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Foreword

One of the oldest and liveliest branches of mathematics, Number The-

ory, is noted for its theoretical depth and applications to other fields, in-

cluding representation theory, physics, and cryptography. The forefront of

Number Theory is replete with sophisticated and famous open problems;

at its foundation, however, are basic, elementary ideas that can stimulate

and challenge beginning students. This textbook takes a problem-solving

approach to Number Theory, situating each theoretical concept within

the framework of some examples or some problems for readers to solve.

Starting with the essentials, the text covers divisibility, powers of inte-

gers, floor function and fractional part, digits of numbers, basic methods

of proof (extremal arguments, pigeonhole principle, induction, infinite de-

scent, inclusion-exclusion), arithmetic function, important divisibility the-

orems and Diophantine equations. Emphasis is also placed on the pre-

sentation of some special problems involving quadratic residues, Fermat,

Mersenne, and perfect numbers, as well as famous sequences of integers

such as Fibonacci, Lucas, and other important ones defined by recursive

relations. By thoroughly discussing interesting examples and applications

and by introducing and illustrating every key idea, by relevant problems of

various levels of difficulty, the book motivates, engages and challenges the
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reader. The exposition proceeds incrementally, intuitively and rigorously

uncovers deeper properties.

A special feature of the book is an outstanding selection of genuine

Olympiad and other important mathematical contest problems solved us-

ing the methods already presented. The book brings about the unique and

vast experience of the authors. It captures the spirit of an important math-

ematical literature and distills the essence of a rich problem-solving culture.

”Number Theory: Structures, Examples and Problems” will appeal to

senior high school and undergraduate students, their instructors, as well as

to all who would like to expand their mathematical horizons. It is a source

of fascinating problems for readers at all levels and widely opens the gate

to further explorations in mathematics.
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Notation

Z the set of integers

Zn the set of integers modulo n

N the set of positive integers

N0 the set of nonnegative integers

Q the set of rational numbers

Q+ the set of positive rational numbers

Q0 the set of nonnegative rational numbers

Qn the set of n-tuples of rational numbers

R the set of real numbers

R+ the set of positive real numbers

R0 the set of nonnegative real numbers

Rn the set of n-tuples of real numbers

C the set of complex numbers

|A| the number of elements in the set A

A ⊂ B A is a proper subset of B

A ⊆ B A is a subset of B

A \B A without B (set difference)

A ∩B the intersection of sets A and B

A ∪B the union of sets A and B

a ∈ A the element a belongs to the set A
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n|m n divides m

gcd(m,n) the greatest common divisor of m,n

lcm(m,n) the least common multiple of m,n

π(n) the number of primes ≤ n

τ(n) number of divisors of n

σ(n) sum of positive divisors of n

a ≡ b (mod m) a and b are congruent modulo m

ϕ Euler’s totient function

ordm(a) order of a modulo m

µ Möbius function

akak−1 . . . a0(b) base b representation

S(n) the sum of digits of n

(f1, f2, . . . , fm) factorial base expansion

⌊x⌋ floor of x

⌈x⌉ celling of x

{x} fractional part of x

ep Legendre’s function

pk‖n pk fully divides n

fn Fermat’s number

Mn Mersenne’s number
(
a

p

)

Legendre’s symbol

Fn Fibonacci’s number

Ln Lucas’ number

Pn Pell’s number
(
n

k

)

binomial coefficient
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1

Divisibility

1.1 Divisibility

For integers a and b, a 6= 0, we say that a divides b if b = ac for some

integer c. We denote this by a|b. We also say that b is divisible by a or that

b is a multiple of a.

Because 0 = a · 0, it follows that a|0 for all integers a, a 6= 0.

Straight from the definition we can derive the following properties:

1. If a|b, b 6= 0, then |a| ≤ |b|;
2. If a|b and a|c, then a|αb+ βc for any integers α and β;

3. If a|b and a|b± c, then a|c;
4. a|a (reflexivity);

5. If a|b and b|c, then a|c (transitivity);

6. If a|b and b|a, then |a| = |b|.
The following result is called the Division Algorithm and it plays an

important role:

Theorem. For any positive integers a and b there exists a unique pair

(q, r) of nonnegative integers such that

b = aq + r, r < a.

Proof. If a > b, then q = 0 and r = b < a.
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If a = b, then q = 1 and r = 0 < a.

If a < b, then there exist positive integers n such that na > b. Let q be

the least positive integer for which (q+1)a > b. Then qa ≤ b. Let r = b−aq.
It follows that b = aq + r and 0 ≤ r < a.

For the uniqueness, assume that b = aq′ + r′, where q′ and r′ are also

nonnegative integers satisfying 0 ≤ r′ < a. Then aq+r = aq′+r′, implying

a(q− q′) = r′− r, and so a|r′− r. Hence |r′− r| ≥ a or |r′− r| = 0. Because

0 ≤ r, r′ < a yields |r′ − r| < a, we are left with |r′ − r| = 0, implying

r′ = r and, consequently, q′ = q. �

In the theorem above, when a is divided by b, q is called the quotient

and r the remainder.

Remark. The Division Algorithm can be extended for integers as fol-

lows: For any integers a and b, a 6= 0, there exists a unique pair (q, r) of

integers such that

b = aq + r, 0 ≤ r < |a|.
Example. Prove that for all positive integers n, the fraction

21n+ 4

14n+ 3

is irreducible.

(1st IMO)

Indeed, from the equality

2(21n+ 4) − 3(14n+ 3) = −1

it follows that 21n+ 4 and 14n+ 3 have no common divisor except for 1,

hence the conclusion.

Problem 1.1.1. Prove that for all integers n:

a) n5 − 5n3 + 4n is divisible by 120;

b) n2 + 3n+ 5 is not divisible by 121.

Solution. a) n5 − 5n3 + 4n = n(n2 − 1)(n2 − 4)

= n(n− 1)(n+ 1)(n− 2)(n+ 2),

the product of five consecutive integers: n− 2, n− 1, n, n+ 1, n+ 2.

If n ∈ {−2,−1, 0, 1, 2} we get n5 − 5n3 + 4n = 0 and the property holds.

If n ≥ 3 we can write

n5 − 5n3 + 4n = 5!

(
n+ 2

5

)

= 120

(
n+ 2

5

)

,
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and the conclusion follows.

If n ≤ −3, write n = −m, where m ≥ 3, and obtain

n5 − 5n3 + 4n = −120

(
m+ 2

5

)

,

and we are done.

b) Observe that

n2 + 3n+ 5 = (n+ 7)(n− 4) + 33,

so that 11|n2+3n+5 if and only if 11|(n+7)(n−4). Thus, if 11 ∤ (n+7)(n−4)

then 11 (and hence 121) does not divide n2 +3n+5. So, assume 11 divides

(n + 7)(n − 4). Then 11|n + 7 or 11|n − 4; but then 11 must divide both

of n+ 7 and n− 4, since (n+ 7) − (n− 4) = 11. Thus, 121|(n+ 7)(n− 4).

However, 121 ∤ 33. So 121 ∤ n2 + 3n+ 5 = (n+ 7)(n− 4) + 33. Hence, in all

cases, 121 ∤ n2 + 3n+ 5.

Problem 1.1.2. Let p > 2 be an odd number and let n be a positive

integer. Prove that p divides 1pn

+ 2pn

+ · · · + (p− 1)pn

.

Solution. Define k = pn and note that k is odd. Then

dk + (p− d)k = p[dk−1 − dk−2(p− d) + · · · + (p− d)k−1]

Summing up the equalities from d = 1 to d =
p− 1

2
implies that p divides

1k + 2k + · · · + (p− 1)k, as claimed.

Problem 1.1.3. Prove that

345

+ 456

is a product of two integers, each of which is larger than 102002.

Solution. The given number is of the form m4 +
1

4
n4, where m = 344

and

n = 4
56+1

4 = 2
56+1

2 .

The conclusion follows from the identity

m4 +
n4

4
= m4 +m2n2 +

1

4
n4 −m2n2 =

(

m2 +
1

2
n2

)2

−m2n2 =

=

(

m2 +mn+
1

2
n2

)(

m2 −mn+
1

2
n2

)

,
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where n is even so
n2

2
is an integer, and from the inequalities:

m2 −mn+
1

2
n2 =

(

m− n

2

)2

+
n2

4
>
n2

4

= 256−1 > 210008 > (24)2002 > 102002.

Problem 1.1.4. Find all positive integers n such that for all odd integers

a, if a2 ≤ n then a|n.
Solution. Let a be the greatest odd integer such that a2 < n, hence

n ≤ (a+ 2)2. If a ≥ 7, then a− 4, a− 2, a are odd integers which divide n.

Note that any two of these numbers are relatively prime, so (a− 4)(a− 2)a

divides n. It follows that (a − 4)(a − 2)a ≤ (a + 2)2 so a3 − 6a2 + 8a ≤
a2 + 4a+ 4. Then a3 − 7a2 + 4a− 4 ≤ 0 or a2(a− 7) + 4(a− 1) ≤ 0. This

is false, because a ≥ 7, hence a = 1, 3 or 5.

If a = 1, then 12 ≤ n ≤ 32, so n ∈ {1, 2, . . . , 8}.
If a = 3, then 32 ≤ n ≤ 52 and 1 · 3|n, so n ∈ {9, 12, 15, 18, 21, 24}.
If a = 5, then 52 ≤ n ≤ 72 and 1 · 3 · 5|n so n ∈ {30, 45}. Therefore

n ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 18, 21, 24, 30, 45}.
Problem 1.1.5. Find the elements of the set

S =

{

x ∈ Z| x
3 − 3x+ 2

2x+ 1
∈ Z

}

.

Solution. Since
x3 − 3x+ 2

2x+ 1
∈ Z, then

8x3 − 24x+ 16

2x+ 1
= 4x2 − 2x− 11 +

27

2x+ 1
∈ Z.

It follows that 2x+ 1 divides 27, so

2x+ 1 ∈ {±1,±3,±9,±27} and x ∈ {−14,−5,−2,−1, 0, 1, 4, 13},

since 2x+ 1 is odd,
x3 − 3x+ 2

2x+ 1
∈ Z ⇔ 8x3 − 24x+ 16

2x+ 1
∈ Z, so all these

are solutions.

Problem 1.1.6. Find all positive integers n for which the number ob-

tained by erasing the last digit is a divisor of n.

Solution. Let b be the last digit of the number n and let a be the number

obtained from n by erasing the last digit b. Then n = 10a+ b. Since a is

a divisor of n, we infer that a divides b. Any number n that ends in 0 is
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therefore a solution. If b 6= 0, then a is a digit and n is one of the numbers

11, 12,. . . , 19, 22, 24, 26, 28, 33, 36, 39, 44, 48, 55, 56, 77, 88 or 99.

Problem 1.1.7. Find the greatest positive integer x such that 236+x

divides 2000!.

Solution. The number 23 is prime and divides every 23rd number. In

all, there are

⌊
2000

23

⌋

= 86 numbers from 1 to 2000 that are divisible by

23. Among those 86 numbers, three of them, namely 23, 2 · 23 and 3 · 232

are divisible by 233. Hence 2389|2000! and x = 89 − 6 = 83.

Problem 1.1.8. Find the positive integers n with exactly 12 divisors

1 = d1 < d2 < · · · < d12 = n such that the divisor with index d4 (that is,

dd4 − 1) is (d1 + d2 + d4)d8.

(1989 Russian Mathematical Olympiad)

Solution. Of course, there is 1 ≤ i ≤ 12 such that di = d1+d2+d4. Since

di > d4, we have i ≥ 5. Also, observe that djd13−j = m for all j and since

did8 = dd4−1 ≤ n, we must have i ≤ 5, thus i = 5 and d1 + d2 + d4 = d5.

Also, dd4−1 = d5d8 = n = d12, thus d4 = 13 and d5 = 14 + d2. Of course,

d2 is the smallest prime divisor of n and since d4 = 13, we can only have

d2 ∈ {2, 3, 5, 7, 11}. Also, since n has 12 divisors, it has at most 3 prime

divisors. If d2 = 2 then d5 = 16 and then 4 and 8 are divisors of n, smaller

than d4 = 13, impossible. A similar argument shows that d2 = 3 and

d5 = 17. Since n has 12 divisors and is a multiple of 3 · 13 · 17, the only

possibilities are 9 · 13 · 17, 3 · 1697 or 3 · 13 · 289. One can easily check that

only 9 · 13 · 17 = 1989 is a solution.

Problem 1.1.9. Let n be a positive integer. Show that any number

greater than n4/16 can be written in at most one way as the product of

two of its divisors having difference not exceeding n.

(1998 St. Petersburg City Mathematical Olympiad)

First Solution. Suppose, on the contrary, that there exist a > c ≥ d > b

with a− b ≤ n and ab = cd > n4/16. Put p = a+ b, q = a− b, r = c+ d,

s = c− d. Now

p2 − q2 = 4ab = 4cd = r2 − s2 > n4/4.

Thus p2 − r2 = q2 − s2 ≤ q2 ≤ n2. But r2 > n4/4 (so r > n2/2) and p > r,

so

p2 − r2 > (n2/2 + 1)2 − (n2/2)2 ≥ n2 + 1,
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a contradiction.

Second solution. Again, suppose that ab = cd > n4/16, with a > c, d

and n ≥ a− b. If we let p = gcd(a, c), we can find positive integers p, q, r, s

such that a = pq, b = rs, c = pr, d = qs. Then a > c ⇒ q > r and

a > d ⇒ p > s, so that

n ≥ pq − rs

≥ (s+ 1)(r + 1) − rs

= r + s+ 1

≥ 2
√
b+ 1.

Thus b ≤
(
n− 1

2

)2

< n2/4, and a ≤
(
n− 1

2

)2

+ n =

(
n+ 1

2

)2

.

Therefore ab ≤
(
n2 − 1

4

)2

< n4/16, a contradiction.

Proposed problems

Problem 1.1.10. Show that for any natural number n, between n2 and

(n+1)2 one can find three distinct natural numbers a, b, c such that a2 +b2

is divisible by c.

(1998 St. Petersburg City Mathematical Olympiad)

Problem 1.1.11. Find all odd positive integers n greater than 1 such

that for any relatively prime divisors a and b of n, the number a+ b− 1 is

also a divisor of n.

(2001 Russian Mathematical Olympiad)

Problem 1.1.12. Find all positive integers n such that 3n−1 + 5n−1

divides 3n + 5n.

(1996 St. Petersburg City Mathematical Olympiad)

Problem 1.1.13. Find all positive integers n such that the set

{n, n+ 1, n+ 2, n+ 3, n+ 4, n+ 5}

can be split into two disjoint subsets such that the products of elements in

these subsets are the same.

(12th IMO)
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Problem 1.1.14. The positive integers d1, d2, . . . , dn divide 1995. Prove

that there exist di and dj among them, such that the numerator of the

reduced fraction di/dj is at least n.

(1995 Israeli Mathematical Olympiad)

Problem 1.1.15. Determine all pairs (a, b) of positive integers such that

ab2 + b+ 7 divides a2b+ a+ b.

(39th IMO)

Problem 1.1.16. Find all integers a, b, c with 1 < a < b < c such that

(a− 1)(b− 1)(c− 1) is a divisor of abc− 1.

(33rd IMO)

Problem 1.1.17. Find all pairs of positive integers (x, y) for which

x2 + y2

x− y

is an integer which divides 1995.

(1995 Bulgarian Mathematical Olympiad)

Problem 1.1.18. Find all positive integers (x, n) such that xn + 2n + 1

is a divisor of xn+1 + 2n+1 + 1.

(1998 Romanian IMO Team Selection Test)

Problem 1.1.19. Find the smallest positive integer K such that every

K-element subset of {1, 2, . . . , 50} contains two distinct elements a, b such

that a+ b divides ab.

(1996 Chinese Mathematical Olympiad)

1.2 Prime numbers

The integer p > 1 is called a prime if there is no integer d > 1 such that

d|p. Any integer n > 1 has at least a prime divisor. If n is a prime, then

that prime divisor is n itself. If n is not a prime, then let a > 1 be its

least divisor. Then n = ab, where 1 < a ≤ b. If a were not a prime, then

a = a1a2 with 1 < a1 ≤ a2 < a and a1|n, contradicting the minimality of

a.
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An integer n > 1 that is not a prime is called composite. If n is a com-

posite integer, then it has a prime divisor p not exceeding
√
n. Indeed, as

above, n = ab, where 1 < a ≤ b and a is the least divisor of n. Then n ≥ a2,

hence a ≤ √
n.

The following result is known for more than 2000 years:

Theorem 1.2.1. (Euclid1) There are infinitely many primes.

Proof. Assume by way of contradiction that there are only a finite num-

ber of primes: p1 < p1 < · · · < pm. Consider the number P = p1p2 . . . pn+1.

If P is a prime, then P > pm, contradicting the maximality of pm. Hence

P is composite and, consequently, it has a prime divisor p > 1 which is one

of the primes p1, p2, . . . , pm, say pk. It follows that pk|p1 . . . pk . . . pm + 1.

This, together with pk|p1 . . . pk . . . pm, implies pk|1, a contradiction. �

Remark. The largest known prime is 232582657 − 1. It was discovered in

2006 and it has 9808358 digits.

The fundamental result in arithmetics pertains to the factorization of

integers:

Theorem 1.2.2. (The prime factorization theorem) Any integer n > 1

has a unique representation as a product of primes.

Proof. The existence of such a representation can be obtained as follows:

Let p1 be a prime divisor (factor) of n. If p1 = n, then n = p1 is the prime

factorization of n. If p1 < n, then n = p1r1, where r1 > 1. If r1 is a prime,

then n = p1p2 where p2 = r1, is the desired factorization of n. If r1 is

composite, then r1 = p2r2, where p2 is a prime, r2 > 1 and so n = p1p2r2.

If r2 is a prime, then n = p1p2p3 where r2 = p3 and we are done. If r2 is

composite, then we continue this algorithm, obtaining a sequence of integers

r1 > r2 > · · · ≥ 1. After a finite number of steps, we reach rk−1 = 1, that

is n = p1p2 . . . pk.

For the uniqueness, let us assume that there is at least a positive integer

n such that

n = p1p2 . . . pk = q1q2 . . . qh

where p1, p2, . . . , pk, q1, q2, . . . , qh are primes. It is clear that k ≥ 2 and

h ≥ 2. Let n be the minimal such integer. We claim that pi 6= qj for

any i = 1, 2, . . . , k, j = 1, 2, . . . , h. If, for example, pk = qh = p, then

1Euclid of Alexandria (about 325BC - about 365BC) is the most prominent math-

ematician of antiquity best known for his treatise on mathematics ”The Elements”.

The long lasting nature of ”The Elements” must make Euclid the leading mathematics

teacher of all time.
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n′ = n/p = p1 . . . pk−1 = q1 . . . qh−1 and 1 < n′ < n, contradicting the

minimality of n. Assume without loss of generality that p1 is the least

prime factor of n in the above representations. By applying the Division

Algorithm it follows that

q1 = p1c1 + r1

q2 = p1c2 + r2

. . .

qh = p1ch + rh,

where 1 ≤ ri < p1, i = 1, . . . , h.

We have

n = q1q2 . . . qh = (p1c1 + r1)(p1c2 + r2) . . . (p1ch + rh).

Expanding the last product we obtain n = Ap1 + r1r2 . . . rh. Setting

n′ = r1r2 . . . rh we have n = p1p2 . . . pk = Ap1 + n′. It follows that p1|n′

and n′ = p1s1s2 . . . si, where s1, s2, . . . , si are primes.

On the other hand, using the factorization of r1, r2, . . . , rh into primes,

all their factors are less than ri < p1. From n′ = r1r2 . . . rh, it follows that

n′ has a factorization into primes of the form n′ = t1t2 . . . tj , where ts < p1,

s = 1, 2, . . . , j. This factorization is different from n′ = p1s1s2 . . . si. But

n′ < n, contradicting the minimality of n. �

From the above theorem it follows that any integer n > 1 can be written

uniquely in the form

n = pα1
1 . . . pαk

k ,

where p1, . . . , pk are distinct primes and α1, . . . , αk are positive integers.

This representation is called the canonical factorization of n.

An immediate application of the prime factorization theorem is an alter-

native way of proving that there are infinitely many primes.

As in the previous proof, assume that there are only finitely many primes:

p1 < p2 < · · · < pm. Let

N =

m∏

i=1

(

1 +
1

pi
+ · · · + 1

pk
i

+ . . .

)

=

m∏

i=1

1

1 − 1

pi

On the other hand, by expanding and by using the canonical factorization

of positive integers, we obtain

N = 1 +
1

2
+

1

3
+ . . .
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yielding

m∏

i=1

pi

pi − 1
= ∞, a contradiction. We have used the well-known fact

that the harmonic series

1 +
1

2
+

1

3
+ . . .

diverges and the expansion formula

1

1 − x
= 1 + x+ x2 + . . . (for |x| < 1)

which can also be interpreted as the summation formula for the infinite

geometric progression 1, x, x2, . . .

From the formula
∞∏

i=1

pi

pi − 1
= ∞,

using the inequality 1 + t ≤ et, t ∈ R, we can easily derive

∞∑

i=1

1

pi
= ∞.

Even though there are no definitive ways to find primes, the density of

primes (that is, the average appearances of primes among integers) has

been determined for about 100 years. This was a remarkable result in the

mathematical field of Analytic Number Theory showing that

lim
n→∞

π(n)
n

logn

= 1,

where π(n) denotes the number of primes ≤ n. The relation above is known

as the Prime Number Theorem. It was proved by Hadamard2 and de la

Vallée Poussin3 in 1896. An elementary, but difficult proof, was given by

Erdös4 and Selberg5.

2Jacques Salomon Hadamard (1865-1963), French mathematician whose most impor-

tant result is the Prime Number Theorem which he proved in 1896.
3Charles Jean Gustave Nicolas de la Vallée Poussin (1866-1962), Belgian mathe-

matician who proved the Prime Number Theorem independently of Hadamard in 1896.
4Paul Erdös (1913-1996), one of the greatest mathematician of the 20th century.

Erdös posed and solved problems in number theory and other areas and founded the

field of discrete mathematics.
5Atle Selberg (1917- ), Norwegian mathematician known for his work in analytic

number theory, and in the theory of automorphic forms.



1.2. PRIME NUMBERS 25

The most important open problems in Number Theory involve primes.

The recent book of David Wells [Prime Numbers: The Most Mysterious

Figures in Maths, John Wiley and Sons, 2005] contains just few of them.

We mention here only three such open problems:

1) Consider the sequence (An)n≥1, An =
√
pn+1−√

pn, where pn denotes

the nth prime. Andrica’s Conjecture states that the following inequality

holds

An < 1,

for any positive integer n. Results connected to this conjecture are given

in D. Andrica [On a Conjecture in Prime Number Theory, Proc. Algebra

Symposium, ”Babeş-Bolyai” University of Cluj, 2005, pp.1-8]. The search

given by H.J. Smith has gown past n = 26 · 1010, so it is highly likely the

conjecture is true.

2) If p is prime such that p+2 is also a prime, then p and p+2 are called

twin primes. It is not known if there are infinitely many twin primes. The

largest such pair is 100314512544015 · 2171960 ± 1 and it was found in 2006.

3) The following property is conjectured by Michael Th. Rassias, an IMO

Silver Medail in 2003 in Tokyo: For any prime p greater than two there are

two distinct primes p1, p2 such that

p =
p1 + p2 + 1

p1
.

This is equivalent to the following statement: For any prime p greater

than two there are two primes p1 < p2 such that (p−1)p1, p2 are consecutive

integers [Octogon Mathematical Magazine, Vol.13, No.1.B, 2005, page 885].

For a prime p we say that pk fully divides n and write pk‖n if k is the

greatest positive integers such that pk|n.

Problem 1.2.1. Prove that for any integer n > 1 the number n5+n4+1

is not a prime.

Solution. We have

n5 + n4 + 1 = n5 + n4 + n3 − n3 − n2 − n+ n2 + n+ 1

= n3(n2 + n+ 1) − n(n2 + n+ 1) + (n2 + n+ 1)

= (n2 + n+ 1)(n3 − n+ 1),

the product of two integers greater than 1. Hence n5+n4+1 is not a prime.

Problem 1.2.2. Find all primes a, b, c such that

ab+ bc+ ac > abc.



26 1. DIVISIBILITY

Solution. Assume that a ≤ b ≤ c. If a ≥ 3 then ab+bc+ac ≤ 3bc ≤ abc,

a contradiction. Since a is prime, it is left that a = 2.

The inequality becomes 2b+ 2c+ bc > 2bc, hence
1

c
+

1

b
>

1

2
.

If b ≥ 5, then c ≥ 5 and

1

2
<

1

b
+

1

c
<

1

5
+

1

5
=

2

5
,

false.

Therefore b ≤ 5, that is

1◦ b = 2 and c is any prime;

2◦ b = 3 and c is 3 or 5.

Problem 1.2.3. Find all the positive integers a, b for which a4 + 4b4 is

a prime.

Solution. Observe that

a4 + 4b4 = a4 + 4b4 + 4a2b2 − 4a2b2

= (a2 + 2b2)2 − 4a2b2

= (a2 + 2b2 + 2ab)(a2 + 2b2 − 2ab)

= [(a+ b)2 + b2][(a− b)2 + b2].

As (a + b)2 + b2 > 1, then a4 + 4b4 can be a prime number only if

(a− b)2 + b2 = 1. This implies a = b = 1, which is the only solution of the

problem.

Problem 1.2.4. Let p, q be two distinct primes. Prove that there are

positive integers a, b so that the arithmetic mean of all the divisors of the

number n = pa · qb is also an integer.

(2002 Romanian Mathematical Olympiad)

Solution. The sum of all divisors of n is given by the formula

(1 + p+ p2 + · · · + pa)(1 + q + q2 + · · · + qb),

as it can be easily seen by expanding the brackets. The number n has

(a+ 1)(b+ 1) positive divisors and their arithmetic mean is

M =
(1 + p+ p2 + · · · + pa)(1 + q + q2 + · · · + qb)

(a+ 1)(b+ 1)
.

If p and q are both odd numbers, we can take a = p and b = q, and it is

easy to see that m is an integer.
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If p = 2 and q odd, choose again b = q and consider a+ 1 = 1 + q+ q2 +

· · · + qq−1. Then m = 1 + 2 + 22 + · · · + 2a, and it is an integer.

For p odd and q = 2, set a = p and b = p + p2 + p3 + · · · + pp−1. The

solution is complete.

Problem 1.2.5. Let p, q, r be primes and let n be a positive integer such

that

pn + qn = r2.

Prove that n = 1.

(2004 Romanian Mathematical Olympiad)

Solution. Clearly one of the primes p, q or r is equal to 2. If r = 2 then

pn + qn = 4, false, so assume that p > q = 2.

Consider the case when n > 1 is odd; we have

(p+ 2)(pn−1 − 2pn−2 + 22pn−3 − · · · + 2n−1) = r2.

Notice that

pn−1−2pn−2+22pn−3−· · ·+2n−1 = 2n−1+(p−2)(pn−2+22pn−4+. . . ) > 1

and p+2 > 1 hence both factors are equal to r. This rewrites as pn +2n =

(p+ 2)2 = p2 + 4p+ 4, which is false for n ≥ 3.

Consider the case when n > 1 is even and let n = 2m. It follows that

pm = a2 − b2, 2m = 2ab and r = a2 + b2, for some integers a, b with

(a, b) = 1. Therefore, a and b are powers of 2, so b = 1 and a = 2m−1.

This implies pm = 4m−1 − 1 < 4m, so p must be equal to 3. The equality

3m = 4m−1 − 1 fails for m = 1 and also for m ≥ 2, as 4m−1 > 3m + 1, by

induction.

Consequently n = 1. Take for example p = 23, q = 2 and r = 5.

Problem 1.2.6. Let a, b, c be non zero integers, a 6= c, such that

a

c
=
a2 + b2

c2 + b2
.

Prove that a2 + b2 + c2 cannot be a prime.

(1999 Romanian Mathematical Olympiad)

Solution. The equality
a

c
=
a2 + b2

c2 + b2
is equivalent to (a−c)(b2−ac) = 0.

Since a 6= c, it follows that b2 = ac and therefore:

a2 + b2 + c2 = a2 + ac+ c2 = a2 + 2ac+ c2 − b2
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= (a+ c)2 − b2 = (a+ c− b)(a+ c+ b).

Now, clearly, a2 + b2 + c2 > 3, so, if a2 + b2 + c2 is a prime number, then

only four cases are possible:

(1) a+ c− b = 1 and a+ c− b = a2 + b2 + c2;

(2) a+ c+ b = 1 and a+ c+ b = a2 + b2 + c2;

(3) a+ c− b = −1 and a+ c+ b = −(a2 + b2 + c2), and finally:

(4) a+ c+ b = −1 and a+ c− b = −(a2 + b2 + c2).

In the first two cases we are lead to: a2 + b2 + c2 − 2(a+ c) + 1 = 0, or

(a− 1)2 + (c− 1)2 + b2 = 1, hence a = c = 1.

In other cases we obtain: (a+ 1)2 + (c+ 1)2 + b2 = 1, hence a = c = −1.

But a = c is a contradiction.

Problem 1.2.7. Show that each natural number can be written as the

difference of two natural numbers having the same number of prime factors.

(1999 Russian Mathematical Olympiad)

Solution. If n is even, then we can write it as (2n) − (n). If n is odd,

let d be the smallest odd prime that does not divide n. Then write n =

(dn) − ((d − 1)n). The number dn contains exactly one more prime factor

than n. As for (d − 1)n, it is divisible by 2 because d − 1 is even. Its odd

factors are less than d so they all divide n. Therefore (d−1)n also contains

exactly one more prime factor than n, and dn and (d− 1)n have the same

number of prime factors.

Problem 1.2.8. Let p be a prime number. Find all k ∈ Z such that
√

k2 − pk is a positive integer.

(1997 Spanish Mathematical Olympiad)

Solution. The values are k = (p+ 1)2/4 for p odd (and none for p = 2).

We first consider p = 2, in which case we need k2 − 2k = (k − 1)2 − 1 to

be a positive square, which is impossible, as the only consecutive squares

are 0 and 1.

Now assume p is odd. We first rule out the case where k is divisible by

p: if k = np, then k2 − pk = p2n(n − 1), and n and n− 1 are consecutive

numbers, so they cannot both be squares.

We thus assume k and p are coprime, in which case k and k − p are

coprime. Thus k2 − pk is a square if and only if k and k − p are squares,

say k = m2 and k − p = n2. Then p = m2 − n2 = (m + n)(m− n), which

implies m+ n = p, m− n = 1 and k = (p+ 1)2/4.



1.2. PRIME NUMBERS 29

Problem 1.2.9. Let p > 5 be a prime number and

X = {p− n2|n ∈ N, n2 < p}.

Prove that X contains two distinct elements x, y such that x 6= 1 and x

divides y.

(1996 Balkan Mathematical Olympiad)

Solution. Take m such that m2 < p < (m+ 1)2 and write p = k +m2,

with 1 ≤ k ≤ 2m. Since p− (m− k)2 = k(2m− k+ 1) we have p−m2|p−
(m − k)2. Of course, k 6= m since p is a prime number. Also, m − k < m

and −m+ k 6= m since p is not composite. The only case which remains is

k = 1. Since m is even, p− (m− 1)2 divides p− 1 we are done again.

Proposed problems

Problem 1.2.10. For each integer n such that n = p1p2p3p4, where

p1, p2, p3, p4 are distinct primes, let

d1 = 1 < d2 < d3 < · · · < d16 = n

be the sixteen positive integers which divide n. Prove that if n < 1995,

then d9 − d8 6= 22.

(1995 Irish Mathematical Olympiad)

Problem 1.2.11. Prove that there are infinitely many positive integers

a such that the sequence (zn)n≥1, zn = n4 + a, does not contain any prime

number.

(11th IMO)

Problem 1.2.12. Let p, q, r be distinct prime numbers and let A be the

set

A = {paqbrc : 0 ≤ a, b, c ≤ 5}.

Find the smallest integer n such that any n-element subset of A contains

two distinct elements x, y such that x divides y.

(1997 Romanian Mathematical Olympiad)
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Problem 1.2.13. Prove Bonse’s inequality:

p1p2 . . . pn > p2
n+1

for n ≥ 4, where p1 = 2, p2 = 3, . . . is the increasing sequence of prime

numbers.

Problem 1.2.14. Show that there exists a set A of positive integers

with the following property: for any infinite set S of primes, there exist two

positive integers m ∈ A and n 6∈ A each of which is a product of k distinct

elements of S for some k ≥ 2.

(35th IMO)

Problem 1.2.15. Let n be an integer number, n ≥ 2. Show that if

k2 + k+n is a prime number for any integer number k, 0 ≤ k ≤
√
n

3
, then

k2 + k + n is a prime number for any k, 0 ≤ k ≤ n− 2.

(28th IMO)

Problem 1.2.16. A sequence q1, q2, . . . of primes satisfies the following

condition: for n ≥ 3, qn is the greatest prime divisor of qn−1 + qn−2 +2000.

Prove that the sequence is bounded.

(2000 Polish Mathematical Olympiad)

Problem 1.2.17. Let a > b > c > d be positive integers and suppose

ac+ bd = (b+ d+ a− c)(b + d− a+ c).

Prove that ab+ cd is not prime.

(42nd IMO)

1.3 The greatest common divisor and the least

common multiple

For a positive integer k we denote byDk the set of all its positive divisors.

It is clear that Dk is a finite set. For positive integers m,n the maximal

element in the set Dm ∩Dn is called the greatest common divisor of m and

n and is denoted by gcd(m,n).

In case when Dm ∩Dn = {1}, we have gcd(m,n) = 1 and we say that m

and n are relatively prime.
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The following properties can be directly derived from the definition

above.

1) If d = gcd(m,n), m = dm′, n = dn′, then gcd(m′, n′) = 1.

2) If d = gcd(m,n), m = d′m′′, n = d′n′′, gcd(m′′, n′′) = 1, then d′ = d.

3) If d′ is a common divisor of m and n, then d′ divides gcd(m,n).

4) If m = pα1
1 . . . pαk

k and n = pβ1

1 . . . pβk

k , αi, βi ≥ 0, αi + βi ≥ 1,

i = 1, . . . , k, then

gcd(m,n) = p
min(α1,β1)
1 . . . p

min(αk,βk)
k .

5) If m = nq + r, then gcd(m,n) = gcd(n, r).

Let us prove the last property. Denote d = gcd(m,n) and d′ = gcd(n, r).

Because d|m and d|n it follows that d|r. Hence d|d′. Conversely, from d′|n
and d′|r it follows that d′|m, so d′|d. Thus d = d′.

An useful algorithm for finding the greatest common divisor of two posi-

tive integers is the Euclidean Algorithm. It consists of repeated application

of the Division Algorithm:

m = nq1 + r1, 1 ≤ r1 < n

n = r1q2 + r2, 1 ≤ r2 < r1

. . .

rk−2 = rk−1qk + rk, 1 ≤ rk < rk−1

rk−1 = rkqk+1 + rk+1, rk+1 = 0.

This chain of equalities is finite because n > r1 > r2 > · · · > rk.

The last nonzero remainder, rk, is the greatest common divisor of m and

n. Indeed, by applying successively property 5) above we obtain

gcd(m,n) = gcd(n, r1) = gcd(r1, r2) = · · · = gcd(rk−1, rk) = rk.

Proposition 1.3.1. For positive integers m and n, there exist integers

a and b such that am+ bn = gcd(m,n).

Proof. From the Euclidean Algorithm it follows that

r1 = m− nq1, r2 = −mq2 + n(1 + q1q2), . . .

In general, ri = mαi + nβi, i = 1, . . . , k. Because ri+1 = ri−1 − riqi+1, it

follows that {

αi+1 = αi−1 − qi+1αi

βi+1 = βi−1 − qi+1βi,
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i = 2, . . . , k − 1. Finally, we obtain gcd(m,n) = rk = αkm+ βkn. �

We can define the greatest common divisor of several positive integers

m1,m2, . . . ,ms by considering

d1 = gcd(m1,m2), d2 = gcd(d1,m3), . . . , ds−1 = gcd(ds−2,ms).

The integer d = ds−1 is called the greatest common divisor of m1, . . . ,ms

and denoted by gcd(m1, . . . ,ms). The following properties can be easily

verified:

i) gcd(gcd(m,n), p) = gcd(m, gcd(n, p)); proving that gcd(m,n, p) is well-

defined.

ii) If d|mi, i = 1, . . . , s, then d|gcd(m1, . . . ,ms).

iii) If mi = pα1i

1 . . . pαki

k , i = 1, . . . , s, then

gcd(m1, . . . ,ms) = p
min(α11,...,α1k)
1 . . . p

min(αk1,...,αkk)
k .

For a positive integer k we denote by Mk the set of all multiples of k.

Opposed to the set Dk defined earlier in this section, Mk is an infinite set.

For positive integers s and t the minimal element of the set Ms ∩Mt is

called the least common multiple of s and t and is denoted by lcm(s, t).

The following properties are easily obtained from the definition above:

1’) If m = lcm(s, t), m = ss′ = tt′, then gcd(s′, t′) = 1.

2’) If m′ is a common multiple of s and t and m′ = ss′ = tt′, gcd(s′, t′) =

1, then m′ = m.

3’) If m′ is a common multiple of s and t, then m|m′.

4’) If s = pα1
1 . . . pαk

k and t = pβ1

1 . . . pβk

k , αi, bi ≥ 0, αi + βi ≥ 1, i =

1, . . . , k, then

lcm(s, t) = p
max(α1,β1)
1 . . . p

max(αk,βk)
k .

The following property establishes an important connection between gcd

and lcm:

Proposition 1.3.2. For any positive integers m,n the following relation

holds:

mn = gcd(m,n) · lcm(m,n).

Proof. Let m = pα1
1 . . . pαk

k , n = pβ1

1 . . . pβk

k , αi, βi ≥ 0, αi + βi ≥ 1,

i = 1, . . . , k. From properties 4) and 4’) we have

gcd(m,n) · lcm(m,n) = p
min(α1,β1)+max(α1,β1)
1 . . . p

min(αk,βk)+max(αk,βk)
k
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= pα1+β1

1 . . . pαk+βk

k = mn. �

It is also not difficult to see that if m|s and n|s, then lcm(m,n)|s.
Problem 1.3.1. Prove that for any odd integers n, a1, a2, . . . , an, the

greatest common divisor of numbers a1, a2, . . . , an is equal to the greatest

common divisor of
a1 + a2

2
,
a2 + a3

2
, . . . ,

an + a1

2
.

Solution. Let

a = gcd(a1, a2, . . . , an) and b = gcd

(
a1 + a2

2
,
a2 + a3

2
, . . . ,

an + a1

2

)

Then ak = αka, for some integers αk, k = 1, 2, . . . , n. It follows that

ak + ak+1

2
=
αk + αk+1

2
a, (1)

where an+1 = a1 and αn+1 = α1. Since ak are odd numbers, αk are also

odd, so
αk + αk+1

2
are integers.

From relation (1) it follows that a divides
ak + ak+1

2
for all so a divides b.

On the other hand,
ak + ak+1

2
= βkb, for some integers βk. Then

ak + ak+1 ≡ 0 (mod 2b)

for all k ∈ {1, 2, . . . , n}. Summing up from k = 1 to k = n yields

2(a1 + a2 + · · · + an) ≡ 0 (mod 2b),

hence

a1 + a2 + · · · + an ≡ 0 (mod b). (3)

Summing up for k = 1, 3, . . . , n− 2 implies

a1 + a2 + · · · + an−1 ≡ 0 (mod 2b)

and furthermore

a1 + a2 + · · · + an−1 ≡ 0 (mod b). (4)

Subtracting (4) from (3) implies an ≡ 0 (mod b), then using relation (2)

we obtain ak ≡ 0 (mod b) for all k. Hence b|a and the proof is complete.

Problem 1.3.2. Prove that for all nonnegative integers a, b, c, d such

that a and b are relatively prime, the system

ax− yz − c = 0

bx− yt+ d = 0
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has at least a solution in nonnegative integers.

Solution. We start with a useful lemma.

Lemma. If a and b are relatively prime positive integers, then there are

positive integers u and v such that

au− bv = 1.

Proof. Consider the numbers

1 · 2, 2 · a, . . . , (b− 1) · a (1)

When divided by b the remainders of these numbers are distinct. Indeed,

otherwise we have k1 6= k2 ∈ {1, 2, . . . , b− 1} such that

k1a = p1b+ r, k2a = p2b+ r

for some integers p1, p2. Hence

(k1 − k2)a = (p1 − p2)b ≡ 0 (mod b).

Since a and b are relatively prime it follows that |k1 − k2| ≡ 0 (mod b),

which is false because 1 ≤ |k1 − k2| < b.

On the other hand, none of the numbers listed in (1) is divisible by b.

Indeed, if so, then there is k ∈ {1, 2, . . . , n− 1} such that

k · a = p · b for some integer p.

Let d be the greatest common divisor of k and p. Hence k = k1d, p = p1d,

for some integers p1, k1 with gcd(p1, k1) = 1. Then k1a = p1b and since

gcd(a, b) = 1, we have k1 = b, p1 = a. This is false, because k1 < b.

It follows that one of the numbers from (1) has the remainder 1 when

divided by b so there is u ∈ {1, 2, . . . , b− 1} such that au = bv+ 1 and the

lemma is proved.

We prove now that the system

{

ax− yz − c = 0

bx− yt+ d = 0

with a, b, c, d nonnegative integers and gcd(a, b) = 1 has at least a solution

in nonnegative integers.
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Because gcd(a, b) = 1 using the lemma, there are positive integers u and

v such that au− bv = 1. Hence

x = cu+ dv, y = ad+ bc, z = v, t = u,

is a solution to the system.

Problem 1.3.3. Find all the pairs of integers (m,n) so that the numbers

A = n2+2mn+3m2+2, B = 2n2+3mn+m2+2, C = 3n2+mn+2m2+1

have a common divisor greater than 1.

Solution. A common divisor of A,B and C is also a divisor for D =

2A− B, E = 3A− C, F = 5E − 7D, G = 5D − E, H = 18A− 2F − 3E,

I = nG − mF and 126 = 18nI − 5H + 11F = 2 · 32 · 7. Since 2 and 3

do not divide A,B and C, then d = 7. It follows that (m,n) is equal to

(7a+ 2, 7b+ 3) or (7c+ 5, 7d+ 4).

Problem 1.3.4. Let n be an even positive integer and let a, b be positive

coprime integers. Find a and b if a+ b divides an + bn.

(2003 Romanian Mathematical Olympiad)

Solution. As n is even, we have

an − bn = (a2 − b2)(an−2 + an−4b2 + · · · + bn−2).

