugs. DCatch [57]
relies on a set of happens-before rules to model concurrency
mechanisms in distributed cloud systems. CloudRaid [58]
and CrashTuner [59] target distributed concurrency bugs and
crash-recovery bugs for distributed cloud systems, respectively.
Despite these extensive studies, concurrency error detection
remains open and challenging.

VI. CONCLUSION AND FUTURE WORK

We have built up GOBENCH, the first benchmark suite
for Go concurrency bugs. Currently, there are 82 real bugs
and 103 extracted bug kernels, all based on reported con-
currency issues in popular open-source applications. These
bugs cover a variety of different types of concurrency issues,
especially Go-specific bugs. GOBENCH is publicly available at
https://github.com/timmyyuan/gobench. We believe GOBENCH
can help researchers develop practical tools for detecting
concurrency bugs in real-world Go applications.

In our future work, we plan to further enrich GOBENCH
by adding more bugs and more bug kernels. We also plan
to incorporate some deterministic-replay techniques to make
bugs in GOBENCH easier to reproduce.

196



ACKNOWLEDGMENT

This work is supported by National Key R&D Program of
China (No. 2016YFB1000201), the Foundation for Innovative
Research Groups (61521092), the National Natural Science
Foundation of China (61802368, 61872043), and Australian
Research Council Grants (DP170103956 and DP180104069).

APPENDIX

A. Abstract

This artifact contains all the material required to reproduce
the experimental results reported in our paper titled “GoBench:
a Benchmark Suite of Real-World Go Concurrency Bugs”.
Software dependencies are packaged in Dockerfiles and will
be downloaded automatically during the evaluation. You can
execute the make command and then validate the experimental
results in a PDF file. As our experiments contain many flaky
tests, some performance numbers may fluctuate slightly.

B. Artifact Check-List (Meta-Information)
• Programs: Go, Python3, all benchmarks programs compiled by

us, and all tools evaluated in the paper.
• Data set: All benchmarks are included in our sources.
• Run-time environment: Docker 19.03.8 or newer.
• Hardware: x64 architecture, at least 6 cores and 16G memory

are required.
• Run-time state: Due to a large number of software dependen-

cies, we recommend experimenting on machines with a network
bandwidth of more than 10MB/s.

• Metrics: The number of bugs found by each tool, together with
some efficiency analysis on the three dynamic tools.

• Output: A PDF containing all the experiment results included
in our CGO2021 paper.

• Experiments: Download the source code and run GNU Make.
• How much disk space required (approximately)?: 200 GB.
• How much time is needed to prepare workflow (approxi-

mately)?: A few minutes.
• How much time is needed to complete experiments (approx-

imately)?: 40 hours.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: MIT.
• Data licenses (if publicly available)?: MIT.
• Archived (provide DOI)?: 10.6084/m9.figshare.13257023

C. Description

1) How Delivered: The source files can be downloaded at:
https://figshare.com/articles/software/gobench-cgo21 tar/13257023

2) Hardware Dependencies: Our artifact evaluation re-
quires at least 6 cores and 16GB of memory. In the paper,
we have done our experiments on a virtual machine with 1TB
SSD, 64GB memory and 16 cores Intel Xeon processors.

3) Software Dependencies: The artifact is tested on Ubuntu
20.04, with Docker 19.03.8 and GNU Make 4.2.1.

4) Data Sets: We have packaged all the data sets. In the
gobench-cgo21 directory, except for the source code used
for running GOBENCH, we have packaged all the data sets
of GOBENCH in a directory called gobench. In more detail,
gobench is organized as follows:

• The configures directory contains the files in json
format, recording the type of each bug in GOKER and

GOREAL and describing how to generate the Dockerfiles
corresponding to the bugs in GOREAL. These files can
be used by researchers and developers to add new bugs.

• The data sets of GOKER and GOREAL reside in goker
and goreal, respectively. Under the two directories,
each bug is placed in its own directory, which is named
like <project>/<pull id>. Each bug’s own direc-
tory contains a README.md file to describe the bug.

The experimental startup environments of GOKER and
GOREAL are packaged in Dockerfiles in the dockerfiles
directory. All source codes and Dockerfiles changed to ex-
periment with different tools we mentioned in Section IV will
dynamically generated during the evaluation and finally output
to the evaluation directory.

D. Installation

Docker and GNU Make need to be installed in advance. On
Ubuntu20.04, run
$ apt update && apt install -y build-essential docker.io tar
$ systemctl enable docker

For non-root users, you need to make sure that docker can
run under non-root privileges [60].

E. Experiment Workflow

To evaluate GOBENCH, you need to download the archive
and unzip it by:
$ tar -xvf gobench-cgo21.tar

To run all the experiments, you need to enter the
gobench-cgo21 directory and run:
$ cd gobench-cgo21/
$ make all

These commands finally generate a PDF file named
artifact.pdf in the same directory.

You can also evaluate GOKER and GOREAL separately. To
evaluate GOKER, run:
$ make goker

This command will run Go-rd, goleak, go-deadlock and
dingo-hunter successively and generate intermediate files end-
ing with goker.json in the result directory. Their name
prefixes should make it clear how these files are related to the
results listed in Tables IV and V and Figure 10 in the paper.
Similarly, you can use the following command to evaluate
GOREAL:
$ make goreal

This command will run Go-rd, goleak and go-deadlock suc-
cessively. The generated results will be saved in intermediate
files ending with goreal.json. After having done both,
you can run the command below to make a human-readable
PDF file (i.e. artifact.pdf):
$ make pdf

artifact.pdf will contain Table IV, Table V and Figure
10 in Section IV.

197

https://figshare.com/articles/software/gobench-cgo21_tar/13257023


F. Evaluation and Expected Result

All intermediate output log files are stored in the
evaluation directory. In this directory, each evaluated tool
will have its own directory. For example, Go-rd will have
a directory named gobench-go-rd to store log files of
experiments for Go-rd. The log directories of other tools
can be deduced in the same way. Under the directory of
each tool, there are two directories goker and goreal,
corresponding to GOKER and GOREAL respectively (dingo-
hunter only has goker). In these two directories, each bug
still has its corresponding sub-directory.

For each evaluation, the expected results (i.e. Tables IV and
V and Figure 10) are stored in the result directory, and
these data will eventually appear in artifact.pdf.

REFERENCES

[1] Google. (2020) The go language. [Online]. Available: https://golang.org/
[2] Github. (2020) Fastest growing languages. [Online]. Available:

https://octoverse.github.com/
[3] Docker. (2020) Docker. [Online]. Available: https://www.docker.com/
[4] CNCF. (2020) Kubernetes. [Online]. Available: https://kubernetes.io/
[5] Google. (2020) The go programming language specification. [Online].

Available: https://golang.org/ref/spec
[6] C. A. R. Hoare, “Communicating sequential processes,” Communica-

tions of the ACM, vol. 21, no. 8, pp. 666–677, 1978.
[7] Wikipedia contributors, “Communicating sequential processes —

Wikipedia, the free encyclopedia,” 2019, [Online; accessed 29-
February-2020]. [Online]. Available: https://en.wikipedia.org/w/index.
php?title=\Communicating sequential processes&oldid=929583991

[8] N. Dilley and J. Lange, “An empirical study of messaging passing
concurrency in go projects,” in 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2019, pp. 377–387.

[9] T. Tu, X. Liu, L. Song, and Y. Zhang, “Understanding real-world con-
currency bugs in go,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 865–878.