Since a + b is a divisor of a2 − b2, it follows that a + b is a divisor of

an − bn. In turn, a+ b divides 2an = (an + bn)+ (an − bn), and 2bn = (an +

bn)−(an−bn). But a and b are coprime numbers, and so gcd(2an, 2bn) = 2.

Therefore a+ b is a divisor of 2, hence a = b = 1.

Problem 1.3.5.M is the set of all values of the greatest common divisor

d of the numbers A = 2n+ 3m+ 13, B = 3n+ 5m+ 1, C = 6n+ 8m− 1,

where m and n are positive integers. Prove that M is the set of all divisors

of an integer k.

Solution. If d is a common divisor of the numbers A,B and C, then d

divides E = 3A−C = m+40, F = 2B−C = 2m+3 and G = 2E−F = 77.

We prove that k = 77 satisfies the conditions.

Let d′ be the greatest common divisor of the numbers E and F . Then

d′ = 7u for m = 7p + 2. Moreover, u = 1 if p 6= 11v + 5 and u = 11 if

p = 11v + 5. On the other hand, d′ = 11v for m = 11q + 4. Furthermore,

v = 1 for q 6= 7z + 3 and v = 7 for q = 7z + 3.

The number d′ is common divisor of the numbers A,B,C if and only if

d′ divides A.
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For m = 7p+ 2, 7 divides A = 2n+ 21p+ 19 if and only if n = 7p′ + 1.

For m = 7(11v+ 5), A = 2(n+ 59)+ 3 · 77v is divisible by 77 if and only

if n = 77t+ 18.

Problem 1.3.6. Find the greatest common divisor of the numbers

An = 23n + 36n+2 + 56n+2

when n = 0, 1, . . . , 1999.

(2001 Junior Balkan Mathematical Olympiad)

Solution. We have

A0 = 1 + 9 + 25 = 35 = 5 · 7.

Using congruence mod 5, it follows that

An ≡ 23n + 36n+2 ≡ 23n + 93n+1 ≡ 23n + (−1)3n+1 (mod 5).

For n = 1, A1 ≡ 9 6= 0 (mod 5), hence 5 is not a common divisor.

On the other hand,

An = 8n + 9 · 93n + 25 · 253n

≡ 1 + 2 · 23n + 4 · 43n

≡ 1 + 2 · 8n + 4 · 64n

≡ 1 + 2 · 1n + 4 · 1n

≡ 0 (mod 7),

therefore 7 divides An, for all integers n ≥ 0.

Consequently, the greatest common divisor of the numbers A0, A1, . . . ,

A1999 is equal to 7.

Problem 1.3.7. Let m ≥ 2 be an integer. A positive integer n is called

m-good if for every positive integer a, relatively prime to n, one has n|am−
1.

Show that any m-good number is at most 4m(2m − 1).

(2004 Romanian IMO Team Selection Test)

Solution. If m is odd then n|(n− 1)m − 1 implies n|2, hence n ≤ 2.

Take now m = 2tq, t ≥ 1, q odd, If n = 2u(2v + 1) is m-good, then

(2v + 1)|(2v − 1)m − 1, hence (2v + 1)|2m − 1. Also, if a = 8v + 5 then

(a, n) = 1, so

2u|(aq)2
t − 1 = (aq − 1)(aq + 1)(a2q + 1) . . . (a2t−1q + 1).
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But aq ≡ 5 (mod 8) implies that the exponent of the factor 2 in the last

product is t+2, therefore u ≤ t+2, whence n ≤ 4 ·2t(2v+1) ≤ 4m(2m−1).

Remark. The estimation is optimal only for m = 2, m = 4.

Problem 1.3.8. Find all triples of positive integers (a, b, c) such that

a3 + b3 + c3 is divisible by a2b, b2c, and c2a.

(2001 Bulgarian Mathematical Olympiad)

Solution. Answer: triples of the form (k, k, k) or (k, 2k, 3k) or their

permutations.

Let g be the positive greatest common divisor of a and b. Then g3 divides

a2b, so g3 divides a3 + b3 + c3, and g divides c. Thus, the gcd of any two of

a, b, c is the gcd of all three.

Let (l,m, n) = (a/g, b/g, c/g). Then (l,m, n) is a triple satisfying the

conditions of the problem, and l,m, n are pairwise relatively prime. Because

l2,m2 and n2 all divide l3 +m3 + n3, we have

l2m2n2|(l3 +m3 + n3).

We will prove that (l,m, n) is either (1,1,1) or a permutation of (1,2,3).

Assume without loss of generality that l ≥ m ≥ n. We have

3l3 ≥ l3 +m3 + n3 ≥ l2m2n2,

and, therefore, l ≥ m2n2/3. Because l2|(m3 + n3), we also have

2m3 ≥ m3 + n3 ≥ l2 ≥ m4n4/9.

If n ≥ 2, then m ≤ 2 · 9/24 < 2 ≤ n, which contradicts the assumption

that m ≥ n. Therefore, n must be 1. It is not difficult to see that (1,1,1) is

the unique solution with m = 1.

If m ≥ 2, then l > m because l and m are relatively prime, so

2l3 > l3 +m3 + 1 ≥ l2m2,

and l > m2/2, so

m3 + 1 ≥ l2 > m4/4,

and m ≤ 4. It is not difficult to check that the only solution here is (3,2,1).



38 1. DIVISIBILITY

Proposed problems

Problem 1.3.9. The sequence a1, a2, . . . of natural numbers satisfies

gcd(ai, aj) = gcd(i, j) for all i 6= j.

Prove that ai = i for all i.

(1995 Russian Mathematical Olympiad)

Problem 1.3.10. The natural numbers a and b are such that

a+ 1

b
+
b + 1

a

is an integer. Show that the greatest common divisor of a and b is not

greater than
√
a+ b.

(1996 Spanish Mathematical Olympiad)

Problem 1.3.11. The positive integersm,n,m, n are written on a black-

board. A generalized Euclidean algorithm is applied to this quadruple as

follows: if the numbers x, y, u, v appear on the board and x > y, then x−y,
y, u + v, v are written instead; otherwise x, y − x, u, v + u are written

instead. The algorithm stops when the numbers in the first pair become

equal (they will equal the greatest common divisor of m and n). Prove that

the arithmetic mean of the numbers in the second pair at that moment

equals the least common multiple of m and n.

(1996 St. Petersburg City Mathematical Olympiad)

Problem 1.3.12. How many pairs (x, y) of positive integers with x ≤ y

satisfy gcd(x, y) = 5! and lcm(x, y) = 50!?

(1997 Canadian Mathematical Olympiad)

Problem 1.3.13. Several positive integers are written on a blackboard.

One can erase any two distinct integers and write their greatest common

divisor and least common multiple instead. Prove that eventually the num-

bers will stop changing.

(1996 St. Petersburg City Mathematical Olympiad)

Problem 1.3.14. (a) For which positive integers n do there exist positive

integers x, y such that

lcm(x, y) = n!, gcd(x, y) = 1998?
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(b) For which n is the number of such pairs x, y with x ≤ y less than

1998?

(1998 Hungarian Mathematical Olympiad)

Problem 1.3.15. Determine all positive integers k for which there exists

a function f : N → Z such that

(a) f(1997) = 1998;

(b) for all a, b ∈ N, f(ab) = f(a) + f(b) + kf(gcd(a, b)).

(1997 Taiwanese Mathematical Olympiad)

Problem 1.3.16. Find all triples (x, y, n) of positive integers such that

gcd(x, n+ 1) = 1 and xn + 1 = yn+1.

(1998 Indian Mathematical Olympiad)

Problem 1.3.17. Find all triples (m,n, l) of positive integers such that

m+ n = gcd(m,n)2, m+ l = gcd(m, l)2, n+ l = gcd(n, l)2.

(1997 Russian Mathematical Olympiad)

1.4 Odd and even

The set Z of integers can be partitioned into two subsets, the set of odd

integers and the set of even integers: {±1,±3,±5, . . .} and {0,±2,±4, . . .},
respectively. Although the concepts of odd and even integers appear

straightforward, they come handly in various number theory problems.

Here are some basic ideas:

1) an odd number is of the form 2k + 1, for some integer k;

2) an even number is of the form 2m, for some integer m;

3) the sum of two odd numbers is an even number;

4) the sum of two even numbers is an even number;

5) the sum of an odd and even number is an odd number;

6) the product of two odd numbers is an odd number;

7) a product of integers is even if and only if at least one of its factors is

even.

Problem 1.4.1. Let m and n be integers greater than 1. Prove that mn

is the sum of m odd consecutive integers.
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Solution. The equality

mn = (2k + 1) + (2k + 3) + · · · + (2k + 2m− 1)

is equivalent to

mn = 2km+ (1 + 3 + · · · + 2m− 1)

or mn = 2km+m2. It follows that k =
m(mn−2 − 1)

2
which is an integer,

because m and mn−2 − 1 have different parities.

Problem 1.4.2. Let n be a positive integer. Find the sum of all even

numbers between n2 − n+ 1 and n2 + n+ 1.

Solution. We have n2−n+1 = n(n−1)+1 and n2+n+1 = n(n+1)+1,

both odd numbers. It follows that the least even number to be considered

is n2 − n+ 2 and the greatest is n2 + n. The desired sum is

(n2 − n+ 2) + (n2 − n+ 4) + · · · + (n2 + n− 2) + (n2 + n)

= (n2 − n) + 2 + (n2 − n) + 4 + · · · + (n2 − n) + 2n− 2 + (n2 − n) + 2n

= n(n2 − n) + 2(1 + 2 + · · · + n) = n3 − n2 + n2 + n = n3 + n.

Problem 1.4.3. Let n be a positive integer and let ε1, ε2, . . . , εn ∈
{−1, 1} such that ε1ε2 + ε2ε3 + · · ·+ εnε1 = 0. Prove that n is divisible by

4.

(Kvant)

Solution. The sum ε1ε2 +ε2ε3 + · · ·+εnε1 has n terms equal to 1 or −1,

so n is even, say n = 2k. It is clear that k of the terms ε1ε2, ε2ε3, . . . , εnε1

are 1 and k are −1. On the other hand, the product of the terms in the

sum is

(ε1ε2)(ε2ε3) . . . (εnε1) = ε21ε
2
2 . . . ε

2
n = 1,

hence (+1)k(−1)k = 1. That is k is even and the conclusion follows.

For any integer n = 4m there exist ε1, ε2, . . . , εn such that

ε1ε2 + ε2ε3 + · · · + εnε1 = 0,

for example

ε1 = ε4 = ε5 = ε8 = · · · = ε4m−3 = ε4m = +1,

ε2 = ε3 = ε6 = ε7 = · · · = ε4m−2 = ε4m−1 = −1.
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Problem 1.4.4. A table with m rows and n columns has all entries −1

or 1 such that for each row and each column the product of entries is −1.

Prove that m and n have the same parity.

Solution. We compute the product P of the m · n entries in two ways,

by rows and by columns, respectively:

P = (−1)(−1) . . . (−1)
︸ ︷︷ ︸

m times

= (−1)m = (−1)n = (−1)(−1) . . . (−1)
︸ ︷︷ ︸

n times

.

The conclusion now follows.

We will show such a table for m = 3 and n = 5.

−1 1 1 −1 −1

1 1 −1 1 1

1 −1 1 1 1

Remark. If m and n have the same parity, then the number of tables

with the above property is 2(m−1)(n−1).

Proposed problems

Problem 1.4.5. We are given three integers a, b, c such that a, b, c, a+

b− c, a+ c− b, b+ c−a and a+ b+ c are seven distinct primes. Let d be the

difference between the largest and smallest of these seven primes. Suppose

that 800 ∈ {a+ b, b+ c, c+ a}. Determine the maximum possible value of

d.

Problem 1.4.6. Determine the number of functions f : {1, 2, . . . , n} →
{1995, 1996} which satisfy the condition that f(1) + f(2) + · · · + f(1996)

is odd.

(1996 Greek Mathematical Olympiad)

Problem 1.4.7. Is it possible to place 1995 different natural numbers

along a circle so that for any two these numbers, the ratio of the greatest

to the least is a prime?

(1995 Russian Mathematical Olympiad)

Problem 1.4.8. Let a, b, c, d be odd integers such that 0 < a < b < c < d

and ad = bc. Prove that if a+ d = 2k and b + c = 2m for some integers k

and m, then a = 1.

(25th IMO)
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1.5 Modular arithmetics

Let a, b, n be integers, with n 6= 0. We say that a and b are congruent

modulo n if n|a− b. We denote this by a ≡ b (mod n). The relation ”≡” on

the set Z of integers is called the congruence relation. If m does not divide

a − b, then we say that integers a and b are not congruent modulo n and

we write a 6≡ b (mod n). The following properties can be directly derived:

1) a ≡ a (mod n) (reflexivity);

2) If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n) (transitiv-

ity);

3) If a ≡ b (mod n), then b ≡ a (mod n);

4) If a ≡ b (mod n) and c ≡ d (mod n), then a+ c ≡ b+ d (mod n) and

a− c ≡ b− d (mod n);

5) If a ≡ b (mod n), then for any integer k, ka ≡ kb (mod n);

6) If a ≡ b (mod n) and c ≡ d (mod n), then ac ≡ bd (mod n);

7) If ai ≡ bi (mod n), i = 1, . . . , k, then a1 . . . ak ≡ b1 . . . bk (mod n).

In particular, if a ≡ b (mod n), then for any positive integer k, ak ≡ bk

(mod n).

8) We have a ≡ b (mod mi), i = 1, . . . , k if and only if a ≡ b

(mod lcm(m1, . . .mk)).

In particular, if m1, . . . ,mk are pairwise relatively prime, then a ≡ b

(mod mi), i = 1, . . . , k if and only if a ≡ b (mod m1, . . . ,mk).

Let us prove the last property. From a ≡ b (mod mi), i = 1, . . . , k,

it follows that mi|a − b, i = 1, . . . , k. Hence a − b is a common mul-

tiple of m1, . . . ,mk, and so lcm(m1, . . . ,mk)|a − b. That is a ≡ b

(mod lcm(m1, . . . ,mk)). Conversely, from a ≡ b (mod lcm(m1, . . . ,k )),

and the fact that each mi divides lcm(m1, . . . ,mk) we obtain a ≡ b

(mod mi), i = 1, . . . , k.

Theorem 1.5.1. Let a, b, n be integers, n 6= 0, such that a = nq1 + r1,

b = nq2 + r2, 0 ≤ r1, r2 < |n|. Then a ≡ b (mod n) if and only if r1 = r2.

Proof. Because a − b = n(q1 − q2) + (r1 − r2), it follows that n|a − b

if and only if n|r1 − r2. Taking into account that |r1 − r2| < |n|, we have

n|r1 − r2 if and only if r1 = r2. �

Problem 1.5.1. For all the positive integers k ≤ 1999, let S1(k) be the

sum of all the remainders of the numbers 1, 2, . . . , k when divided by 4,

and let S2(k) be the sum of all the remainders of the numbers k + 1, k +

2, . . . , 2000 when divided by 3. Prove that there is an unique positive integer

m ≤ 1999 so that S1(m) = S2(m).
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(1999 Romanian Mathematical Olympiad)

Solution. Let Ak = {1, 2, 3, . . . , k} and Bk = {k + 1, k + 2, . . . , 2000}.
From the division of integers we have

k = 4q1 + r1, with r1 ∈ {0, 1, 2, 3}. (1)

If s1(k) is the sum of the remainders at the division by 4 of the last r1

elements of Ak, then

S1(k) = 6q1 + s1(k), with 0 ≤ s1(k) ≤ 6 (2)

(if r1 = 0, then set s1(k) = 0).

Using again the division of integers there exist integers q2, r2 such that

2000 − k = 3q2 + r2, with r2 ∈ {0, 1, 2}. (3)

If s2(k) is the sum of the remainders at the division by 3 of the last r2

elements of Bk, then

S2(k) = 3q2 + s2(k), with 0 ≤ s2(k) ≤ 3 (4)

(again we set s2(k) = 0, if r2 = 0).

As S1(k) = S2(k), s2(k) − s1(k) = 3(2q1 − q2), so 3|2q1 − q2| = |s2(k) −
s1(k)| ≤ 6, and |2q1 − q2| ≤ 2. In other words, |2q1 − q2| ∈ {0, 1, 2}.

If 2q1 = q2, then (1) and (3) imply 2000 − (r1 + r2) = 10q1, hence

10|(r1 + r2). Then r1 = r2 = 0 and q1 = 200. From (1) it follows that

k = 800, and from (2) and (4) we have S1(800) = S2(800) = 1200.

Furthermore S1(k) ≤ S1(k + 1), and S2(k) ≥ S2(k + 1) for all k ∈
{1, 2, . . . , 1998}. Since S1(799) = S1(800) and S2(799) = S2(800) + 2 <

S1(800), we deduce that S1(k) < S2(k) for all k ∈ {1, 2, . . . , 799}. Since

S1(801) = S1(800) + 1 > S2(800) ≥ S2(801), we derive that S1(k) > S2(k)

for all k ∈ {801, 802, . . . , 1999}. Consequently, S1(m) = S2(m) if and only

if m = 800.

Problem 1.5.2. Let n be a positive integer. Show that if a and b are

integers greater than 1 such that 2n − 1 = ab, then ab− (a− b) − 1 can be

written as k · 22m for some odd integer k and some positive integer m.

(2001 Balkan Mathematical Olympiad)

Solution. Note that ab− (a− b)−1 = (a+1)(b−1). We shall show that

the highest powers of two dividing (a+ 1) and (b− 1) are the same. Let 2s
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and 2t be the highest powers of 2 dividing (a+ 1) and (b− 1), respectively.

Because a+ 1, b+ 1 ≤ ab+ 1 = 2n, we have s, t ≤ n.

Note that 2s divides 2n = ab+ 1 and a+ 1, so that

ab ≡ a ≡ −1 (mod 2s).

Hence, b ≡ 1 (mod 2s), or 2s|b− 1, so that s ≤ t.

Similarly, ab ≡ −b ≡ −1 (mod 2t), so a ≡ −1 (mod 2t), and 2t|a + 1.

Thus, t ≤ s.

Therefore, s = t, the highest power of two dividing (a + 1)(b − 1) is 2s,

and ab− (a− b) − 1 = k · 22s for some odd k.

Problem 1.5.3. Find all nonnegative integers m such that (22m+1)2 +1

is divisible by at most two different primes.

(2002 Baltic Mathematics Competition)

Solution. We claim m = 0, 1, 2 are the only such integers. It is easy to

check that these values of m satisfy the requirement. Suppose some m ≥ 3

works. Write

(22m+1)2 + 1 = (22m+1 + 1)2 − 2 · 22m+1

= (22m+1 + 2m+1 + 1)(22m+1 − 2m+1 + 1).

The two factors are both odd, and their difference is 2m+2; hence, they are

relatively prime. It follows that each is a prime power. We also know that

(22m+1)2 = 42m+1 ≡ −1 (mod 5), so one of the factors 22m+1 ± 2m+1 + 1

must be a power of 5. Let 22m+1 + 2m+1s + 1 = 5k, where s = ±1 is the

appropriate sign.

Taking the above equation modulo 8, and using the assumption m ≥ 3,

we obtain 5k ≡ 1 (mod 8), so that k is even. Writing k = 2l, we have

2m+1(2m + s) = (5l − 1)(5l + 1).

The factor 5l + 1 ≡ 2 (mod 4), so 5l − 1 = 2ma for some odd integer a.

But if a = 1, then

2 = (5l + 1) − (5l − 1) = 2(2m + s) − 2m = 2m + 2s ≥ 23 − 2,

a contradiction, whereas if a ≥ 3, then 5l−1 ≥ 3·2m while 5l+1 ≤ 2(2m+s),

another contradiction.

Problem 1.5.4. Find an integer n with 100 ≤ n ≤ 1997 such that n

divides 2n + 2.
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(1997 Asian Pacific Mathematics Olympiad)

Solution. Note that 2 divides 2n + 2 for all n. Also, 11 divides 2n + 2

if and only if n ≡ 6 (mod 10), and 43 divides 2n + 2 if and only if n ≡ 8

(mod 14). Since n = 946 = 2 · 11 · 43 satisfies both congruences, n divides

2n + 2.

Remark. Actually, one can prove that there are infinitely many n such

that n|2n + 2. Also, any such n is even since by a theorem of W. Sierpinski

we cannot have n|2n−1 + 1 unless n = 1.

Problem 1.5.5. The number 99 . . . 99 (with 1997 nines) is written on a

blackboard. Each minute, one number written on the blackboard is factored

into two factors and erased, each factor is (independently) increased or

diminished by 2, and the resulting two numbers are written. Is it possible

that at some point all of the numbers on the blackboard equal 9?

(1997 St. Petersburg City Mathematical Olympiad)

Solution. No, there is always a number congruent to 3 modulo 4: factor-

ing such a number gives one factor congruent to 3 modulo 4, and changing

that by 2 in either direction gives a number congruent to 3 modulo 4.

Problem 1.5.6. Find the smallest positive integer which can be written

both as (i) a sum of 2002 positive integers (not necessarily distinct), each of

which has the same sum of digits and (ii) as a sum of 2003 positive integers

(not necessarily distinct), each of which has the same sum of digits.

(2002 Russian Mathematical Olympiad)

Solution. The answer is 10010. First observe that this is indeed a solu-

tion: 10010 = 2002·5 = 1781·4+222·13, so we may express 10010 as the sum

of 2002 fives or of 1781 fours and 222 thirteens, where 1781+222 = 2003. To

prove minimality, observe that a number is congruent modulo 9 to the sum

of its digits, so two positive integers with the same digit sum are in the same

residue class modulo 9. Let k1 be the digit sum of the 2002 numbers and

k2 the digit sum of the 2003 numbers. Then 4k1 ≡ 2002k1 ≡ 2003k2 ≡ 5k2

(mod 9). If k1 ≥ 5, the sum of the 2002 numbers is at least 10010; if k2 ≥ 5,

the sum of the 2003 numbers is greater than 10010. However, the solutions

k1 ≡ 1, 2, 3, 4 (mod 9) give k2 ≡ 8, 7, 6, 5, respectively, so that at least one

of k1 or k2 is greater than or equal to 5, and the minimal integer is 10010.
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Proposed problems

Problem 1.5.7. Find all integers n > 1 such that any prime divisor of

n6 − 1 is a divisor of (n3 − 1)(n2 − 1).

(2002 Baltic Mathematics Competition)

Problem 1.5.8. Let f(n) be the number of permutations a1, . . . , an of

the integers 1, . . . , n such that

(i) a1 = 1;

(ii) |ai − ai+1| ≤ 2, i = 1, . . . , n− 1.

Determine whether f(1996) is divisible by 3.

(1996 Canadian Mathematical Olympiad)

Problem 1.5.9. For natural numbers m,n, show that 2n − 1 is divisible

by (2m − 1)2 if and only if n is divisible by m(2m − 1).

(1997 Russian Mathematical Olympiad)

Problem 1.5.10. Suppose that n is a positive integer and let

d1 < d2 < d3 < d4

be the four smallest positive integer divisors of n. Find all integers n such

that

n = d2
1 + d2

2 + d2
3 + d2

4.

(1999 Iranian Mathematical Olympiad)

Problem 1.5.11. Let p be an odd prime. For each i = 1, 2, . . . , p − 1

denote by ri the remainder when ip is divided by p2. Evaluate the sum

r1 + r2 + · · · + rp−1.

(Kvant)

Problem 1.5.12. Find the number of integers x with |x| ≤ 1997 such

that 1997 divides x2 + (x+ 1)2.

(1998 Indian Mathematical Olympiad)
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1.6 Chinese remainder theorem

In many concrete situations we need to find a solution to some system

of linear congruences of the form

a1x ≡ b1 (mod m1), . . . , anx ≡ bn (mod mn).

Under some additional hypothesis (for instance gcd(ak,mk) = 1, k =

1, . . . , n) this system reduces to the form

x ≡ c1 (mod m1), . . . , x ≡ cn (mod mn).

In solving this class of systems an important part is played by the fol-

lowing result:

Theorem 1.6.1. (Chinese Remainder Theorem) Let m1, . . . ,mn be pos-

itive integers different from 1 and pairwise relatively prime. Then for any

nonzero integers a1, . . . , ar the system of linear congruences

x ≡ a1 (mod m1), . . . , x ≡ ar (mod mr)

has solutions and any two such solutions are congruent modulo m =

m1 . . .mr.

Proof. It is clear that gcd

(
m

mj
,mj

)

= 1, j = 1, . . . , r. Applying Propo-

sition 1.3.1 it follows that there is an integer bj such that

m

mj
bj ≡ 1 (mod mj), j = 1, . . . , r.

Then
m

mj
bjaj ≡ aj (mod mj), j = 1, . . . , r.

Now consider the integer

x0 =

r∑

j=1

m

mj
bjaj .

We have

x0 ≡





r∑

j=1

m

mj
bjaj



 (mod mi) ≡
m

mi
biai (mod mi)

≡ ai (mod mi), i = 1, . . . , r,

that is x0 is a solution to the system of linear congruences.
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If x1 is another solution, then x1 ≡ x0 (mod mi), i = 1, . . . , r. Applying

property 8) in Section 1.5, the conclusion follows. �

Example. Let us find the solutions to the system of linear congruences

x ≡ 2 (mod 3), x ≡ 1 (mod 4), x ≡ 3 (mod 5).

We proceed as in the proof of the theorem. Because in this case m =

3 · 4 · 5 = 60, we have to find a solution to each of the congruences

60

3
b1 ≡ 1 (mod 3),

60

4
b2 ≡ 1 (mod 4),

60

5
b3 ≡ 1 (mod 5).

This is equivalent to finding solutions to the congruences

2b1 ≡ 1 (mod 3), 3b2 ≡ 1 (mod 4), 2b3 ≡ 1 (mod 5).

We obtain b1 = 2, b2 = 3, b3 = 3. Then

x0 = 20 · 2 · 2 + 15 · 3 · 1 + 12 · 3 · 3 = 233.

Taking into account that all solutions are congruent modulo 60 it follows

that it suffices to take x0 = 53. All solutions are given by x = 53 + 60k,

k ∈ Z.

Problem 1.6.1. We call a lattice point X in the plane visible from the

origin O if the segment OX does not contain any other lattice points besides

O and X. Show that for any positive integer n, there exists a square of n2

lattice points (with sides parallel to the coordinate axes) such that none of

the lattice points inside the square is visible from the origin.

(2002 Taiwanese Mathematical Olympiad)

Solution. Suppose that the lower-left lattice point of such a square has

coordinates (x1, y1). We shall show that it is possible to select (x1, y1) such

that the square of lattice points with (x1, y1) at its corner and n points on

a side contains only invisible points. This can be accomplished by ensuring

that each point has both coordinates divisible by some prime number; this

would imply that by dividing both coordinates by this prime we could find

another lattice point that is between the origin and this point.

Select n2 distinct prime numbers and call them pi,j , 1 ≤ 1, j ≤ n. Now

find x1 satisfying the following congruences:

x1 ≡ 0 (mod p1,1, p1,2 . . . p1,n),
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x1+ ≡ 0 (mod p2,1p2,2 . . . p2,n),

. . .

x1 + n− 1 ≡ 0 (mod pn,1pn,2 . . . pn,n).

Likewise select y1 satisfying:

y1 ≡ 0 (mod p1,1p2,1 . . . pn,1),

y1 + 1 ≡ 0 (mod p1,2p2,2 . . . pn,2),

. . .

y1 + n− 1 ≡ 0 (mod p1,np2,n . . . , pn,n).

Both values must exist by the Chinese Remainder Theorem. Thus we

have proved that it is possible to determine a position for (x1, y1) such

that every point in the square of n2 lattice points with (x1, y1) at it’s lower

left corner is associated with some prime by which both of its coordinates

are divisible, thus all points in this square are not visible from the origin.

Problem 1.6.2. Show that there exists an increasing sequence {an}∞n=1

of natural numbers such that for any k ≥ 0, the sequence {k+an} contains

only finitely many primes.

(1997 Czech and Slovak Mathematical Olympiad)

Solution. Let pk be the k-th prime number, k ≥ 1. Set a1 = 2. For

n ≥ 1, let an+1 be the least integer greater than an that is congruent to −k
modulo pk+1 for all k ≤ n. Such an integer exists by the Chinese Remainder

Theorem. Thus, for all k ≥ 0, k + an ≡ 0 (mod pk+1) for n ≥ k + 1. Then

at most k+1 values in the sequence {k+an} can be prime; from the k+2-

th term onward, the values are nontrivial multiples of pk+1 and must be

composite. This completes the proof.

Proposed problems

Problem 1.6.3. Let P (x) be a polynomial with integer coefficients.

Suppose that the integers a1, a2, . . . , an have the following property: For

any integer x there exists an i ∈ {1, 2, . . . , n} such that P (x) is divisible by

ai. Prove that there is an i0 ∈ {1, 2, . . . , n} such that ai0 divides P (x) for

any integer x.

(St. Petersburg City Mathematical Olympiad)
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Problem 1.6.4. For any positive integer set {a1, a2, . . . , an} there exists

a positive integer b such that the set {ba1, ba2, . . . , ban} consists of perfect

powers.

1.7 Numerical systems

1.7.1 Representation of integers in an arbitrary base

The fundamental result in this subsection is given by the following the-

orem:

Theorem 1.7.1. Let b be an integer greater than 1. For any integer

n ≥ 1 there is a unique system (k, a0, a1, . . . , ak) of integers such that

0 ≤ ai ≤ b− 1, i = 0, 1, . . . , k, ak 6= 0, and

n = akb
k + ak−1b

k−1 + · · · + a1b+ a0. (1)

Proof. For the existence, we repeatedly apply the Division Algorithm:

n = q1b+ r1, 0 ≤ r1 ≤ b − 1

q1 = q2b+ r2, 0 ≤ r2 ≤ b− 1

. . .

qk−1 = qkb+ rk, 0 ≤ rk ≤ b− 1

where qk is the last nonzero quotient.

Let

q0 = n, a0 = n− q1b, a1 = q1 − q2b, . . . , ak−1 = qk−1 − qkb, ak = qk.

Then

k∑

i=0

aib
i =

k−1∑

i=0

(qi − qi+1b)b
i + qkb

k = q0 +

k∑

i=1

qib
i −

k∑

i=1

qib
i = q0 = n.

For the uniqueness, assume that n = c0 + c1b+ · · ·+ chb
h is another such

representation.

If h 6= k, for example h > k, then n ≥ bk ≥ bk+1, But

n = a0 + a1b+ · · · + akb
k ≤ (b− 1)(1 + b+ · · · + bk) = bk+1 − 1 < bk+1,

a contradiction.
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If h = k, then

a0 + a1b+ · · · + akb
k = c0 + c1b+ · · · + ckb

k

and so b|a0− c0. On the other hand, |a0− c0| < b, hence a0 = c0, Therefore

a1 + a2b+ · · · + akb
k−1 = c1 + c2b+ · · · + ckb

k−1.

Repeating the procedure above, it follows that a1 = c1, a2 = c2,. . . ,

ak = ck. �

Relation (1) is called the base b representation of n and is denoted by

n = akak−1 . . . a0(b)

The usual decimal representation corresponds to b = 10.

Examples. 1) 4567 = 4 · 103 + 5 · 102 + 6 · 10 + 7 = 4567(10).

2) Let us write 1010011(2) in base 10. We have

1010011(2) = 1·26+0·25+1·24+0·23+0·22+1·2+1 = 64+16+2+1 = 83.

3) Let us write 1211 in base 3. As above, dividing by 3 successively,

the remainders give the digits of the base 3 representation, beginning with

the last. The first digit is the last nonzero quotient. We can arrange the

computations as follows:

1211 3

1209 403 3

2 402 134 3

1 132 44 3

2 42 14 3

2 12 4 3

2 3 1

1

Hence 1211 = 1122212(3).

1.7.2 Divisibility criteria in the decimal system

We will prove some divisibility criteria for integers in decimal repre-

sentation. In this subsection, we will denote n = ahah−1 . . . a0 with the

understanding that we operate in base 10.
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Criterion 1. a) The integer n = ahah−1 . . . a0 is divisible by 3 if and

only if the sum s(n) of its digits is divisible by 3.

b) The integer n = ahah−1 . . . a0 is divisible by 9 if and only if s(n) is

divisible by 9.

Proof. We have 10k ≡ 1 (mod 9) since 10 ≡ 1 (mod 9), hence

n =
h∑

k=0

ak10ks(n) (mod 9).

Both conclusions follow. �

Criterion 2. The integer n = ahah−1 . . . a0 is divisible by 11 if and only

if a0 − a1 + · · · + (−1)hah is divisible by 11.

Proof. We have 10k = (11 − 1)k ≡ (−1)k (mod 11), hence

n =

h∑

k=0

ak10k ≡
h∑

k=0

(−1)kak (mod 11),

and the conclusion follows. �

Criterion 3. The integer n = ahah−1 . . . a0 is divisible by 7, 11, or 13 if

and only if ahah−1 . . . a3 − a2a1a0 has this property.

Proof. We have

n = a2a1a0 + (1001 − 1)ahah−1 . . . a3

= 7 · 11 · 13ahah−1 . . . a3 − (ahah−1 . . . a3 − a2a1a0)

hence the desired conclusion. �

Criterion 4. The integer n = ahah−1 . . . a0 is divisible by 27 or 37 if

and only if ahah−1 . . . a3 + a2a1a0 has this property.

Proof. We have

n = a2a1a0 + (999 + 1)ahah−1 . . . a3

= 27 · 37ahah−1 . . . a3 + (ahah−1 . . . a3 + a2a1a0)

and the conclusion follows. �

Examples. 1) The integer 123456789 is divisible by 9 because the sum

of its digits 1 + 2 + · · · + 9 = 45 has this property (Criterion 1b)).

2) The integer 20 . . . 04
︸ ︷︷ ︸

2004

is not a perfect square because the sum of its

digits is 6, a multiple of 3 but not of 9, hence the integer itself has these

properties (Criteria 1a) and 1b)).
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3) All integers of the form abcdef where a+ c+ e = 8 and b+ d+ f = 19

are divisible by 99, because a+ b+ c+ d+ f = 8 + 19, a multiple of 9, and

f − e+ d− c+ b− a = 19 − 8, a multiple of 11 and the conclusion follows

from Criteria 1b) and 2.

4) For any nonzero digit a, the integer a1234567 is not divisible by 37.

Indeed, applying Criterion 4 we have a1234+ 567 = a1801 and a1 + 801 =

8a2 = 800 + 10a+ 2 = 37 · 21 + 10a+ 25. The integer 10a+ 25 = 5(2a+ 5)

is not divisible by 37 because 7 ≤ 2a+ 5 ≤ 23.

Problem 1.7.1. Find all integers written as abcd in decimal represen-

tation and dcba in base 7.

Solution. We have

abcd(10) = dcba(7) ⇔ 999a+93b = 39c+342d ⇔ 333a+31b = 13c+114d,

hence b ≡ c (mod 3). As b, c ∈ {0, 1, 2, 3, 4, 5, 6}, the possibilities are:

i) b = c;

ii) b = c+ 3;

iii) b+ 3 = c.

In the first case we must have a = 2a′, d = 3d′, 37a′ + b = 19d′, d′ = 2.

Hence a′ = 1, a = 2, d = 6, b = 1, c = 1, and the number abcd is 2116.

In the other cases a has to be odd. Considering a = 1, 3 or 5 we obtain

no solutions.

Problem 1.7.2. Prove that every integer k > 1 has a multiple less than

k4 whose decimal expansion has at most four distinct digits.

(1996 German Mathematical Olympiad)

Solution. Let n be the integer such that 2n−1 ≤ k < 2n. For n ≤ 6 the

result is immediate, so assume n > 6.

Let S be the set of nonnegative integers less than 10n whose decimal

digits are all 0 or 1. Since |S| = 2n > k, we can find two elements a < b of

S which are congruent modulo k, and b− a only has the digits 8, 9, 0, 1 in

its decimal representation. On the other hand,

b − a ≤ 1 + 10 + · · · + 10n−1 < 10n < 16n−1 ≤ k4,

hence b− a is the desired multiple.

Problem 1.7.3. A positive integer is written on a board. We repeatedly

erase its unit digit and add 5 times that digit to what remains. Starting

with 71998, can we ever end up at 19987?
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(1998 Russian Mathematical Olympiad)

Solution. The answer is no. Let an be the n-th number written on the

board; let un be the unit digit and an = 10tn + un. We have

an+1 = tn + 5un ≡ 50tn + 5un = 5(10tn + un) = 5an (mod 7).

Since a1 = 71998 ≡ 0 6≡ 19987 (mod 7), we can never obtain 19987 from

71998.

Problem 1.7.4. Find all the three digit numbers abc such that the 6003-

digit number abcabc . . . abc is divisible by 91 (abc occurs 2001 times).

Solution. The number is equal to

abc(1 + 103 + 106 + · · · + 106000).

Since 91 is a divisor of 1001 = 1 + 103 and the sum S = 1 + 103 + 106 +

· · ·+106000 has 2001 terms, it follows that 91 and (1+103)+106(1+103)+

· · ·+ 101999(1 + 103) + 106000 are relatively prime. Thus abc is divisible by

91. The numbers are

182, 273, 364, 455, 546, 637, 728, 819, 910.

Problem 1.7.5. Let n be an integer greater than 10 such that each of

its digits belongs to the set S = {1, 3, 7, 9}. Prove that n has some prime

divisor greater than or equal to 11.

(1999 Iberoamerican Mathematical Olympiad)

Solution. Note that any product of any two numbers from {1, 3, 7, 9}
taken modulo 20 is still in {1, 3, 7, 9}. Therefore any finite product of such

numbers is still in this set. Specifically, any number of the form 3j7k is

congruent to 1, 3, 7, or 9 (mod 20).

Now if all the digits of n ≥ 10 are in S, then its tens digit is odd and

we cannot have n ≡ 1, 3, 7, or 9 (mod 20). Thus, n cannot be of the form

3j7k. Nor can n be divisible by 2 or 5 (otherwise, its last digit would not

be 1, 3, 7, or 9). Hence n must be divisible by some prime greater than or

equal to 11, as desired.

Problem 1.7.6. Find all natural numbers with the property that, when

the first digit is moved to the end, the resulting number is 3 1
2 times the

original one.

(1997 South African Mathematical Olympiad)
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Solution. Such numbers are those of the form

153846153846153846 . . .153846.

Obviously, since the number has the same number of digits when multi-

plied by 3.5, it must begin with either 1 or 2.

Case 1. The number is of the form 10N+A, A < 10N . So 7/2∗(10N+A) =

10A+ 1 → A = (7 ∗ 10N − 2)/13. The powers of 10 repeat with a period

of 6 mod 13 (10,9,12,3,4,1) so A will be an integer iff n ≡ 5 (mod 6). This

gives the family of solutions above.

Case 2. The number is of the form 2∗10N +A, A < 10N . Then, as before,

A = (14 ∗ 10N − 4)/13. But as A < 10N , this implies 10N < 4, which is

impossible.

Problem 1.7.7. Any positive integer m can be written uniquely in base

3 form as a string of 0’s, 1’s and 2’s (not beginning with a zero). For

example,

98 = 81 + 9 + 2 × 3 + 2 × 1 = (10122)3.

Let c(m) denote the sum of the cubes of the digits of the base 3 form of

m; thus, for instance

c(98) = 13 + 03 + 13 + 23 + 23 = 18.

Let n be any fixed positive integer. Define the sequence {ur} as

u1 = n, and ur = c(ur−1) for r ≥ 2.

Show that there is a positive integer r such that ur = 1, 2, or 17.

(1999 United Kingdom Mathematical Olympiad)

Solution. If m has d ≥ 5 digits then we have m ≥ 3d−1 = (80 +

1)(d−1)/4 ≥ 80 · d− 1

4
+ 1 > 8d by Bernoulli’s inequality. Thus m > c(m).

If m > 32 has 4 digits in base 3, then c(m) ≤ 23 +33 +23 +23 = 32 < m.

On the other hand, if 27 ≤ m ≤ 32, then m starts with the digits 10 in

base 3 and c(m) < 13 + 03 + 23 + 23 = 17 < m.

Therefore 0 < c(m) < m for all m ≥ 27. Hence, eventually, we have

us < 27. Because us has at most three digits, us+1 can only equal 8, 16,

24, 1, 9, 17, 2, 10, or 3. If it equals 1, 2, or 17 we are already done; if it

equals 3 or 9 then us+2 = 1. Otherwise a simple check shows that ur will
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eventually equal 2:

8 = (22)3

24 = (220)3

}

→ 16 = (121)3 → 10 = (1013 → 2.

Problem 1.7.8. Do there exist n-digit numbers M and N such that all

of the digits of M are even, all of the digits of N are odd, each digit from

0 to 9 occurs exactly once among M and N , and N divides M?

(1998 Russian Mathematical Olympiad)

Solution. The answer is no. We proceed by indirect proof. Suppose that

such M and N exist and let a = M/N . Then M ≡ 0 + 2 + 4 + 6 + 8 ≡ 2

(mod 9) and N ≡ 1 + 3 + 5 + 7 + 9 ≡ 7 (mod 9); they are both relatively

prime to 9. Now a ≡ M/N ≡ 8 (mod 9) and so a ≥ 8. But N ≥ 13579 so

M = aN ≥ 8(13579) > 99999, a contradiction.

Problem 1.7.9. Let k ≥ 1 be an integer. Show that there are exactly

3k−1 positive integers n with the following properties:

(a) The decimal representation of n consists of exactly k digits.

(b) All digits of k are odd.

(c) The number n is divisible by 5.

(d) The number m = n/5 has k (decimal) digits.

(1996 Austrian-Polish Mathematics Competition)

Solution. The multiplication in each place must produce an even num-

ber of carries, since these will be added to 5 in the next place and an odd

digit must result. Hence all of the digits of m must be 1, 5 or 9, and the first

digit must be 1, since m and n have the same number of decimal digits.

Hence there are 3k−1 choices for m and hence for n.

Problem 1.7.10. Can the number obtained by writing the numbers from

1 to n in order (n > 1) be the same when read left-to-right and right-to-left?

(1996 Russian Mathematical Olympiad)

Solution. This is not possible. Suppose N = 123 . . .321 is an m-digit

symmetric number, formed by writing the numbers from 1 to n in succes-

sion. Clearly m > 18. Also let A and B be the numbers formed from the

first and last k digits, respectively, of N , where k = ⌊m/2⌋. If 10p is the

largest power of 10 dividing A, then n < 2 · 10p+1, that is, n has at most
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p+ 2 digits. Moreover, A and B must contain the fragments

99 . . . 9
︸ ︷︷ ︸

p

100 . . .0
︸ ︷︷ ︸

p

1 and 1 00 . . .0
︸ ︷︷ ︸

p

99 . . . 9
︸ ︷︷ ︸

p

,

respectively, which is impossible.

Problem 1.7.11. Three boxes with at least one marble in each are given.

In a step we choose two of the boxes, doubling the number of marbles in

one of the boxes by taking the required number of marbles from the other

box. Is it always possible to empty one of the boxes after a finite number of

steps?

(1999 Slovenian Mathematical Olympiad)

Solution. Without loss of generality suppose that the number of marbles

in the boxes are a, b, and c with a ≤ b ≤ c. Write b = qa+r where 0 ≤ r < a

and q ≥ 1. Then express q in binary:

q = m0 + 2m1 + · · · + 2kmk,

where each mi ∈ {0, 1} and mk = 1. Now for each i = 0, 1, . . . , k, add

2ia marbles to the first box: if mi = 1 take these marbles from the second

box; otherwise take them from this third box. In this way we take at most

(2k − 1)a < qa ≤ b ≤ c marbles from the third box and exactly qa marbles

from the second box altogether.

In the second box there are now r < a marbles left. Thus the box with

the least number of marbles now contains less than a marbles. Then by

repeating the described procedure, we will eventually empty one of the

boxes.

Proposed problems

Problem 1.7.12. The natural number A has the following property: the

sum of the integers from 1 to A, inclusive, has decimal expansion equal to

that of A followed by three digits. Find A.

(1999 Russian Mathematical Olympiad)

Problem 1.7.13. A positive integer is said to be balanced if the number

of its decimal digits equals the number of its distinct prime factors. For

instance, 15 is balanced, while 49 is not. Prove that there are only finitely

many balanced numbers.
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(1999 Italian Mathematical Olympiad)

Problem 1.7.14. Let p ≥ 5 be a prime and choose k ∈ {0, . . . , p − 1}.
Find the maximum length of an arithmetic progression, none of whose

elements contain the digit k when written in base p.

(1997 Romanian Mathematical Olympiad)

Problem 1.7.15. How many 10-digit numbers divisible by 66667 are

there whose decimal representation contains only the digits 3, 4, 5, and 6?

(1999 St. Petersburg City Mathematical Olympiad)

Problem 1.7.16. Call positive integers similar if they are written using

the same set of digits. For example, for the set 1, 1, 2, the similar numbers

are 112, 121 and 211. Prove that there exist 3 similar 1995-digit numbers

containing no zeros, such that the sum of two them equals the third.

(1995 Russian Mathematical Olympiad)

Problem 1.7.17. Let k and n be positive integers such that

(n+ 2)n+2, (n+ 4)n+4, (n+ 6)n+6, . . . , (n+ 2k)n+2k

end in the same digit in decimal representation. At most how large is k?

(1995 Hungarian Mathematical Olympiad)

Problem 1.7.18. Let

1996∏

n=1

(1 + nx3n

) = 1 + a1x
k1 + a2x

k2 + · · · + amx
km ,

where a1, a2, . . . , am are nonzero and k1 < k2 < · · · < km, Find a1996.

(1996 Turkish Mathematical Olympiad)

Problem 1.7.19. For any positive integer k, let f(k) be the number of

element in the set {k + 1, k + 2, . . . , 2k} whose base 2 representation has

precisely three 1s.

a) Prove that, for each positive integer m, there exists at least one posi-

tive integer k, such that f(k) = m.

b) Determine all positive integers m for which there exists exactly one k

with f(k) = m.
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(35th IMO)

Problem 1.7.20. For each positive integer n, let S(n) be the sum of

digits in the decimal representation of n. Any positive integer obtained

by removing several (at least one) digits from the right-hand end of the

decimal representation of n is called a stump of n. Let T (n) be the sum of

all stumps of n. Prove that n = S(n) + 9T (n).

(2001 Asian Pacific Mathematical Olympiad)

Problem 1.7.21. Let p be a prime number and m be a positive inte-

ger. Show that there exists a positive integer n such that there exist m

consecutive zeroes in the decimal representation of pn.

(2001 Japanese Mathematical Olympiad)

Problem 1.7.22. Knowing 229 is an 9-digit number whose digits are

distinct, without computing the actual number determine which of the ten

digits is missing. Justify your answer.

Problem 1.7.23. It is well known that the divisibility tests for division

by 3 and 9 do not depend on the order of the decimal digits. Prove that 3

and 9 are the only positive integers with this property. More exactly, if an

integer d > 1 has the property that d|n implies d|n1, where n1 is obtained

from n through an arbitrary permutation of its digits, then d = 3 or d = 9.
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Powers of Integers

An integer n is a perfect square if n = m2 for some integer m. Taking into

account the prime factorization, if m = pα1
1 . . . pαk

k , then n = p2α1
1 . . . p2αk

k .

That is, n is a perfect square if and only if all exponents in its prime

factorization are even.

An integer n is a perfect power if n = ms for some integers m and s,

s ≥ 2. Similarly, n is an s-th perfect power if and only if all exponents in

its prime factorization are divisible by s.

We say that the integer n is squarefree if for any prime divisor p, p2 does

not divide n. Similarly, we can define the s-th power-free integers.

These preliminary considerations seem trivial but as you will see shortly

they have significant rich applications in solving various problems.

2.1 Perfect squares

Problem 2.1.1. Find all nonnegative integers n such that there are

integers a and b with the property:

n2 = a+ b and n3 = a2 + b2.

(2004 Romanian Mathematical Olympiad)



62 2. POWERS OF INTEGERS

Solution. From the inequality 2(a2 + b2) ≥ (a + b)2 we get 2n3 ≥ n4,

that is n ≤ 2. Thus:

- for n = 0, we choose a = b = 0,

- for n = 1, we take a = 1, b = 0 and

- for n = 2, we may take a = b = 2.

Problem 2.1.2. Find all integers n such that n−50 and n+50 are both

perfect squares.

Solution. Let n − 50 = a2 and n + 50 = b2. Then b2 − a2 = 100, so

(b−a)(b+a) = 22 ·52. Because b−a and b+a are distinct and of the same

parity, the only possibility is b− a = 2 and b+ a = 50, yielding b = 26 and

a = 24. Hence there is only one n with this property, namely n = 626.

Problem 2.1.3. Let n ≥ 3 be a positive integer. Show that it is possible to

eliminate at most two numbers among the elements of the set {1, 2, . . . , n}
such that the sum of remaining numbers is a perfect square.

(2003 Romanian Mathematical Olympiad)

Solution. Let m =

⌊√

n(n+ 1)

2

⌋

. From m2 ≤ n(n+ 1)

2
< (m+ 1)2 we

obtain
n(n+ 1)

2
−m2 < (m+ 1)2 −m2 = 2m+ 1.

Therefore, we have:

n(n+ 1)

2
−m2 ≤ 2m ≤

√

2n2 + 2n ≤ 2n− 1.

Since, any number k, k ≤ 2n− 1 can be obtained by adding at most two

numbers from {1, 2, . . . , n}, we obtain the result.

Problem 2.1.4. Let k be a positive integer and a = 3k2 + 3k + 1.

(i) Show that 2a and a2 are sums of three perfect squares.

(ii) Show that if a is a divisor of a positive integer b and b is a sum of

three perfect squares then any power bn is a sum of three perfect squares.

(2003 Romanian Mathematical Olympiad)

Solution. (i) 2a = 6k2+6k+2 = (2k+1)2+(k+1)2+k2 and a2 = 9k2+

19k3+15k2+6k+1 = (k2+k)2+(2k2+3k+1)2+k2(2k+1) = a2
1+a2

2+a2
3.

(ii) Let b = ca. Then b = b21 + b22 + b23 and b2 = c2a2 = c2(a2
1 + a2

2 + a2
3).

To end the proof, we proceed as follows: for n = 2p + 1 we have b2p+1 =

(bp)2(b21 + b22 + b23) and for n = 2p+2, bn = (bp)2b2 = (bp)2c2(a2
1 + a2

2 + a2
3).
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Problem 2.1.5. a) Let k be an integer number. Prove that the number:

(2k + 1)3 − (2k − 1)3

is the sum of three squares.

b) Let n be a positive number. Prove that the number (2n+ 1)3 − 2 can

be represented as the sum of 3n− 1 squares greater than 1.

(2000 Romanian Mathematical Olympiad)

Solution. a) It is easy to check that

(2k + 1)3 − (2k − 1)3 = (4k)2 + (2k + 1)2 + (2k − 1)2.

b) Observe that

(2n+1)3− 1 = (2n+1)3− (2n− 1)3 +(2n− 1)3− (2n− 3)3 + · · ·+33− 13.

Each of the n differences in the right hand side can be written as a sum

of three squares greater than 1, except for the last one:

33 − 13 = 42 + 32 + 12.

It follows that

(2n+ 1)3 − 2 = 32 + 42 +
n∑

k=2

[(4k)2 + (2k + 1)2 + (2k − 1)2]

as desired.

Problem 2.1.6. Prove that for any positive integer n the number

(
17 + 12

√
2
)n −

(
17 − 12

√
2
)n

4
√

2

is an integer but not a perfect square.

Solution. Note that 17+12
√

2 =
(√

2 + 1
)4

and 17−12
√

2 =
(√

2 − 1
)4

,

so

(
17 + 12

√
2
)n −

(
17 − 12

√
2
)n

4
√

2
=

(√
2 + 1

)4n −
(√

2 − 1
)4n

4
√

2
=

=

(√
2 + 1

)2n
+
(√

2 − 1
)2n

2
·
(√

2 + 1
)2n −

(√
2 − 1

)2n

2
√

2
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Define

A =

(√
2 + 1

)2n
+
(√

2 − 1
)2n

2
and B =

(√
2 + 1

)2n −
(√

2 − 1
)2n

2
√

2

Using the binomial expansion formula we obtain positive integers x and

y such that

(√
2 + 1

)2n

= x+ y
√

2,
(√

2 − 1
)2n

= x− y
√

2

Then

x =

(√
2 + 1

)2n
+
(√

2 − 1
)2n

2
= A

and

y =

(√
2 + 1

)2n −
(√

2 − 1
)2n

2
√

2
= B

and so AB is as integer, as claimed.

Observe that

A2 − 2B2 = (A+
√

2B)(A−
√

2B) = (
√

2 + 1)2n(
√

2 − 1)2n = 1

so A and B are relatively prime. It is sufficient to prove that at least one

of them is not a perfect square.

We have

A =

(√
2 + 1

)2n
+
(√

2 − 1
)2n

2
=

[(√
2 + 1

)n
+
(√

2 − 1
)n

√
2

]2

− 1 (1)

and

A =

(√
2 + 1

)2n
+
(√

2 − 1
)2n

2
=

[(√
2 + 1

)n −
(√

2 − 1
)n

√
2

]2

+ 1 (2)

Since only one of the numbers

(√
2 + 1

)n
+
(√

2 − 1
)n

√
2

,

(√
2 + 1

)n −
(√

2 − 1
)n

√
2

is an integer – depending on the parity of n – from the relations (1) and

(2) we derive that A is not a square. This completes the proof.

Problem 2.1.7. The integers a and b have the property that for every

nonnegative integer n, the number 2na + b is a perfect square. Show that

a = 0.
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(2001 Polish Mathematical Olympiad)

Solution. If a 6= 0 and b = 0, then at least one of 21a+ b and 22a+ b is

not a perfect square, a contradiction.

If a 6= 0 and b 6= 0, then each (xn, yn) = (2
√

2na+ b,
√

2n+2a+ b) satis-

fies

(xn + yn)(xn − yn) = 3b.

Hence, x + n + yn|3b for each n. But thus is impossible because 3b 6= 0

but |xn + yn| > |3b| for large enough n.

Therefore, a = 0.

Remark. We invite the courageous reader to prove that if f ∈ Z[X ] is a

polynomial and f(2n) is a perfect square for all n, then there is g ∈ Z[X ]

such that f = g2.

Problem 2.1.8. Prove that the number

11 . . . 11
︸ ︷︷ ︸

1997

22 . . .22
︸ ︷︷ ︸

1998

5

is a perfect square.

Solution.

N = 11 . . .11
︸ ︷︷ ︸

1997

·101999 + 22 . . . 22
︸ ︷︷ ︸

1998

·10 + 5

=
1

9
(101997 − 1) · 101999 +

2

9
(101998 − 1) · 10 + 5

=
1

9
(103996 + 2 · 5 · 101998 + 25) =

[
1

3
(101998 + 5)

]2

=







1

1997
︷ ︸︸ ︷

00 . . .00 5

3







2

= 33 . . . 33
︸ ︷︷ ︸

1997

52.

Problem 2.1.9. Find all the positive integers n, n ≥ 1, such that n2+3n

is a perfect square.

Solution. Let m be a positive integer such that

m2 = n2 + 3n.

Since (m − n)(m + n) = 3n, there is k ≥ 0 such that m − n = 3k and

m+ n = 3n−k. From m− n < m+ n follows k < n− k, and so n− 2k ≥ 1.

If n−2k = 1, then 2n = (m+n)−(m−n) = 3n−k−3k = 3k(3n−2k−1) =

3k(31 − 1) = 2 · 3k, so n = 3k = 2k + 1. We have 3m = (1 + 2)m =
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1+2m+22

(
m

2

)

+ · · · > 2m+1, therefore k = 0 or k = 1 and consequently

n = 1 or n = 3.

If n − 2k > 1, then n − 2k ≥ 2 and k ≤ n − k − 2. It follows that

3k ≤ 3n−k−2, and consequently

2n = 3n−k − 3k ≥ 3n−k − 3n−k−2 = 3n−k−2(32 − 1) = 8 · 3n−k−2

≥ 8[1 + 2(n− k − 2)] = 16n− 16k − 24,

which implies 8k + 12 ≥ 7n.

On the other hand, n ≥ 2k + 2, hence 7n ≥ 14k + 14, contradiction.

In conclusion, the only possible values for n are 1 and 3.

Problem 2.1.10. Find the number of five-digit perfect squares having

the last two digits equal.

Solution. Suppose n = abcdd is a perfect square. Then n = 100abc +

11d = M4 + 3d, and since all the squares have the form M4 or M4 + 1

and d ∈ {0, 1, 4, 5, 6, 9}, as the last digit of a square, it follows that d = 0

or d = 4.

If d = 0, then n = 100abc is a square if abc is a square.

Hence abc ∈ {102, 112, . . . , 312}, so there are 22 numbers.

If d = 4, then 100abc+ 44 = n = k2 implies k = 2p and abc =
p2 − 11

25
.

1) If p = 5x, then abc is not an integer, false.

2) If p = 5x+ 1, then abc =
25x2 + 10x− 1

25
= x2 +

2(x− 1)

5
⇒

x ∈ {11, 16, 21, 26, 31}, so there are 5 solutions.

3) If p = 5x+ 2, then abc = x2 +
20x− 7

25
6∈ N, false.

4) If p = 5x+ 3, then abc = x2 +
30x− 2

25
6∈ N, false.

5) If p = 5x+ 4 then abc = x2 +
8x+ 1

5
, hence x = M5 + 3 ⇒

x ∈ {13, 18, 23, 28}, so there are 4 solutions.

Finally, there are 22 + 5 + 4 = 31 squares.

Problem 2.1.11. The last four digits of a perfect square are equal. Prove

they are all zero.

(2002 Romanian Team Selection Test for JBMO)

Solution. Denote by k2 the perfect square and by a the digit that ap-

pears in the last four position. It easily follows that a is one of the numbers

0, 1, 4, 5, 6, 9. Thus k2 ≡ a · 1111 (mod 16).

1) If a = 0, we are done.
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2) Suppose that a ∈ {1, 5, 9}. Since k2 ≡ 0 (mod 8), k2 ≡ 1 (mod 8)

or k2 ≡ 4 (mod 8) and 1111 ≡ 7 (mod 8), we obtain 1111 ≡ 7 (mod 8),

5 · 1111 ≡ 3 (mod 8) and 9 · 1111 ≡ 7 (mod 8). Thus the congruence

k2 ≡ a · 1111 (mod 16) cannot hold.

3) Suppose a ∈ {4, 6}. As 1111 ≡ 7 (mod 16), 4 · 1111 ≡ 12 (mod 16)

and 6 · 1111 ≡ 10 (mod 16), we conclude that in this case the congruence

k2 ≡ a · 1111 (mod 16) cannot hold. Thus a = 0.

Problem 2.1.12. Let 1 < n1 < n2 < · · · < nk < . . . be a sequence of

integers such that no two are consecutive. Prove that for all positive integers

m between n1 + n2 + · · · + nm and n2 + n2 + · · · + nm+1 there is a perfect

square.

Solution. It is easy to prove that between numbers a > b ≥ 0 such that√
a−

√
b > 1 there is a perfect square - take for example ([

√
b] + 1)2.

It suffices to prove that

√
n1 + · · · + nm+1 −

√
n1 + · · · + nm > 1, m ≥ 1.

This is equivalent to

n1 + · · · + nm + nm+1 > (1 +
√
n1 + n2 + · · · + nm)2

and then

nm+1 > 1 + 2
√
n1 + n2 + · · · + nm, m ≥ 1.

We induct on m. For m = 1 we have to prove that n2 > 1 + 2
√
n1.

Indeed, n2 > n1 + 2 = 1 + (1 + n1) > 1 + 2
√
n1. Assume that the claim

holds for some m ≥ 1. Then

nm+1 − 1 >
√
n1 + · · · + nm

so (nm+1 − 1)2 > 4(n1 + · · · + nm) hence

(nm+1 + 1)2 > 4(n1 + · · · + nm+1).

This implies

nm+1 > 2
√
n1 + · · · + nm+1,

and since nm+2 − nm+1 ≥ 2, it follows that

nm+2 > 1 + 2
√
n1 + · · · + nm+1,

as desired.
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Problem 2.1.13. Find all the integers x, y, z so that 4x + 4y + 4z is a

square.

Solution. It is clear that there are no solutions with x < 0. Without

loss of generality assume that x ≤ y ≤ z and let 4x + 4y + 4z = u2. Then

22x(1 + 4y−x + 4z−x) = u2. We have two situations.

Case 1. 1 + 4y−x + 4z−x is odd, i.e. 1 + 4y−x + 4z−x = (2a + 1)2. It

follows

4y−x−1 + 4z−x−1 = a(a+ 1)

and then

4y−x−1(1 + 4z−y) = a(a+ 1).

We consider two cases.

1) The number a is even. Then a+1 is odd, so 4y−x−1 = a and 1+4z−y =

a + 1. It follows that 4y−x−1 = 4z−y, hence y − x − 1 = z − y. Thus

z = 2y − x− 1 and

4x + 4y + 4z = 4x + 4y + 42y−x−1 = (2x + 22y−x−1)2.

2) The number a is odd. Then a+1 is even, so a = 4z−y+1, a+1 = 4y−x−1

and 4y−x−1 − 4z−y = 2. It follows that 22y−2x−3 = 22x−2y−1 + 1, which is

impossible since 2x− 2y − 1 6= 0.

Case 2. 1 + 4y−x + 4z−x is even, thus y = x or z = x. Anyway, we must

have y = x and then 2+4z−x is a square, impossible since it is ≡ 2 (mod 4)

or ≡ 3 (mod 4).

Proposed problems

Problem 2.1.14. Let x, y, z be positive integers such that

1

x
− 1

y
=

1

z
.

Let h be the greatest common divisor of x, y, z. Prove that hxyz and

h(y − x) are perfect squares.

(1998 United Kingdom Mathematical Olympiad)

Problem 2.1.15. Let b an integer greater than 5. For each positive

integer n, consider the number

xn = 11 . . . 1
︸ ︷︷ ︸

n−1

22 . . . 2
︸ ︷︷ ︸

n

5,



2.1. PERFECT SQUARES 69

written in base b. Prove that the following condition holds if and only if

b = 10: There exists a positive integer M such that for every integer n

greater than M , the number xn is a perfect square.

(44th IMO Shortlist)

Problem 2.1.16. Do there exist three natural numbers greater than 1,

such that the square of each, minus one, is divisible by each of the others?

(1996 Russian Mathematical Olympiad)

Problem 2.1.17. (a) Find the first positive integer whose square ends

in three 4’s.

(b) Find all positive integers whose squares end in three 4’s.

(c) Show that no perfect square ends with four 4’s.

(1995 United Kingdom Mathematical Olympiad)

Problem 2.1.18. Let m,n be a natural numbers and m+ i = aib
2
i for

i = 1, 2, . . . , n, where ai and bi are natural numbers and ai is squarefree.

Find all values of n for which there existsm such that a1+a2+· · ·+an = 12.

(1997 Bulgarian Mathematical Olympiad)

Problem 2.1.19. For each positive integer n, denote by s(n) the greatest

integer such that for all positive integer k ≤ s(n), n2 can be expressed as

a sum of squares of k positive integers.

(a) Prove that s(n) ≤ n2 − 14 for all n ≥ 4.

(b) Find a number n such that s(n) = n2 − 14.

(c) Prove that there exist infinitely many positive integers n such that

s(n) = n2 − 14.

(33rd IMO)

Problem 2.1.20. Let A be the set of positive integers representable in

the form a2 + 2b2 for integers a, b with b 6= 0. Show that if p2 ∈ A for a

prime p, then p ∈ A.

(1997 Romanian IMO Team Selection Test)

Problem 2.1.21. Is it possible to find 100 positive integers not exceeding

25000 such that all pairwise sums of them are different?
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(42nd IMO Shortlist)

Problem 2.1.22. Do there exist 10 distinct integers, the sum of any 9

of which is a perfect square?

(1999 Russian Mathematical Olympiad)

Problem 2.1.23. Let n be a positive integer such that n is a divisor of

the sum

1 +

n−1∑

i=1

in−1

Prove that n is square-free.

(1995 Indian Mathematical Olympiad)

Problem 2.1.24. Let n, p be integers such that n > 1 and p is a prime.

If n|(p− 1) and p|(n3 − 1), show that 4p− 3 is a perfect square.

(2002 Czech-Polish-Slovak Mathematical Competition)

Problem 2.1.25. Show that for any positive integer n > 10000, there

exists a positive integer m that is a sum of two squares and such that

0 < m− n < 3 4
√
n.

(Russian Mathematical Olympiad)

Problem 2.1.26. Show that a positive integer m is a perfect square if

and only if for each positive integer n, at least one of the differences

(m+ 1)2 −m, (m+ 2)2 −m, . . . , (m+ n)2 −m

is divisible by n.

(2002 Czech and Slovak Mathematical Olympiad)

2.2 Perfect cubes

Problem 2.2.1. Prove that if n is a perfect cube, then n2+3n+3 cannot

be a perfect cube.

Solution. Suppose by way of contradiction that n2 + 3n+ 3 is a cube.

Hence n(n2 + 3n+ 3) is a cube. Note that

n(n2 + 3n+ 3) = n3 + 3n2 + 3n = (n+ 1)3 − 1
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and since (n+ 1)3 − 1 is not a cube, we obtain a contradiction.

Problem 2.2.2. Let m be a given positive integer. Find a positive integer

n such that m+ n+ 1 is a perfect square and mn+ 1 is a perfect cube.

Solution. Choosing n = m2 + 3m+ 3, we have

m+ n+ 1 = m2 + 4m+ 4 = (m+ 2)2

and

mn+ 1 = m3 + 3m2 + 3m+ 1 = (m+ 1)3.

Problem 2.2.3. Which are there more of among the natural numbers

from 1 to 1000000, inclusive: numbers that can be represented as the sum

of a perfect square and a (positive) perfect cube, or numbers that cannot

be?

(1996 Russian Mathematical Olympiad)

Solution. There are more numbers not of this form. Let n = k2 +m3,

where k,m, n ∈ N and n ≤ 1000000. Clearly k ≤ 1000 and m ≤ 100.

Therefore there cannot be more numbers in the desired form than the

100000 pairs (k,m).

Problem 2.2.4. Show that no integer of the form xyxy in base 10 can

be the cube of an integer. Also find the smallest base b > 1 in which there

is a perfect cube of the form xyxy.

(1998 Irish Mathematical Olympiad)

Solution. If the 4-digit number xyxy = 101×xy is a cube, then 101|xy,
which is a contradiction.

Convert xyxy = 101 × xy from base b to base 10. We find xyxy =

(b2 + 1) × (bx+ y) with x, y < b and b2 + 1 > bx+ y. Thus for xyxy to be

a cube, b2 + 1 must be divisible by a perfect square. We can check easily

that b = 7 is the smallest such number, with b2 + 1 = 50. The smallest

cube divisible by 50 is 1000 which is 2626 is base 7.

Proposed problems

Problem 2.2.5. Find all the positive perfect cubes that are not divisible

by 10 so that the number obtained by erasing the last three digits is also a

perfect cube.

Problem 2.2.6. Find all positive integers n less than 1999 such that n2

is equal to the cube of the sum of n’s digits.



72 2. POWERS OF INTEGERS

(1999 Iberoamerican Mathematical Olympiad)

Problem 2.2.7. Prove that for any non-negative integer n the number

A = 2n + 3n + 5n + 6n

is not a perfect cube.

Problem 2.2.8. Prove that any integer is a sum of five cubes.

Problem 2.2.9. Show that any rational number can be written as a sum

of three cubes.

2.3 k
th powers of integers, k ≥ 4

Problem 2.3.1. Given 81 natural numbers whose prime divisors belong

to the set {2, 3, 5}, prove there exist 4 numbers whose product is the fourth

power of an integer.

(1996 Greek Mathematical Olympiad)

Solution. It suffices to take 25 such numbers. To each number, associate

the triple (x2, x3, x5) recording the parity of the exponents of 2, 3, and 5

is its prime factorization. Two numbers have the same triple if and only

if their product is a perfect square. As long as there are 9 numbers left,

we can select two whose product is a square; in so doing, we obtain 9 such

pairs. Repeating the process with the square roots of the products of the

pairs, we obtain four numbers whose product is a fourth power.

Problem 2.3.2. Find all collections of 100 positive integers such that

the sum of the fourth powers of every four of the integers is divisible by the

product of the four numbers.

(1997 St. Petersburg City Mathematical Olympiad)

Solution. Such sets must be n, n, . . . , n or 3n, n, n, . . . , n for some integer

n. Without loss of generality, we assume the numbers do not have a common

factor. If u, v, w, x, y are five of the numbers, then uvw divides u4 + v4 +

w4 + x4 and u4 + v4 + w4 + y4, and so divides x4 − y4. Likewise, v4 ≡
w4 ≡ x4 (mod u), and from above, 3v4 ≡ 0 (mod u). If u has a prime

divisor not equal to 3, we conclude that every other integer is divisible by

the same prime, contrary to assumption. Likewise, if u is divisible by 9,

then every other integer is divisible by 3. Thus all of the numbers equal 1

or 3. Moreover, if one number is 3, the others are all congruent modulo 3,

so are all 3 (contrary to assumption) or 1. This completes the proof.
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Problem 2.3.3. Let M be a set of 1985 distinct positive integers, none

of which has a prime divisor greater than 26. Prove that M contains at

least one subset of four distinct elements whose product is the fourth power

of an integer.

(26th IMO)

Solution. There are nine prime numbers less than 26: p1 = 2, p2 = 3, . . . ,

p9 = 23. Any element x of M has a representation x =
9∏

i=1

pai

i , ai ≥ 0. If

x, y ∈ M and y =

9∏

i=1

pbi

i , the product xy =

9∏

i=1

pai+bi

i is a perfect square

if and only if ai + bi ≡ 0 (mod 2). Equivalently, ai ≡ bi (mod 2) for all

i = 1, 2, . . . , 9. Because there are 29 = 512 elements in (Z/2Z)9 any subset

of M having at least 513 elements contains two elements x, y such that xy

is a perfect square. Starting from M and eliminating such pairs one finds
1

2
(1985 − 513) = 736 > 513 distinct two-element subsets of M having a

square as the product of elements. Reasoning as above, we find among these

squares at least one pair (in fact many pairs) whose product is a fourth

power.

Problem 2.3.4. Let A be a subset of {0, 1, . . . , 1997} containing more

than 1000 elements. Prove that A contains either a power of 2, or two

distinct integers whose sum is a power of 2.

(1997 Irish Mathematical Olympiad)

Solution. Suppose A did not verify the conclusion. Then A would con-

tain at most half of the integers from 51 to 1997, since they can be divided

into pairs whose sum is 2048 (with 1024 left over); likewise, A contains at

most half of the integers from 14 to 50, at most half of the integers from 3

to 13, and possibly 0, for a total of

973 + 18 + 5 + 1 = 997

integers.

Problem 2.3.5. Show that in the arithmetic progression with first term

1 and ratio 729, there are infinitely many powers of 10.

(1996 Russian Mathematical Olympiad)
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Solution. We will show that for all natural numbers n, 1081n − 1 is

divisible by 729. In fact,

1081n − 1 = (1081)n − 1n = (1081 − 1) ·A,

and

1081 − 1 = 9 . . . 9
︸ ︷︷ ︸

81

= 9 . . . 9
︸ ︷︷ ︸

9

. . . 10 . . . 01
︸ ︷︷ ︸

8

10 . . . 01
︸ ︷︷ ︸

8

. . . 10 . . .01
︸ ︷︷ ︸

8

= 9 1 . . .1
︸ ︷︷ ︸

9

. . . 10 . . . 01
︸ ︷︷ ︸

8

10 . . .01
︸ ︷︷ ︸

8

. . . 10 . . .01
︸ ︷︷ ︸

8

.

The second and third factors are composed of 9 units, so the sum of their

digits is divisible by 9, that is, each is a multiple of 9. Hence 1081 − 1 is

divisible by 93 = 729, as is 1081n − 1 for any n.

Remark. An alternative solution uses Euler’s Theorem (see Section 7.2).

We have 10ϕ(729) ≡ 1 (mod 7)29, thus 10nϕ(729) is in this progression for

any positive integer n.

Proposed problems

Problem 2.3.6. Let p be a prime number and a, n positive integers.

Prove that if

2p + 3p = an,

then n = 1.

(1996 Irish Mathematical Olympiad)

Problem 2.3.7. Let x, y, p, n, k be natural numbers such that

xn + yn = pk.

Prove that if n > 1 is odd, and p is an odd prime, then n is a power of p.

(1996 Russian Mathematical Olympiad)

Problem 2.3.8. Prove that a product of three consecutive integers can-

not be a power of an integer.

Problem 2.3.9. Show that there exists an infinite set A of positive

integers such that for any finite nonempty subset B ⊂ A,
∑

x∈B

x is not a

perfect power.
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(Kvant)

Problem 2.3.10. Prove that there is no infinite arithmetic progression

consisting only of powers ≥ 2.
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3

Floor Function and Fractional Part

3.1 General problems

For a real number x there is a unique integer n such that n ≤ x < n+1.

We say that n is the greatest integer less than or equal to x or the floor of

x. We denote n = ⌊x⌋. The difference x − ⌊x⌋ is called the fractional part

of x and is denoted by {x}.
The integer ⌊x⌋ + 1 is called the ceiling of x and is denoted by ⌈x⌉.
Examples. 1) ⌊2.1⌋ = 2, {2.1} = .1, and ⌈2.1⌉ = 3.

2) ⌊−3.9⌋ = −4, {−3.9} = .1, and ⌈−3.9⌉ = −3.

The following properties are useful:

1) If a and b are integers, b > 0, and q is the quotient when a is divided

by b, then q =
⌊a

b

⌋

.

2) For any real number x and any integer n, ⌊x + n⌋ = ⌊x⌋ + n and

⌈x+ n⌉ = ⌈x⌉ + n.

3) For any positive real number x and any positive integer n the number

of positive multiples of n not exceeding x is
⌊x

n

⌋

.

4) For any real number x and any positive integer n,

⌊⌊x⌋
n

⌋

=
⌊x

n

⌋

.

We will prove the last two properties. For 3) consider all multiples

1 · n, 2 · n, . . . , k · n,
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where k · n ≤ x < (k + 1)n. That is k ≤ x

n
< k + 1 and the conclusion

follows. For 4) denote ⌊x⌋ = m and {x} = α. From the Division Algorithm

and property 1) above it follows that m = n
⌊m

n

⌋

+ r, where 0 ≤ r ≤ n−1.

We obtain 0 ≤ r + α ≤ n− 1 + α < n, that is ⌊r + α

n
⌋ = 0 and

⌊x

n

⌋

=

⌊
m+ α

n

⌋

=

⌊⌊m

n

⌋

+
r + α

n

⌋

=
⌊m

n

⌋

+

⌊
r + α

n

⌋

=
⌊m

n

⌋

=

⌊⌊x⌋
n

⌋

.

Problem 3.1.1. Find all positive integers n such that ⌊ n
√

111⌋ divides

111.

Solution. The positive divisors of 111 are 1, 3, 37, 111. So we have the

following cases:

1) ⌊ n
√

111⌋ = 1 or 1 ≤ 111 < 2n, hence n ≥ 7.

2) ⌊ n
√

111⌋ = 3, or 3n ≤ 111 < 4n, so n = 4.

3) ⌊ n
√

111⌋ = 37, or 37n ≤ 111 < 38n, impossible.

4) ⌊ n
√

111⌋ = 111, or 111n ≤ 111 < 112n, and so n = 1.

Therefore n = 1, n = 4 or n ≥ 7.

Problem 3.1.2. Solve in R the equation:

⌊x⌊x⌋⌋ = 1.

Solution. By definition,

⌊x⌊x⌋⌋ = 1

implies

1 ≤ x⌊x⌋ < 2.

We consider the following cases:

a) x ∈ (−∞,−1). Then ⌊x⌋ ≤ −2 and x⌊x⌋ > 2, a contradiction.

b) x = −1 ⇒ ⌊x⌋ = −1. Then x⌊x⌋ = (−1) · (−1) = 1 and ⌊x⌊x⌋⌋ = 1,

so x = −1 is a solution.

c) x ∈ (−1, 0). We have ⌊x⌋ = −1 and x⌊x⌋ = −x < 1, false.

d) If x ∈ [0, 1), then ⌊x⌋ = 0 and x⌊x⌋ = 0 < 1, so we have no solution

in this case.

e) For x ∈ [1, 2) we obtain ⌊x⌋ = 1 and x⌊x⌋ = ⌊x⌋ = 1, as needed.

f) Finally, for x ≥ 2 we have ⌊x⌋ ≥ 2 and x⌊x⌋ = 2x ≥ 4 · 2, a contradic-

tion with (1).

Consequently, x ∈ {−1} ∪ [1, 2).
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Problem 3.1.3. Prove that for any integer n one can find integers a

and b such that

n = ⌊a
√

2⌋ + ⌊b
√

3⌋.

Solution. For any integer n, one can find an integer b so that

√
2 + b

√
3 − 2 < n ≤

√
2 + b

√
3.

We consider the cases:

1) If n = ⌊
√

2⌋ + ⌊b
√

3⌋, we are done.

2) If n = ⌊
√

2⌋ + ⌊b
√

3⌋ + 1, then n = ⌊2
√

2⌋ + ⌊b
√

3⌋.
3) If n = ⌊

√
2⌋ + ⌊b

√
3⌋ − 1, then n = ⌊0

√
2⌋ + ⌊b

√
3⌋.

Problem 3.1.4. Find all real numbers x > 1, such that n
√

⌊xn⌋ is an

integer for all positive integers n, n ≥ 2.

(2004 Romanian Regional Mathematical Contest)

Solution. Put n
√

⌊xn⌋ = an. Then ⌊xn⌋ = an
n and an

n ≤ xn < an
n + 1.

Taking roots, one obtains an ≤ x < n
√
an

n + 1. This shows that ⌊x⌋ = an.

We will show that all positive integers x, x ≥ 2, satisfy the condition.

Assume, by way of contradiction, that there is a solution x which is not a

nonnegative integer. Put x = a+ α, a ∈ Z, a ≥ 1, 0 < α < 1.

It follows that an < (a+ α)n < an + 1, and therefore,

1 <
(

1 +
α

a

)n

< 1 +
1

an
≤ 2.

On the other hand, by Bernoulli inequality,

(

1 +
α

a

)n

≥ 1 + n
α

a
> 2,

for sufficiently large n, a contradiction.

Problem 3.1.5. Let r ≥ 1 be a real number such that for all m,n such

that m divides n, ⌊mr⌋ divides ⌊nr⌋. Prove that r is an integer.

(1997 Iberoamerican Mathematical Olympiad)

Solution. Fix the positive integer m and observe that ⌊mr⌋ divides

⌊k{mr}⌋ for any positive integer k. If {mr} 6= 0 take a positive integer k

such that
1

{mr} ≤ k <
2

{mr} ,
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possible since
2

{mr} >
1

{mr} + 1. Then ⌊mr⌋|1, thus it is 1, which means

m = 1. This shows that if m ≥ 2, then {mr} = 0, thus mr ∈ Z for any

integer m ≥ 2 and clearly r ∈ Z.

Problem 3.1.6. Find the number of different terms of the finite sequence
⌊
k2

1998

⌋

, where k = 1, 2, . . . , 1997.

(1998 Balkan Mathematical Olympiad)

Solution. Note that
⌊

9982

1998

⌋

= 498 < 499 =

⌊
9992

1998

⌋

,

so we can compute the total number of distinct terms by considering

k = 1, . . . , 998 and k = 999, . . . , 1997 independently. Observe that for

k = 1, . . . , 997,
(k + 1)2

1998
− k2

1998
=

2k + 1

1998
< 1,

so for k = 1, . . . , 998, each of the numbers

⌊
12

1998

⌋

= 0, 1, . . . , 498 =

⌊
9982

1998

⌋

appears at least once in the sequence ⌊k2/1998⌋ for a total of 499 distinct

terms. For k = 999, . . . , 1996, we have

(k + 1)2

1998
− k2

1998
=

2k + 1

1998
> 1,

so the numbers ⌊k2/1998⌋ (k = 999, . . . , 1997) are all distinct, giving 1997−
999+1 = 999 more terms. Thus the total number of distinct terms is 1498.

Problem 3.1.7. Determine the number of real solutions a of the equation

⌊a

2

⌋

+
⌊a

3

⌋

+
⌊a

5

⌋

= a.

(1998 Canadian Mathematical Olympiad)

Solution. There are 30 solutions. Since ⌊a/2⌋, ⌊a/3⌋, and ⌊a/5⌋ are

integers, so is a. Now write a = 30p+ q for integers p and q, 0 ≤ q < 30.

Then
⌊a

2

⌋

+
⌊a

3

⌋

+
⌊a

5

⌋

= a
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⇔ 31p+
⌊q

2

⌋

+
⌊ q

3

⌋

+
⌊ q

5

⌋

= 30p+ q

⇔ p = q −
⌊q

2

⌋

−
⌊ q

3

⌋

−
⌊q

5

⌋

.

Thus, for each value of q, there is exactly one value of p (and one value

of a) satisfying the equation. Since q can equal any of thirty values, there

are exactly 30 solutions, as claimed.

Problem 3.1.8. Let λ be the positive root of the equation t2−1998t−1 =

0. Define the sequence x0, x1, . . . by setting

x0 = 1, xn+1 = ⌊λxn⌋, n ≥ 0.

Find the remainder when x1998 is divided by 1998.

(1998 Iberoamerican Mathematical Olympiad)

Solution. We have

1998 < λ =
1998 +

√
19982 + 4

2

= 999 +
√

9992 + 1 < 1999,

x1 = 1998, x2 = 19982. Since λ2 − 1998λ− 1 = 0,

λ = 1998 +
1

λ
and xλ = 1998x+

x

λ

for all real number x. Since xn = ⌊xn−1λ⌋ and xn−1 is an integer and λ is

irrational, we have

xn < xn−1λ < xn + 1 or
xn

λ
< xn−1 <

xn + 1

λ
.

Since λ > 1998, ⌊xn/λ⌋ = xn−1 − 1. Therefore,

xn+1 = ⌊xnλ⌋ =
⌊

1998xn +
xn

λ

⌋

= 1998xn + xn−1 − 1,

i.e., xn+1 ≡ xn−1 − 1 (mod 1998). Therefore by induction x1998 ≡ x0 −
999 ≡ 1000 (mod 1998).

Problem 3.1.9. Let n be a positive integer. Prove that for any real

number x,

⌊nx⌋ = ⌊x⌋ +

⌊

x+
1

n

⌋

+ · · · +
⌊

x+
n− 1

n

⌋

(Hermite1).

1Charles Hermite (1822-1901), French mathematician who did brilliant work in many

branches of mathematics.
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Solution. Let f(x) be the difference between the right-hand side and

the left-hand side of (1). Then

f

(

x+
1

n

)

=

⌊

x+
1

n

⌋

+ · · · +
⌊

x+
1

n
+
n− 1

n

⌋

−
⌊

n

(

x+
1

n

)⌋

=

⌊

x+
1

n

⌋

+ · · · +
⌊

x+
n− 1

n

⌋

+ ⌊x+ 1⌋ − ⌊nx+ 1⌋,

and since ⌊x+ k⌋ = ⌊x⌋ + k for each integer k, it follows that

f

(

x+
1

n

)

= f(x)

for all real x. Hence f is periodic with period 1/n. Thus it suffices to study

f(x) for 0 ≤ x < 1/n. But f(x) = 0 for all these values, hence f(x) = 0 for

all real x, and the proof is complete.

Proposed problems

Problem 3.1.10. Let n be a positive integer. Find with proof a closed

formula for the sum:
⌊
n+ 1

2

⌋

+

⌊
n+ 2

22

⌋

+ · · · +
⌊
n+ 2k

2k+1

⌋

+ . . .

(10th IMO)

Problem 3.1.11. Compute the sum

∑

0≤i<j≤n

⌊
x+ i

j

⌋

,

where x is a real number.

Problem 3.1.12. Evaluate the difference between the numbers

2000∑

k=0

⌊
3k + 2000

3k+1

⌋

and

2000∑

k=0

⌊
3k − 2000

3k+1

⌋

.

Problem 3.1.13. a) Prove that there are infinitely many rational posi-

tive numbers x such that:

{x2} + {x} = 0, 99.

b) Prove that there are no rational numbers x > 0 such that:

{x2} + {x} = 1.
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(2004 Romanian Mathematical Olympiad)

Problem 3.1.14. Show that the fractional part of the number
√

4n2 + n

is not greater than 0.25.

(2003 Romanian Mathematical Olympiad)

Problem 3.1.15. Prove that for every natural number n,

n2
∑

k=1

{
√
k} ≤ n2 − 1

2
.

(1999 Russian Mathematical Olympiad)

Problem 3.1.16. The rational numbers α1, . . . , αn satisfy

n∑

i=1

{kαi} <
n

2

for any positive integer k.

(a) Prove that at least one of α1, . . . , αn is an integer.