[10] sasha s. (2016) Online deadlock detection in go (golang). [Online].
Available: https://github.com/sasha-s/go-deadlock

[11] uber go. (2017) Goroutine leak detector. [Online]. Available: https:
//github.com/uber-go/goleak

[12] fortytw2. (2017) Goroutine leak detector. [Online]. Available: https:
//github.com/fortytw2/leaktest

[13] N. Ng and N. Yoshida, “Static deadlock detection for concurrent go by
global session graph synthesis,” in Proceedings of the 25th International
Conference on Compiler Construction, 2016, pp. 174–184.

[14] J. Lange, N. Ng, B. Toninho, and N. Yoshida, “Fencing off go: Liveness
and safety for channel-based programming,” ACM SIGPLAN Notices,
vol. 52, no. 1, pp. 748–761, 2017.

[15] Z. Lin, D. Marinov, H. Zhong, Y. Chen, and J. Zhao, “Jacontebe: A
benchmark suite of real-world java concurrency bugs (t),” in 2015 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2015, pp. 178–189.

[16] E. G. Coffman, M. Elphick, and A. Shoshani, “System deadlocks,” ACM
Computing Surveys (CSUR), vol. 3, no. 2, pp. 67–78, 1971.

[17] M. Singhal, “Deadlock detection in distributed systems,” Computer,
vol. 22, no. 11, pp. 37–48, 1989.

[18] P. Joshi, M. Naik, K. Sen, and D. Gay, “An effective dynamic analysis
for detecting generalized deadlocks,” in Proceedings of the eighteenth
ACM SIGSOFT international symposium on Foundations of software
engineering, 2010, pp. 327–336.

[19] K. Sen, D. Gay, M. Naik, and C.-S. Park, “Effective static deadlock de-
tection,” in 2009 31st International Conference on Software Engineering
(ICSE 2009), 2009, pp. 386–396.

[20] P. Joshi, C.-S. Park, K. Sen, and M. Naik, “A randomized dynamic
program analysis technique for detecting real deadlocks,” in Proceedings
of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2009, pp. 110–120.

[21] D. Kroening, D. Poetzl, P. Schrammel, and B. Wachter, “Sound static
deadlock analysis for c/pthreads,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, 2016, pp.
379–390.

[22] M. Samak and M. K. Ramanathan, “Trace driven dynamic deadlock
detection and reproduction,” in Proceedings of the 19th ACM SIGPLAN
symposium on Principles and practice of parallel programming, 2014,
pp. 29–42.

[23] Y. Cai and Q. Lu, “Dynamic testing for deadlocks via constraints,” IEEE
Transactions on Software Engineering, vol. 42, no. 9, pp. 825–842, 2016.

[24] (2015) Fix kubelet deadlock. [Online]. Available: https://github.com/
kubernetes/kubernetes/pull/10182

[25] (2019) sql: fix data race in validatechecks. [Online]. Available:
https://github.com/cockroachdb/cockroach/pull/35501

[26] (2018) [galley] fix data race. [Online]. Available: https://github.com/
istio/istio/pull/8967

[27] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk, “Effective
data-race detection for the kernel.” in OSDI, vol. 10, no. 10, 2010, pp.
1–16.

[28] L. Chew and D. Lie, “Kivati: fast detection and prevention of atomicity
violations,” in Proceedings of the 5th European conference on Computer
systems, 2010, pp. 307–320.

[29] Q. Zhou, L. Li, L. Wang, J. Xue, and X. Feng, “May-happen-in-
parallel analysis with static vector clocks,” in Proceedings of the 2018
International Symposium on Code Generation and Optimization, 2018,
pp. 228–240.

[30] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan, “Sound
predictive race detection in polynomial time,” ACM Sigplan Notices,
vol. 47, no. 1, pp. 387–400, 2012.

[31] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “Avio: detecting atomicity
violations via access interleaving invariants,” ACM SIGOPS Operating
Systems Review, vol. 40, no. 5, pp. 37–48, 2006.

[32] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: data race detec-
tion in practice,” in Proceedings of the workshop on binary instrumen-
tation and applications, 2009, pp. 62–71.