(b) Do there exist α1, . . . , αn that satisfy

n∑

i=1

{kαi} ≤ n

2
,

such that no αi is an integer?

(2002 Belarus Mathematical Olympiad)

3.2 Floor function and integer points

The following results are helpful in proving many relations involving the

floor function.

Theorem 3.2.1. Let a, c be nonnegative real numbers and let f : [a, b] →
[c, d] be a bijective increasing function.

Then
∑

a≤k≤b

⌊f(k)⌋ +
∑

c≤k≤d

⌊f−1(k)⌋ − n(Gf ) = ⌊b⌋⌊d⌋ − α(a)α(c), (1)

where k is integer, n(Gf ) is the number of points with nonnegative integer

coordinates on the graph of f and α : R → Z is defined by

α(x) =







⌊x⌋ if x ∈ R \ Z

0 if x = 0

x− 1 if x ∈ Z \ {0}
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Proof. For a bounded region M of the plane we denote by n(M) the

number of points with nonnegative integral coordinates in M .

Function f is increasing and bijective, hence continuous. Consider the

sets

M1 = {(x, y) ∈ R2| a ≤ x ≤ b, 0 ≤ y ≤ f(x)},

M2 = {(x, y) ∈ R2| c ≤ y ≤ d, 0 ≤ x ≤ f−1(y)},

M3 = {(x, y) ∈ R2| 0 ≤ x ≤ b, 0 ≤ y ≤ d},

M4 = {(x, y) ∈ R2| 0 ≤ x ≤ a, 0 ≤ y ≤ c}.

6

-

d

c

a bO

M2

M1

y = f(x)

Then

n(M1) =
∑

a≤k≤b

[f(k)], n(M2) =
∑

c≤k≤d

[f−1(k)],

n(M3) = [b][d], n(M4) = α(a)α(c).

We have

n(m1) + n(M2) − n(M1 ∩M2) = n(M1 ∪M2),

hence

n(M1) + n(M2) − n(Gf ) = n(M3) − n(M4),

and the conclusion follows. �
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Theorem 3.2.2. Let m,n, s be positive integers, m ≤ n, Then

s∑

k=1

⌊
km

n

⌋

+
∑

1≤k≤ms
n

⌊
kn

m

⌋

= s
⌊ms

n

⌋

+

⌊
gcd(m,n) · s

n

⌋

. (2)

Proof. We first prove the following lemma.

Lemma. The array

1 ·m
n

,
2 ·m
n

, . . . ,
s ·m
n

contains exactly

⌊
gcd(m,n) · s

n

⌋

integers.

Proof of the lemma. Let d be the greatest common divisor of m and n.

Hence m = m1d and n = n1d for some integers m1 and n1.

The numbers in the array are

1 ·m1

n1
,
2 ·m1

n1
, . . . ,

p ·m1

n1

and, sincem1, n1 are relatively prime, there are

⌊
p

n1

⌋

integers among them.

Because n1 =
n

d
=

n

gcd(m,n)
it follows that there are

⌊
gcd(m,n)p

n

⌋

inte-

gers in the array. �

In order to prove the desired result, let us consider the function f :

[1, s] →
[m

n
,
ms

n

]

, f(x) =
m

n
x in Theorem 3.2.1. Using the lemma above

we have n(Gf ) =

⌊
gcd(m,n) · s

n

⌋

and the conclusion follows. �

Remark. The special case s = n leads to an important result:

n∑

k=1

⌊
km

n

⌋

+

m∑

k=1

⌊
kn

m

⌋

= mn+ gcd(m,n). (3)

Theorem 3.2.3. Let a, c be nonnegative real numbers and let f : [a, b] →
[c, d] be a bijective decreasing function.

Then
∑

a≤k≤b

⌊f(k)⌋ −
∑

c≤k≤d

[f−1(k)] = ⌊b⌋α(c) − ⌊d⌋α(a),

where k is integer and α is the function defined in Theorem 3.2.1.

Proof. Function f is decreasing and bijective, hence continuous. Con-

sider the sets

N1 = {(x, y) ∈ R2| a ≤ x ≤ b, c ≤ y ≤ f(x)},
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N2 = {(x, y) ∈ R2| c ≤ y ≤ d, a ≤ x ≤ f−1(y)},
N3 = {(x, y) ∈ R2| a ≤ x ≤ b, 0 ≤ y ≤ c},
N4 = {(x, y) ∈ R2| 0 ≤ x ≤ a, c ≤ y ≤ d}.

6

-

N1

y = f(x)
d

c

O a b

Then
∑

a≤k≤b

⌊f(k)⌋ = n(N1) + n(N3),

∑

c≤k≤d

⌊f−1(k)⌋ = n(N2) + n(N4),

n(N1) = n(N2), and

n(N3) = (⌊b⌋ − α(a))α(c), n(N4) = (⌊d⌋ − α(c))α(a)

It follows that
∑

a≤k≤b

⌊f(k)⌋ −
∑

c≤k≤d

⌊f−1(k)⌋ = n(N3) − n(N4) =

= ⌊b⌋α(c) − ⌊d⌋α(a),

as desired. �

Remark. Combining the result in Theorem 3.2.3 and the relation (3)

for the function f : [1, n] →
[

0,m− m

n

]

, f(x) = −m
n
x+m, m ≤ n, yields

after some computations:

n∑

k=1

⌊
km

n

⌋

=
1

2
(mn+m− n+ gcd(m,n)). (4)
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From the above relation we obtain

gcd(m,n) = 2

n−1∑

k=1

⌊
km

n

⌋

+m− n−mn,

i.e. a 1998 Taiwanese Mathematical Olympiad problem.

From here we get

n−1∑

k=1

{
km

n

}

=

n−1∑

k=1

lm

n
−

n−1∑

k=1

⌊
km

n

⌋

=
m

n
· (n− 1)n

2
− 1

2
(mn−m− n+ gcd(m,n)) =

1

2
(n− gcd(m,n)),

that is a 1995 Japanese Mathematical Olympiad problem.

Problem 3.2.1. Express

n∑

k=1

⌊
√
k⌋ in terms of n and a = ⌊√n⌋.

(1997 Korean Mathematical Olympiad)

Solution. We apply Theorem 3.2.1 for the function f : [1, n] → [1,
√
n],

f(x) =
√
x. Because n(Gf ) = ⌊√n⌋, we have

n∑

k=1

⌊
√
k⌋ +

⌊√n⌋
∑

k=1

⌊k2⌋ − ⌊√n⌋ = n⌊√n⌋,

hence
n∑

k=1

⌊
√
k⌋ = (n+ 1)a− a(a+ 1)(2a+ 1)

6
.

Problem 3.2.2. Compute

Sn =

n(n+1)
2∑

k=1

[−1 +
√

1 + 8k

2

]

Solution. Consider the function f : [1, n] →
⌊

1,
n(n+ 1)

2

⌋

,

f(x) =
x(x + 1)

2
.

Function f is increasing and bijective. Note that n(Gf ) = n and

f−1(x) =
−1 +

√
1 + 8x

2
. Applying formula in Theorem 3.2.1 we obtain

n∑

k=1

⌊
k(k + 1)

2

⌋

+

n(n+1)
2∑

k=1

⌊−1 +
√

1 + 8k

2

⌋

− n =
n2(n+ 1)

2
,
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hence

n(n+1)
2∑

k=1

[−1 +
√

1 + 8k

2

]

=
n2(n+ 1)

2
+ n− 1

2

n∑

k=1

k(k + 1) =

=
n2(n+ 1)

2
+ n− n(n+ 1)

4
− n(n+ 1)(2n+ 1)

12
=
n(n2 + 2)

3

Proposed problems

Problem 3.2.3. Prove that

n∑

k=1

⌊
n2

k2

⌋

=
n2
∑

k=1

⌊
n√
k

⌋

for all integers n ≥ 1.

Problem 3.2.4. Let θ be a positive irrational number. Then, for any

positive integer m,

m∑

k=1

⌊kθ⌋ +

⌊mθ⌋
∑

k=1

⌊
k

θ

⌋

= m⌊mθ⌋.

Problem 3.2.5. Let p and q be relatively prime positive integers and

let m be a real number such that 1 ≤ m < p.

1) If s =

⌊
mq

p

⌋

, then

⌊m⌋
∑

k=1

⌊
kq

p

⌋

+

s∑

k=1

⌊
kp

q

⌋

= ⌊m⌋s.

2) (Landau2) If p and q are odd, then

p−1
2∑

k=1

⌊
kq

p

⌋

+

q−1
2∑

k=1

⌊
kp

q

⌋

=
(p− 1)(q − 1)

4
.

3.3 An useful result

The following theorem is also helpful in proving some relations involving

floor function.

2Edmond Georg Hermann Landau (1877-1838), German mathematician who gave

the the first systematic presentation of analytic number theory and wrote important

work on the theory of analytic functions of single variable.
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Theorem 3.3.1. Let p be an odd prime and let q be an integer that is

not divisible by p. If f : Z∗
+ → R is a function such that:

i)
f(k)

p
is not an integer, k = 1, 2, . . . , p− 1;

ii) f(k) + f(p− k) is an integer divisible by p, k = 1, 2, . . . , p− 1, then

p−1
∑

k=1

⌊

f(k)
q

p

⌋

=
q

p

p−1
∑

k=1

f(k) − p− 1

2
. (1)

Proof. From ii) it follows that

qf(k)

p
+
qf(p− k)

p
∈ Z (2)

and from i) we obtain that
qf(k)

p
6∈ Z and

qf(p− k)

p
6∈ Z, k = 1, . . . , p− 1,

hence

0 <

{
qf(k)

p

}

+

{
qf(p− k)

p

}

< 2.

But, from (2),

{
qf(k)

p

}

+

{
qf(p− k)

p

}

∈ Z, thus

{
qf(k)

p

}

+

{
qf(p− k)

p

}

= 1, k = 1, . . . , p− 1.

Summing up and dividing by 2 yields

p−1
∑

k=1

{
q

p
f(k)

}

=
p− 1

2
.

It follows that

p−1
∑

k=1

q

p
f(k) −

p−1
∑

k=1

⌊
q

p
f(k)

⌋

=
p− 1

2

and the conclusion follows. �

Problem 3.3.1. Let p and q be two relatively prime integers. The fol-

lowing identity holds:

p−1
∑

k=1

⌊

k
q

p

⌋

=
(p− 1)(q − 1)

2
(Gauss).
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Solution. The function f(x) = x satisfies both i) and ii) in Theorem

3.3.1, hence
p−1
∑

k=1

⌊

k
q

p

⌋

=
q

p

(p− 1)p

2
− p− 1

2
,

hence the desired relation follows.

Problem 3.3.2. Let p be an odd prime. Prove that

p−1
∑

k=1

⌊
k3

p

⌋

=
(p− 2)(p− 1)(p+ 1)

4
.

(2002 German Mathematical Olympiad)

Solution. The function f(x) = x3 also satisfies conditions i) and ii),

hence

p−1
∑

k=1

⌊

k3 q

p

⌋

=
q

p
· (p− 1)2p2

4
− p− 1

2
=

(p− 1)(p2q − pq − 2)

4
.

For q = 1 the identity in our problem follows.

Proposed problems

Problem 3.3.3. Let p be an odd prime and let q be an integer that is

not divisible by p. Shows that

p−1
∑

k=1

⌊

(−1)kk2 q

p

⌋

=
(p− 1)(q − 1)

2
.

Problem 3.3.4. Let p be an odd prime. Show that

p−1
∑

k=1

kp − k

p
≡ p+ 1

2
(mod p).
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4

Digits of Numbers

4.1 The last digits of a number

Let ana1 . . . a0 be the decimal representation of the positive integer N .

The last digit of N is l(N) = a0 and for k ≥ 2, the last k digits of N are

lk(N) = ak−1 . . . a0. These simple concepts appear in numerous situations.

It is useful to point out the last digit of kn, where k = 2, 3, . . . , 9:

l(2n) =







6, n ≡ 0 (mod 4)

2, n ≡ 1 (mod 4)

4, n ≡ 2 (mod 4)

8, n ≡ 3 (mod 4)

, l(3n) =







1, n ≡ 0 (mod 4)

3, n ≡ 1 (mod 4)

9, n ≡ 2 (mod 4)

7, n ≡ 3 (mod 4)

l(4n) =

{

6, n ≡ 0 (mod 2)

4, n ≡ 1 (mod 2)
, l(5n) = 5, l(6n) = 6,

l(7n) =







1, n ≡ 0 (mod 4)

7, n ≡ 1 (mod 4)

9, n ≡ 2 (mod 4)

3, n ≡ 3 (mod 4)

, l(8n) =







6, n ≡ 0 (mod 4)

8, n ≡ 1 (mod 4)

4, n ≡ 2 (mod 4)

2, n ≡ 3 (mod 4)

l(9n) =

{

1, n ≡ 0 (mod 2)

9, n ≡ 1 (mod 2)
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It is clear that if l(N) = 0, then ln(Nn) = 0 . . . 0
︸ ︷︷ ︸

n times

and if l(N) = 1, then

l(Nn) = 1 for all n ≥ 2.

Problem 4.1.1. What is the final digit of (. . . (((77)7)7) . . .7).

There are 1001 7s in the formula.

Solution. The final digit of a (decimal) number is its remainder modulo

10. Now 72 = 49 ≡ −1 (mod 10). So 77 = (72)3 · 7 ≡ −7 (mod 10), and

(77)7 ≡ (−7)7 ≡ −(77) ≡ −(−7) ≡ 7 (mod 10).

Proceeding in this way, we see that ((77)7)7 ≡ 7 (mod 10), and in general

(. . . (((77)7)7) . . .7) ≡ ±7 (mod 10),

where the sign is + if alltogether there is an odd number of 7s in the

formula, and − if there is an even number of 7s. Now, 1001 is odd. So the

final digit of the given formula is 7.

Problem 4.1.2. Prove that every positive integer has at least as many

(positive) divisors whose last decimal digit is 1 or 9 as divisors whose last

digit is 3 or 7.

(1997 St. Petersburg City Mathematical Olympiad)

Solution. Let d1(m), d3(m), d7(m), d9(m) be the number of divisors of

m ending in 1, 3, 7, 9, respectively. We prove the claim by induction on

m; it holds obviously for m a prime power, and if m is composite, write

m = pq with p, q coprime, and note that

d1(m) − d3(m) − d7(m) + d9(m)

= (d1(p) − d3(p) − d7(p) + d9(p))(d1(q) − d3(q) − d7(q) + d9(q)).

For instance,

d3(m) = d1(p)d3(q) + d3(p)d1(q) + d7(p)d9(q) + d9(p)d7(q).

Problem 4.1.3. Find the least positive integer n with the following prop-

erties:

a) the last digit of its decimal representation is 6;

b) by deleting the last digit 6 and replacing it in front of the remaining

digits one obtains a number four times greater than the given number.

(4th IMO)
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Solution. Let n = 10kak + 10k−1ak−1 + · · · + 10a1 + 6 be the required

number. Writing n under the form n = 10N + 6, where 10k−1 < N < 10k,

the condition b) becomes:

4(10N + 6) = 6 · 10k +N.

Thus, we obtain

39N = 6 · 10k − 24,

and equivalently

13N = 2(10k − 4).

Thus, we obtain that 10k ≡ 4 (mod 13).

It is more convenient to write:

(−3)k ≡ 4 (mod 13).

From the conditions of the problem it is required the least k with this

property. We have:

(−3)2 = 9 (mod 13), (−3)3 ≡ −27 (mod 13) ≡ −1 (mod 13)

(−3)5 ≡ (−3)2(−3)3 ≡ −9 ≡ 4 (mod 13).

Then, k = 5 is the least positive solution of the equation. Thus,

13N = 2 · 99996 ⇒ N = 15384 ⇒ n = 153846.

This number verifies b).

Proposed problems

Problem 4.1.4. In how may zeroes can the number 1n + 2n + 3n + 4n

end for n ∈ N?

(1998 St. Petersburg City Mathematical Olympiad)

Problem 4.1.5. Find the last 5 digits of the number 51981.

Problem 4.1.6. Consider all pairs (a, b) of natural numbers such that

the product aabb, written in base 10, ends with exactly 98 zeroes. Find the

pair (a, b) for which the product ab is smallest.

(1998 Austrian-Polish Mathematics Competition)
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4.2 The sum of the digits of a number

For a positive integer N = anan−1 . . . a0 in decimal representation we

denote by S(N) the sum of its digits a0+· · ·+an−1+an. Problems involving

the function S defined above appear frequently in various contexts. We

present a few basic properties.

1) S(N) = N − 9
∑

k≥1

⌊
N

10k

⌋

;

2) 9|S(N) −N ;

3) (subadditivity): S(N1 +N2) ≤ S(N1) + S(N2);

4) S(N1N2) ≤ min(N1S(N2), N2(S(N1));

5) (submultiplicity): S(N1N2) ≤ S(N1)S(N2).

Let us prove the last three properties. Using 1) and the inequality ⌊x+

y⌋ ≥ ⌊x⌋ + ⌊y⌋ we have

S(N1 +N2) = N1 +N2 − 9
∑

k≥1

⌊
N1 +N2

10k

⌋

≤ N1 +N2 − 9
∑

k≥1

(⌊
N1

10k

⌋

+

⌊
N2

10k

⌋)

= S(N1) + S(N2).

Because of the symmetry, in order to prove 4) it suffices to prove that

S(N1N2) ≤ N1S(N2).

The last inequality follows by applying the subadditivity property re-

peatedly. Indeed,

S(2N2) = S(N2 +N2) ≤ S(N2) + S(N2) = 2S(N2)

and after N1 steps we obtain

S(N1N2) = S(N2 +N2 + · · · +N2
︸ ︷︷ ︸

N1 times

)

≤ S(N2) + S(N2) + · · · + S(N2)
︸ ︷︷ ︸

N1 times

= N1S(N2).

For 5) observe that

S(N1N2) = S

(

N1

h∑

i=0

bi10i

)

= S

(
h∑

i=0

N1bi10i

)

≤
h∑

i=0

S(N1bi10i)

=

h∑

i=0

S(N2bi)S(10i) =

h∑

i=0

S(N1bi) ≤
h∑

i=0

biS(N1)
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= S(N1)

h∑

i=0

bi = S(N1)S(N2).

Examples. 1) In the decimal expansion of N , the digits occur in increas-

ing order. What is S(9N)?

(1999 Russian Mathematical Olympiad)

Solution. Write N = akak−1 . . . a0. By performing the subtraction

ak ak−1 . . . a1 a0 0

− ak . . . a2 a1 a0

we find that the digits of 9N = 10N −N are

ak, ak−1,−ak, . . . , a1 − a2, a0 − a1 − 1, 10− a0

These digits sum to 10 − 1 = 9.

2) Find a positive integer N such that S(N) = 1996S(3N).

(1996 Irish Mathematical Olympiad)

Solution. Consider N = 1 33 . . .3
︸ ︷︷ ︸

5986 times

5. Then 3N = 4 00 . . .0
︸ ︷︷ ︸

5986 times

5 and

S(N) = 3 · 5986 + 1 + 5 = 17964 = 1996 · 9 = 1996S(N).

Problem 4.2.1. Determine all possible values of the sum of the digits

of a perfect square.

(1995 Iberoamerican Olympiad)

Solution. The sum of the digits of a number is congruent to the number

modulo 9, and so for a perfect square this must be congruent to 0, 1, 4 or

7. We show that all such numbers occur. The cases n = 1 and n = 4 are

trivial, so assume n > 4.

If n = 9m, then n is the sum of the digits of (10m−1)2 = 10m(10m−2)+1,

which looks like 9 . . . 980 . . .01. If n = 9m + 1, consider (10m − 2)2 =

10m(10m − 4) + 4, which looks like 9 . . . 960 . . .04. If n = 9m+ 4, consider

(10m − 3)2 = 10m(10m − 6) + 9, which looks like 9 . . . 94 . . . 09. Finally, if

n = 9m − 2, consider (10m − 5)2 = 10m(10m − 10) + 25, which looks like

9 . . . 900 . . .025.

Problem 4.2.2. Find the number of positive 6 digit integers such that

the sum of their digits is 9, and four of its digits are 1, 0, 0, 4.
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(2004 Romanian Mathematical Olympiad)

Solution. The pair of missing digits must be 1, 2 or 0, 3.

In the first case the first digit can be 1, 2 or 4. When 1 is the first digit,

the remaining digits, (1, 2, 0, 0, 4), can be arranged in 60 ways. When 4

or 2 is the first digit, the remaining ones can be arranged in 30 ways.

In the same way, when completing with the pair (0,3), the first digit can

be 1, 3 or 4. In each case, the remaining ones (three zeros and two distinct

non-zero digits) can be arranged in 20 ways.

In conclusion, we have 60 + 2 · 30 + 3 · 20 = 180 numbers which satisfy

the given property.

Problem 4.2.3. Find the sum of the digits of the numbers from 1 to

1,000,000.

Solution. Write the numbers from 0 to 999,999 in a rectangular array

as follows:

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 2

. . . . . . . . . . . . . . . . . .

0 0 0 0 0 9

0 0 0 0 1 0

0 0 0 0 1 1

. . . . . . . . . . . . . . . . . .

0 0 0 0 1 9

0 0 0 0 2 0

. . . . . . . . . . . . . . . . . .

9 9 9 9 9 9

There are 1,000,000 six-digits numbers, hence 6,000,000 digits are used.

In each column every digit is equally represented, as in the units column

each digit appears from 10 to 10, in the tens column each digit appears

successively in blocks of 10 and so on. Thus each digit appears 600,000

times, so the required sum is

600, 000 · 45 + 1 = 27, 000, 001

(do not forget to count 1 from 1,000,000).

Problem 4.2.4. Find all the positive integers n which are equal to the

sum of its digits added to the product of its digits.
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Solution. Let a1a2 . . . an, a1 6= 0 and a2, . . . , an ∈ {0, 1, . . . , 9}, be a

number such that

a1a2 . . . an = a1 + a2 + · · · + an + a1a2 . . . an.

The relation is equivalent to

a1(10n−1 − 1) + a2(10n−2 − 1) + · · · + 9an−1 = a1a2 . . . an

and

a2(10n−2 − 1) + · · · + 9an−1 = a1(a2a3 . . . an − 99 . . .9
︸ ︷︷ ︸

n−1 digits

).

The left-hand side of the equality is nonnegative, whole the right-hand

side is nonpositive, hence both are equal to zero. The left-hand side is zero

if n = 0 or

a2 = a3 = · · · = an−1 = 0.

For a2 = a3 = · · · = an−1 = 0 the left-hand side do not equal zero, hence

n = 2. Then a1(a2 − 9) = 0, so a2 = 0 and a1 ∈ {1, 2, . . . , 9}. The number

are 19, 29, 39, 49, 59, 69, 79, 89, 99.

Problem 4.2.5. What is the smallest multiple of 99 whose digits sum

to 99 and which begins and ends with 97?

(1997 Rio Platense Mathematical Olympiad)

Solution. We refer to the digits of the number besides the two 97s as

interior digits; the sum of these digits is 99−2(9+7) = 67. Since each digit

is at most 9, there are at least 8 such digits.

Note that the sum of digits being 99 forces the number to be divisible

by 9; thus it suffices to ensure that the number be divisible by 11, which is

to say, the alternating sum of digits must be divisible by 11.

Suppose the number has exactly 8 interior digits. If a is the sum of the

odd interior places and b the sum of the even places, we have a + b = 67

and a− b ≡ −3 (mod 11). Since a− b must also be odd, we have a− b ≥ 7

or a− b ≤ −15, and so either a ≥ 37 or b ≥ 41, contradicting the fact that

a and b are each the sum of four digits.

Now suppose the number has 9 interior digits. In this case, a − b ≡ 0

(mod 11), so a − b ≥ 11 or a − b ≤ −11. In the latter case, b ≥ 39, again

a contradiction, but in the former case, we have a ≥ 39, which is possible

because a is now the sum of five digits. To minimize the original number,
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we take the odd digits to be 3, 9, 9, 9, 9 and the even digits to be 1, 9, 9,

9, making the minimal number 9731999999997.

Problem 4.2.6. Find all the positive integers n such that there are non-

negative integers a and b with

S(a) = S(b) = S(a+ b) = n.

(1999 Romanian Selection Test for JBMO)

Solution. We prove that the required numbers are all multiples of 9.

a) Let n be an integer such that there are positive integers a and b so

that

S(a) = S(b) − S(a+ b).

We prove that 9|n.

We have the property

9|k − S(k). (1)

Using the relation (1) we obtain

9|a− S(a) (2)

9|b− S(b) (3)

and

9|(a+ b) − S(a+ b). (4)

From (2) and (3) follows that

9|a+ b− (S(a) + S(b)) (5)

hence

9|S(a) + S(b) − S(a+ b) = n+ n− n = n, (6)

as desired.

b) Conversely, we prove that if n = 9p is a multiple of 9, then integers

a, b > 0 with S(a) = S(b) = S(a + b) can be found. Indeed, set a =

531531 . . .531
︸ ︷︷ ︸

3p digits

and b = 171171 . . .171
︸ ︷︷ ︸

3p digits

. Then a+ b = 702702 . . .702
︸ ︷︷ ︸

3p digits

and

S(a) = S(b) = S(a+ b) = 9p = n,

as claimed.
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Proposed problems

Problem 4.2.7. Show that there exist infinitely many natural numbers

n such that S(3n) ≥ S(3n+1).

(1997 Russian Mathematical Olympiad)

Problem 4.2.8. Do there exist three natural numbers a, b, c such that

S(a+ b) < 5, S(b+ c) < 5, S(c+ a) < 5, but S(a+ b+ c) > 50?

(1998 Russian Mathematical Olympiad)

Problem 4.2.9. Prove that there exist distinct positive integers

{ni}1≤i≤50 such that

n1 + S(n1) = n2 + S(n2) = · · · = n50 + S(n50).

(1999 Polish Mathematical Olympiad)

Problem 4.2.10. The sum of the decimal digits of the natural number

n is 100, and that of 44n is 800. What is the sum of the digits of 3n?

(1999 Russian Mathematical Olympiad)

Problem 4.2.11. Consider all numbers of the form 3n2 + n+ 1, where

n is a positive integer.

(a) How small can the sum of the digits (in base 10) of such a number

be?

(b) Can such a number have the sum of its digits (in base 10) equal to

1999?

(1999 United Kingdom Mathematical Olympiad)

Problem 4.2.12. Consider the set A of all positive integers n with the

following properties: the decimal expansion contains no 0, and the sum of

the (decimal) digits of n divides n.

(a) Prove that there exist infinitely many elements inA with the following

property: the digits that appear in the decimal expansion of A appear the

same number of times.

(b) Show that for each positive integer k, there exists an element in A

with exactly k digits.

(2001 Austrian-Polish Mathematics Competition)
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4.3 Other problems involving digits

Problem 4.3.1. Prove that there are at least 666 positive composite

numbers with 2006 digits, having a digit equal to 7 and all the rest equal

to 1.

Solution. The given numbers are

nk = 111 . . .17 11 . . .1
︸ ︷︷ ︸

k digits

= 111 . . .1
︸ ︷︷ ︸

2006 digits

+6 000 . . .0
︸ ︷︷ ︸

k digits

=
1

9
(102006 − 1) + 6 · 10k, k = 0, 2005.

It is obvious that none of these numbers is a multiple of 2, 3, 5 or 11, as

11 divides 111 . . .1
︸ ︷︷ ︸

2006 digits

, but not 6 · 10k.

So we are lead to the idea of counting multiples of 7 and 13. We have

9nk = 100 · 1000668 − 1 + 54 · 10k ≡ 2 · (−1)668 − 1 + (−2) · 10k ≡ 1 −
2 · 10k (mod 7), hence 7|nk if 10k ≡ 3k ≡ 4 (mod 7). This happens for

k = 4, 10, 16, . . . , 2002 so there are 334 multiples of 7. Furthermore, 9nk =

7 · (−1)668 − 1 + 2 · 10k = 6 + 2 · 10k (mod 13), hence 13|nk if 10k ≡
10 (mod 13). This happens for k = 1, 7, 13, 19, . . . , 2005, so there are 335

multiples of 13. In all we have found 669 non-prime numbers.

Problem 4.3.2. Let a1, a2, . . . , a106 be nonzero integers between 1 and 9,

inclusive. Prove that at most 100 of the numbers a1a2 . . . ak (1 ≤ k ≤ 106)

are perfect squares.

(2001 Russian Mathematical Olympiad)

Solution. For each positive integer x, let d(x) be the number of decimal

digits in x.

Lemma. Suppose that y > x are perfect squares such that y = 102bx+ c

for some positive integers b, c with c < 102b. Then

d(y) − 1 ≥ 2(d(x) − 1).

Proof. Because y > 102bx, we have
√
y > 10b

√
x. Because

√
y and 10b

√
x

are both integers,
√
y ≥ 10b√x + 1, so that 102bx + c = y ≥ 102bx + 2 ·

10b
√
x+ 1. Thus, c ≥ 2 · 10b

√
x+ 1.

Also, 102b > c by assumption, implying that

102b < c ≥ 2 · 10b
√
x+ 1.
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Hence, 10b > 2
√
x. It follows that

y > 102bx > 4x2.

Therefore,

d(y) ≥ 2d(x) − 1,

as desired.

We claim that there are at most 20 perfect squares a1a2 . . . ak with an

even (resp. odd) number of digits. Let s1 < s2 < · · · < sn be these perfect

squares. Clearly d(sn) ≤ 106. We now prove that if n > 1, then d(sn) ≥
1 + 2n−1.

Because s1, s2, . . . , sn all have an even (resp. odd) number of digits, for

each i = 1, 2, . . . , n − 1, we can write si+1 = 102bsi + c for some integers

b > 0 and 0 ≤ c < 102b. Because no ai equals 0, we further know that

0 < c. Hence, by our lemma,

d(si+1) − 1 ≥ 2(d(si) − 1)

for each i = 1, 2, . . . , n−1. Because d(s2)−1 ≥ 2, we thus have d(sn)−1 ≥
2n−1, as desired.

Thus, if n > 1,

1 + 2n−1 ≤ d(sn) ≤ 106,

and

n ≤
⌊

log(106 − 1)

log 2

⌋

+ 1 = 20.

Hence, there are at most 20 perfect squares a1a2 . . . ak with an even (resp.

odd) number of digits.

Therefore, there are at most 40 < 100 perfect squares a1a2 . . . ak.

Proposed problems

Problem 4.3.3. A wobbly number is a positive integer whose digits in

base 10 are alternately non-zero and zero, the units digit being non-zero.

Determine all positive integers which do not divide any wobbly number.

(35th IMO Shortlist)

Problem 4.3.4. A positive integer is called monotonic if its digits in

base 10, read from left right, are in nondecreasing order. Prove that for

each n ∈ N, there exists an n-digit monotonic number which is a perfect

square.
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(2000 Belarussian Mathematical Olympiad)
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5

Basic Principles in Number Theory

5.1 Two simple principles

5.1.1 Extremal arguments

In many problems it is useful to consider the least or the greatest element

with a certain property. Very often such a choice leads to the construction

of other elements or to a contradiction.

Problem 5.1.1. Show that there exist infinitely many positive integers

n such that the largest prime divisor of n4 + 1 is greater than 2n.

(2001 St. Petersburg City Mathematical Olympiad)

Solution. First we prove the following result.

Lemma. There are infinitely many numbers that are prime divisors of

m4 + 1 for some m.

Proof. Suppose that there are only finite number of such primes. Let

p1, p2, . . . , pk be all of them. Let p be any prime divisor of (p1p2 . . . pk)4 +1.

This number cannot equal to any pi. It makes a contradiction with our

assumption, and proves the lemma. �

Let P be the set of all numbers being prime divisors of m4 + 1 for some

m. Pick any p from P and m from Z, such that p divides m4 + 1. Let r be

the residue of m modulo p. We have r < p, p|r4 + 1 and p|(p− r)4 + 1. Let
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n be the minimum of r and p− r. It follows that n < p/2 and p > 2n and

of course p|n4 + 1. Thus we have found for each p ∈ P a good number np.

Since np ≥ 4
√
p− 1, and P is infinite, the set {np : p ∈ P} is also infinite.

Problem 5.1.2. Let a1, a2, . . . be strictly increasing sequence of positive

integers such that gcd(am, an) = agcd(m,n) for all positive integers m and n.

There exists a least positive integer k for which there exist positive integers

r < k and s > k such that a2
k = aras. Prove that r divides k and that k

divides s.

(2001 Indian Mathematical Olympiad)

Solution. We begin by proving a lemma.

Lemma. If positive integers a, b, c satisfy b2 = ac, then

gcd(a, b)2 = gcd(a, c) · a.

Proof. Consider any prime p. Let e be the highest exponent such that

pe divides b, and let e1 and e2 be the corresponding highest exponents for

a and c, respectively. Because b2 = ac, we have 2e = e1 + e2. If e1 ≥ e,

then the highest powers of p that divide gcd(a, b), gcd(a, c), and a are e, e2

and e1, respectively. Otherwise, these highest powers are all e1. Therefore,

in both cases, the exponent of p on the left side of the desired equation is

the same as the exponent of p on the right side. The desired result follows.

�

Applying the lemma to the given equation a2
k = aras, we have

gcd(ar, ak)2 = gcd(ar, as)ar.

It now follows from the given equation that

a2
gcd(r,k) = agcd(r,s)ar.

Assume, for sake of contradiction, that gcd(r, k) < r, so that

agcd(r,k) < ar. Then from the above equation, it follows that agcd(r,k) >

agcd(r,s), so that gcd(r, k) > gcd(r, s). But then we have (k0, r0, s0) =

(gcd(r, k), gcd(r, s), r) satisfies a2
k0

= ar0as0 with r0 < k0 < s0 and

k0 < r < k, contradicting the minimality of k.

Thus, we must have gcd(r, k) = r, implying that r|k. Then

gcd(ar, ak) = agcd(r,k) = ar,
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so ar|ak. Thus as = ak
ak

ar
is an integer multiple of ak, and

agcd(k,s) = gcd(ak, as) = ak.

Because a1, a2, . . . is increasing, it follows that gcd(k, s) = k. Therefore,

k|s, completing the proof.

Problem 5.1.3. Determine all pairs (n, p) of positive integers such that

p is a prime, n ≤ 2p and (p− 1)n + 1 is divisible by np−1.

(40th IMO)

Solution. All pairs (1, p), where p is a prime number, satisfy the con-

ditions. When p = 2, it follows n = 2 and thus the pair (2, 2) is also a

solution of the problem. Thus, we may suppose p ≥ 3 and let n be such

that n ≤ 2p and np−1 divides (p−1)n +1. Since (p−1)n +1 is odd number,

it follows that n < 2p. We shall prove that n = p.

Let q be a minimal prime divisor of n. Since q|n and np−1|(p− 1)n + 1,

it follows (p − 1)n ≡ −1 (mod q). Since n and q − 1 are relatively prime

numbers we may express an+ b(q − 1) = 1.

We have

p−1 ≡ (p−1)an+b(q−1) ≡ (p−1)na(p−1)(q−1)b ≡ (−1)a1b ≡ −1 (mod q),

because a must be odd. This shows that q|p, and therefore q = p. Since

n < 2p, by the consideration of q, we have n = p.

Let consider in these conditions the original divisibility:

pp−1|(p− 1)p + 1 = pp −
(
p

1

)

pp−1 +

(
p

2

)

pp−2 − · · · +
(

p

p− 1

)

p− 1 + 1

= p2

[

pp−2 −
(
p

1

)

pp−3 +

(
p

2

)

pp−4 − · · · + 1

]

.

Therefore p− 1 = 2, p = 3 and then obtain the pair (3,3).

The conclusion is: the required solutions are (1, p), (2, 2) and (3, 3), where

p is an arbitrary prime.

Remark. With a little bit more work, we can even erase the condition

n ≤ 2p.

5.1.2 Pigeonhole principle

Let S be a nonempty set and let S1, S2, . . . , Sn be a partition of S (that

is S1 ∪ S2 ∪ · · · ∪ Sn = S and Si ∩ Sj = ∅ for i 6= j). If a1, a2, . . . , an+1 are
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distinct elements in S, then there is a k ∈ {1, 2, . . . , n + 1} such that at

least two of these elements belong to Sk.

This simple observation is called the Pigeonhole Principle (or the Dirich-

let’s Principle).

Examples. 1) Let m1,m2, . . . ,mn+1 be distinct integers. Then mi ≡ mj

(mod n) for some i, j ∈ {1, 2, . . . , n+ 1}, i 6= j.

Indeed, let St = {x ∈ Z| x ≡ t (mod n)}, t = 1, 2, . . . , n. There is

a k ∈ {1, 2, . . . , n + 1} such that Sk contains at least two of the given

integers, say mi and mj . Then mi ≡ mj (mod n).

2) (Erdös) Given n + 1 distinct positive integers m1,m2, . . . ,mn+1 not

exceeding 2n, prove that there are two of them mi andmj such that mi|mj .

Indeed for each s ∈ {1, 2, . . . , n+1} write ms = 2esqs, where es is a non-

negative integer and qs is an odd positive integer. Because q1, q2, . . . , qn+1 ∈
{1, 2, . . . , 2n} and the set {1, 2, . . . , 2n} has exactly n odd elements, it fol-

lows that qi = qj for some i and j. Without loss of generality, assume that

ei < ej. Then mi|mj , as desired.

Problem 5.1.4. Prove that among any integers a1, a2, . . . , an, there are

some whose sum is a multiple of n.

Solution. Let s1 = a1, s2 = a1 + a2, . . . , sn = a1 + a2 + · · · + an.

If at least one of the integers s1, s2, . . . , sn is divisible by n, then we are

done. If not, there are n − 1 possible remainders when s1, s2, . . . , sn are

divided by n. It follows that si ≡ sj (mod n) for some i and j, i < j. Then

sj − si = ai+1 + · · · + aj is a multiple of n (see also Example 1) above).

Problem 5.1.5. In a 10 × 10 table are written natural numbers not ex-

ceeding 10. Any two numbers that appear in adjacent or diagonally adjacent

spaces of the table are relatively prime. Prove that some number appears in

the table at least 17 times.

(2001 St. Petersburg City Mathematical Olympiad)

Solution. In any 2× 2 square, only one of the numbers can be divisible

by 2 and only one can be divisible by 3, so if we tile the table with these

2 × 2 squares, at most 50 of the numbers in the table are divisible by 2

or 3. The remaining 50 numbers must be divided among the integers not

divisible by 2 or 3, and thus only ones available are 1, 5, and 7. By the

Pigeonhole Principle, one of these numbers appears at least 17 times.
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Problem 5.1.6. Prove that from any set of 117 pairwise distinct three-

digit numbers, it is possible to select 4 pairwise disjoint subsets such that

the sums of the numbers in each subset are equal.

(2001 Russian Mathematical Olympiad)

Solution. We examine subsets of exactly two numbers. Clearly, if two

distinct subsets have the same sum, they must be disjoint. The number of

two-element subsets is

(
117

2

)

= 6786. Furthermore, the lowest attainable

sum is 100 + 101 = 201, while the highest sum is 998 + 999 = 1997, for

a maximum of 1797 different sums. By the Pigeonhole Principle and the

fact that 1797 · 3 + 1 = 5392 < 6786, we see that there are 4 two-element

subsets with the required property.

Proposed problems

Problem 5.1.7. Let n1 < n2 < · · · < n2000 < 10100 be positive inte-

gers. Prove that one can find two nonempty disjoint subsets A and B of

{n1, n2, . . . , n2000} such that

|A| = |B| ,
∑

x∈A

x =
∑

x∈B

x, and
∑

x∈A

x2 =
∑

x∈B

x2.

(2001 Polish Mathematical Olympiad)

Problem 5.1.8. Find the greatest positive integer n for which there

exist n nonnegative integers x1, x2, . . . , xn, not all zero, such that for any

sequence ε1, ε2, . . . , εn of elements {−1, 0, 1}, not all zero, n3 does not divide

ε1x1 + ε2x2 + · · · + εnxn.

(1996 Romanian Mathematical Olympiad)

Problem 5.1.9. Given a positive integer n, prove that there exists ε > 0

such that for any n positive real numbers a1, a2, . . . , an, there exists t > 0

such that

ε < {ta1}, {ta2}, . . . , {tan} <
1

2
.

(1998 St. Petersburg City Mathematical Olympiad)

Problem 5.1.10. We have 2n prime numbers written on the blackboard

in a line. We know that there are less than n different prime numbers on
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the blackboard. Prove that there is a compact subsequence of numbers in

that line whose product is a perfect square.

Problem 5.1.11. Let x1 = x2 = x3 = 1 and xn+3 = xn + xn+1xn+2

for all positive integers n. Prove that for any positive integer m there is an

integer k > 0 such that m divides xk.

5.2 Mathematical induction

Mathematical induction is a powerful and elegant method for proving

statements depending on nonnegative integers.

Let (P (n))n≥0 be a sequence of propositions. The method of mathemat-

ical induction assists us in proving that P (n) is true for all n ≥ n0, where

n0 is a given nonnegative integer.

Mathematical Induction (weak form): Suppose that:

• P (n0) is true;

• For all k ≥ n0, P (k) is true implies P (k + 1) is true.

Then P (n) is true for all n ≥ n0.

Mathematical Induction (with step s): Let s be a fixed positive integer.

Suppose that:

• P (n0), P (n0 + 1), . . . , P (n0 + s− 1) are true;

• For all k ≥ n0, P (k) is true implies P (k + s) is true.

Then P (n) is true for all n ≥ n0.

Mathematical Induction (strong form): Suppose that

• P (n0) is true;

• For all k ≥ n0, P (m) is true for all m with n0 ≤ m ≤ k implies

P (k + 1) is true.

Then P (n) is true for all n ≥ n0.

This method of proof is widely used in various areas of Mathematics,

including Number Theory.

Problem 5.2.1. Prove that, for any integer n ≥ 2, there exist positive

integers a1, a2, . . . , an such that aj − ai divides ai + aj for 1 ≤ i < j ≤ n.

(Kvant)
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Solution. We will prove the statement by induction on the number of

terms n. For n = 2, we can choose a1 = 1 and a2 = 2.

We assume that we can find integers a1, a2, . . . , an such that aj − ai

divides ai + aj for 1 ≤ i < j ≤ n, where n is a positive integer greater than

1. Let m be the least common multiple of numbers a1, a2, . . . , an, aj − ai,

for all 1 ≤ i < j ≤ n. Then

(a′1, a
′
2, a

′
3, . . . , an+1) = (m,m+ a1,m+ a2, . . . ,m+ an)

is a n+ 1 term sequence satisfying the conditions of the problem. Indeed,

a′i − a′1 = ai−1 divides m and a′i + a′1 = 2m + ai−1 by the definition of

m and a′j − a′i = aj−1 − ai−1 (2 ≤ i < j ≤ n + 1) divides m. Also,

a′j + a′i = 2m+ (aj−1 + ai−1) by the definition of m and by the inductive

hypothesis. Therefore our induction is complete.

Problem 5.2.2. Prove that, for each n ≥ 2, the number n! can be rep-

resented as the sum of n distinct divisors of itself.

(Erdös)

Solution. Strengthening the statement, by imposing the condition that

one of the n divisors should be 1, puts us in a winning position. The question

here is how we came to think of this. Well, there is just about one way to go

in using the induction hypothesis n! = d1+d2+· · ·+dn (where d1, d2, . . . , dn

are the n divisors arranged in increasing order); namely, multiplying the

above relation by n+ 1. This yields

(n+ 1)! = (n+ 1)d1 + (n+ 1)d2 + · · · + (n+ 1)dn

= d1 + nd1 + (n+ 1)d2 + · · · + (n+ 1)dn.

We split (n+1)d1 into d1 +nd1, thus getting n+1 summands, as needed.

Of them, only the second one might not be a divisor of (n+ 1)!. We would

like to ensure that it is such a divisor, too. Hence the idea of insisting that

d1 = 1.

Problem 5.2.3. Prove that there are infinitely many numbers not con-

taining the digit 0, that are divisible by the sum of their digits.
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Solution. Let us prove by induction that 11 . . . 1
︸ ︷︷ ︸

3n

is a good choice. The

base case is clearly verified and for the inductive step we have

11 . . .1
︸ ︷︷ ︸

3n+1

=
103 − 1

9
=

(103n

)3 − 1

9

=
103n − 1

9
(102·3n

+ 103n

+ 1)

= 11 . . .1
︸ ︷︷ ︸

3n

·N,

where N is a multiple of 3 and the conclusion follows.

Problem 5.2.4. Let n be a positive integer. Let On be the number of

2n-tuples (x1, . . . , xn, y1, . . . , yn) with values in 0 or 1 for which the sum

x1y1 + · · · + xnyn is odd, and let En be the number of 2n-tuples for which

the sum is even. Prove that

On

En
=

2n − 1

2n + 1
.

(1997 Iberoamerican Mathematical Olympiad)

Solution. We prove by induction that On = 22n−1 − 2n−1 and En =

22n−1 + 2n−1, which will give the desired ratio.

The base case is n = 1. This case works because O1 = 1 = 21 − 20, and

E1 = e = 21 + 20.

For the inductive step, we assume this is true for n = k; then x1y1+ · · ·+
xkyk is even for 22k−1 +2k−12k-tuples and odd for 22k−1 − 22k−12k-tuples.

Now, x1y1 + · · ·+ xk+1yk+1 is odd if and only if either x1y1 + · · ·+ xkyk is

odd and is even or x1y1 + · · ·+xkyk is even and xk+1yk+1 is odd. xk+1yk+1

can be odd one way and even three ways, so

Ok+1 = 3(22k−1 − 2k−1) + 22k−1 + 2k−1 = 22(k+1)−1 − 2(k + 1) − 1

and Ek+1 = 22(k+1) −Ok+1, which completes the induction.

Problem 5.2.5. Prove that for all integers n ≥ 3, there exist odd positive

integers x, y, such that 7x2 + y2 = 2n.

(1996 Bulgarian Mathematical Olympiad)

Solution. We will prove that there exist odd positive integers xn, yn

such that 7x2
n + y2

n = 2n, n ≥ 3.
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For n = 3, we have x3 = y3 = 1. Now suppose that for a given integer

n ≥ 3 we have odd integers xn, yn satisfying 7x2
n+y2

n = 2n. We shall exhibit

a pair (xn+1, yn+1) of odd positive integers such that 7x2
n+1 +y2

n+1 = 2n+1.

In fact,

7

(
xn ± yn

2

)2

+

(
7xn ∓ yn

2

)2

= 2(7x2
n + y2

n) = 2n+1

Precisely one of the numbers
xn + yn

2
and

|xn − yn|
2

is odd (as their sum

is the larger of xn and yn, which is odd). If, for example,
xn + yn

2
is odd,

then
7xn − yn

2
= 3xn +

xn − yn

2
is also odd (as a sum of an odd and an even number), hence in this case

we may choose

xn+1 =
xn + yn

2
and yn+1 =

7xn − yn

2

If
xn − yn

2
is odd, then

7xn + yn

2
= 3xn +

xn + yn

2

so we can choose

xn+1 =
|xn − yn|

2
and yn+1 =

7xn + yn

2
.

Remark. Actually, the problem goes back to Euler.

Problem 5.2.6. Let f(x) = x3 +17. Prove that for each natural number

n, n ≥ 2, there is a natural number x for which f(x) is divisible by 3n but

not by 3n+1.

(1999 Japanese Mathematical Olympiad)

Solution. We prove the result by induction on n. If n = 2, then x = 1

suffices. Now suppose that the claim is true for n ≥ 2, that is, there is a

natural number y such that y3 + 17 is divisible by 3n but not 3n+1. We

prove that the claim is true for n+ 1.

Suppose we have integers a,m such that a is not divisible by 3 and

m ≥ 2. Then a2 ≡ 1 (mod 3) and thus 3ma2 ≡ 3m (mod 3m+1). Also,

because m ≥ 2 we have 3m− 3 ≥ 2m− 1 ≥ m+ 1. Hence

(a+ 3m−1)3 ≡ a3 + 3ma2 + 32m−1a+ 33m−3 ≡ a3 + 3m (mod 3m+1).



112 5. BASIC PRINCIPLES IN NUMBER THEORY

Because y3 + 17 is divisible by 3n, it is congruent to either 0, 3n, or

2 · 3n modulo 3n+1. Because 3 does not divide 17, 3 cannot divide y either.

Hence applying our result from the previous paragraph twice, once with

(a,m) = (y, n) and once with (a,m) = (y + 3n−1, n), we find that 3n+1

must divide either (y + 3n−1)3 + 17 or (y + 2 · 3n−1)3 + 17.

Hence there exists a natural number x′ not divisible by 3 such that

3n+1|x′3 + 17. If 3n+2 does not divide x′3 + 17, we are done. Otherwise, we

claim the number x = x′+3n suffices. Because x = x′+3n−1+3n−1+3n−1,

the result from previous the paragraphs tells us that x3 ≡ x′3 + 3n +

3n + 3n ≡ x′3 (mod 3n+1). Thus 3n+1|x3 + 17 as well. On the other hand,

because x = x′ +3n, we have x3 ≡ x′3 +3n+1 6≡ x′3 (mod 3n+2). It follows

that 3n+2 does not divide x3 +17, as desired. This completes the inductive

step.

Proposed problems

Problem 5.2.7. Let p be an odd prime. The sequence (an)n≥0 is defined

as follows: a0 = 0, a1 = 1, . . . , ap−2 = p− 2 and, for all n ≥ p− 1, an is the

least positive integer that does not form an arithmetic sequence of length

p with any of the preceding terms. Prove that, for all n, an is the number

obtained by writing n in base p− 1 and reading the result in base p.

(1995 USA Mathematical Olympiad)

Problem 5.2.8. Suppose that x, y and z are natural numbers such that

xy = z2+1. Prove that there exist integers a, b, c and d such that x = a2+b2,

y = c2 + d2, and z = ac+ bd.

(Euler’s problem)

Problem 5.2.9. Find all pairs of sets A,B, which satisfy the conditions:

(i) A ∪B = Z;

(ii) if x ∈ A, then x− 1 ∈ B;

(iii) if x ∈ B and y ∈ B, then x+ y ∈ A.

(2002 Romanian IMO Team Selection Test)

Problem 5.2.10. Find all positive integers n such that

n =
m∏

k=0

(ak + 1),
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where amam−1 . . . a0 is the decimal representation of n.

(2001 Japanese Mathematical Olympiad)

Problem 5.2.11. The sequence (un)n≥0 is defined as follows: u0 = 2,

u1 =
5

2
and

un+1 = un(u2
n−1 − 2) − u1 for n = 1, 2, . . .

Prove that [un] = 2
2n−(−1)n

3 , for all n > 0 ([x] denotes the integer part

of x).

(18th IMO)

5.3 Infinite descent

Fermat1 was the first mathematicians to use a method of proof called

the infinite descent.

Let P be a property concerning the nonnegative integers and let

(P (n))n≥1 be the sequence of propositions,

P (n): ”n satisfies property P”

The following method is useful in proving that proposition P (n) is false

for all large enough n.

Let k be a nonnegative integer. Suppose that:

• P (k) is not true;

• if P (m) is true for a positive integer m > k, then there is some

smaller j, m > j ≥ k for which P (j) is true.

Then P (n) is false for all n ≥ k.

This is just the contrapositive of strong induction, applied to the negation

of proposition P (n). In the language of the ladder metaphor, if you know

you cannot reach any rung without first reaching a lower rung, and you

also know you cannot reach the bottom rung, then you cannot reach any

rungs.

1Pierre de Fermat (1601-1665), French lawyer and government official most remem-

bered for his work in number theory, in particular for Fermat’s Last Theorem. He is also

important in the foundations of the calculus.
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The above is often called the finite descent method.

The Fermat’s method of infinite descent (FMID) can be formulated as

follows:

Let k be a nonnegative integer. Suppose that:

• if P (m) is true for an integer m > k, then there must be some smaller

integer j, m > j > k for which P (j) is true.

Then P (n) is false for all n > k.

That is, if there where an n for which P (n) was true, one could construct

a sequence n > n1 > n2 > . . . all of which would be greater than k, but

for the nonnegative integers, no such descending is possible.

Two special cases of FMID are particularly useful in solving Number

Theory problems.

FMID Variant 1. There is no sequence of nonnegative integers n1 >

n2 > . . .

In some situations it is convenient to replace FMID Variant 1 by the

following equivalent form: If n0 is the smallest positive integer n for which

P (n) is true, then P (n) is false for all n < n0. In fact, this is equivalent to

an extremal argument.

FMID Variant 2. If the sequence of nonnegative integers (ni)i≥1 sat-

isfies the inequalities n1 ≥ n2 ≥ . . . , then there exists i0 such that

ni0 = ni0+1 = . . .

Problem 5.3.1. Find all triples (x, y, z) of nonnegative integers such

that

x3 + 2y3 = 4z3.

Solution. Note that (0,0,0) is such a triple. We will prove that there

is no other. Assume that (x1, y1, z1) is a nontrivial solution to the given

equation. Because 3
√

2, 3
√

4 are both irrational, it is not difficult to see that

x1 > 0, y1 > 0, z1 > 0.

From x3
1 + 2y3

1 = 4z3
1 it follows that 2|x1, so x1 = 2x2, x2 ∈ Z+. Then

4x3
2 + y3

1 = 2z3
1 , hence y1 = 2y2, y2 ∈ Z+. Similarly, z1 = 2z2, z2 ∈ Z+.

We obtain the ”new” solution (x2, y2, z2) with x1 > x2, y1 > y2, z1 > z2.

Continuing this procedure, we construct a sequence of positive integral

triples (xn, yn, zn)n≥1 such that x1 > x2 > x3 > . . . But this contradicts

FMID Variant 1.
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Proposed problems

Problem 5.3.2. Find all primes p for which there exist positive integers

x, y and n such that pn = x3 + y3.

(2000 Hungarian Mathematical Olympiad)

5.4 Inclusion-exclusion

The main result in this section is contained in the following theorem.

Theorem 5.4.1. Let S1, S2, . . . , Sn be the finite sets. Then
∣
∣
∣
∣
∣

n⋃

i=1

Si

∣
∣
∣
∣
∣
=

n∑

i=1

|Si| −
∑

1≤i<j≤n

|Si ∩ Sj| +
∑

1≤i<j<k≤n

|Si ∩ Sj ∩ Sk|

− · · · + (−1)n−1

∣
∣
∣
∣
∣

n⋂

i=1

Si

∣
∣
∣
∣
∣
,

where |S| denotes the number of elements in S.

Proof. We proceed by induction. For n = 2, we have to prove that

|S1 ∪ S2| = |S1| + |S2| − |S1 ∩ S2|. This is clear because the number of

elements in S1 ∪ S2 is the number of elements in S1 and S2 less the ones

in S1 ∩ S2, since the latter elements were counted twice.

The inductive step uses the formula above for S1 →
k⋃

i=1

Sk and S2 →

Sk+1. �

The formula in the Theorem is called the Inclusion-Exclusion Principle.

Example. How many positive integers not exceeding 1000 are divisible

by 2, or 3, or 5?

Solution. Consider the sets

S1 = {2m|1 ≤ m ≤ 500}, S2 = {3n|1 ≤ n ≤ 333}, S3 = {5p|1 ≤ p ≤ 200}.

Then

S1 ∩ S2 = {6q|1 ≤ q ≤ 166}, S1 ∩ S3 = {10r|1 ≤ r ≤ 100},

S2 ∩ S3 = {15s|1 ≤ s ≤ 66} and S1 ∩ S2 ∩ S3 = {30u|1 ≤ u ≤ 33}.

Applying the Inclusion-Exclusion Principle we obtain

|S1∪S2∪S3| = |S1|+|S2|+|S3|−|S1∩S2|−|S1∩S3| = |S2∩S3|−|S1∩S2∩S3|
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= 500 + 333 + 200 − 166 − 100 − 66 + 33 = 734.

The dual version of Theorem 5.4.1 is the following:

Theorem 5.4.2. Let S1, S2, . . . , Sn be subsets of the finite set S and let

Si = S − Si be the complementary set of Si, i = 1, 2, . . . , n. Then

∣
∣
∣
∣
∣

n⋂

i=1

Si

∣
∣
∣
∣
∣
= |S| −

n∑

i=1

|Si| +
∑

1≤i<j≤n

|Si ∩ Sj | −
∑

1≤i<j<k≤n

|Si ∩ Sj ∩ Sk|

+ · · · + (−1)n

∣
∣
∣
∣
∣

n⋂

i=1

Si

∣
∣
∣
∣
∣
.

Proof. Let

A =

n⋂

i=1

Si and B =

n⋃

i=1

Si.

It is clear that A∪B = S and A∩B = ∅. Hence |S| = |A|+ |B| and the

conclusion follows from Theorem 5.4.1. �

Example. How many positive integers exceeding 120 are divisible by

neither 2, nor 3, nor 5?

Solution. Consider the sets

S1 = {2m|1 ≤ m ≤ 60}, S2 = {3n|1 ≤ n ≤ 40}, S3 = {5p|1 ≤ p ≤ 24}.

We have

S1 ∩ S2 = {6q|1 ≤ q ≤ 20}, S1 ∩ S3 = {10r|1 ≤ r ≤ 12},

S2 ∩ S3 = {15s|1 ≤ s ≤ 8} and S1 ∩ S2 ∩ S3 = {30u|1 ≤ u ≤ 4}.

Applying the formula in Theorem 5.3.2, we get

|S1 ∩S2 ∩S3| = 120− (|S1|+ |S2|+ |S3|) + |S1 ∩S2|+ |S1 ∩ S3|+ |S2 ∩S3|

−|S1 ∩ S2 ∩ S3| = 120 − (60 + 40 + 24) + 20 + 12 + 8 − 4 = 32.

Problem 5.4.1. Let S = {1, 2, 3, . . . , 280}. Find the smallest integer

n such that each n-element subset of S contains five numbers which are

pairwise relatively prime.

(32nd IMO)
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Solution. The solutions is given in two steps.

First step. Let consider the sets

M2 = {2, 4, 6, . . . , 280}, M3 = {3, 6, 9, . . . , 279},

M5 = {5, 10, 15, . . . , 280}, M7 = {7, 14, . . . , 280}

and let M = M2 ∪M3 ∪M5 ∪M7. The following cardinalities are obvious:

|M2| = 140, |M3| = 93, |M5| = 56 and |M7| = 40.

It is easy to prove that:

|M2 ∩M3| =

[
280

6

]

= 46, |M2 ∩M5| =

[
280

10

]

= 28,

|M2 ∩M7| =

[
280

14

]

= 20, |M3 ∩M5| =

[
280

15

]

= 18,

|M3 ∩M7| =

[
280

21

]

= 13, |M5 ∩M7| =

[
280

35

]

= 8,

|M2 ∩M3 ∩M5| =

[
280

30

]

= 9, |M2 ∩M3 ∩M7| =

[
280

42

]

= 6,

|M2 ∩M5 ∩M7| =

[
280

70

]

= 4, |M4 ∩M5 ∩M7| =

[
28

105

]

= 2

and

|M2 ∩M3 ∩M5 ∩M7| =

[
280

210

]

= 1.

By the Principle of Inclusion-Exclusion we obtain:

|M | = |M2 ∪M3 ∪M5 ∪M7|

= 140+93+56+40−(46+28+20+18+13+8)+(9+6+4+2)−1 = 216.

By the Pigeonhole Principle, any five-element subset of M contains at

least two elements from the same subset Mi, i ∈ {2, 3, 5, 7}. These elements

are not relatively prime numbers. Thus, we prove that n > 216.

Second step. We will prove that n = 217.

The set S \ M contains 280 − 216 = 64 elements. It contains prime

numbers and composite numbers. Taking account that [
√

280] = 16, we

may state that the composite numbers in S \M are precisely the elements

of the set

C = {112; 11 · 13; 11 · 17; 11 · 19; 11 · 23; 132; 13 · 17; 13 · 19}.
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Observe that |C| = 8. Thus, the set S \ M contains 1, 8 composite

numbers are 55 prime numbers. Also, taking in account the prime numbers

2, 3, 5, 7 we infer that the set S contains 59 prime numbers in all.

Let p1 = 2, p2 = 3, p3 = 5, . . . , p59 be all these prime numbers and let

denote P = {1, p2, p2, . . . , p59}. Thus, |P | = 60.

Let T be a subset containing 217 elements of S. If |T ∩ P | ≥ 5 it follows

that T contains 5 elements which are relatively prime numbers. So, let

suppose |T ∩ P | ≤ 4. In this case, |T ∩ (S \ P )| ≥ 217 − 4 = 213. Since

S contains 220 composite numbers, it follows that at most 7 composite

numbers are not in T .

Consider the following five-element subsets of S \ P :

A1 = {22; 32; 52; 72; 132}

A2 = {2 · 23; 3 · 19; 5 · 17; 7 · 13; 11 · 11}

A3 = {2 · 29; 3 · 23; 5 · 19; 7 · 17; 11 · 13}

A4 = {2 · 31; 3 · 29; 5 · 23; 7 · 19; 11 · 17}

A5 = {2 · 37; 3 · 31; 5 · 29; 7 · 23; 11 · 19}

A6 = {2 · 41; 3 · 37; 5 · 31; 7 · 29; 11 · 23}

A7 = {2 · 43; 3 · 41; 5 · 37; 7 · 23; 13 · 17}

A8 = {2 · 47; 3 · 43; 5 · 41; 7 · 37; 12 · 19}.

By the Pigeonhole Principle, there exists a set Ai, 1 ≤ i ≤ 8, such that

Ai ⊂ T ; if not, the set S \ T would contain 8 composite numbers. Each Ai

contains five relatively prime numbers and we are done.

Proposed problems

Problem 5.4.2. The numbers from 1 to 1000000 can be colored black or

white. A permissible move consists of selecting a number from 1 to 1000000

and changing the color of that number and each number not relatively

prime to it. Initially all of the numbers are black. Is it possible to make a

sequence of moves after which all of the numbers are colored white?

(1999 Russian Mathematical Olympiad)
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6

Arithmetic Functions

6.1 Multiplicative functions

Arithmetic functions are defined on the positive integers and are complex

valued. The arithmetic function f 6= 0 is called multiplicative if for any

relatively prime positive integers m and n,

f(mn) = f(m)f(n)

The arithmetic function f 6= 0 is called completely multiplicative if the

relation above holds for any positive integers m and n.

Remarks. 1) If f : Z∗
+ → C is multiplicative, then f(1) = 1. Indeed, if

a is a positive integer for which f(a) 6= 0, then f(a) = f(a · 1) = f(a)f(1)

and simplify by f(a) yields f(1) = 1.

2) If f is multiplicative and n = pα1
1 . . . pαk

k is the prime factorization of

the positive integer n, then f(n) = f(pα1
1 ) . . . f(pαk

k ), that is in order to

compute f(n) it suffices to compute f(pαi

i ), i = 1, . . . , k.

3) If f is completely multiplicative and n = pα1
1 . . . pαk

k is the prime

factorization of n, then f(n) = f(p1)
α1 . . . f(pk)αk , that is in order to

compute f(n) it suffices to compute f(pi), i = 1, . . . , k.
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An important arithmetic function is the Möbius1 function defined by

µ(n) =







1 if n = 1

0 if p2|n for some prime p > 1

(−1)k if n = p1 . . . pk, where p1, . . . , pk are distinct primes

For example, µ(2) = −1, µ(b) = 1, µ(12) = µ(22 · 3) = 0.

Theorem 6.1.1. The Möbius function µ is multiplicative.

Proof. Let m,n be positive integers such that gcd(m,n) = 1. If p2|m for

some p > 1, then p2|mn and so µ(m) = µ(mn) = 0 and we are done.

Consider now m = p1 . . . pk, n = q1 . . . qh, where p1, . . . , pk, q1, . . . , qh

are distinct primes. Then µ(m) = (−1)k, µ(n) = (−1)h, and mn =

p1 . . . pkq1 . . . qh. It follows that µ(mn) = (−1)k+h = (−1)k(−1)h =

µ(m)µ(n). �

For an arithmetic function f we define its summation function F by

F (n) =
∑

d|n
f(d).

The connection between f and F is given by the following result.

Theorem 6.1.2. If f is multiplicative, then so is its summation function

F .

Proof. Let m,n be positive integers such that gcd(m,n) = 1 and let

d be a divisor of mn. Then d can be uniquely represented as d = kh,

where k|m and h|n. Because gcd(m,n) = 1, we have gcd(k, h) = 1, so

f(kh) = f(k)f(h). Hence

F (mn) =
∑

d|mn

f(d) =
∑

k|m
h|n

f(k)f(h)

=




∑

k|m
f(k)








∑

h|n
f(h)



 = F (m)F (n). �

Remark. If f is a multiplicative function and n = pα1
1 . . . pαk

k , then

F (n) =

k∏

i=1

(1 + f(pi) + · · · + f(pαi

i )) (1)

1August Ferdinand Möbius (1790-1868), German mathematician best known for his

work in topology, especially for his conception of the Möbius strip, a two dimensional

surface with only one side.
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Indeed, after multiplication in the right hand side we get a sum hav-

ing terms of the form f(pβ1

1 ) . . . f(pβk

k ) = f(pβ1

1 . . . pβk

k ), where 0 ≤ β1 ≤
α1, . . . , 0 ≤ βk ≤ αk. This sum is obviously F (n).

From (1) we can derive the following formula

∑

d|n
µ(d)f(d) = (1 − f(p1)) . . . (1 − f(pk)). (2)

The function g(n) = µ(n)f(n) is multiplicative, hence applying (1) we

get for its summation function G

G(n) =

k∏

i=1

(1 + µ(pi)f(pi)) =

k∏

i=1

(1 − f(pi)).

Theorem 6.1.3. (Möbius inversion formula) Let f be an arithmetic func-

tion and let F be its summation function. Then

f(n) =
∑

d|n
µ(d)F

(n

d

)

. (3)

Proof. We have

∑

d|n
µ(d)F

(n

d

)

=
∑

d|n
µ(d)




∑

c|n
d

f(c)



 =
∑

d|n




∑

c|n
d

µ(d)f(c)





=
∑

c|n




∑

d|n
c

µ(d)f(c)



 =
∑

c|n
f(c)




∑

d|n
c

µ(d)



 = f(n),

since for
n

c
> 1 we have

∑

d|n
c

µ(d) = 0.

We have used the fact that sets
{

(d, c)| d|n and c|n
d

}

and
{

(d, c)| c|n and d|n
c

}

are equal. �

Theorem 6.1.4. Let f be an arithmetic function and let F be its sum-

mation function. If F is multiplicative, then so is f .

Proof. Let m,n be positive integers such that gcd(m,n) = 1 and let d be

a divisor of mn. Then d = kh where k|m, h|n and gcd(k, h) = 1. Applying

Möbius inversion formula it follows

f(mn) =
∑

d|mn

µ(d)F
(mn

d

)

=
∑

k|m
h|n

µ(kh)F
(mn

kh

)
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=
∑

k|m
h|n

µ(k)µ(h)F
(m

k

)

F
(n

h

)

=




∑

k|m
µ(k)F

(m

k

)








∑

h|n
µ(h)F

(n

h

)





= f(m)f(n). �

Let f and g be two arithmetic functions. Define their convolution product

or Dirichlet2 product f ∗ g by

(f ∗ g)(n) =
∑

d|n
f(d)g

(n

d

)

Problem 6.1.1. 1) Prove that the convolution product is commutative

and associative.

2) Prove that for any arithmetic function f ,

f ∗ ε = ε ∗ f = f,

where ε(n) = 1 if n = 1 and 0 otherwise.

Solution. Let f and g be two arithmetic functions. Then

(f ∗ g)(n) =
∑

d|n
f(d)g

(n

d

)

=
∑

d1|n
f

(
n

d1

)

g(d1) = (g ∗ f)(n),

since if d runs through all divisors of, then so does d1 =
n

d
. Therefore

f ∗ g = g ∗ f .

Let f, g, h be arithmetic functions. To prove the associativity law, let

u = g ∗ h and consider f ∗ u = f ∗ (g ∗ h). We have

(f ∗ u)(n) =
∑

a|n
f(a)u

(n

a

)

=
∑

ad=n

f(a)
∑

bc=d

g(b)h(c)

=
∑

abc=n

f(a)g(b)h(c)

Similarly, if we set v = f ∗ g and consider v ∗ h, we have

(v ∗ h)(n) =
∑

dc=n

v(d)h(c) =
∑

dc=n

∑

ab=d

f(a)g(b)h(c)

2Johann Peter Gustav Lejeune Dirichlet (1805-1859), German mathematician who

proved in 1837 that there are infinitely many primes in any arithmetic progression of

integers for which the common difference is relatively prime to the terms. Dirichlet

has essential contributions in number theory, probability theory, functional analysis and

Fourier series.
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=
∑

abc=n

f(a)g(b)h(c),

hence f ∗ (g ∗ h) = (f ∗ g) ∗ h.

2) We have

(ε ∗ f)(n) =
∑

d|n
ε(d)f

(n

d

)

= f(n),

and we get ε ∗ f = f ∗ ε = f .

Problem 6.1.2. Let f be an arithmetical function. If f(1) 6= 0, then

there is a unique arithmetical function g such that

f ∗ g = ε.

Solution. We show by induction on n that (f ∗g)(n) = ε(n) has a unique

solution g(1), . . . , g(n).

For n = 1, we have f(1)g(1) = 1, hence g(1) =
1

f(1)
.

Suppose n > 1 and assume g(1), . . . , g(n−1) have been determined such

that (f ∗ g)(k) = ε(k) holds for k = 1, 2, . . . , n− 1. Then

f(1)g(n) +
∑

d|n
d>1

f(d)g
(n

d

)

= 0,

and we get

g(n) = − 1

f(1)

∑

d|n
d>1

f(d)g
(n

d

)

i.e. the function g is unique.

Remark. The unique function g satisfying f ∗ g = ε where f(1) 6= 0 is

called the convolution inverse of f .

Problem 6.1.3. If f and g are multiplicative, so is their convolution

product.

Solution. Let h = f ∗ g. We have

h(mn) =
∑

c|mn

f(c)g
(mn

c

)

Set c = ab, where a|m and b|n. Since gcd(m,n) = 1, we have

h(mn) =
∑

a|m

∑

b|n
f(ab)g

(m

a

n

b

)
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=




∑

a|m
f(a)g

(m

a

)








∑

b|n
f(b)g

(n

b

)



 = h(m)h(n).

Problem 6.1.4. 1) If both g and f ∗ g are multiplicative, then f is also

multiplicative.

2) If g is multiplicative, then so is its convolution inverse.

Solution. 1) We shall prove by contradiction. Suppose f is not multi-

plicative. Let h = f ∗ g. Since f is not multiplicative, there exist m and

n, gcd(m,n) = 1 such that f(mn) 6= f(m)f(n). We choose mn as small

as possible. If mn = 1, then we get f(1) 6= f(1)f(1) so f(1) 6= 1. Since

h(1) = f(1)g(1) = f(1) 6= 1, h is not multiplicative, a contradiction. If

mn > 1, we have f(ab) = f(a)f(b) for all ab < mn with gcd(a, b) = 1. Now

h(mn) = f(mn)g(1) +
∑

a|m
b|n

f(ab)g
(mn

ab

)

= f(mn)+
∑

a|m
b|n

ab<mn

f(a)f(b)g
(m

a

)

g
(n

b

)

= f(mn)− f(m)f(n)+h(m)h(n).

Since f(mn) 6= f(m)f(n), h(mn) 6= h(m)h(n). Therefore, h is not mul-

tiplicative, a contradiction.

2) Denote by g−1 the convolution inverse of g. Then ε = g∗g−1 = g−1 ∗g
and g are both multiplicative. From the previous result it follows that g−1

is multiplicative.

Problem 6.1.5. Prove that the arithmetic function f is completely mul-

tiplicative if and only if f ∗ f = fτ , where τ(n) is the number of divisors

of n.

(American Mathematical Monthly)

Solution. If f is completely multiplicative, we have

(f ∗ f)(n) =
∑

d|n
f(d)f

(n

d

)

=
∑

d|n
f
(

d
n

d

)

=
∑

d|n
f(n)

= f(n)
∑

d|n
1 = f(n)τ(n) = (fτ)(n),

and the relation follows.

Conversely, take n = 1, and it follows f(1) = 0 or f(1) = 1. Now

suppose that n ≥ 2 and let n = pα1
1 . . . pαk

k the prime factorization of
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n. Put α(n) = α1 + · · ·+αk. It suffice to show that for any positive integer

n ≥ 2, the following relation holds

f(n) = f(1)f(p1)
α1 . . . f(pk)αk .

We proceed by induction on α. If α(n) = 1, then n is a prime, say n = p,

and the property follows from the fact that

2f(p) = τ(p)f(p) = f(1)f(p) + f(p)f(1) = 2f(1)f(p)

Suppose then that the property holds for all n with α(n) ≤ k. Take any

n with α(n) = k + 1. Then

τ(n)f(n) = 2f(1)f(n) +
∑

f(a)f(b),

where the sum runs over all a, b with ab = n and 1 < a, b < n. It follows

that α(a) ≤ k, α(b) ≤ k and from the inductive assumption we get

τ(n)f(n) = 2f(1)f(n) + (τ(n) − 2)f2(1)f(p1)
α1 . . . f(pk)αk

Since n is not a prime, certainly τ(n) > 2 and so, for both f(1) = 0 and

f(1) = 1, the desired result follows.

Proposed problems

Problem 6.1.6. Let f be a function from the positive integers to the

integers satisfying f(m + n) ≡ f(n) (mod m) for all m,n ≥ 1 (e.g., a

polynomial with integer coefficients). Let g(n) be the number of values

(including repetitions) of f(1), f(2), . . . , f(n) divisible by n, and let h(n)

be the number of these values relatively prime to n. Show that g and h are

multiplicative functions related by

h(n) = n
∑

d|n
µ(d)

g(d)

d
= n

k∏

j=1

(

1 − g(pj)

pj

)

,

where n = pα1
1 . . . pαk

k is the prime factorization of n.

(American Mathematical Monthly)

Problem 6.1.7. Define λ(1) = 1, and if n = pα1
1 . . . pαk

k , define

λ(n) = (−1)α1+···+αk
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1) Show that λ is completely multiplicative.

2) Prove that

∑

d|n
λ(d) =

{

1 if n is a square

0 otherwise

3) Find the convolutive inverse of λ.

Problem 6.1.8. Let an integer n > 1 be factored into primes: n =

pα1
1 . . . pαm

m (pi distinct) and let its own positive integral exponents be fac-

tored similarly. The process is to be repeated until it terminates with a

unique ”constellation” of prime numbers. For example, the constellation

for 192 is 192 = 222·3 · 3 and for 10000 is 10000 = 222 · 52. Call an arith-

metic function g generally multiplicative if g(ab) = g(a)g(b) whenever the

constellations for a and b have no prime in common.

1) Prove that every multiplicative function is generally multiplicative. Is

the converse true?

2) Let h be an additive function (i.e. h(ab) = h(a) + h(b) whenever

gcd(a, b) = 1). Call a function k generally additive if k(ab) = k(a) + k(b)

whenever the constellations for a and b have no prime in common. Prove

that every additive function is generally additive. Is the converse true?

(American Mathematical Monthly)

6.2 Number of divisors

For a positive integer n denote by τ(n) the number of its divisors. It is

clear that

τ(n) =
∑

d|n
1,

that is τ is the summation function of the multiplicative function f(m) = 1,

m ∈ Z∗
+. Applying Theorem 6.1.2 it follows that τ is multiplicative.

Theorem 6.2.1. If n = pα1
1 . . . pαk

k is the prime factorization of n, then

τ(n) = (α1 + 1) . . . (αk + 1). (4)

Proof. Using the fact that τ is multiplicative, we have

τ(n) = τ(pα1
1 ) . . . τ(pαk

k ) = (α1 + 1) . . . (αk + 1),

because pαi

i has exactly αi + 1 divisors, i = 1, . . . , k. �
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Problem 6.2.1. For any n ≥ 2

τ(n) =

n∑

k=1

(⌊n

k

⌋

−
⌊
n− 1

k

⌋)

.

Solution. Note that

⌊n

k

⌋

−
⌊
n− 1

k

⌋

=

{

1 if k|n
0 otherwise

Hence
n∑

k=1

(⌊n

k

⌋

−
⌊
n− 1

k

⌋)

=
∑

k|n
1 = τ(n).

Remark. It is clear that n is a prime if and only if τ(n) = 2. Hence

n∑

k=1

(⌊n

k

⌋

−
⌊
n− 1

k

⌋)

= 2

if and only if n is a prime.

Problem 6.2.2. Find all positive integers d that have exactly 16 positive

integral divisors d1, d2, . . . , d16 such that

1 = d1 < d2 < · · · < d16 = d,

d6 = 18 and d9 − d8 = 17.

(1998 Irish Mathematical Olympiad)

Solution. Let d = pα1
1 pα2

2 . . . pαm
m with p1, . . . , pm distinct primes. Then

n has (a1 + 1)(a2 + 1) . . . (an + 1) divisors. Since 18 = 2 · 32, it has 6

divisors: 1, 2, 3, 6, 9, 18. Since d has 16 divisors, we know that d = 2 · 33p

or d = 2 · 37. If b = 2 · 37, d8 = 54, d9 = 81 and d9 − d8 6= 17. Thus

d = 2 · 33p for some prime p > 18. If p < 27, then d7 = p, d8 = 27,

d9 = 2p = 27+17+44 ⇒ p = 22, a contradiction. Thus p > 27. If p < 54,

d7 = 27, d8 = p, d9 = 54 = d8 + 17 ⇒ p = 37. If p > 54, then d7 = 27,

d8 = 54, d9 = d8 + 17 = 71. We obtain two solutions for the problem:

2 · 33 · 37 = 1998 and 2 · 33 · 71 = 3834.

Problem 6.2.3. For how many a) even and b) odd numbers n, does n

divide 312 − 1, yet n does not divide 3k − 1 for k = 1, 2, . . . , 11.

(1995 Austrian Mathematical Olympiad)
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Solution. We note

312 − 1 = (36 − 1)(36 + 1)

= (32 − 1)(34 + 32 + 1)(32 + 1)(34 − 32 + 1)

= (23)(7 · 13)(2 · 5)(73).

Recall that the number of divisors of pe1
1 . . . pek

k is (e1 + 1) . . . (ek + 1).

Therefore 312 − 1 has 2 · 2 · 2 · 2 = 16 odd divisors and 4 · 16 = 64 even

divisors.

If 312 ≡ 1 (mod m) for some integer m, then the smallest integer d such

that 3d ≡ 1 (mod m) divides 12. (Otherwise we could write 12 = pq + r

with 0 < r < d and find 3r ≡ 1 (mod m)). Hence to ensure n ∤ 3k − 1 for

k = 1, . . . , 11, we need only check k = 1, 2, 3, 4, 6. But

31 − 1 = 2

32 − 1 = 23

33 − 1 = 2 · 13

34 − 1 = 24 · 5
36 − 1 = 23 · 7 · 13.

The odd divisors we throw out are 1, 5, 7, 13, 91, while the even divisors

are 2i for 1 ≤ i ≤ 4, 2i · 5 for 1 ≤ i ≤ 4, and each of 2j · 7, 2j · 13, and

2j · 7 · 13 for 1 ≤ i ≤ 3. As we are discarding 17 even divisors and 5 odd

ones, we remain with 47 even divisors and 11 odd ones.

Problem 6.2.4. Let τ(n) denote the number of divisors of the natural

number n. Prove that the sequence τ(n2 + 1) does not become monotonic

from any given point onwards.

(1998 St. Petersburg City Mathematical Olympiad)

Solution. We first note that for n even, τ(n2 + 1) ≤ n. Indeed, exactly

half of the divisors of n2 + 1 are less than n, and all are odd, so there are

at most 2(n/2) in all.

Now if τ(n2 + 1) becomes strictly monotonic for n ≥ N , then

τ((n+ 1)2 + 1) ≥ τ(n2 + 1) + 2

for n ≥ N (since τ(k) is even for k not a perfect square). Thus

τ(n2 + 1) ≥ τ(N2 + 1) + 2(n−N)

which exceeds n for large, contradiction.
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Proposed problems

Problem 6.2.5. Does there exist a positive integer such that the product

of its proper divisors ends with exactly 2001 zeroes?

(2001 Russian Mathematical Olympiad)

Problem 6.2.6. Prove that the number of divisors of the form 4k+1 of

each positive integer is not less than the number of its divisors of the form

4k + 3.

Problem 6.2.7. Let d1, d2, . . . , dl be all positive divisors of a positive

integer. For each i = 1, 2, . . . , l denote by ai the number of divisors of di.

Then

a3
1 + a3

2 + · · · + a3
l = (a1 + a2 + · · · + al)

2.

6.3 Sum of divisors

For a positive integer n denote by σ(n) the sum of its divisors. It is clear

that

σ(n) =
∑

d|n
d,

that is σ is the summation function of the multiplicative function d(m) =

m, m ∈ Z∗
+. Applying Theorem 6.1.2 it follows that σ is multiplicative.

Theorem 6.3.1. If n = pα1
1 . . . pαk

k is the prime factorization of n, then

σ(n) =
pα1+1
1 − 1

p1 − 1
. . .

pαk+1
k − 1

pk − 1
.

Proof. Because σ is multiplicative, it suffices to compute σ(pαi

i ), i =

1, . . . , k. The divisors of pαi

i are 1, pi, . . . , p
αi

i , hence

σ(pαi

i ) = 1 + pi + · · · + pαi

i =
pα1+1

i − 1

pi − 1

and the conclusion follows. �

Problem 6.3.1. For any n ≥ 2,

σ(n) =

n∑

k=1

k

(⌊n

k

⌋

−
⌊
n− 1

k

⌋)

.



130 6. ARITHMETIC FUNCTIONS

Solution. We have

⌊n

k

⌋

−
⌊
n− 1

k

⌋

=

{

1 if k|n
0 otherwise

hence
n∑

k=1

k

(⌊n

k

⌋

−
⌊
n− 1

k

⌋)

=
∑

k|n
k = σ(n)

Remark. It is clear that n is a prime if and only if σ(n) = n+ 1. Hence

n∑

k=1

k

(⌊n

k

⌋

−
⌊
n− 1

k

⌋)

= n+ 1

if and only if n is a prime.

Problem 6.3.2. If n is a composite positive integer, then

σ(n) ≥ n+
√
n+ 1.

Solution. The integer n has a divisor d such that d 6= 1 and d ≤ √
n.

Because
n

d
is also a divisor of n, it follows that

n

d
≥ √

n, therefore

σ(n) =
∑

k|n
k ≥ 1 + n+

n

d
≥ n+

√
n+ 1.

Problem 6.3.3. For any n ≥ 7,

σ(n) < n lnn.

Solution. Let d1, d2, . . . , dk all divisors of n. They can be also written

as
n

d1
,
n

d2
, . . . ,

n

dk
,

hence

σ(n) = n

(
1

d1
+

1

d2
+ · · · + 1

dk

)

≤ n

(

1 +
1

2
+ · · · + 1

k

)

,

where k = τ(n). Inducting on k we prove that for any k ≥ 2,

1 +
1

2
+ · · · + 1

k
< .81 + ln k.
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Using the inequality τ(n) ≤ 2
√
n (Problem 2, Section 6.2) it follows that

1 +
1

2
+ · · · + 1

k
< .81 + ln(2

√
n) < 1.51 +

1

2
lnn.

For n ≥ 21 we have lnn > 1.51+
1

2
lnn and checking directly the desired

inequality for n = 7, . . . , 20, the conclusion follows.

Problem 6.3.4. For any n ≥ 2,

σ(n)

τ(n)
≥ √

n.

Solution. Let d1, d2, . . . , dτ(n) ne the divisors of n. They can be rewritten

as
n

d1
,
n

d2
, . . . ,

n

dτ(n)

Hence

σ(n)2 = n(d1 + d2 + · · · + dτ(n))

(
1

d1
+

1

d2
+ · · · + 1

dτ(n)

)

≥ nτ(n)2

and the conclusion follows.

Proposed problems

Problem 6.3.5. For any n ≥ 2,

σ(n) < n
√

2τ(n).

(1999 Belarusian Mathematical Olympiad)

Problem 6.3.6. Find all the four-digit numbers so that when decom-

posed in prime factors have the sum of the prime factors equal to the sum

of the exponents.

Problem 6.3.7. Let m,n, k be positive integers with n > 1. Show that

σ(n)k 6= nm.

(2001 St. Petersburg City Mathematical Olympiad)

6.4 Euler’s totient function

For any positive integer n we denote by ϕ(n) the number of all integers

m such that m ≤ n and gcd(m,n) = 1. The arithmetic function ϕ is called
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the Euler3’s totient function. It is clear that ϕ(1) = 1 and for any prime p,

ϕ(p) = p − 1. Moreover, if n is a positive integer such that ϕ(n) = n − 1

then n is a prime.

Theorem 6.4.1. (Gauss) For any positive integer n,
∑

d|n
ϕ(d) = n.