[33] (2020) Data race detector. [Online]. Available: https://golang.org/doc/
articles/race detector.html

[34] C. Labs. (2020) Cockroachdb. [Online]. Available: https://www.
cockroachlabs.com/

[35] istio community. (2015) Istio. [Online]. Available: https://istio.io/
[36] (2020) Hugo. [Online]. Available: https://gohugo.io/
[37] (2020) Syncthing. [Online]. Available: https://syncthing.net/
[38] (2020) Knative serving. [Online]. Available: https://knative.dev/docs/

serving/
[39] (2020) Etcd. [Online]. Available: https://etcd.io/
[40] (2020) grpc. [Online]. Available: https://github.com/grpc/grpc-go
[41] (2020) failure with limit on . . . simultaneously alive goroutines

is exceeded. [Online]. Available: https://github.com/golang/go/issues/
38184

[42] T. Leesatapornwongsa and H. S. Gunawi, “Samc: a fast model checker
for finding heisenbugs in distributed systems,” in ISSTA, 2015, pp. 423–
427.

[43] J. F. Lukman, H. Ke, C. A. Stuardo, R. O. Suminto, D. H. Kurniawan,
D. Simon, S. Priambada, C. Tian, F. Ye, T. Leesatapornwongsa et al.,
“Flymc: Highly scalable testing of complex interleavings in distributed
systems,” in Proceedings of the Fourteenth EuroSys Conference 2019.
ACM, 2019, p. 20.

[44] J. Midtgaard, F. Nielson, and H. R. Nielson, “Process-local static
analysis of synchronous processes,” in International Static Analysis
Symposium. Springer, 2018, pp. 284–305.

[45] K. Stadtmüller, M. Sulzmann, and P. Thiemann, “Static trace-based
deadlock analysis for synchronous mini-go,” in Asian Symposium on
Programming Languages and Systems. Springer, 2016, pp. 116–136.

[46] J. Lange, N. Ng, B. Toninho, and N. Yoshida, “A static verification
framework for message passing in go using behavioural types,” in Pro-
ceedings of the 40th International Conference on Software Engineering,
2018, pp. 1137–1148.

[47] J. K. Hinrichsen, J. Bengtson, and R. Krebbers, “Actris: Session-type
based reasoning in separation logic,” Proceedings of the ACM on
Programming Languages, vol. 4, no. POPL, pp. 1–30, 2019.

[48] J. Gao, X. Yang, Y. Jiang, H. Liu, W. Ying, and X. Zhang, “Jbench:
A dataset of data races for concurrency testing,” in Proceedings of the
15th International Conference on Mining Software Repositories, 2018,
pp. 6–9.

198

https://golang.org/
https://octoverse.github.com/
https://www.docker.com/
https://kubernetes.io/
https://golang.org/ref/spec
https://en.wikipedia.org/w/index.php?title=\Communicating_sequential_processes&oldid=929583991
https://en.wikipedia.org/w/index.php?title=\Communicating_sequential_processes&oldid=929583991
https://github.com/sasha-s/go-deadlock
https://github.com/uber-go/goleak
https://github.com/uber-go/goleak
https://github.com/fortytw2/leaktest
https://github.com/fortytw2/leaktest
https://github.com/kubernetes/kubernetes/pull/10182
https://github.com/kubernetes/kubernetes/pull/10182
https://github.com/cockroachdb/cockroach/pull/35501
https://github.com/istio/istio/pull/8967
https://github.com/istio/istio/pull/8967
https://golang.org/doc/articles/race_detector.html
https://golang.org/doc/articles/race_detector.html
https://www.cockroachlabs.com/
https://www.cockroachlabs.com/
https://istio.io/
https://gohugo.io/
https://syncthing.net/
https://knative.dev/docs/serving/
https://knative.dev/docs/serving/
https://etcd.io/
https://github.com/grpc/grpc-go
https://github.com/golang/go/issues/38184
https://github.com/golang/go/issues/38184


[49] P.-H. Lin, C. Liao, M. Schordan, and I. Karlin, “Exploring regression of
data race detection tools using dataracebench,” in 2019 IEEE/ACM 3rd
International Workshop on Software Correctness for HPC Applications
(Correctness). IEEE, 2019, pp. 11–18.