Proof. Let d1, d2, . . . , dk be the divisors of n and let Si = {m| m ≤
n and gcd(m,n) = di}, i = 1, . . . , k. If m ∈ Si, then m = dim

′, where

gcd

(

m′,
n

di

)

= 1. Because m′ ≤ n

di
, from the definition of ϕ it follows

that |Si| = ϕ

(
n

di

)

. The sets S1, . . . , Sk give a partition of {1, 2, . . . , n},
hence

k∑

i=1

ϕ

(
n

di

)

=

k∑

i=1

|Si| = n.

But

{
n

d1
, . . . ,

n

dk

}

= {d1, . . . , dk}, so
∑

d|n
ϕ(d) = n. �

Theorem 6.4.2. The function ϕ is multiplicative.

Proof. From Theorem 6.4.1 we obtain that the summation function of

ϕ is F (n) = n, which is multiplicative.

The conclusion now follows from Theorem 6.1.4. �

Theorem 6.4.3. If n = pα1
1 . . . pαk

k is the prime factorization of n > 1,

then

ϕ(n) = n

(

1 − 1

p1

)

. . .

(

1 − 1

pk

)

.

Proof. We first notice that for any prime p and for any positive integer

α,

ϕ(pα) = pα − pα−1 = pα

(

1 − 1

p

)

.

Indeed, the number of all positive integers not exceeding n that are

divisible by p is pα−1, hence ϕ(pα) = pα − pα−1.

3Leonhard Euler (1707-1783), Swiss mathematician which worked at the Petersburg

Academy and Berlin Academy of Science. Euler systematized mathematics by introduc-

ing the symbols e and i, and f(x) for a function of x. He also made major contributions

in optics, mechanics, electricity, and magnetism. Euler did important work in number

theory, proving that the divergence of the harmonic series implies an infinite number of

primes, factoring the fifth Fermat number, and introducing the totient function ϕ.
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Using Theorem 6.4.3 we have

ϕ(n) = ϕ(pα1
1 . . . pαk

k ) = ϕ(pα1
1 ) . . . ϕ(pαk

k )

= pα1
1

(

1 − 1

p1

)

. . . pαk

k

(

1 − 1

pk

)

= pα1
1 . . . pαk

k

(

1 − 1

p1

)

. . .

(

1 − 1

pk

)

= n

(

1 − 1

p1

)

. . .

(

1 − 1

pk

)

.

Alternative proof. We employ the inclusion-exclusion principle. Let

Ti = {d|d ≤ n and pi|d}, i = 1, . . . , k.

It follows that

T1 ∪ · · · ∪ Tk = {m|m ≤ n and gcd(m,n) > 1}.

Hence

ϕ(n) = n− |T1 ∪ · · · ∪ Tk| = n−
k∑

i=1

|Ti| +
∑

1≤i<j≤k

|Ti ∩ Tj |

− · · ·+ (−1)k|T1 ∩ · · · ∩ Tk|.

We have

|Ti| =
n

pi
, |Ti ∩ Tj | =

n

pipj
, . . . , |T1 ∩ · · · ∩ Tk| =

n

p1 . . . pk

Finally,

ϕ(n) = n



1 −
n∑

i=1

1

pi
+

∑

1≤i<j≤k

1

pipj
− · · · + (−1)k 1

p1 . . . pk





= n

(

1 − 1

p1

)

. . .

(

1 − 1

pk

)

. �

Problem 6.4.1. Prove that there are infinitely many even positive inte-

gers k such that the equation ϕ(n) = k has no solution.

(Schinzel4)

4Andrzej Schinzel, Polish mathematician with important work on exponential congru-

ences, Euler’s ϕ-function, Diophantine equations, applications of transcendental number

theory to arithmetic problems.
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Solution. Take k = 2 · 7m, m ≥ 1. If n = pα1
1 . . . pαh

h , then

ϕ(n) = pα1
1

(

1 − 1

p1

)

. . . pαh

h

(

1 − 1

ph

)

= pα1−1
1 . . . pαh−1

h (p1 − 1) . . . (ph − 1).

If at least two of the primes p1, . . . , ph are odd, then 4|ϕ(n) and ϕ(n) 6= k.

If n = 2αpβ , with p ≥ 3, then

ϕ(n) = 2αpβ

(

1 − 1

2

)(

1 − 1

p

)

= 2α−1pβ−1(p− 1).

In this case the equality ϕ(n) = k is also impossible.

Problem 6.4.2. Prove that there are infinitely many positive integers n

such that

ϕ(n) =
n

3
.

Solution. Let n = 2 · 3m, where m is a positive integer. Then

ϕ(n) = ϕ(2 · 3m) = ϕ(2)ϕ(3m) = 3m − 3m−1 = 2 · 3m−1 =
n

3

for infinitely many values of n, as desired.

Problem 6.4.3. If n is a composite positive integer, then

ϕ(n) ≤ n−√
n.

Solution. because n is composite, it has a prime factor pj ≤ √
n. We

have

ϕ(n) = n

(

1 − 1

p1

)

. . .

(

1 − 1

pk

)

≤ n

(

1 − 1

pj

)

≤ n

(

1 − 1√
n

)

= n−√
n.

Problem 6.4.4. For any positive integer n, n 6= 2, n 6= 6,

ϕ(n) ≥ √
n.

Solution. Let m ≥ 2. If n = 2m, then

ϕ(n) = 2m − 2m−1 = 2m−1 ≥
√

2m =
√
n.

If n = pm, where p is an odd prime then

ϕ(n) = pm − pm−1 = pm−1(p− 1) ≥ √
pm =

√
n.
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If n = pm, where p is a prime greater than or equal to 5, then ϕ(n) ≥√
2n.

If n is odd or 4|n, then

ϕ(n) = ϕ(pα1
1 ) . . . ϕ(pαk

k ) ≥
√

pα1
1 . . .

√

pαk

k =
√
n.

If n = 2t, with t odd, t 6= 1, t 6= 3, then all prime factors of t are greater

than or equal to 5, hence ϕ(n) = ϕ(t) ≥
√

2t. It remains to settle the case

n = 2 · 3i, i ≥ 2. For i = 2, ϕ(12) = 6 >
√

18 and for i ≥ 3, ϕ(n) = 2 · 3i−1

and the inequality reduces to
√

2 · 3 i
2−1 > 1, which is clear.

Proposed problems

Problem 6.4.5. For a positive integer n, let ψ(n) be the number of

prime factors of n. Show that if ϕ(n) divides n− 1 and ψ(n) ≤ 3, then n is

prime.

(1998 Korean Mathematical Olympiad)

Problem 6.4.6. Show that the equation ϕ(n) = τ(n) has only the solu-

tions n = 1, 3, 8, 10, 18, 24, 30.

Problem 6.4.7. Let n > 6 be an integer and a1, a2, . . . , ak be all positive

integers less than n and relatively prime to n. If

a2 − a1 = a3 − a2 = · · · = ak − ak−1 > 0,

prove that n must be either a prime number or a power of 2.

(32nd IMO)

6.5 Exponent of a prime and Legendre’s formula

Let p be a prime and let us denote by vp(a) the exponent of p in the

decomposition of a. Of course, if p doesn’t divide a, then vp(a) = 0.

It is easy to prove the following properties of vp:

1) min{vp(a), vp(b)} ≤ vp(a+ b) ≤ max{vp(a), vp(b)};
2) vp(ab) = vp(a) + vp(b);

3) vp(gcd(a1, a2, . . . , an)) = min{vp(a1), vp(a2), . . . , vp(an)};
4) vp(lcm(a1, a2, . . . , an)) = max{vp(a1), vp(a2), . . . , vp(an)}.
If we have to prove that a|b, then it is enough to prove that the exponent

of any prime number in decomposition of a is at least the exponent of
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that prime in the decomposition of b. Now, let us repeat the above idea

in terms of function vp. We have a|b if and only if for any prime p we

have vp(a) ≤ vp(b). Also, we have a = b if and only if for any prime p,

vp(a) = vp(b).

For any positive integer n, let ep(n) be the exponent of prime p in the

prime factorization of n!.

The arithmetic function ep is called the Legendre5’s function associated

with the prime p and it is connected to function vp by the relation ep(n) =

vp(n!).

The following result gives a formula for the computation of ep(n).

Theorem 6.5.1. (Legendre’s formula) For any prime p and any positive

integer n,

ep(n) =
∑

i≥1

⌊
n

pi

⌋

=
n− Sp(n)

p− 1
,

where Sp(n) is the sum of digits of n when written in base p.

Proof. For n < p it is clear that ep(n) = 0. If n ≥ p, then in order to

determine ep(n) we need to consider only the multiples of p in the product

1 · 2 . . . n, that is (1 · p)(2 · p) . . . (kp) = pkk!, where k =

⌊
n

p

⌋

. Hence

ep(n) =

⌊
n

p

⌋

+ ep

(⌊
n

p

⌋)

.

Replacing n by

⌊
n

p

⌋

and taking into account that








⌊
n

p

⌋

p








=

⌊
n

p2

⌋

we obtain

ep

(⌊
n

p

⌋)

=

⌊
n

p2

⌋

+ ep

(⌊
n

p2

⌋)

Continuing this procedure we get

ep

(⌊
n

p2

⌋)

=

⌊
n

p3

⌋

+ ep

(⌊
n

p3

⌋)

5Adrien-Marie Legendre (1752-1833), French mathematician who was a disciple of

Euler and Lagrange. In number theory, he studied the function ep, and he proved the

unsolvability of Fermat’s last theorem for n = 5.
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. . .

ep

(⌊
n

pm−1

⌋)

=

⌊
n

pm

⌋

+ ep

(⌊
n

pm

⌋)

where m is the least positive integer such that n < pm+1, that is m =
⌊

lnn

ln p

⌋

. Summing up the relations above yields

ep(n) =

⌊
n

p

⌋

+

⌊
n

p2

⌋

+ · · · +
⌊
n

pm

⌋

.

The other relation is not difficult. Indeed, let us write

n = a0 + a1p+ · · · + akp
k,

where a0, a1, . . . , ak ∈ {0, 1, . . . , p− 1} and ak 6= 0. Then

⌊
n

p

⌋

+

⌊
n

p2

⌋

+· · · = a1+a2p+· · ·+akp
k−1+a2+a3p+· · ·+akp

k−2+· · ·+ak,

and now using the formula

1 + p+ · · · + pi =
pi+1 − 1

p− 1
,

we find exactly the second part in expression of ep(n). �

Examples. 1) Let us find the exponent of 7 in 400!. Applying Legendre’s

formula, we have

e7(400) =

⌊
400

7

⌋

+

⌊
400

72

⌋

+

⌊
400

73

⌋

= 57 + 8 + 1 = 66.

2) Let us determine the exponent of 3 in ((3!)!)!. We have ((3!)!)! =

(6!)! = 720!. Applying Legendre’s formula yields

e3(720) =

⌊
720

3

⌋

+

⌊
720

32

⌋

+

⌊
720

33

⌋

+

⌊
720

34

⌋

+

⌊
720

35

⌋

= 240 + 80 + 26 + 8 + 2 = 356.

Problem 6.5.1. Let p be a prime. Find the exponent of p in the prime

factorization of (pm)!.

Solution. Using Legendre’s formula, we have

ep(p
m) =

∑

i≥1

⌊
pm

pi

⌋

= pm−1 + pm−2 + · · · + p+ 1 =
pm − 1

p− 1
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Problem 6.5.2. Find all positive integers n such that n! ends in exactly

1000 zeros.

Solution. There are clearly more 2’s than 5’s in the prime factorization

of n!, hence it suffices to solve the equation

⌊n

5

⌋

+
⌊ n

52

⌋

+ · · · = 1000.

But

⌊n

5

⌋

+
⌊ n

52

⌋

+ · · · < n

5
+
n

52
+ · · · =

n

5

(

1 +
1

5
+ . . .

)

=
n

5
· 1

1 − 1

5

=
n

4
,

hence n > 4000.

On the other hand, using the inequality ⌊a⌋ > a− 1, we have

1000 >
(n

5
− 1
)

+
( n

52
− 1
)

+
( n

53
− 1
)

+
( n

54
− 1
)

+
( n

55
− 1
)

=
n

5

(

1 +
1

5
+

1

52
+

1

53
+

1

54

)

− 5 =
n

5
·
1 −

(
1

5

)5

1 − 1

5

− 5,

so

n <
1005 · 4 · 3125

3124
< 4022.

We narrowed n down to {4001, 4002, . . . , 4021}. Using Legendre’s formula

we find that 4005 is the first positive integer with the desired property and

that 4009 is the last. Hence n = 4005, 4006, 4007, 4008, 4009.

Problem 6.5.3. Prove that for any positive integer n, 2n does not divide

n!.

Solution. The exponent of 2 in the prime factorization of n! is

k = e2(n) =
⌊n

2

⌋

+
⌊ n

22

⌋

+ . . .

We have

k <
n

2
+
n

22
+ · · · =

n

2

(

1 +
1

2
+ . . .

)

=
n

2
· 1

1 − 1

2

= n

and we are done.

Remark. Similarly, for any prime p, pn does not divide ((p− 1)n)!.
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Problem 6.5.4. Find all positive integers n such that 2n−1 divides n!.

Solution. If n = 2s, s = 0, 1, 2, . . . , then

e2(n) = 2s−1 + · · · + 2 + 1 = 2s − 1,

hence 2n−1 divides n!.

Assume that n is odd, n = 2n1 + 1. Then from 2n−1 = 22n1 |(2n1 + 1)! =

(2n1)!(2n1+1) it follows 22n1 |(2n1)! which is not possible by Problem 6.5.3.

We get n = 2m1. If m1 is odd, m1 = 2n2 + 1, we have

2n−1 = 24n2+1|(4n2 + 2)! = (4n2)!(4n2 + 1) · 2 · (2n2 + 1)

and we obtain 24n2 |(4n2)!, a contradiction. Continuing this procedure we

get n = 2s.

Problem 6.5.5. Let p be an odd prime. Prove that the exponent of p in

the prime factorization of 1 · 3 · 5 . . . (2m+ 1) is

∑

k≥1

(⌊
2m+ 1

pk

⌋

−
⌊
m

pk

⌋)

.

Solution. We have

1 · 3 · 5 . . . (2m+ 1) =
(2m+ 1)!

m! · 2m
.

Because p is odd, the desired exponent is

ep(2m+ 1) − ep(m) =
∑

k≥1

⌊
2m+ 1

pk

⌋

−
∑

k≥1

⌊
m

pk

⌋

and the conclusion follows.

Problem 6.5.6. If p is a prime and pα|
(
n

m

)

, then pα ≤ n.

Solution. Because (
n

m

)

=
n!

m!(n−m)!
,

the exponent of p in the prime factorization of

(
n

m

)

is

β = ep(n) − ep(m) − ep(n−m) =
∑

k≥1

(⌊
n

pk

⌋

−
⌊
m

pk

⌋

−
⌊
n−m

pk

⌋)

.

This sum has at most s nonzero terms, where ps ≤ n < ps+1. Using the

inequality ⌊x + y⌋ − ⌊x⌋ − ⌊y⌋ ≤ 1 for x =
m

pk
and y =

n−m

pk
, it follows

that β ≤ s. Because pα|
(
n

m

)

, we obtain α ≤ β ≤ s, hence pα ≤ ps ≤ n.
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Proposed problems

Problem 6.5.7. a) If p is a prime, prove that for any positive integer n,

−
⌊

lnn

ln p

⌋

+ n

⌊ ln n
ln p ⌋∑

k=1

1

pk
< ep(n) <

n

p− 1
.

b) Prove that

lim
n→∞

ep(n)

n
=

1

p− 1
.

Problem 6.5.8. Show that for all nonnegative integers m,n the number

(2m)!(2n)!

m!n!(m+ n)!

is also an integer.

(14th IMO)

Problem 6.5.9. Prove that
(3a+ 3b)!(2a)!(3b)!(2b)!

(2a+ 3b)!(a+ 2b)!(a+ b)!a!(b!)2
is an inte-

ger for any positive integers a, b.

(American Mathematical Monthly)

Problem 6.5.10. Prove that there exists a constant c such that for any

positive integers a, b, n that verify a! · b!|n! we have a+ b < n+ c lnn.

(Paul Erdös)

Problem 6.5.11. Prove that the equation

1

10n
=

1

n1!
+

1

n2!
+ · · · + 1

nk!

does not have integer solutions such that 1 ≤ n1 < n2 < · · · < nk.

(Tuymaada Olimpiad)
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7

More on Divisibility

7.1 Fermat’s Little Theorem

Theorem 7.1.1. (Fermat’s Little Theorem) Let a be a positive integer

and let p be a prime. Then

ap ≡ a (mod p).

Proof. We induct on a. For a = 1 every thing is clear. Assume that

p|ap − a. Then

(a+ 1)p − (a+ 1) = (ap − a) +

p−1
∑

k=1

(
p

k

)

ak.

Using the fact that p|
(
p

k

)

for 1 ≤ k ≤ p−1 and the inductive hypothesis,

it follows that p|(a+ 1)p − (a+ 1), that is (a+ 1)p ≡ (a+ 1) (mod p).

Alternative proof. Suppose that gcd(a, p) = 1 and let us show that ap−1 ≡
1 (mod p). Consider the integers a, 2a, . . . , (p−1)a, whose remainders when

divided by p are distinct (otherwise, if ia ≡ ja (mod p), then p|(i − j)a,

that is p|i− j, which holds only if i = j). Hence

a · (2a) . . . (p− 1)a ≡ 1 · 2 . . . (p− 1) (mod p),
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i.e.

ap−1(p− 1)! ≡ (p− 1)! (mod p).

Because p and (p− 1)! are relatively prime, the conclusion follows. �

Remark. The converse is not true. For example, 3·11·17 divides a3·11·17−
a, since 3, 11, 17 each divides a3·11·17−a (for instance, if 11 did not divide a,

then from Fermat’s Little Theorem, we have 11|a10−1, hence 11|a10·56−1,

i.e. 11|a561 − a and 561 = 3 · 11 · 17).

We saw that the composite integers n satisfying an ≡ a (mod n) for any

integer a are called Carmichael’s integers. There are also even such integers,

for example n = 2 ·73 ·1103. For other comments see Remark after Problem

1.6.5.

Problem 7.1.1. 1) Let a be a positive integer. Prove that any prime

factor > 2 of a2 + 1 is of the form 4m+ 1.

2) Prove that there are infinitely many primes of the form 4m+ 1.

Solution. 1) Assume that p|a2 + 1 and p = 4m+ 3 for some integer m.

Then a2 ≡ −1 (mod p) and ap−1 = (a2)2m+1 ≡ (−1)2m+1 ≡ −1 (mod p),

contradicting Fermat’s Little Theorem.

2) The integer (n!)2 + 1 is of the form 4m+ 1, hence all its prime factors

are of this form. It follows that for any prime p of the form 4m+1, (p!)2 +1

is a prime or has a prime factor p1 > p and we are done.

Problem 7.1.2. For any prime p, pp+1+(p+1)p is not a perfect square.

Solution. For p = 2 the property holds. Assume by way of contradiction

that p ≥ 3 and pp+1+(p+1)p = t2 for some positive integer t. It follows that

(t+p
p+1
2 )(t−p p+1

2 ) = (p+1)p, hence t±p p+1
2 = 2p−1up and t∓p p+1

2 = 2vp,

for some positive integers u, v such that 2uv = p+1 and gcd(u, v) = 1. We

obtain p
p+1
2 = |2p−2up−vp|. Using Fermat’s Little Theorem we have up ≡ u

(mod p), vp ≡ v (mod p) and 2p−1 ≡ 1 (mod p), so u ≡ 2v (mod p). From

2uv = p + 1 we get u = 2v and finally v = 1 and p = 3. This leads to

t2 = 145, a contradiction.

Problem 7.1.3. Let n ≥ 2, a > 0 be integers and p a prime such that

ap ≡ 1 (mod pn). Show that if p > 2, then a ≡ 1 (mod pn−1), and if p = 2,

then a ≡ ±1 (mod 2n−1).

(1995 UNESCO Mathematical Contest)

Solution. We have ap ≡ 1 (mod p)n with n ≥ 2, so ap ≡ 1 (mod p).

But, from Fermat’s Little Theorem, ap ≡ a (mod p), hence a ≡ 1 (mod p).

For a = 1, the result is obvious; otherwise, put a = 1 + kpd, where d ≥ 1
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and p ∤ k. Then for p > 2, ap = 1 + kpd+1 + Mp2d+1 for M an integer.

Therefore d + 1 ≥ n and so s ≡ 1 (mod pn−1). In case p = 2, we have

2n|a2−1 = (a−1)(a+1). Since these differ by 2, both cannot be multiples

of 4. Hence either a+1 or a−1 is divisible by 2n−1, i.e. a ≡ ±1 (mod 2n−1),

as desired.

Problem 7.1.4. Find the smallest integer n such that among any n

integers, there exist 18 integers whose sum is divisible by 18.

(1997 Ukrainean Mathematical Olympiad)

Solution. The minimum is n = 35; the 34-element set of 17 zeroes and

17 ones shows that n ≥ 35, so it remains to show that among 35 integers,

there are 18 whose sum is divisible by 18. In fact, one can show that for

any n, among 2n− 1 integers there are n whose sum is divisible by n.

We show this claim by induction on n; it’s clear for n = 1. If n is com-

posite, say n = pq, we can assemble sets of p integers whose sum is divisible

by p as long as at least 2p− 1 numbers remain; this gives 2q − 1 sets, and

again by the induction hypothesis, some q of these have sum divisible by q.

Now suppose n = p is prime. The number x is divisible by p if and only

if xp−1 6≡ 1 (mod p). Thus if the claim is false, then the sum of (a1 +

· · ·+ap)
p−1 over all subsets {a1, . . . , ap} of the given numbers is congruent

to

(
2p− 1

p− 1

)

≡ 1 (mod p). On the other hand, the sum of ae1
1 . . . a

ep
p for

e1 + · · · + ep ≤ p − 1 is always divisible by p: if k ≤ p − 1 of the ei are

nonzero, then each product is repeated

(
2p− 1 − k

p− k

)

times, and the latter

is a multiple of p. This contradiction shows that the claim holds in this

case. (Note: to solve the original problem, of course it suffices to prove the

cases p = 2, 3 directly).

Remark. The fact that for any n, among 2n − 1 integers there are n

whose sum is divisible by n is a famous theorem of Erdös and Ginzburg.

Problem 7.1.5. Several integers are given (some of them may be equal)

whose sum is equal to 1492. Decide whether the sum of their seventh powers

can equal

(a) 1996;

(b) 1998.

(1997 Czech-Slovak Match)
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Solution. (a) Consider a set of 1492 1’s, 4 2’s, and 8 -1’s. Their sum is

1492, and the sum of their seventh powers is 1482(1) + 4(128) + 8(−1) =

1996.

(b) By Fermat’s Little Theorem, x7 ≡ x (mod 7). Thus, the sum of the

numbers’ seventh powers must be congruent to the sum of the numbers,

modulo 7. But 1998 6≡ 1492 (mod 7), so the numbers’ seventh powers can-

not add up to 1998.

Problem 7.1.6. Find the number of integers n > 1 for which the number

a25 − a is divisible by n for each integer a.

(1995 Bulgarian Mathematical Olympiad)

Solution. Let n have the required property. Then p2 (p a prime) does not

divide n since p2 does not divide p25−p. Hence n is the multiple of different

prime numbers. On the other hand 225−2 = 2·32·5·7·13·17·241. But n is not

divisible by 17 and 241 since 325 ≡ −3 (mod 17) and 325 ≡ 32 (mod 241).

The Fermat Theorem implies that a25 ≡ a (mod p) when p = 2, 3, 5, 7, 13.

Thus n should be equal to the divisors of 2 · 3 · 5 · 7 · 13, which are different

from 1 and there are 25 − 1 = 31 of them.

Problem 7.1.7. a) Find all positive integers n such that 7 divides 2n−1.

b) Prove that for any positive integer n the number 2n + 1 cannot be

divisible by 7.

(6th IMO)

Solution. Fermat’s Little Theorem gives:

26 ≡ 1 (mod 7).

It follows from the divisibility 7|(23 − 1)(23 + 1) that 23 ≡ 1 (mod 7).

Hence all numbers n which are divisible by 3 answer to the question.

Let n = 3k + r where r = 1 or r = 2. Then

2n ≡ 23k+r ≡ (23)k · 2r = 2 or 4 (mod 7).

Hence, we cannot obtain 2n ≡ −1 (mod 7).

Problem 7.1.8. Prove that the following are equivalent.

(a) For any positive integer a, n divides an − a.

(b) For any prime divisor p of n, p2 does not divides n and p− 1 divides

n− 1.

(1995 Turkish Mathematical Olympiad)
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Solution. First assume (a). If p2|n for some prime p, we must have

p2|(p+ 1)p2 − (p+ 1). However,

(p+ 1)p2 − (p+ 1) = p2 − p+

p2

∑

k=2

(
p2

k

)

pk.

All terms but the first are divisible by p2, contradicting the assumption.

Therefore p2 ∤ n. Moreover, if a is a primitive root modulo p, then an−1 ≡ 1

(mod p) implies p− 1|n− 1.

On the other hand, if n is square-free and p − 1|n − 1 for all primes

p|n, then for any a, either p|a or ap−1 ≡ 1 (mod p); in either case an ≡ a

(mod p) for all p dividing n. Hence the conditions are equivalent.

Problem 7.1.9. Prove that the sequence {2n − 3|n = 2, 3, . . . } contains

infinitely many pairs of relatively prime numbers.

(13th IMO)

Solution. We use the induction. The numbers 22 − 3, 23 − 3, 24 − 3 are

pairwise relatively prime numbers. We shall prove that if n1, n2, . . . , nk are

positive integers such that the members of the sequence

2n1 − 3, 2n2 − 3, . . . , 2nk − 3 (1)

are relatively prime to each other, then there exists nk+1 such that 2nk+1−3

is relatively prime to each number of the sequence (1).

Let {p1, p2, . . . , pr} be the set of all prime divisors of numbers from the

sequence (1). Then p1, p2, . . . , pr are odd prime numbers and by Fermat’s

Little Theorem

2pi−1 ≡ 1 (mod pi).

It follows that

2(p1−1)(p2−1)...(pr−1) ≡ 1 (mod pi), ∀ i = 1, . . . , r.

Let nk+1 =

r∏

i=1

(pi − 1). We shall prove that 2ni − 3 and 2nk+1 − 3, are

relatively prime, for all i = 1, . . . , r. Let p be a common prime divisor of

2ni − 3 and 2nk+1 − 3. Then 2nk+1 − 3 ≡ 1 − 3 (mod p) ≡ 0 (mod p); this

is a contradiction.

Problem 7.1.10. Let p > 2 be a prime number such that 3|(p− 2). Let

S = {y2 − x3 − 1| x and y are integers, 0 ≤ x, y ≤ p− 1}.

Prove that at most p elements of S are divisible by p.
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(1999 Balkan Mathematical Olympiad)

Solution. We need the following

Lemma. Given a prime p and a positive integer k > 1, if k and p − 1

are relatively prime then xk ≡ yk (mod p) ⇒ x ≡ y (mod p) for all x, y.

Proof. If y ≡ 0 (mod p) the claim is obvious. Otherwise, note that

xk ≡ yk ⇒ (xy−1)k ≡ 1 (mod p), so it suffices to prove that ak ≡ 1

(mod p) ⇒ a ≡ 1 (mod p).

Because gcd(p − 1, k) = 1, there exist integers b and c such that b(p −
1) + ck = 1. Thus, ak ≡ 1 (mod p) ⇒ ac ≡ 1 (mod p) ⇒ a1−b(p−1) ≡ 1

(mod p). If a = 0 this is impossible. Otherwise, by Fermat’s Little Theorem,

(a−b)p−1 ≡ 1 (mod p) so that a ≡ 1 (mod p), as desired.

Alternatively, again note that clearly a 6≡ 0 (mod p). Then let d be

the order of a, the smallest positive integer such that ad ≡ 1 (mod p);

we have d|k. Take the set {1, a, a2, . . . , ad−1}. If it does not contain

all of 1, 2, . . . , p − 1 then pick some other element b and consider the

set {b, ba, ba2, . . . , bad−1}. These two sets are disjoint, because otherwise

bai ≡ aj ⇒ b ≡ aj−1 (mod p), a contradiction. Continuing similarly, we

can partition {1, 2, . . . , p−1} into d-element subsets, and hence d|p−1. How-

ever, d|k and gcd(k, p− 1) = 1, implying that d = 1. Therefore a ≡ ad ≡ 1

(mod p), as desired. �

Because 3|p− 2, gcd(3, p− 1) = 1. Then from the claim, it follows that

the set of elements {13, 23, . . . , p3} equals {1, 2, . . . , p} modulo p. Hence,

for each y with 0 ≤ y ≤ p− 1, there is exactly one x between 0 and p− 1

such that x3 ≡ y2 − 1 (mod p): that is, such that p|y2 − x3 − 1. Therefore

S contains at most p elements divisible by p, as desired.

Proposed problems

Problem 7.1.11. Let 3n − 2n be a power of a prime for some positive

integer n. Prove that n is a prime.

Problem 7.1.12. Let f(x1, . . . , xn) be a polynomial with integer coeffi-

cients of total degree less than n. Show that the number of ordered n-tuples

(x1, . . . , xn) with 0 ≤ xi ≤ 12 such that f(x1, . . . , xn) ≡ 0 (mod 13) is di-

visible by 13.

(1998 Turkish Mathematical Olympiad)

Problem 7.1.13. Find all pairs (m,n) of positive integers, with m,n ≥
2, such that an − 1 is divisible by m for each a ∈ {1, 2, . . . , n}.
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(2001 Romanian IMO Team Selection Test)

Problem 7.1.14. Let p be a prime and b0 an integer, 0 < b0 < p. Prove

that there exists a unique sequence of base p digits b0, b1, b2, . . . , bn, . . .

with the following property: If the base p representation of a number x

ends in the group of digits bnbn−1 . . . b1b0 then so does the representation

of xp.

Problem 7.1.15. Determine all integers n > 1 such that
2n + 1

n2
is an

integer.

(31st IMO)

Problem 7.1.16. Let p be a prime number. Prove that there exists a

prime number q such that for every integer n, the number np − p is not

divisible by q.

(44th IMO)

Problem 7.1.17. Prove that for any n > 1 we cannot have n|2n−1 + 1.

(Sierpinski)

Problem 7.1.18. Prove that for any natural number n, n! is a divisor

of
n−1∏

k=0

(2n − 2k).

7.2 Euler’s Theorem

Theorem 7.2.1. (Euler’s Theorem) Let a and n be relatively prime pos-

itive integers. Then aϕ(n) ≡ 1 (mod n).

Proof. Consider the set S = {a1, a2, . . . , aϕ(n)} consisting of all positive

integer less than n that are relatively prime to n. Because gcd(a, n) = 1, it

follows that aa1, aa2, . . . , aaϕ(n) is a permutation of a1, a2, . . . , aϕ(n). Then

(aa1)(aa2) . . . (aaϕ(n)) ≡ a1a2 . . . aϕ(n) (mod n).

Using that gcd(ak, n) = 1, k = 1, 2, . . . , ϕ(n), the conclusion now follows.

�

Remark. The Euler’s Theorem also follows from Fermat’s Little The-

orem. Indeed, let n = pα1
1 . . . pαk

k be the prime factorization of n. We

have api−1 ≡ 1 (mod pi), hence api(p1−1) ≡ 1 (mod p2
i ), a

p2
i (pi−1) ≡ 1
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(mod p3
i ), . . . , a

p
αi−1

i
(pi−1) ≡ 1 (mod pαi

i ). That is aϕ(p
αi
i

) ≡ 1 (mod pαi

i ),

i = 1, . . . , k. Applying this property for each prime factor, the conclusion

follows.

Problem 7.2.1. Prove that for any positive integer s, there is a positive

integer n whose sum of digits is s and s|n.

(Sierpinski1)

Solution. Let n = 10sϕ(s) +10(s−1)ϕ(s) + · · ·+10ϕ(s). It is clear that the

sum of digits of n is s and that

n = (10sϕ(s) − 1) + (10(s−1)ϕ(s) − 1) + · · · + (10ϕ(s) − 1) + s

is divisible by s, by Euler’s Theorem.

Problem 7.2.2. Let n > 3 be an odd integer with prime factorization

n = pα1
1 . . . pαk

k (each pi is prime). If

m = n

(

1 − 1

p1

)(

1 − 1

p2

)

. . .

(

1 − 1

pk

)

,

prove that there is a prime p such that p divides 2m−1, but does not divide

m.

(1995 Iranian Mathematical Olympiad)

Solution. Because m = ϕ(n) is Euler’s phi-function and n is odd, we

know by Euler Theorem that n divides 2m − 1. We consider two cases.

First let n = pr > 3 for some odd prime p. Then m = pr − pr−1 is even

and m ≥ 4. Since p divides

2m − 1 = (2m/2 − 1)(2m/2 + 1),

is must also divide one of the factors on the right. Any prime divisor of the

other factor (note this factor exceeds 1) will also divide 2m −1 but will not

divide n = pr.

If n has at least two distinct prime factors, then m ≡ 0 (mod 4) and

p− 1 divides m/2 for each prime factor of n. Hence, by Fermat’s Theorem,

p also divides 2m/2−1. It follows that no prime factor of n divides 2m/2+1.

Hence any prime factor of 2m/2 + 1 is a factor of 2m − 1 but not a factor

of n.

1Waclaw Sierpinski (1882-1969), Polish mathematician with important work in the

area of set theory, point set topology and number theory.



7.2. EULER’S THEOREM 149

Problem 7.2.3. Let a > 1 be an integer. Show that the set

{a2 + a− 1, a3 + a2 − 1, . . . }

contains an infinite subset, any two members of which are relatively prime.

(1997 Romanian IMO Team Selection Test)

Solution. We show that any set of n elements of the set which are

pairwise coprime can be extended to a set of n + 1 elements. For n = 1,

note that any two consecutive terms in the sequence are relatively prime.

For n > 1, let N be the product of the numbers in the set so far; then

aϕ(N)+1+aϕ(N)−1 ≡ a (mod N), and so can be added (since every element

of the sequence is coprime to a, N is as well).

Problem 7.2.4. Let X be the set of integers of the form

a2k102k + a2k−2102k−2 + · · · + a2102 + a0,

where k is a nonnegative integer and a2i ∈ {1, 2, . . . , 9} for i = 0, 1, . . . , k.

Show that every integer of the form 2p3q, for p and q nonnegative integers,

divides some element of X.

(1997 Taiwanese Mathematical Olympiad)

Solution. In fact, every integer that is not divisible by 10 divides some

element of X . We first note that there exists a multiple of 4p in X with

2p− 1 digits for all nonnegative integer p. This follows by induction on p:

it’s obvious for p = 0, 1, and if x is such a multiple for p = k, then we can

choose a2k so that x+ a2k102k ≡ 0 (mod 4k+1) since 102k ≡ 0 (mod 4k).

Now we proceed to show that any integer n that isn’t divisible by 10

divides some element of X . Let n = 2pk, where k is odd. Then by the

lemma above one can find a multiple of 2p in X . Let m be the multiple,

d be the number of digits of m, and f = 10d+1 − 1. By Euler’s Theorem,

10ϕ(fk) ≡ 1 (mod fk). Thereforem(10(d+1)ϕ(fk)−1)/(10d+1−1) is divisible

by 2pk and lies in X (since it is the concatenation of m’s).

Proposed problems

Problem 7.2.5. Prove that, for every positive integer n, there exists a

polynomial with integer coefficients whose values at 1, 2, . . . , n are different

powers of 2.
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(1999 Hungarian Mathematical Olympiad)

Problem 7.2.6. Let a > 1 be an odd positive integer. Find the least

positive integer n such that 22000 is a divisor of an − 1.

(2000 Romanian IMO Team Selection Test)

Problem 7.2.7. Let n = pr1
1 . . . prk

k be the prime factorization of the

positive integer n and let r ≥ 2 be an integer. Prove that the following are

equivalent:

(a) The equation xr ≡ a (mod n) has a solution for every a.

(b) r1 = r2 = · · · = rk = 1 and (pi − 1, r) = 1 for every i ∈ {1, 2, . . . , k}.

(1995 UNESCO Mathematical Contest)

7.3 The order of an element

Given are the positive integer n > 1 and the integer a such that

gcd(a, n) = 1, the smallest possible positive integer d for which n|ad − 1

is called the order of a modulo n. Observe first of all that the definition is

connect, since from Euler’s theorem we have n|aϕ(n)−1, so such numbers d

indeed exist. In what follows we will denote by on(a) the order of a modulo

n. The following properties hold:

1) If am ≡ 1 (mod n), then on(a)|m;

2) on(a)|ϕ(n);

3) If al ≡ am (mod n), then l ≡ m (mod on(a)).

In order to prove property 1) let us consider d = on(a). Indeed, because

n|am − 1 and n|ad − 1, we find that n|agcd(m,d)− 1. But from the definition

of d it follows that d ≤ gcd(m, d), which cannot hold unless d|m.

The positive integer a is called a primitive root modulo n if we have

gcd(a, n) = 1 and on(a) = ϕ(n). One can show that there are primitive

roots modulo n if and only if n ∈ {2, 4, pα, 2pα}, where p ≥ 3 is any prime

and α is any positive integer.

Problem 7.3.1. Prove that n|ϕ(an − 1) for all positive integers a, n.

(Saint Petersburg Mathematical Olympiad)

Solution. What is oan−1(a)? It may seem a silly question, since of course

oan−1(a) = n. Using the observation in the introduction, we obtain exactly

n|ϕ(an − 1).
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Problem 7.3.2. Prove that any prime factor of the nth Fermat number

22n

+1 is congruent to 1 modulo 2n+1. Show that there are infinitely many

prime numbers of the form 2nk + 1 for any fixed n.

Solution. Let us consider a prime p such that p|22n

+1. Then p|22n+1−1

and consequently op(2)|2n+1. This ensures the existence of a positive integer

k ≤ n + 1 such that op(2) + 2k. We will prove that in fact k = n + 1.

The proof is easy. Indeed, if this is not the case, then op(2)|2n and so

p|2op(2) − 1|22n − 1. But this is impossible, since p|22n

+ 1. Therefore, we

have found that op(2) = 2n+1 and we have to prove that op(2)|p − 1 to

finish the first part of the question. But this follows from the introduction.

The second part is a direct consequence of the first. Indeed, it is enough

to prove that there exists an infinite set of Fermat’s numbers (22nk +1)nk>a

any two relatively prime. Then we could take a prime factor of each such

Fermat’s number and apply the first part to obtain that each such prime

is of the form 2nk + 1. But not only it is easy to find such a sequence of

Fermat’s coprime numbers, but in fact any two different Fermat’s numbers

are relatively prime. Indeed, suppose that d|gcd(22n

+ 1, 22n+k

+ 1). Then

d|22n+1 − 1 and so d|22n+k − 1. Combining this with d|22n+k

+ 1, we obtain

a contradiction. Hence both parts of the problem are solved.

Problem 7.3.3. For a prime p, let fp(x) = xp−1 + xp−2 + · · · + x+ 1.

a) If p|m, prove that there exists a prime factor of fp(m) that is relatively

prime with m(m− 1).

b) Prove that there are infinitely many numbers n such that pn + 1 is

prime.

(2003 Korean IMO Team Selection Test)

Solution.

a) is straightforward. In fact, we will prove that any prime factor of

fp(m) is relatively prime with m(m − 1). Take such a prime divisor q.

Because q|1 +m + · · · + mp−1, it is clear that gcd(q,m) = 1. Moreover, if

gcd(q,m−1) 6= 1, then q|m−1 and because q|1+m+ · · ·+mp−1, it follows

that q|p. But p|m and we find that q|m, which is clearly impossible.

More difficult is b). But we are tempted to use a) and to explore the

properties of fp(m), just like in the previous problem. So, let us take a

prime q|fp(m) for a certain positive integer m divisible by p. Then we

have of course q|mp − 1. But this implies that oq(m)|q and consequently

oq(m) ∈ {1, p}. If oq(m) = p, then q ≡ 1 (mod p). Otherwise, q|m −
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1 and because q|fp(m), we deduce that q|p, hence q = p. But we have

seen while solving a) that this is not possible, so the only choice is p|q −
1. Now, we need to find a sequence (mk)k≥1 of multiples of p such that

fp(mk) are pairwise relatively prime. This is not as easy as in the first

example. Anyway, just by trial and error, it is not difficult to find such

a sequence. There are many other approaches, but we like the following

one: take m1 = p and mk = pf(m1)fp(m2) . . . fp(mk−1). Let us prove that

fp(mk) is relatively prime to fp(m1), fp(m2), . . . , fp(mk−1). Fortunately,

this is easy, since fp(m1)fp(m2) . . . fp(mk−1)|fp(mk) − fp(0)|fp(mk) − 1.

The solution ends here.

Problem 7.3.4. Find the smallest number n with the property that

22005|17n − 1.

Solution. The problem actually asks for o22005(17). We know that

o22005(17)|ϕ(22005) = 22004, so o22005(17) = 2k, where k ∈ {1, 2, . . . , 2004}.
The order of an element has done its job. Now, it is time to work with

exponents. We have 22005|172k − 1. Using the factoring

172k − 1 = (17 − 1)(17 + 1)(172 + 1) . . . (172k−1

+ 1),

we proceed by finding the exponent of 2 in each factor of this product. But

this is not difficult, because for all i ≥ 0 the number 172t

+ 1 is a multiple

of 2, but not a multiple of 4. Thus, v2(172k − 1) = 4 + k and the order is

found by solving the equation k+ 4 = 2005. Thus, o22005(17) = 22001 is the

answer to the problem.

Problem 7.3.5. Find all prime numbers p, q such that p2 + 1|2003q + 1

and q2 + 1|2003p + 1.

Solution. Let us suppose that p ≤ q. We discuss first the trivial case

p = 2. In this case, 5|2003q + 1 and it is easy to deduce that q is even,

hence q = 2, which is a solution of the problem. Now, suppose that p > 2

and let r be a prime factor of p2 + 1. Because r|20032q − 1, it follows

that or(2003)|2q. Suppose that (q, or(2003)) = 1. Then or(2003)|2 and

r|20032 − 1 = 23 · 3 · 7 · 11 · 13 · 167. It seems that this is a dead end,

since there are too many possible values for r. Another simple observation

narrows the number of possible cases: because r|p2 +1, must be of the form

4k+1 or equal to 2 and now we do not have many possibilities: r ∈ {2, 13}.
The case r = 13 is also impossible, because 2003q + 1 ≡ 2 (mod 13) and
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r|2003q +1. So, we have found that for any prime factor r of p2 +1, we have

either r = 2 or q|or(2003), which in turn implies q|r − 1. Because p2 + 1

is even, but not divisible by 4 and because any odd prime factor of it is

congruent to 1 modulo q, we must have p2 + 1 ≡ 2 (mod q). This implies

that p2 + 1 ≡ 2 (mod q), that is q|(p− 1)(p+ 1). Combining this with the

assumption that p ≤ q yields q|p+ 1 and in fact q = p+ 1. It follows that

p = 2, contradicting the assumption p > 2. Therefore the only pair is (2,2).

Proposed problems

Problem 7.3.6. Find all ordered triples of primes (p, q, r) such that

p|qr + 1, q|rp + 1, r|pq + 1.

(2003 USA IMO Team Selection Test)

Problem 7.3.7. Find all primes p, q such that pq|2p + 2q.

Problem 7.3.8. Prove that for any positive integer n, 3n − 2n is not

divisible by n.

Problem 7.3.9. Find all positive integers m,n such that n|1 + m3n

+

m2·3n

.

(Bulgarian IMO Team Selection Test)

Problem 7.3.10. Let a, n > 2 be positive integers such that n|an−1 − 1

and n does not divide any of the numbers ax − 1, where x < n − 1 and

x|n− 1. Prove that n is a prime number.

Problem 7.3.11. Find all prime numbers p, q for which the congruence

α3pq ≡ α (mod 3pq)

holds for all integers α.

(1996 Romanian Mathematical Olympiad)

7.4 Wilson’s Theorem

Theorem 7.4.1. (Wilson2’s Theorem) For any prime p, p|(p− 1)! + 1.

2John Wilson (1741-1793), English mathematician who published this results without

proof. It was first proved by Lagrange in 1773 who showed that the converse is also true.
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Proof. The property holds for p = 2 and p = 3, so we may assume that

p ≥ 5. Let S = {2, 3, . . . , p− 2}. For any h in S, the integers h, 2h, . . . , (p−
1)h yield distinct remainders when divided by p. Hence there is a unique

h′ ∈ {1, 2, . . . , p − 1} such that hh′ ≡ 1 (mod p). Moreover, h′ 6= 1 and

h′ 6= p − 1, hence h′ ∈ S. In addition, h′ 6= h, otherwise h2 ≡ 1 (mod p),

implying p|h−1 or p|h+1, which is not possible, since h+1 < p. It follows

that we can group the elements of S in
p− 3

2
distinct pairs (h, h′) such

that hh′ ≡ 1 (mod p). Multiplying these congruences gives (p − 2)! ≡ 1

(mod p) and the conclusion follows. �

Remark. The converse is true, that is if n|(n − 1)! + 1 for an integer

n ≥ 2, then n is a prime. Indeed, if n were equal to n1n2 for some integers

n1, n2 ≥ 2, we would have n1|1 ·2 . . . n1 . . . (n−1)+1, which is not possible.

Problem 7.4.1. If p is an odd prime, then the remainder when (p− 1)!

is divided by p(p− 1) is p− 1.

Solution. We need to show that (p− 1)! ≡ p− 1 (mod p(p− 1)).

From Wilson’s Theorem we obtain (p−1)!−(p−1) ≡ 0 (mod p). Because

(p− 1)! − (p− 1) ≡ 0 (mod p− 1) and gcd(p, p− 1) = 1 we get

(p− 1)! − (p− 1) ≡ 0 (mod p(p− 1)).

Problem 7.4.2. Let p be an odd prime and a1, a2, . . . , ap an arithmetic

sequence whose common difference is not divisible by p. Prove that there is

an i ∈ {1, 2, . . . , p} such that ai + a1a2 . . . ap ≡ 0 (mod p2).

Solution. Note that a1, a2, . . . , ap give distinct remainders when divided

by p. Take i such that ai ≡ 0 (mod p). It follows that

a1a2 . . . ap

ai
≡ (p− 1)! (mod p).

From Wilson’s Theorem, we have (p − 1)! ≡ −1 (mod p) and the con-

clusion follows.

Problem 7.4.3. Let a and n be positive integers such that n ≥ 2 and

gcd(a, n) = 1. Prove that

an−1 + (n− 1)! ≡ 0 (mod n)

if and only if n is a prime.

Solution. If n is a prime the conclusion follows from Fermat’s Little

Theorem and Wilson’s Theorem.

For the converse, assume by way of contradiction that n = n1n2, where

n1 ≥ n2 ≥ 2.
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Because n|an−1 + (n − 1)!, it follows that n1|an−1 + (n − 1)!, that is

n1|an−1, contradicting the hypothesis gcd(a, n) = 1.

Problem 7.4.4. If p is an odd prime, then for any positive integer n < p,

(n− 1)!(p− n)! ≡ (−1)n (mod p).

Solution. From Wilson’s Theorem, (p− 1)! ≡ −1 (mod p), hence

(n− 1)!n(n+ 1) . . . (p− 1) ≡ −1 (mod p).

This is equivalent to

(n− 1)!(p− (p− n))(p− (p− n− 1)) . . . (p− 1) ≡ −1 (mod p).

But p− k ≡ −k (mod p), k = 1, 2, . . . , p− n, hence

(n− 1)!(−1)p−n(p− n)! ≡ −1 (mod p),

and taking into account that p is odd, the conclusion follows.

Proposed problems

Problem 7.4.5. Let p be an odd prime. Prove that

12 · 32 . . . (p− 2)2 ≡ (−1)
p+1
2 (mod p)

and

22 · 42 . . . (p− 1)2 ≡ (−1)
p+1
2 (mod p).

Problem 7.4.6. Show that there do not exist nonnegative integers k

and m such that k! + 48 = 48(k + 1)m.

(1996 Austrian-Polish Mathematics Competition)

Problem 7.4.7. For each positive integer n, find the greatest common

divisor of n! + 1 and (n+ 1)!.

(1996 Irish Mathematical Olympiad)

Problem 7.4.8. Let p ≥ 3 be a prime and let σ be a permutation of

{1, 2, . . . , p− 1}. Prove that there are i 6= j such that p|iσ(i) − jσ(j).

(1986 Romanian IMO Team Selection Test)
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8

Diophantine Equations

8.1 Linear Diophantine equations

An equation of the form

a1x1 + · · · + anxn = b (1)

where a1, a2, . . . , an, b are fixed integers, is called linear Diophantine1 equa-

tion. We assume that n ≥ 1 and that coefficients a1, . . . , an are all different

from zero.

The main result concerning linear Diophantine equations is the following:

Theorem 8.1.1. The equation (1) is solvable if and only if

gcd(a1, . . . , an)|b.

In case of solvability, all integer solutions to (1) can be expressed in terms

of n− 1 integral parameters.

Proof. Let d = gcd(a1, . . . , an).

If b is not divisible by d, then (1) is not solvable, since for any integers

x1, . . . , xn the left-hand side of (1) is divisible by d and the right-hand side

is not.

1Diophantus of Alexandria (about 200 - about 284), Greek mathematician sometimes

known as ”the father of algebra” who is the best known for his book ”Arithmetica”. This

had an enormous influence on the development of number theory.
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If d|b, then we obtain the equivalent equation

a′1x1 + · · · + a′nxn = b′,

where a′i = ai/d for i = 1, . . . , n and b′ = b/d. Clearly, we have

gcd(a′1, . . . , a
′
n) = 1.

We use induction on the number n of the variables. In the case n = 1

the equation has the form x1 = b or −x1 = b, and thus the unique solution

does not depend on any parameter.

Actually, we need to prove that gcd(x1, x2, . . . , xn) is a linear combina-

tion with integer coefficients of x1, x2, . . . , xn. For n = 2 this follows from

Proposition 1.3.1. Since

gcd(x1, . . . , xn) = gcd(gcd(x1, . . . , xn−1), xn),

we obtain that gcd(x1, . . . , xn) is a linear combination of xn and

gcd(x1, . . . , xn−1), thus by induction hypothesis, a linear combination of

x1, . . . , xn−1, xn. �

Corollary 8.1.2. Let a1, a2 be relatively prime integers. If (x0
1, x

0
2) is a

solution to the equation

a1x1 + a2x2 = b, (2)

then all of its solutions are given by

{

x1 = x0
1 + a2t

x2 = x0
2 − a1t

(3)

where t ∈ Z.

Example. Solve the equation

3x+ 4y + 5z = 6.

Solution. Working modulo 5 we have 3x+ 4y ≡ 1 (mod 5), hence

3x+ 4y = 1 + 5s, s ∈ Z.

A solution to this equation is x = −1 + 3s, y = 1 − s. Applying (3) we

obtain x = −1 + 3s+ 4t, y = 1 − s− 3t, t ∈ Z, and substituting back into

the original equation yields z = 1 − s. Hence all solutions are

(x, y, z) = (−1 + 3s+ 4t, 1 − s− 3t, 1 − s), s, t ∈ Z.
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Problem 8.1.1. Solve in nonnegative integers the equation

x+ y + z + xyz = xy + yz + zx+ 2.

Solution. We have

xyz − (xy + yz + zx) + x+ y + z − 1 = 1,

and, consequently,

(x− 1)(y − 1)(z − 1) = 1.

Because x, y, z are integers, we obtain

x− 1 = y − 1 = z − 1 = 1,

so x = y = z = 2.

Problem 8.1.2. Find all triples (x, y, z) of integers such that

x2(y − z) + y2(z − x) + z2(x − y) = 2.

Solution. The equation is equivalent to

(x− y)(x− z)(y − z) = 2.

Observe that (x − y) + (y − z) = x − z. On the other hand, 2 can be

written as a product of three distinct integers in the following ways

i) 2 = (−1) · (−1) · 2,

ii) 2 = 1 · 1 · 2,

iii) 2 = (−1) · 1 · (−2).

Since in the first case any two factors do not add up to the third, we

only have three possibilities:

a)







x− y = 1

x− z = 2

y − z = 1

so (x, y, z) = (k + 1, k, k − 1) for some integer k;

b)







x− y = −2

x− z = −1

y − z = 1

so (x, y, z) = (k − 1, k + 1, k) for some integer k;

c)







x− y = 1

x− z = −1

y − z = −2.

so (x, y, z) = (k, k − 1, k + 1) for some integer k.
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Problem 8.1.3. Let p and q be prime numbers. Find all positive integers

x and y such that

1

x
+

1

y
=

1

pq
.

Solution. The equation is equivalent to

(x− pq)(y − pq) = p2q2.

We have the cases:

1) x− pq = 1, y − pq = p2q2, so x = 1 + pq, y = pq(1 + pq).

2) x− pq = p, y − pq = pq2, so x = p(1 + q), y = pq(1 + q).

3) x− pq = q, y − pq = p2q, so x = q(1 + p), y = pq(1 + p).

4) x− pq = p2, y − pq = q2, so x = p(p+ q), y = q(p+ q).

5) x− pq = pq, y − pq = pq, so x = 2pq, y = 2pq.

The equation is symmetric, so we have also:

6) x = pq(1 + pq), y = 1 + pq.

7) x = pq(1 + q), y = p(1 + q).

8) x = pq(1 + p), y = q(1 + p).

9) x = q(1 + q), y = p(p+ q).

Proposed problems

Problem 8.1.4. Solve in integers the equation

(x2 + 1)(y2 + 1) + 2(x− y)(1 − xy) = 4(1 + xy).

Problem 8.1.5. Determine the side lengths of a right triangle if they

are integers and the product of the legs’ lengths equals three times the

perimeter.

(1999 Romanian Mathematical Olympiad)

Problem 8.1.6. Let a, b and c be positive integers, each two of them

being relatively prime. Show that 2abc− ab− bc− ca is the largest integer

which cannot be expressed in the form xbc + yca + zab where x, y and z

are nonnegative integers.

(24th IMO)
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8.2 Quadratic Diophantine equations

8.2.1 Pythagorean equation

One of the most celebrated Diophantine equation is the so-called

Pythagorean equation

x2 + y2 = z2 (1)

Studied in detail by Pythagoras2 in connection with the right-angled tri-

angles whose sidelengths are all integers, this equation was known even to

the ancient Babylonians.

Note first that if the triple of integers (x0, y0, z0) satisfies the equation

(1), then all triples of the form (kx0, ky0, kz0), k ∈ Z, also satisfy (1). That

is why it is sufficient to find solutions (x, y, z) to (1) with gcd(x, y, z) = 1.

This is equivalent to the fact that x, y, z are pairwise relatively prime.

A solution (x0, y0, z0) to (1) where x0, y0, z0 are pairwise relatively prime

is called primitive solution.

Theorem 8.2.1. Any primitive solution (x, y, z) in positive integers to

the equation (1) is of the form

x = m2 − n2, y = 2mn, z = m2 + n2 (2)

where m and n are relatively prime positive integers such that m > n.

Proof. The integers x and y cannot be both odd, for otherwise

z2 = x2 + y2 ≡ 2 (mod 4),

a contradiction. Hence exactly one of the integers x and y is even.

The identity

(m2 − n2)2 + (2mn)2 = (m2 + n2)2

shows that the triple given by (2) is indeed a solution to the equation (1)

and y is even.

Moreover, if gcd(x, y, z) = d ≥ 2, then d divides

2m2 = (m2 + n2) + (m2 − n2)

2Pythagoras of Samos (about 569BC - about 475BC), Greek philosopher who made

important developments in mathematics, astronomy, and the theory of music. The the-

orem now known as Pythagoras’s theorem was known to Babylonians 1000 years earlier

but he may have been the first to prove it.
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and d divides

2n2 = (m2 + n2) − (m2 − n2).

Since m and n are relatively prime it follows that d = 2. Hence m2 + n2

is even, in contradiction with m odd and n even. It follows that d = 1, so

the solution (2) is primitive.

Conversely, let (x, y, z) be a primitive solution to (1) with y = 2a. Then

x and z are odd and consequently the integers z + x and z − x are even.

Let z + x = 2b and z − x = 2c. We may assume that b and c are relatively

prime, for otherwise z and x would have a nontrivial common divisor. On

the other hand, 4a2 = y2 = z2 − z2 = (z + x)(z − x) = 4bc, i.e. a2 = bc.

Since b and c are relatively prime, it follows that b = m2 and c = n2 for

some positive integers m and n. We obtain

x = b− c = m2 − n2, y = 2mn, z = b+ c = m2 + n2. �

A triple (x, y, z) of the form (2) is called a Pythagorean triple.

In order to list systematically all the primitive solutions to the equation

(1), we assign values 2,3,4,. . . for the number m successively and then for

each of these values we take those integers n which are relatively prime to

m, less than m and even whenever m is odd.

Here is the table of the first twenty primitive solutions listed according

to the above-mentioned rule.

m n x y z area m n x y z area

2 1 3 4 5 6 7 6 13 84 85 546

3 2 5 12 13 30 8 1 63 16 65 504

4 1 15 8 17 60 8 3 55 48 73 1320

4 3 7 24 25 84 8 5 39 80 89 1560

5 2 21 20 29 210 8 7 15 112 113 840

5 4 9 40 41 180 9 2 77 36 85 1386

6 1 35 12 37 210 9 4 65 72 97 2340

6 5 11 60 61 330 9 8 17 144 145 1224

7 2 45 28 53 630 10 1 99 20 101 990

7 4 33 56 65 924 10 3 91 60 109 2730

Corollary 8.2.2. The general integral solution to (1) is given by

x = k(m2 − n2), y = 2kmn, z = k(m2 + n2), (3)
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where k,m, n ∈ Z.

Problem 8.2.1. Solve the following equation in positive integers

x2 + y2 = 1997(x− y).

(1998 Bulgarian Mathematical Olympiad)

Solution. The solutions are

(x, y) = (170, 145) or (1827, 145).

We have

x2 + y2 = 1997(x− y)

2(x2 + y2) = 2 × 1997(x− y)

x2 + y2 + (x2 + y2 − 2 × 1997(x− y)) = 0

(x+ y)2 + ((x − y)2 − 2 × 1997(x− y)) = 0

(x+ y)2 + (1997 − x+ y)2 = 19972.

Since x and y are positive integers, 0 < x+ y < 1997 and 0 < 1997−x+

y < 1997. Thus the problem reduces to solving a2 + b2 = 19972 in positive

integers. Since 1997 is a prime, gcd(a, b) = 1. By Pythagorean substitution,

there are positive integers m > n such that gcd(m,n) = 1 and

1997 = m2 + n2, a = 2mn, b = m2 − n2.

Since m2, n2 ≡ 0, 1,−1 (mod 5) and 1997 ≡ 2 (mod 5), m,n ≡ ±1

(mod 5). Since m2, n2 ≡ 0, 1 (mod 3) and 1997 ≡ 2 (mod 3), m,n ≡ ±1

(mod 3). Therefore m,n ≡ 1, 4, 11, 14 (mod 15). Since m > n, 1997/2 ≤
m2 ≤ 1997. Thus we only need to considerm = 34, 41, 44. The only solution

is (m,n) = (34, 29). Thus

(a, b) = (1972, 315),

which leads to our final solutions.

Proposed problems

Problem 8.2.2. Find all Pythagorean triangles whose areas are numer-

ically equal to their perimeters.

Problem 8.2.3. Prove that for every positive integer n there is a positive

integer k such that k appears in exactly n nontrivial Pythagorean triples.

(American Mathematical Monthly)



164 8. DIOPHANTINE EQUATIONS

8.2.2 Pell’s equation

A special quadratic equation is

u2 −Dv2 = 1 (1)

where D is a positive integer that is not a perfect square. Equation (1) is

called Pell3’s equation and it has numerous applications in various fields

of mathematics. We will present an elementary approach to solving this

equation, due to Lagrange.

Theorem 8.2.3. If D is a positive integer that is not a perfect square,

then the equation (1) has infinitely many solutions in positive integers and

the general solution is given by (un, vn)n≥1,

un+1 = u0un +Dv0vn, vn+1 = v0un + u0vn, u1 = u0, v1 = v0 (2)

where (u0, v0) is its fundamental solution, i.e. the minimal solution different

from (1, 0).

Proof. First, we will prove that the equation (1) has a fundamental

solution.

Let c1 be an integer greater than 1. We will show that there exist integers

t1, w1 ≥ 1 such that

|t1 − w1

√
D| < 1

c1
, w1 ≤ c1.

Indeed, considering lk = [k
√
D + 1], k = 0, 1, . . . , c1, yields 0 < lk −

k
√
D ≤ 1, k = 0, 1, . . . , c1, and since

√
D is an irrational number, it follows

that lk′ 6= lk′′ whenever k′ 6= k′′.

There exist i, j, p ∈ {0, 1, 2, . . . , c1}, i 6= j, p 6= 0, such that

p− 1

c1
< li − i

√
D ≤ p

c1
and

p− 1

c1
< lj − j

√
D ≤ p

c1

because there are c1 intervals of the form

(
p− 1

c1
,
p

c1

)

, p = 0, 1, . . . , c1 and

c1 + 1 numbers of the form lk − k
√
D, k = 0, 1, . . . , c1.

From the inequalities above it follows that |(li − lj) − (j − i)
√
D| < 1

c1

and setting |li − lj | = t1 and |j − i| = w1 yields |t1 − w1

√
D| < 1

c1
and

w1 ≤ c1.

3John Pell (1611-1685), English mathematician best known for ”Pell’s equation”

which in fact he had litlle to do with.
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Multiplying this inequality by t1 + w1

√
D < 2w1

√
D + 1 gives

|t21 −Dw2
1 | < 2

w1

c1

√
D +

1

c1
< 2

√
D + 1.

Choosing a positive integer c2 > c1 such that |t1 − w1

√
D| > 1

c2
, we

obtain positive integers t2, w2 with the properties

|t22 −Dw2
2| < 2

√
D + 1 and |t1 − t2| + |w1 − w2| 6= 0.

By continuing this procedure, we find a sequence of distinct pairs

(tn, wn)n≥1 satisfying the inequalities |t2n −Dw2
n| < 2

√
D + 1 for all posi-

tive integers n. It follows that the interval (−2
√
D − 1, 2

√
D + 1) contains

a nonzero integer k such that there exists a subsequence of (tn, wn)n≥1

satisfying the equation t2 −Dw2 = k. This subsequence contains at least

two pairs (ts, ws), (tr, wr) for which ts ≡ tr(mod|k|), ws ≡ wr(mod|k|),
and tswr − trws 6= 0, otherwise ts = tr and ws = wr , in contradiction with

|ts − tr| + |ws − wr | 6= 0.

Let t0 = tstr −Dwswr and let w0 = tswr − trws. Then

t20 −Dw2
0 = k2. (3)

On the other hand, t0 = tstr −Dwswr ≡ t2s −Dw2
0 ≡ 0(mod|k|), and it

follows immediately that w0 ≡ 0(mod|k|). The pair (t, w) where t0 = t|k|
and w0 = w|k| is a nontrivial solution to equation (1).

We show now that the pair (un, vn) defined by (2) satisfies Pell’s equation

(1). We proceed by induction with respect to n. Clearly, (u0, v0) is a solution

to the equation (1). If (un, vn) is a solution to this equation, then

u2
n+1 −Dv2

n+1 = (u0un +Dv0vn)2 −D(v0un + u0vn)2 =

= (u2
0 −Dv2

0)(u
2
n −Dv2

n) = 1,

i.e. the pair (un+1, vn+1) is also a solution to the equation (1).

It is not difficult to see that for all positive integer n,

un−1 + vn−1

√
D = (u0 + v0

√
D)n. (4)

Let zn = un−1 + vn−1

√
D = (u0 + v0

√
D)n and note that z1 < z2 <

· · · < zn < . . . . We will prove now that all solutions to the equation (1)

are of the form (4). Indeed, if the equation (1) had a solution (u, v) such

that z = u + v
√
D is not of the form (4), then zm < z < zm+1 for some
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integer m. Then 1 < (u+ v
√
D)(um − vm

√
D) < u0 + v0

√
D, and therefore

1 < (uum −Dvvm) + (umv − uvm)
√
D < u0 + v0

√
D. On the other hand,

(uum − Dvvm)2 − D(umv − uvm)2 = (u2 − Dv2)(u2
m − Dv2

m) = 1, i.e.

(uum − Dvvm, umv − uvm) is a solution of (1) smaller than (u0, v0), in

contradiction with the assumption that (u0, v0) was the minimal one. �

Remarks. 1) The relations (1) could be written in the following useful

matrix form (

un+1

vn+1

)

=

(

u0 Dv0

v0 u0

)(

un

vn

)

from where (

un

vn

)

=

(

u0 Dv0

v0 u0

)n(

u0

v0

)

. (5)

If (

u0 Dv0

v0 u0

)n

=

(

an bn

cn dn

)

then it is well-known that each of an, bn, cn, dn is a linear combination of

λn
1 , λ

n
2 , where λ1, λ2 are the eigenvalues of the matrix

(

u0 Dv0

v0 u0

)

. By

using (5) after an easy computation it follows that

un =
1

2
[(u0 + v0

√
D)n + (u0 − v0

√
D)n],

vn =
1

2
√
D

[(u0 + v0
√
D)n − (u0 − v0

√
D)n]

(6)

2) The solutions to Pell’s equation given in one of the forms (4) or (6)

may be used in the approximation of the square roots of positive integers

that are not perfect squares. Indeed, if (un, vn) are the solutions of the

equation (1), then

un − vn

√
D =

1

un + vn

√
D

and so
un

vn
−
√
D =

1

vn(un + vn

√
D)

<
1√
Dv2

n

<
1

v2
n

.

It follows that

lim
n→∞

un

vn
=

√
D, (7)

i.e. the fractions
un

vn
approximate

√
D with an error less than

1

v2
n

.
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Problem 8.2.4. Consider the sequences (un)n≥1, (vn)n≥1 defined by

u1 = 3, v1 = 2 and un+1 = 3un + 4vn, vn+1 = 2un + 3vn, n ≥ 1. Define

xn = un +vn, yn = un +2vn, n ≥ 1. Prove that yn = [xn

√
2] for all n ≥ 1.

Solution. We prove by induction that

u2
n − 2v2

n = 1, n ≥ 1. (1)

For n = 1 the claim is true. Assuming that the equality is true for some

n, we have

u2
n+1 − 2v2

n+1 = (3un + 4vn)2 − 2(2un + 3vn)2 = u2
n − 2v2

n = 1

hence (1) is true for all n ≥ 1.

We prove now that

2x2
n − y2

n = 1, n ≥ 1 (2)

Indeed,

2x2
n − y2

n = 2(un + vn)2 − (un + 2vn)2 = u2
n − 2v2

n = 1,

as claimed. It follows that
(

xn

√
2 − yn

)(

xn

√
2 + yn

)

= 1, n ≥ 1.

Notice that xn

√
2 + yn > 1 so

0 < xn

√
2 − yn < 1, n ≥ 1.

Hence yn =
[
xn

√
2
]
, as claimed.

Problem 8.2.5. Show that there exists infinitely many systems of pos-

itive integers (x, y, z, t) which have no common divisor greater than 1 and

such that

x3 + y2 + z2 = t4.

(2000 Romanian IMO Team Selection Test)

First Solution. Let consider the identity:

[13 + 23 + · · · + (n− 2)3] + (n− 1)3 + n3 =

(
n(n+ 1)

2

)2

.

We may write it under the form:

(n− 1)3 + n3 +

(
(n− 1)(n− 2)

2

)2

=

(
n(n+ 1)

2

)2

.
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It is sufficient to find positive integers n for which
n(n+ 1)

2
is a perfect

square. Such a goal can be attained.

Let us remark that the equality

(2n+ 1)2 − 2(2x)2 = 1

can be realized by taking the solutions (uk, vk) of the Pell equation u2 −
2v2 = 1, where u0 = 3, v0 = 2 and uk, vk are obtained from the identity:

(u0 +
√

2v0)
k(u0 −

√
2v0)

k = (uk +
√

2vk)(uk −
√

2vk) = 1.

Alternative Solution. Let consider the following identity:

(a+ 1)4 − (a− 1)4 = 8a3 + 8a,

where a is a positive integer. Take a = b3, where b is an even integer

number. From the above identity one obtains:

(b3 + 1)4 = (2b3)3 + (2b)3 + [(b3 − 1)2]2.

Since b is even number, b3 + 1 and b3 − 1 are odd numbers. It follows

that the numbers x = 2b3, y = 2b, z = (b3 − 1)2 and t = b3 + 1 have no

common divisor greater than 1.

Proposed problems

Problem 8.2.6. Let p be a prime number congruent to 3 modulo 4.

Consider the equation

(p+ 2)x2 − (p+ 1)y2 + px+ (p+ 2)y = 1.

Prove that this equation has infinitely many solutions in positive integers,

and show that if (x, y) = (x0, y0) is a solution of the equation in positive

integers, then p|x0.

(2001 Bulgarian Mathematical Olympiad)

Problem 8.2.7. Determine all integers a for which the equation

x2 + axy + y2 = 1

has infinitely many distinct integer solutions (x, y).

(1995 Irish Mathematical Olympiad)
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Problem 8.2.8. Prove that the equation

x3 + y3 + z3 + t3 = 1999

has infinitely many integral solutions.

(1999 Bulgarian Mathematical Olympiad)

8.2.3 Other quadratic equations

There are many other general quadratic equations that appear in con-

crete situations. Here is an example.

Consider the equation

axy + bx+ cy + d = 0, (1)

where a is a nonzero integer and b, c, d are integers such that ad− bc 6= 0.

Theorem 8.2.4. If gcd(a, b) = gcd(a, c) = 1, then equation (1) is solv-

able if and only if there is a divisor m of ad − bc such that a|m − b or

a|m− c.

Proof. We can write (1) in the following equivalent form:

(ax + c)(ay + b) = bc− ad. (2)

If such a divisor m exists and a|m − c, then we take ax + c = m and

ay+ b = m′, where mm′ = bc− ad. In order to have solutions it suffices to

show that a|m′−b. Indeed, the relation mm′ = bc−ad implies (ax+c)m′ =

bc−ad, which is equivalent to a(m′x+d) = −c(m′−b). Taking into account

that gcd(a, c) = 1, we get a|m′ − b.

The converse is clearly true. �

Remarks. 1) In case of solvability, equation (1) has only finitely many

solutions. These solutions depend upon the divisors m of ad− bc.

2) If a does not divide b − c, then equation (1) is not solvable because

from the proof of the theorem it follows that conditions a|m−b and a|m−c
are equivalent and, in case of solvability, they hold simultaneously. In this

case a must divide (m− c) − (m− b) = b− c.

Example. Solve the equation

3xy + 4x+ 7y + 6 = 0.

Solution. We have ad − bc = −10, whose integer divisors are −10, −5,

−2, −1, 1, 2, 5, 10. The conditions in Theorem 8.2.4 are satisfied only for
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m = −5, −2, 1, 10. We obtain the solutions (x, y) = (−4,−2), (−3,−3),

(−2, 2), (1,−1), respectively.

In what follows you can find several nonstandard quadratic equations.

Problem 8.2.9. For any given positive integer n, determine (as a func-

tion of n) the number of ordered pairs (x, y) of positive integers such that

x2 − y2 = 102 · 302n.

Prove further that the number of such pairs is never a perfect square.

(1999 Hungarian Mathematical Olympiad)

Solution. Because 102 ·302n is even, x and y must have the same parity.

Then (x, y) is a valid solution if and only if (u, v) =

(
x+ y

2
,
x− y

2

)

is

a pair of positive integers that satisfies u > v and uv = 52 · 302n. Now

52 · 302n = 22n · 32n · 52n+2 has exactly (2n + 1)2(2n + 3) factors. Thus

without the condition u > v there are exactly (2n+ 1)2(2n+ 3) such pairs

(u, v). Exactly one pair has u = v, and by symmetry half of the remaining

pairs have u > v. It follows that there are
1

2
((2n + 1)2(2n + 3) − 1) =

(n+ 1)(4n2 + 6n+ 1) valid pairs.

Now suppose that (n + 1)(4n2 + 6n + 1) were a square. Because n + 1

and 4n2 + 6n + 1 = (4n + 2)(n + 1) − 1 are coprime, 4n2 + 6n + 1 must

be a square as well. However, (2n + 1)2 < 4n2 + 6n + 1 < (2n + 2)2, a

contradiction.

Problem 8.2.10. Prove that the equation a2 + b2 = c2 + 3 has infinitely

many integer solutions {a, b, c}.

(1996 Italian Mathematical Olympiad)

Solution. Let a be any odd number, let b = (a2−5)/2 and c = (a2−1)/2.

Then

c2 − b2 = (c+ b)(c− b) = a2 − 3.

Remark. Actually one can prove that any integer n can be represented

in infinitely many ways in the form a2 + b2 − c2 with a, b, c ∈ Z.

Proposed problems

Problem 8.2.11. Prove that the equation

x2 + y2 + z2 + 3(x+ y + z) + 5 = 0
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has no solutions in rational numbers.

(1997 Bulgarian Mathematical Olympiad)

Problem 8.2.12. Find all integers x, y, z such that 5x2 − 14y2 = 11z2.

(2001 Hungarian Mathematical Olympiad)

Problem 8.2.13. Let n be a nonnegative integer. Find the nonnegative

integers a, b, c, d such that

a2 + b2 + c2 + d2 = 7 · 4n.

(2001 Romanian JBMO Team Selection Test)

Problem 8.2.14. Prove that the equation

x2 + y2 + z2 + t2 = 22004,

where 0 ≤ x ≤ y ≤ x ≤ t, has exactly two solutions in the set of integers.

(2004 Romanian Mathematical Olympiad)

Problem 8.2.15. Let n be a positive integer. Prove that the equation

x+ y +
1

x
+

1

y
= 3n

does not have solutions in positive rational numbers.

8.3 Nonstandard Diophantine equations

8.3.1 Cubic equations

Problem 8.3.1. Find all pairs (x, y) of nonnegative integers such that

x3 + 8x2 − 6x+ 8 = y3.

(1995 German Mathematical Olympiad)

Solution. Note that for all real x,

0 < 5x2 − 9x+ 7 = (x3 + 8x2 − 6x+ 8) − (x+ 1)3.

Therefore if (x, y) is a solution, we must have y ≥ x + 2. In the same

vein, we note that for x ≥ 1,

0 > −x2 − 33x+ 15 = (x3 + 8x2 − 6x+ 8) − (x3 + 9x2 + 27x+ 27).
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Hence we either have x = 0, in which case y = 2 is a solution, or x ≥ 1,

in which case we must have y = x+ 2. But this means

0 = (x3 + 8x2 − 6x+ 8) − (x3 + 6x2 + 12x+ 8) = 2x2 − 18x.

Hence the only solutions are (0,2), (9,11).

Problem 8.3.2. Find all pairs (x, y) of integers such that

x3 = y3 + 2y2 + 1.

(1999 Bulgarian Mathematical Olympiad)

Solution. When y2 + 3y > 0, (y + 1)3 > x3 > y3. Thus we must have

y2+3y ≤ 0, and y = −3, −2, −1, or 0, yielding the solutions (x, y) = (1, 0),

(1,−2), and (−2,−3).

Problem 8.3.3. Find all the triples (x, y, z) of positive integers such

that

xy + yz + zx− xyz = 2.

Solution. Let x ≤ y ≤ z. We consider the following cases:

1) For x = 1, we obtain y + z = 2, and then

(x, y, z) = (1, 1, 1).

2) If x = 2, then 2y + 2z − yz = 2, which gives (z − 2)(y − 2) = 2. The

solutions are z = 4, y = 3 or z = 3, y = 4. Due to the symmetry of the

relations the solutions (x, y, z) are

(2, 3, 4), (2, 4, 3), (3, 2, 4), (4, 2, 3), (3, 4, 2), (4, 3, 2).

3) If x ≥ 3, y ≥ 3, z ≥ 3 then xyz ≥ 3yz, xyz ≥ 3xz, xyz ≥ 3xy. Thus

xy + xz + yz − xyz ≤ 0, so there are no solutions.

Problem 8.3.4. Determine a positive constant c such that the equation

xy2 − y2 − x+ y = c

has exactly three solutions (x, y) in positive integers.

(1999 United Kingdom Mathematical Olympiad)
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Solution. When y = 1 the left-hand side is 0. Thus we can rewrite our

equation as

x =
y(y − 1) + c

(y + 1)(y − 1)
.

The numerator is congruent to −1(−2)+ c modulo (y+ 1), and it is also

congruent to c modulo (y − 1). Hence we must have c ≡ −2 (mod (y + 1))

and c ≡ 0 (mod (y − 1)). Because c = y − 1 satisfies these congruences,

we must have c ≡ y − 1 (mod lcm(y − 1, y + 1)). When y is even, lcm(y −
1, y + 1) = y2 − 1; when y is odd, lcm(y − 1, y + 1) =

1

2
(y2 − 1).

Then for y = 2, 3, 11 we have c ≡ 1 (mod 3), c ≡ 2 (mod 4), c ≡ 10

(mod 60). Hence, we try setting c = 10. For x to be an integer we must

have (y − 1)|10 ⇒ y = 2, 3, 6, or 11. These values give x = 4, 2,
2

7
, and

1, respectively. Thus there are exactly three solutions in positive integers,

namely (x, y) = (4, 2), (2,3), and (1,11).

Proposed problems

Problem 8.3.5. Find all triples (x, y, z) of natural numbers such that y

is a prime number, y and 3 do not divide z, and x3 − y3 = z2.

(1999 Bulgarian Mathematical Olympiad)

Problem 8.3.6. Find all the positive integers a, b, c such that

a3 + b3 + c3 = 2001.

(2001 Junior Balkan Mathematical Olympiad)

Problem 8.3.7. Determine all ordered pairs (m,n) of positive integers

such that
n3 + 1

mn− 1

is an integer.

(35th IMO)

8.3.2 High-order polynomial equations

Problem 8.3.8. Prove that there are no integers x, y, z so that

x4 + y4 + z4 − 2x2y2 − 2y2z2 − 2z2x2 = 2000.
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Solution. Suppose by way of contradiction that such numbers exist.

Assume without loss of generality that x, y, z are nonnegative integers.

At first we prove that the numbers are distinct. For this, consider that

y = z. Then x4 − 4x2y2 = 2000, hence x is even.

Setting x = 2t yields t2(t2 − y2) = 125. It follows that t2 = 25 and

y2 = 20, a contradiction.

Let now x > y > z. Since x4 +y4 +z4 is odd, at least one of the numbers

x, y, z is even and the other two have the same parity. Observe that

x4 + y4 + z4 − 2x2y2 − 2y2z2 − 2z2x2

= (x2 − y2)2 − 2(x2 − y2)z2 + z4 − 4y2z2

= (x2 − y2 − z2 − 2yz)(x2 − y2 − z2 + 2yz)

= (x+ y + z)(x− y − z)(x− y + z)(x+ y − z),

each of the four factors being even. Since 2000 = 16·125 = 24·125 we deduce

that each factor is divisible by 2, but not by 4. Moreover, the factors are

distinct

x+ y + z > x+ y − z > x− y + z > x− y − z.

The smallest even divisors of 2000 that are not divisible by 4 are 2, 10,

50, 250. But 2 · 10 · 50 · 250 > 2000, a contradiction.

Problem 8.3.9. Find the smallest value for n for which there exist the

positive integers x1, . . . , xn with

x4
1 + x4

2 + · · · + x4
n = 1998.

Solution. Observe that for any integer x we have x4 = 16k or x4 =

16k + 1 for some k.

As 1998 = 16 · 124 + 14, it follows that n ≥ 14.

If n = 14, all the numbers x1, x2, . . . , x14 must be odd, so let x4
k =

16ak + 1. Then ak =
x4

k − 1

16
, k = 1, 14 hence ak ∈ {0, 5, 39, 150, . . .} and

a1 + a2 + · · · + a14 = 124. It follows that ak ∈ {0, 5, 39} for all k = 1, 14,

and since 124 = 5 · 24 + 4, the number of the terms ak equal to 39 is 1 or

at least 6. A simple analysis show that the claim fails in both cases, hence
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n ≥ 15. Any of the equalities

1998 = 54 + 54 + 34 + 34 + 34 + 34 + 34 + 34 + 34 + 34 + 34 + 24

+ 14 + 14 + 14

= 54 + 54 + 44 + 34 + 34 + 34 + 34 + 34 + 34

+ 14 + 14 + 14 + 14 + 14 + 14

proves that n = 15.

Problem 8.3.10. Find all integer and positive solutions (x, y, z, t) of the

equation

(x+ y)(y + z)(z + x) = txyz

such that (x, y) = (y, z) = (z, x) = 1.

(1995 Romanian Mathematical IMO Team Selection Test)

Solution. It is obvious that (x, x + y) = (x, x + z) = 1, then x divides

y + z, y divides z + x and z divides x+ y. Let a, b, and c be integers such

that

x+ y = cz

y + z = ax

z + x = by.

We may assume that x ≥ y ≥ z. If y = z, then y = z = 1 and then

x ∈ {1, 2}. If x = y, then x = y = 1 and z = 1. So, assume that x > y > z.

Since a =
y + z

x
< 2, we have a = 1 and x = y + z. Thus, y|y + 2z and

y|2z. Since y > z, y = 2z and since gcd(y, z) = 1, one has z = 1, y = 2,

x = 3.

Finally the solutions are (1, 1, 1, 8), (2, 1, 1, 9), (3, 2, 1, 10) and those ob-

tained by permutations of x, y, z.

Problem 8.3.11. Determine all triples of positive integers a, b, c such

that a2 + 1, b2 + 1 are prime and (a2 + 1)(b2 + 1) = c2 + 1.

(2002 Polish Mathematical Olympiad)

Solution. Of course, we may assume that a ≤ b. Since a2(b2 +1) = (c−
b)(c+b) and b2+1 is a prime, we have b2+1|c−b or b2+1|c+b. If b2+1|c−b,
then a2 ≥ c+b ≥ b2 +2b+1, impossible since a ≤ b. So there is k such that

c+b = k(b2+1) and a2 = k(b2+1)−2b. Thus, b2 ≥ k(b2+1)−2b > kb2−2b,

from where k ≤ 2. If k = 2, then b2 ≥ 2b2 − 2b + 2, thus (b − 1)2 + 1 ≤ 0,
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false. Thus k = 1 and a = b−1. But then b2 +1 and (b−1)2 +1 are primes

and at least one of them is even, forcing b− 1 = 1 and b = 2, a = 1, c = 3.

By symmetry, we find (a, b, c) = (1, 2, 3) or (2, 1, 3).

Proposed problems

Problem 8.3.12. Prove that there are no positive integers x and y such

that

x5 + y5 + 1 = (x + 2)5 + (y − 3)5.

Problem 8.3.13. Prove that the equation y2 = x5 − 4 has no integer

solutions.

(1998 Balkan Mathematical Olympiad)

Problem 8.3.14. Let m,n > 1 be integer numbers. Solve in positive

integers the equation

xn + yn = 2m.

(2003 Romanian Mathematical Olympiad)

Problem 8.3.15. For a given positive integerm, find all pairs (n, x, y) of

positive integers such thatm,n are relatively prime and (x2+y2)m = (xy)n,

where n, x, y can be represented in terms of m.

(1995 Korean Mathematical Olympiad)

8.3.3 Exponential Diophantine equations

Problem 8.3.16. Find the integer solutions to the equation

9x − 3x = y4 + 2y3 + y2 + 2y.

Solution. We have successively

4((3x)2 − 3x) + 1 = 4y4 + 8y3 + 4y2 + 8y + 1,

then

(2t− 1)2 = 4y4 + 8y3 + 4y2 + 8y + 1,

where 3x = t ≥ 1 since it is clear that there are no solutions with x < 0.
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Observe that

(2y2 + 2y)2 < E ≤ (2y2 + 2y + 1)2.

Since E = (2t− 1)2 is a square, then

E = (2y2 + 2y + 1)2

if and only if

4y(y − 1) = 0,

so y = 0 or y = 1.

If y = 0 then t = 1 and x = 0.

If y = 1, then t = 3 and x = 1.

Hence the solutions (x, y) are (0,0) and (1,1).

Problem 8.3.17. The positive integers x, y, z satisfy the equation 2xx =

yy + zz. Prove that x = y = z.

(1997 St. Petersburg City Mathematical Olympiad)

Solution. We note that (x+ 1)x+1 ≥ xx+1 + (x+ 1)xx > 2xx. Thus we

cannot have y > x or z > x, else the right side of the equation will exceed

the left. But then 2xx ≥ yy + zz, with equality if and only if x = y = z.

Problem 8.3.18. Find all solutions in nonnegative integers x, y, z of the

equation

2x + 3y = z2.

(1996 United Kingdom Mathematical Olympiad)

Solution. If y = 0, then 2x = z2 − 1 = (z + 1)(z − 1), so z + 1 and

z − 1 are powers of 2. The only powers of 2 which differ by 2 are 4 and 2,

so (x, y, z) = (3, 0, 3).