[50] N. Jalbert, C. Pereira, G. Pokam, and K. Sen, “Radbench: A concurrency
bug benchmark suite.” HotPar, vol. 11, pp. 2–2, 2011.

[51] T. Leesatapornwongsa, J. F. Lukman, S. Lu, and H. S. Gunawi, “Taxdc:
A taxonomy of non-deterministic concurrency bugs in datacenter dis-
tributed systems,” in Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2016, pp. 517–530.

[52] D. Brand and P. Zafiropulo, “On communicating finite-state machines,”
Journal of the ACM (JACM), vol. 30, no. 2, pp. 323–342, 1983.

[53] S.-T. Huang, “A distributed deadlock detection algorithm for csp-like
communication,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 12, no. 1, pp. 102–122, 1990.

[54] S. Chen, Y. Deng, P. Attie, and W. Sun, “Optimal deadlock detection
in distributed systems based on locally constructed wait-for graphs,” in
Proceedings of 16th International Conference on Distributed Computing
Systems. IEEE, 1996, pp. 613–619.

[55] X. Xie and J. Xue, “Acculock: Accurate and efficient detection of
data races,” in Proceedings of the CGO 2011, The 9th International

Symposium on Code Generation and Optimization, Chamonix, France,
April 2-6, 2011. IEEE Computer Society, 2011, pp. 201–212. [Online].
Available: https://doi.org/10.1109/CGO.2011.5764688

[56] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications, 1978.

[57] H. Liu, G. Li, J. F. Lukman, J. Li, S. Lu, H. S. Gunawi, and C. Tian,
“Dcatch: Automatically detecting distributed concurrency bugs in cloud
systems,” ACM SIGARCH Computer Architecture News, vol. 45, no. 1,
pp. 677–691, 2017.

[58] J. Lu, F. Li, L. Li, and X. Feng, “Cloudraid: Hunting concurrency bugs
in the cloud via log-mining,” ser. ESEC/FSE 2018. New York, NY,
USA: Association for Computing Machinery, 2018, p. 3–14. [Online].
Available: https://doi.org/10.1145/3236024.3236071

[59] J. Lu, C. Liu, L. Li, X. Feng, F. Tan, J. Yang, and L. You,
“Crashtuner: Detecting crash-recovery bugs in cloud systems via
meta-info analysis,” in Proceedings of the 27th ACM Symposium on
Operating Systems Principles, ser. SOSP ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 114–130. [Online].
Available: https://doi.org/10.1145/3341301.3359645

[60] D. Inc. (2020). [Online]. Available: https://docs.docker.com/engine/
install/linux-postinstall/

199

https://doi.org/10.1109/CGO.2011.5764688
https://doi.org/10.1145/3236024.3236071
https://doi.org/10.1145/3341301.3359645
https://docs.docker.com/engine/install/linux-postinstall/
https://docs.docker.com/engine/install/linux-postinstall/

	Introduction
	Background
	Goroutine
	Concurrency Primitives
	Concurrency Bugs
	Blocking Bugs
	Non-blocking Bugs


	GoBench
	GoReal
	GoKer
	Bug etcd#7492
	Abstract Data Structure
	Preserving Call Traces
	Simplifying Control Flows


	Evaluation
	Efficiency
	Effectiveness
	GoReal
	GoKer

	Observations

	Related Work
	Conclusion and Future Work
	Appendix
	Abstract
	Artifact Check-List (Meta-Information)
	Description
	How Delivered
	Hardware Dependencies
	Software Dependencies
	Data Sets

	Installation
	Experiment Workflow
	Evaluation and Expected Result

	References