If y > 0, then taking the equation mod 3 it follows that x is even. Now

we have 3y = z2 − 2x = (z + 2x/2)(z − 2x/2). The factors are powers of 3,

say z+2x/2 = 3m and z− 2x/2 = 3n, but then 3m − 3n = 2x/2+1. Since the

right side is not divisible by 3, we must have n = 0 and

3m − 1 = 2x/2+1.

If x = 0, we have m = 1, yielding (x, y, z) = (0, 1, 2). Otherwise, 3m − 1

is divisible by 4, so m is even and 2x/2+1 = (3m/2 + 1)(3m/2 − 1). The two

factors on the right are powers of 2 differing by 2, so they are 2 and 4,

giving x = 4 and (x, y, z) = (4, 2, 5).
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Proposed problems

Problem 8.3.19. Determine all triples (x, k, n) of positive integers such

that

3k − 1 = xn.

(1999 Italian Mathematical Olympiad)

Problem 8.3.20. Find all pairs of nonnegative integers x and y which

satisfy the equation

px − yp = 1

where p is a given odd prime.

(1995 Czech-Slovak Match)

Problem 8.3.21. Let x, y, z be integers with z > 1. Show that

(x+ 1)2 + (x+ 2)2 + · · · + (x+ 99)2 6= yz.

(1998 Hungarian Mathematical Olympiad)

Problem 8.3.22. Determine all solutions (x, y, z) of positive integers

such that

(x+ 1)y+1 + 1 = (x+ 2)z+1.

(1999 Taiwanese Mathematical Olympiad)
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9

Some special problems in number

theory

9.1 Quadratic residues. Legendre’s symbol

Let a and m be positive integers such that m 6= 0 and gcd(a,m) = 1. We

say that a is a quadratic residue mod m if the congruence x2 ≡ a (mod m)

has a solution. Otherwise we say that a is a nonquadratic residue.

Let p be an odd prime and let a be a positive integer not divisible by p.

The Legendre’s symbol of a with respect to p is defined by

(
a

p

)

=

{

1 if a quadratic residue pmod p

−1 otherwise

It is clear that the perfect squares are quadratic residues mod p. It is nat-

ural to ask how many integers among 1, 2, . . . , p− 1 are quadratic residues.

The answer is given in the following theorem.

Theorem 9.1.1. Let p be an odd prime. There are
p− 1

2
quadratic

residues in the set {1, 2, . . . , p− 1}.
Proof. Consider the numbers k2, k = 1, 2, . . . ,

p− 1

2
. These are

quadratic residues and moreover, they are distinct. Indeed, if i2 ≡ j2

(mod p), then it follows that p|(i − j)(i + j) and, since i + j < p, this

implies p|i− j, hence i = j.
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Conversely, if gcd(a, p) = 1 and the congruence x2 ≡ a (mod p) has a

solution x, then x = qp + i, where −p− 1

2
≤ i ≤ p− 1

2
and so i2 ≡ q

(mod p). �

The basic properties of Legendre’s symbol are:

1) (Euler’s criterion) If p is an odd prime and a an integer not divisible

by p, then

a
p−1
2 ≡

(
a

p

)

(mod p).

2) If a ≡ b (mod p), then

(
a

p

)

=

(
b

p

)

.

3) (multiplicity)

(
a1 . . . an

p

)

=

(
a1

p

)

. . .

(
an

p

)

.

4)

(−1

p

)

= (−1)
p−1
2 .

For Euler’s criterion, suppose that

(
a

p

)

= 1. Then i2 ≡ a (mod p) for

some integer i. We have gcd(i, p) = 1 and from Fermat’s Little Theorem,

ip−1 ≡ 1 (mod p). Hence a
p−1
2 ≡ 1 (mod p) and we are done.

If

(
a

p

)

= −1, then each of the congruences

x
p−1
2 − 1 ≡ 0 (mod p) and x

p−1
2 + 1 ≡ 0 (mod p)

has
p− 1

2
distinct solutions in the set {1, 2, . . . , p−1}. The

p− 1

2
quadratic

residues correspond to the first congruence and the
p− 1

2
nonquadratic

residues correspond to the second. Hence if a is nonquadratic residue, we

have a
p−1
2 ≡ −1 (mod p) and we are done.

Remark. From Fermat’s Little Theorem, ap−1 ≡ 1 (mod p), hence

p|(a p−1
2 − 1)(a

p−1
2 + 1). From Euler’s criterion, p|a p−1

2 − 1 if and only if

a is a quadratic residue mod p.

Property 2) is clear. For 3) we apply Euler’s criterion:

(
ai

p

)

≡ a
p−1
2

i (mod p), i = 1, . . . , n.

Therefore
(
a1

p

)

. . .

(
an

p

)

≡ a
p−1
2

1 . . . a
p−1
2

n = (a1 . . . an)
p−1
2

≡
(
a1 . . . an

p

)

(mod p).
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In order to prove 4) note that (−1)
p−1
2 ,

(−1

p

)

∈ {−1, 1}. Hence

p|(−1)
p−1
2 −

(
−1
p

)

reduces to Euler’s criterion.

The following theorem gives necessary and sufficient conditions under

which 2 is a quadratic residue.

Theorem 9.1.2. For any odd prime p,

(
2

p

)

= (−1)
p2−1

8 .

Proof. We need the following lemma.

Lemma. (Gauss1) If a is a positive integer that is not divisible by p,

then from the Division Algorithm,

ka = pqk + rk, k = 1, . . . ,
p− 1

2
.

Let b1, . . . , bm be the distinct remainders r1, . . . , r p−1
2

that are less than
p

2
and let c1, . . . , cn be the distinct remaining remainders. Then

(
a

p

)

= (−1)n.

Proof of Lemma. We have

m∏

i=1

bi

n∏

j=1

cj =

p−1
2∏

k=1

rk =

p−1
2∏

k=1

(ka−pqk) ≡
p−1
2∏

k=1

ka = a
p−1
2

(
p− 1

2

)

! (mod p).

Because
p

2
< cj ≤ p− 1, j = 1, . . . , n, we have 1 ≤ p− cj ≤ p− 1

2
. It is

not possible to have p−cj = bi for some i and j. Indeed, if bi +cj = p, then

p = as−pqs+at−pqt, so p|s+t, which is impossible, since 1 ≤ s, t ≤ p− 1

2
.

Therefore the integers b1, . . . , bm, p− c1, . . . , p− cn are distinct and

{b1, . . . , bm, p− c1, . . . , p− cn} =

{

1, 2, . . . ,
p− 1

2

}

1Karl Friedrich Gauss (1777-1855), German mathematician who is sometimes called

the ”prince of mathematics”. Gauss proved in 1801 the fundamental theorem of arith-

metic and he published one of the most brilliant achievements in mathematics, ”Disqui-

sitiones Arithmeticae”. In this book he systematized the study of number theory and

developed the algebra of congruences.
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We obtain
m∏

i=1

bi

n∏

j=1

(p− cj) =

(
p− 1

2

)

!

Finally,

(−1)n
m∏

i=1

bi

n∏

j=1

cj ≡
(
p− 1

2

)

! (mod p)

hence a
p−1
2 ≡ (−1)n (mod p). The conclusion now follows from Euler’s

criterion. �

In order to prove the theorem we use Gauss Lemma for a = 2. We have

{r1, r2, . . . , r p−1
2
} = {2, 4, . . . , p − 1}. The number of integers k such that

p

2
< 2k < p is n =

⌊p

2

⌋

−
⌊p

4

⌋

.

If p = 4u + 1, then n = 2u − u = u and
p2 − 1

8
= 2u2 + u. We have

n ≡ p2 − 1

8
(mod 2) and we are done.

If p = 4v + 3, then n = 2v + 1 − v = v + 1 and
p2 − 1

8
= 2v2 + 3v + 1

and again n ≡ p2 − 1

8
(mod 2). �

The central result concerning Legendre’s symbol is the so-called

Quadratic Reciprocity Law of Gauss.

Theorem 9.1.3. If p and q are distinct odd primes, then
(
q

p

)(
p

q

)

= (−1)
p−1
2 · q−1

2 .

Proof. In Gauss Lemma we take a = q and we get

(
q

p

)

= (−1)n. Let

m∑

i=1

bi = b and

n∑

j=1

cj = c. Then using the equality

{b1, . . . , bm, p− c1, . . . , p− cn} =

{

1, 2, . . . ,
p− 1

2

}

it follows that

b+ np− c =

p−1
2∑

k=1

k =
p2 − 1

8
.

But from Gauss Lemma we have qk =

⌊
kq

p

⌋

, k = 1, 2, . . . , p− 1, hence

q
p2 − 1

8
= p

p−1
2∑

k=1

⌊
kq

p

⌋

+ b+ c.
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Summing up the last two relations gives

2c+ p

p−1
2∑

k=1

⌊
kq

p

⌋

+
p2 − 1

8
(1 − q) − np = 0.

Because 2c and 1 − q are even, it follows that

n ≡
p−1
2∑

k=1

⌊
kq

p

⌋

(mod 2)

and applying Gauss Lemma again we obtain

(
q

p

)

= (−1)

p−1
2P

k=1
⌊ kq

p ⌋

Similarly, we derive the relation

(
p

q

)

= (−1)

p−1
2P

j=1
⌊ jp

q ⌋

Multiplying the last two equalities and taking into account the Landau’s

identity in Problem 18 of Chapter 3, the conclusion follows. �

Problem 9.1.1. Let k = 22n

+ 1 for some positive integer n. Show that

k is a prime if and only if k is a factor of 3(k−1)/2 + 1.

(1997 Taiwanese Mathematical Olympiad)

Solution. Suppose k is a factor of 3(k−1)/2 + 1. This is equivalent to

3(k−1)/2 ≡ −1 (mod k). Hence 3k−1 ≡ 1 (mod k). Let d be the order of 3

mod k. Then d ∤ (k−1)/2 but d|(k−1), hence (k−1)|d, so d = k−1 (since

d must be smaller than k). Therefore k is prime.

Conversely, suppose k is prime. By Quadratic Reciprocity Law

(
3

k

)

=

(
k

3

)

=

(
2

3

)

= −1.

By Euler’s criterion, 3(k−1)/2 ≡
(

3

k

)

≡ −1 (mod k), as claimed.

Problem 9.1.2. Prove that if n is a positive integer such that the equa-

tion x3 − 3xy2 + y3 = n has an integer solution (x, y) then it has at least

three such solutions.

(23rd IMO)
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Solution. The idea of the solution is to find a non-singular change of

coordinates with integer coefficients

(x, y) → (ax+ by, cx+ dy),

such that the polynomial x3 − 3xy2 + y3 does not change after changing

coordinates. Such a transformation can be found after remarking the iden-

tity:

x3 − 3xy2 + y3 = (y − x)3 − 3x2y + 2x3 = (y − x)3 − 3(y − x)x2 + (−x)3.

Thus, such a transformation is T (x, y) = (y − x,−x). It can be repre-

sented like a linear transformation

T

(

x

y

)

=

(

−1 1

−1 0

)(

x

y

)

=

(

−x+ y

−x

)

.

We have

T 2 =

(

−1 1

−1 0

)(

−1 1

−1 0

)

=

(

0 −1

1 −1

)

and

T 3 =

(

0 −1

1 −1

)(

−1 1

−1 0

)

=

(

1 0

0 1

)

.

Thus, T 2(x, y) = (−y, x − y). Moreover, it is easy to see that if x3 −
3xy2 + y3 = n, n ≥ 0, then the pairs (x, y), (−y, x− y) are distinct.

For the second part, observe that 2819 = 72 · 59. Suppose that x, y are

integer numbers such that x3 − 3xy2 + y3 = 2891. Then x, y are pairwise

prime, because from d = (x, y) we obtain d3|2891. The numbers x, y are not

divisible by 7, then they are inversible modulo 7. Thus, from the equation

we obtain ( y

x

)3

− 3
(y

x

)2

+ 1 ≡ 0 (mod 7).

This proves that the congruence

a3 − 3a2 + 1 ≡ 0 (mod 7)

has a solution, a ∈ Z. Since 7 is not a divisor of a, by Fermat’s Little

Theorem one has a6 ≡ 1 (mod 7). There are two possibilities: a3 ≡ 1

(mod 7) or a3 ≡ −1 (mod 7). When a3 ≡ 1 (mod 7) we obtain:

a3 − 3a2 + 1 ≡ 0 (mod 7) ⇒ 3a2 ≡ 2 (mod 7) ⇒ a2 ≡ 3 (mod 7).
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Using Legendre’s symbol and the Quadratic Reciprocity Law:
(

3

7

)

= (−1)
3−1
2 · 7−1

2

(
7

3

)

= (−1)

(
1

3

)

= −1.

This proves that 3 is not a square modulo 7. When a3 ≡ −1 (mod 7)

we obtain the contradiction from: 3a2 ≡ 0 (mod 7). Thus, the equation

x3 − 3xy2 + y3 = 2891 has no solution in integers (x, y).

Problem 9.1.3. Let m,n be positive integers such that

A =
(m+ 3)n + 1

3m

is an integer. Prove that A is odd.

(1998 Bulgarian Mathematical Olympiad)

Solution. If m is odd, then (m + 3)n + 1 is odd and A is odd. Now we

suppose that m is even. Since A is an integer,

0 ≡ (m+ 3)n + 1 ≡ mn + 1 (mod 3),

so n = 2k+1 is odd and m ≡ −1 (mod 3). We consider the following cases.

(a) m = 8m′ for some positive integer m′. Then

(m+ 3)n + 1 ≡ 32k+1 + 1 ≡ 4 (mod 8)

and 3m ≡ 0 (mod 8). So A is not an integer.

(b) m = 2m′ for some odd positive integer m′, i.e., m ≡ 2 (mod 4). Then

(m+ 3)n + 1 ≡ (2 + 3) + 1 ≡ 2 (mod 4)

and 3m ≡ 2 (mod 4). So A is odd.

(c) m = 4m′ for some odd positive integerm′. Becausem ≡ −1 (mod 3),

there exists an odd prime p such that p ≡ −1 (mod 3) and p|m. Since A

is an integer,

0 ≡ (m+ 3)n + 1 ≡ 32k+1 + 1 (mod m)

and 32k+1 ≡ −1 (mod p). Let a be a primitive root modulo p; let b be a

positive integer such that 3 ≡ ab (mod p). Thus a(2k+1)b ≡ −1 (mod p).

Note that (p/3) = (−1/3) = −1. We consider the following cases.

(i) p ≡ 1 (mod 4). From the Quadratic Reciprocity Law, (−1/p) = 1, so

a2c ≡ −1 ≡ a(2k+1)b (mod p)
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for some positive integer c. Therefore b is even and (3/p) = 1. Again, from

the Quadratic Reciprocity Law,

−1 = (3/p)(p/3) = (−1)(3−1)(p−1)/4 = 1,

a contradiction.

(ii) p ≡ 3 (mod 4). From the Quadratic Reciprocity Law, (−1/p) = −1,

so

a2c+1 ≡ −1 ≡ a(2k+1)b (mod p)

for some positive integer c. Therefore b is odd and (3/p) = −1. Again, from

the Quadratic Reciprocity Law,

1 = (3/p)(p/3) = (−1)(3−1)(p−1)/4 = −1,

a contradiction.

Thus for m = 4m′ and m′ is odd, A is not an integer.

From the above, we see that if A is an integer, A is odd.

Problem 9.1.4. Prove that 2n + 1 has no prime factors of the form

8k + 7.

(2004 Vietnamese IMO Team Selection Test)

Solution. Assume that we have a prime p such that p|2n +1 and p ≡ −1

(mod 8). If n is even, then p ≡ 3 (mod 4) and

(−1

p

)

= 1, a contradiction.

If n is odd, then

(−2

p

)

= 1 and we get (−1)
p2−1

8 (−1)
p−1
2 = 1, again a

contradiction.

Problem 9.1.5. Prove that 23n

+ 1 has at least n prime divisors of the

form 8k + 3.

Solution. Using the result of the previous problem, we deduce that 2n+1

does not have prime divisors of the form 8k + 7. We will prove that if n is

odd, then it has no prime divisors of the form 8k + 5 either. Indeed, let p

be a prime divisor of 2n + 1. Then 2n ≡ −1 (mod p) and so −2 ≡ (2
n+1
2 )2

(mod p). Using the same argument as the one in the previous problem, we

deduce that
p2 − 1

8
+
p− 1

2
is even, which cannot happen if p is of the form

8k + 5.

Now, let us solve the proposed problem. We will assume n > 2 (otherwise

the verification is trivial). The essential observation is the identity:

23n

+ 1 = (2 + 1)(22 − 2 + 1)(22·3 − 23 + 1) . . . (22·3n−1 − 23n−1

+ 1)
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Now, we will prove that for all 1 ≤ i < j ≤ n− 1,

gcd(22·3i − 23i

+ 1, 22·3j − 23j

+ 1) = 3.

Indeed, assume that p is a prime number dividing gcd(22·3i − 23i

+

1, 22·3j − 23j

+ 1) We will then have p|23i+1

+ 1. Thus,

23j ≡ (23i+1

)3
j−i−1 ≡ (−1)3

j−i−1 ≡ −1 (mod p),

implying

0 ≡ 22·3j − 23j

+ 1 ≡ 1 − (−1) + 1 ≡ 3 (mod p).

This cannot happen unless p = 3. But since

v3(gcd(2
2·3i − 23i

+ 1, 22·3j − 23j

+ 1)) = 1

(as one can immediately check), it follows that

gcd(22·3i − 23i

+ 1, 22·3j − 23j

+ 1) = 3

and the claim is proved.

It remains to show that each of the numbers 22·3i − 23i

+1, with 1 ≤ i ≤
n−1 has at least a prime divisor of the form 8k+3 different from 3. It would

follow in this case that 23n

+ 1 has at least n− 1 distinct prime divisors of

the form 8k+3 (from the previous remarks) and since it is also divisible by

3, the conclusion would follow. Fix i ∈ {1, 2, . . . , n − 1} and observe that

any prime factor of 22·3i −23i

+1 is also a prime factor of 23n

+1 and thus,

from the first remark, it must be of the form 8k + 1 or 8k + 3. Because

v3(2
2·3i − 23i

+ 1) = 1, it follows that if all prime divisors of 22·3i − 23i

+ 1

except for 3 are of the form 8k+1, then 22·3i−23i

+1 ≡ 8 (mod 8), which is

clearly impossible. Thus at least a prime divisor of 22·3i −23i

+1 is different

from 3 and is of the form 8k+3 and so the claim is proved. The conclusion

follows.

Problem 9.1.6. Find a number n between 100 and 1997 such that n|2n+

2.

(1997 Asian-Pacific Mathematical Olympiad)

Solution. The first step would be choosing n = 2p, for some prime

number p. Unfortunately this cannot work by Fermat’s little theorem. So

let us try setting n = 2pq, with p, q different prime numbers. We need
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pq|22pq−1 + 1 and so we must have

(−2

p

)

=

(−2

q

)

= 1. Also, using

Fermat’s little theorem, p|22q−1 + 1 and q|22p−1 + 1. A small verification

shows that q = 3, 5, 7 are not good choices, so let us try q = 11. In this

case we find p = 43 and so it suffices to show that pq|22pq−1 + 1 for q = 11

and p = 43. This is immediate, since the hard work has already been

completed: we have shown that it suffices to have p|q2q−1, q|22p−1 + 1, and
(−2

p

)

=

(−2

q

)

= 1 in order to have pq|22pq−1 + 1. But as one can easily

check, all these conditions are verified and the number 2 · 11 · 43 is a valid

answer.

Proposed problems

Problem 9.1.7. Let f, g : Z+ → Z+ functions with the properties:

i) g is surjective;

ii) 2f2(n) = n2 + g2(n) for all positive integers n.

If, moreover, |f(n) − n| ≤ 2004
√
n for all n, prove that f has infinitely

many fixed points.

(2005 Moldavian IMO Team Selection Test)

Problem 9.1.8. Suppose that the positive integer a is not a perfect

square. Then

(
a

p

)

= −1 for infinitely many primes p.

Problem 9.1.9. Suppose that a1, a2, . . . , a2004 are nonnegative integers

such that an
1 + an

2 + · · · + an
2004 is a perfect square for all positive integers

n. What is the minimal number of such integers that must equal 0?

(2004 Mathlinks Contest)

Problem 9.1.10. Find all positive integers n such that 2n − 1|3n − 1.

(American Mathematical Monthly)

Problem 9.1.11. Find the smallest prime factor of 12215

+ 1.

9.2 Special numbers

9.2.1 Fermat’s numbers

Trying to find all primes of the form 2m +1, Fermat noticed that m must

be a power of 2. Indeed, if m equaled k · h with k an odd integer greater
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than 1, then

2m + 1 = (2h)k + 1 = (2h + 1)(2h(k−1) − 2h(k−2) + · · · − 2h + 1),

and so 2m + 1 would not be a prime.

The integers fn = 22n

+ 1, n ≥ 0, are called Fermat’s numbers. We have

f0 = 3, f1 = 5, f2 = 17, f3 = 65, 573, f4 = 4, 294, 967, 297.

After checking that these five numbers are primes, Fermat conjectured

that fn is a prime for all n. But Euler proved that 641|f5. His argument

was the following:

f5 = 232 + 1 = 228(54 + 24) − (5 · 27)4 + 1 = 228 · 641 − (6404 − 1)

= 641(228 − 639(6402 + 1)).

It is still an open problem if there are infinitely many Fermat primes.

The answer to this question is important because Gauss proved that a

regular polygon Q1Q2 . . . Qn can be constructed by using only a ruler and

a compass if and only if n = 2hp1 . . . pk, where k ≥ 0 and p1, . . . , pk are

distinct Fermat primes. Gauss was the first to construct such a polygon for

n = 17.

Problem 9.2.1. Prove that

(i) fn = f0 . . . fn−1 + 2, n ≥ 1;

(ii) gcd(fk, fh) = 1 if k 6= h;

(iii) fn ends in 7 for all n ≥ 2.

Solution. (i) We have

fk = 22k

+ 1 = (22k−1

)2 + 1 = (fk−1 − 1)2 + 1 = f2
k−1 − 2fk−1 + 2,

hence

fk − 2 = fk−1(fk−1 − 2), k ≥ 1. (1)

Multiplying relations (1) for k = 1, . . . , n yields

fn − 2 = f0 . . . fn−1(f0 − 2)

and the conclusion follows.

For a different proof we can use directly the identity

x2n − 1

x− 1
=

n−1∏

k=0

(x2k

+ 1)
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(ii) From (i) we have

gcd(fn, f0) = gcd(fn, f1) = · · · = gcd(fn, fn−1) = 1

for all n ≥ 1, hence gcd(fk, fh) = 1 for all k 6= h.

(iii) Because f1 = 5 and f0 . . . fn−1 is odd, using (i) it follows that fn

ends in 5 + 2 = 7 for all n ≥ 2.

Problem 9.2.2. Find all Fermat’s numbers that can be written as a sum

of two primes.

Solution. All Fermat’s numbers are odd. If fn = p+ q for some primes

p and q, p ≤ q, then p = 2 and q > 2. We obtain

q = 22n − 1 = (22n−1

)2 − 1 = (22n−1 − 1)(22n−1

+ 1),

hence 22n−1 − 1 must equal 1. That is n = 1 and f1 = 2 + 3 is the unique

Fermat’s number with this property.

An alternative solution uses Problem 1 (iii): if n ≥ 2, then fn ends in

7, so q must end in 5. Hence q = 5 and 2 + 5 6= fn for n ≥ 2. The only

Fermat’s number with the given property is f1.

Problem 9.2.3. Show that for any n ≥ 2 the prime divisors p of fn are

of the form p = s · 2n+2 + 1.

Solution. Because p|fn, it follows that 22n ≡ −1 (mod p). Let i be the

least positive integer such that 2i ≡ 1 (mod p). By squaring the congruence

22n ≡ −1 (mod p) we get 22n+1 ≡ 1 (mod p), hence i|2n+1, that is i = 2k

for some nonnegative integer k. If k ≤ n, then 22k ≡ 1 (mod p), implying

22n ≡ 1 (mod p), which contradicts the congruence 22n ≡ −1 (mod p).

Therefore k = n + 1. From Fermat’s Little Theorem, 2p−1 ≡ 1 (mod p),

hence 2n+1|p − 1, that is p = h · 2n+1 + 1 for some positive integer h. We

get p = 8t + 1 and

(
2

p

)

= (−1)
p2−1

8 = 1, so 2 is a quadratic residue

mod p. Using Euler’s criterion, it follows that 2
p−1
2 ≡ 1 (mod p). Finally,

2n+1|p− 1

2
, hence

p− 1

2
= s · 2n+1, that is p = s · 2n+2 + 1.

Proposed problems

Problem 9.2.4. Find all positive integers n such that 2n−1 is a multiple

of 3 and
2n − 1

3
is a divisor of 4m2 + 1 for some integer m.

(1999 Korean Mathematical Olympiad)



9.2. SPECIAL NUMBERS 191

Problem 9.2.5. Prove that the greatest prime factor of fn, n ≥ 2, is

greater than 2n+2(n+ 1).

(2005 Chinese IMO Team Selection Test)

9.2.2 Mersenne’s numbers

The integers Mn = 2n − 1, n ≥ 1, are called Mersenne2’s numbers. It is

clear that if n is composite, then so is Mn. Moreover, if n = ab, where a and

b are integers greater than 1, then Ma and Mb both divide Mn. But there

are primes n for which Mn is composite. For example 47|M23, 167|M83,

263|M13, and so on.

It is not known if there are infinitely many primes with this property.

The largest known prime is

232582657 − 1

and it a Mersenne’s number. Presently, we know 42 Mersenne’s numbers

which are primes.

Theorem 9.2.1. Let p be an odd prime and let q be a prime divisor of

Mp. Then q = 2kp+ 1 for some positive integer k.

Proof. From the congruence 2p ≡ 1 (mod q) and from the fact that

p is a prime, it follows that p is the least positive integer satisfying this

property. By using Fermat’s Little Theorem, we have 2q−1 ≡ 1 (mod q),

hence p|q−1. But q−1 is an even integer, so q−1 = 2kp and the conclusion

follows.

Problem 9.2.6. Let p be a prime of the form 4k + 3. Then 2p+ 1 is a

prime if and only if 2p+ 1 divides Mp.

Solution. Suppose that q = 2p+ 1 is a prime. Then

(
2

q

)

= (−1)
q2−1

8 = (−1)
p(p+1)

2 = (−1)2(k+1)(4k+3) = 1,

hence 2 is a quadratic residue mod q.

Using Euler’s criterion it follows that 2
q−1
2 ≡ 1 (mod q), that is 2p ≡ 1

(mod q) and the conclusion follows.

2Marin Mersenne (1588-1648), French monk who is best known for his role as a

clearing house for correspondence eminent philosophers and scientists and for his work

in number theory.
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If q is composite, then it has a prime divisor q1 such that q1 ≤ √
q.

Using Fermat’s Little Theorem, we have 2q1−1 ≡ 1 (mod q1). But 2p ≡ 1

(mod q1) with p prime implies that p is the least positive integer with the

property. Hence p|q1 − 1, thus q1 ≥ p+ 1 >
√
p, contradicting the choice of

q1. Therefore q must be a prime and the conclusion follows.

Proposed problems

Problem 9.2.7. Let P ∗ denote all the odd primes less than 10000, and

suppose p ∈ P ∗. For each subset S = {p1, p2, . . . , pk} of P ∗, with k ≥ 2

and not including p, there exists a q ∈ P ∗ \ S such that

(q + 1)|(p1 + 1)(p2 + 1) . . . (pk + 1).

Find all such possible values of p.

(1999 Taiwanese Mathematical Olympiad)

9.2.3 Perfect numbers

An integer n ≥ 2 is called perfect if the sum of its divisors is equal to 2n.

That is σ(n) = 2n. For example, the numbers 6, 28, 496 are perfect. The

even perfect numbers are closely related to Mersenne’s numbers.

Theorem 9.2.2. (Euclid) If Mk is a prime, then n = 2k−1Mk is a

perfect number.

Proof. Because gcd(2k−1, 2k − 1) = 1, and the fact that σ is a multi-

plicative function, it follows that

σ(n) = σ(2k−1)σ(2k − 1) = (2k − 1) · 2k = 2n. �

There is also a partial converse, due to Euler.

Theorem 9.2.3. If the even positive integer n is perfect, then n =

2k−1Mk for some positive integer k for which Mk is a prime.

Proof. Let n = 2tu, where t ≥ 1 and u is odd. Because n is perfect, we

have σ(n) = 2n, hence σ(2tu) = 2t+1u. Using again that σ is multiplicative,

we get

σ(2tu) = σ(2t)σ(u) = (2t+1 − 1)σ(u).

This is equivalent to

(2t+1 − 1)σ(u) = 2t+1u.
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Because gcd(2t+1 − 1, 2t+1) = 1, it follows that 2t+1|σ(u), hence σ(u) =

2t+1v for some positive integer v. We obtain u = (2t+1 − 1)v.

The next step is to show that v = 1. If v > 1, then

σ(u) ≥ 1 + v + 2t+1 − 1 + v(2t+1 − 1) = (v + 1)2t+1 > v · 2t+1 = σ(u),

a contradiction. We get v = 1, hence u = 2t+1−1 = Mt+1 and σ(u) = 2t+1.

If Mt+1 is not a prime, then σ(u) > 2t+1, which is impossible. Finally,

n = 2k−1Mk, where k = t+ 1. �

Remark. Recall that Mk is a prime only if k is a prime. This fact reflects

also in Theorem 9.2.2 and Theorem 9.2.3.

Problem 9.2.8. Show that any even perfect number is triangular.

Solution. Using Theorem 9.2.3, we have

n = 2k−1Mk =
2k

2
(2k − 1) =

m(m+ 1)

2
,

where m = 2k − 1 and we are done.

Proposed problems

Problem 9.2.9. Prove that if n is an even perfect number, then 8n+ 1

is a perfect square.

Problem 9.2.10. Show that if k is an odd positive integer, then 2k−1Mk

can be written as the sum of the cubes of the first 2
k−1
2 odd positive integers.

In particular, any perfect number has this property.

9.3 Sequences of integers

9.3.1 Fibonacci and Lucas sequences

Leonardo Fibonacci3 introduced in 1228 the sequence F1 = F2 = 1 and

Fn+1 = Fn + Fn−1, n ≥ 2. It is not difficult to prove by induction that the

closed form for Fn is given by the Binet’s formula

Fn =
1√
5

[(

1 +
√

5

2

)n

−
(

1 −
√

5

2

)n]

(1)

3Leonardo Pisano Fibonacci (1170-1250) played an important role in reviving ancient

mathematics and made significant contributions of his ”Liber abaci” introduced the

Hindu-Arabic place-valued decimal system and the use of Arabic numerals into Europe.
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for all n ≥ 1. As a consequence of the recursive definition or of formula

above, it is a convention to define F0 = 0.

In what follows we give some arithmetical properties of the Fibonacci

numbers.

1) If m|n, then Fm|Fn. If n ≥ 5 and Fn is a prime, then so is n.

2) For any m,n ≥ 1, gcd(Fm, Fn) = Fgcd(m,n).

3) If gcd(m,n) = 1, then FmFn|Fmn.

In order to prove 1) suppose that n = mk for some integer k > 1 and

denote α =
1 +

√
5

2
, β =

1 −
√

5

2
. Using (1), we have

Fn

Fm
=

αn − βn

αm − βm
=

(αm)k − (βm)k

αm − βm
= αm(k−1)+αm(k−2)βm+· · ·+βm(k−1).

Because α + β = 1 and αβ = −1 it follows by induction that αi + βi is

an integer for all integers i ≥ 1 and the conclusion follows.

It is now clear that if n = kh, k ≥ 3, then Fk divides Fn hence Fn is not

a prime.

For 2) let d = gcd(m,n) and suppose that n > m. Applying Euclid’s

Algorithm, we get

n = mq1 + r1

m = r1q2 + r2

r1 = r2q3 + r3

. . .

ri−1 = riqi+1

and so d = ri. We have

gcd(Fm, Fn) = gcd(Fm, Fmq1+r1) = gcd(Fm, Fmq1−1Fr1 + Fmq1Fr1+1)

= gcd(Fm, Fmq1−1Fr1) = gcd(Fm, Fr1)

because it is not difficult to check that for any positive integers m,n,

Fm+n = Fm−1Fn + FmFn+1 (2)

property 1), and the fact that gcd(Fmk−1, Fm) = 1.

By applying repeatedly this procedure, we arrive at

gcd(Fm, Fn) = gcd(Fm, Fr1) = gcd(Fr1 , Fr2)
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= · · · = gcd(Fri−1, Fri
) = Fri

= Fd.

Property 3) follows from 2) by observing that

gcd(Fm, Fn) = Fgcd(m,n) = F1 = 1

and then by using 1).

Lucas’ sequence is defined by L0 = 2, L1 = 1, and Ln+1 = Ln + Ln−1,

n ≥ 1. The Lucas numbers are the companions to the Fibonacci numbers

because they satisfy the same recurrence.

The analog of Binet’s Fibonacci number formula for Lucas numbers is

Ln =

(

1 +
√

5

2

)n

+

(

1 −
√

5

2

)n

, n ≥ 0. (3)

Problem 9.3.1. Show that there is a positive number in the Fibonacci

sequence which is divisible by 1000.

(1999 Irish Mathematical Olympiad)

Solution. In fact, for any natural number n, there exist infinitely many

positive Fibonacci numbers divisible by n.

Consider ordered pairs of consecutive Fibonacci numbers (F0, F1),

(F1, F2), . . . taken modulo n. Because the Fibonacci sequence is infinite

and there are only n2 possible ordered pairs of integers modulo n, two

such pairs (Fj , Fj+1) must be congruent: Fi ≡ Fi+m and Fi+1 ≡ Fi+m+1

(mod n) for some i and m.

If i ≥ 1 then Fi−1 ≡ Fi+1 − Fi ≡ Fi+m+1 − Fi+m ≡ Fi+m−1 (mod n).

Likewise, Fi+2 ≡ Fi+1 + Fi ≡ Fi+m+1 + Fi+m ≡ Fi+2+m (mod n). Con-

tinuing similarly, we have Fj ≡ Fj+m (mod n) for all j ≥ 0. In particular,

0 = F0 ≡ Fm ≡ F2m ≡ (mod n), so the numbers Fm, F2m, . . . are all

positive Fibonacci numbers divisible by n. Applying this to n = 1000, we

are done.

Problem 9.3.2. Prove that

(i) The statement ”Fn+k − Fn is divisible by 10 for all positive integers

n” is true if k = 60 and false for any positive integer k < 60;

(ii) The statement ”Fn+t −Fn is divisible by 100 for all positive integers

n” is true if t = 300 and false for any positive integer t < 300.

(1996 Irish Mathematical Olympiad)
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Solution. A direct computation shows that the Fibonacci sequence has

period 3 modulo 2 and 20 modulo 5 (compute terms until the initial terms

0, 1 repeat, at which time the entire sequence repeats), yielding (a). As for

(b), one computes that the period mod 4 is 6. The period mod 25 turns out

to be 100, which is awfully many terms to compute by hand, but knowing

that the period must be a multiple of 20 helps, and verifying the recurrence

Fn+8 = tFn+4 + Fn, where t is an integer congruent to 2 modulo 5, shows

that the period divides 100; finally, an explicit computation shows that the

period is not 20.

Problem 9.3.3. Let (an)n≥0 be the sequence defined by a0 = 0, a1 = 1

and
an+1 − 3an + an−1

2
= (−1)n

for all integers n > 0. Prove that an is a perfect square for all n ≥ 0.

Solution. Note that a2 = 1, a3 = 4, a4 = 9, a5 = 25, so a0 = F 2
0 ,

a1 = F 2
1 , a2 = F 2

2 , a3 = F 2
3 , a4 = F 2

4 , a5 = F 2
5 , where (Fn)n≥0 is the

Fibonacci sequence.

We induct on n to prove that an = F 2
n for all n ≥ 0. Assume that ak = F 2

k

for all k ≤ n. Hence

an = F 2
n , an−1 = F 2

n−1, an−2 = F 2
n−2. (1)

From the given relation we obtain

an+1 − 3an + an−1 = 2(−1)n

and

an − 3an−1 + an−2 = 2(−1)n−1, n ≥ 2.

Summing up these equalities yields

an+1 − 2an − 2an−1 + an−2 = 0, n ≥ 2. (2)

Using the relations (1) and (2) we obtain

an+1 = 2F 2
n + 2F 2

n−1 − F 2
n−2 = (Fn + Fn−1)

2 + (Fn − Fn−1)
2 − F 2

n−2 =

= F 2
n+1 + F 2

n−2 − F 2
n−2 = F 2

n+1,

as desired.

Problem 9.3.4. Define the sequence (an)n≥0 by a0 = 0, a1 = 1, a2 = 2,

a3 = 6 and

an+4 = 2an+3 + an+2 − 2an+1 − an, n ≥ 0.
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Prove that n divides an for all n > 0.

Solution. From the hypothesis it follows that a4 = 12, a5 = 25, a6 = 48.

We have
a1

1
,
a2

2
= 1,

a3

3
= 2,

a4

4
= 3,

a5

5
= 5,

a6

6
= 8 so

an

n
= Fn for all

n = 1, 2, 3, 4, 5, 6, where (Fn)n≥1 is the Fibonacci’s sequence.

We prove by induction that an = nFn for all n. Indeed assuming that

ak = kFk for k ≤ n+ 3, we have

an+4 = 2(n+ 3)Fn+3 + (n+ 2)Fn+2 − 2(n+ 1)Fn+1 − nFn =

= 2(n+ 3)Fn+3 + (n+ 2)Fn+2 − 2(n+ 1)Fn+1 − n(Fn+2 − Fn+1) =

= 2(n+ 3)Fn+3 + 2Fn+2 − (n+ 2)Fn+1 =

= 2(n+ 3)Fn+3 + 2Fn+2 − (n+ 2)(Fn+3 − Fn+2) =

= (n+ 4)(Fn+3 + Fn+2) = (n+ 4)Fn+4,

as desired.

Proposed problems

Problem 9.3.5. Determine the maximum value of m2 + n2, where m

and n are integers satisfying 1 ≤ m,n ≤ 1981 and (n2 −mn−m2)2 = 1.

(22nd IMO)

Problem 9.3.6. Prove that for any integer n ≥ 4, Fn +1 is not a prime.

Problem 9.3.7. Let k be an integer greater than 1, a0 = 4, a1 = a2 =

(k2 − 2)2 and

an+1 = anan−1 − 2(an + an−1) − an−2 + 8 for n ≥ 2.

Prove that 2 +
√
an is a perfect square for all n.

9.3.2 Problems involving linear recursive relations

A sequence x0, x1, x2, . . . of complex numbers is defined recursively by a

linear recurrence of order k if

xn = a1xn−1 + a2xn−2 + · · · + akxn−k, n ≥ k (1)

where a1, a2, . . . , ak are given complex numbers and x0 = α0, x1 = α1, . . . ,

xk−1 = αk−1 are also given.
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The main problem is to find a general formula for xn in terms of

a1, a2, . . . , ak, α0, α1, . . . , αk−1 and n. In order to solve this problem we

attach to (1) the algebraic equation

tk − a1t
k−1 − a2t

k−2 − · · · − ak = 0, (2)

which is called the characteristic equation of (1).

Theorem 9.3.1. If the characteristic equation (2) has distinct roots

t1, t2, . . . , tk, then

xn = c1t
n
1 + c2t

n
2 + · · · + ckt

n
k (3)

where the constants c1, c2, . . . , ck are determined by the initial conditions

x0 = α0, x1 = α1, . . . , xk−1 = αk−1.

Proof. Consider the sequence y0, y1, y2, . . . given by

yn = c1t
n
1 + c2t

n
2 + · · · + cnt

n
n.

It is not difficult to prove that the sequence (yn)n≥0 satisfies the linear

recurrence (1), since t1, t2, . . . , tk are the roots of the characteristic equation

(2). Consider the following system of linear equations:

c1 + c2 + · · · + ck = α0

c1t1 + c2t2 + · · · + cktk = α1

. . .

c1t
k−1
1 + c2t

k−1
2 + · · · + ckt

k−1
k = αk−1

(4)

whose determinant is the so-called Vandermonde determinant

V (t1, t2, . . . , tk) =
∏

1≤i<j≤k

(tj − ti).

This determinant is nonzero, because t1, t2, . . . , tk are distinct.

Hence c1, c2, . . . , ck are uniquely determined as solution to system (4).

Moreover, y0 = α0 = x0, y1 = α1 = x1, . . . , yk−1 = αk−1 = xk−1. Using

strong induction, from (1) it follows that yn = xn for all n. �

The case when the roots of the characteristic equation (2) are not distinct

is addressed in the following theorem.

Theorem 9.3.2. Suppose that the equation (2) has the distinct roots

t1, . . . , th, with multiplicities s1, . . . , sh, respectively. Then xn is a linear

combination of

tn1 , nt
n
1 , . . . n

s1−1tn1
. . .

tnh, nt
n
h, . . . , n

sh−1tnh
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The proof of this result uses the so-called Hermite’s interpolation poly-

nomial or formal series.

The most frequent situation is when k = 2. Then the linear recurrence

becomes

xn = a1xn−1 + a2xn−2, n ≥ 2

where a1, a2 are given complex numbers and x0 = α0, x1 = α1.

If the characteristic equation t2 − a1t − a2 = 0 has distinct roots t1, t2,

then

xn = c1t
n
1 + c2t

n
2 , n ≥ 0,

where c1, c2 are solutions to the system of linear equations

c1 + c2 = α0, c1t1 + c2t2 = α1,

that is

c1 =
α1 − α0t2
t1 − t2

, c2 =
α0t1 − α1

t1 − t2
.

If the characteristic equation has the nonzero double root t1, then

xn = c1t
n
1 + c2nt

n
1 = (c1 + c2n)tn1 ,

where c1, c2 are determined from the system of equations x0 = α0, x1 = α1,

that is

c1 = α0, c2 =
α1 − α0t1

t1
.

Example. Let us find the general term of the sequence

P0 = 0, P1 = 1, . . . , Pn = 2Pn−1 + Pn−2, n ≥ 2.

The characteristic equation is t2−2t−1 = 0, whose roots are t1 = 1+
√

2

and t2 = 1 −
√

2. We have Pn = c1t
n
1 + c2t

n
2 , n ≥ 0, where c1 + c2 = 0 and

c1(1 +
√

2) + c2(1 −
√

2) = 1, hence

Pn =
1

2
√

2
[(1 +

√
2)n − (1 −

√
2)n], n ≥ 0.

This sequence is called the Pell’s sequence and it plays an important part

in Diophantine equations.

In some situations we encounter nonhomogeneous recurrences of order k

of the form

xn = a1xn−1 + a2xn−2 + · · · + akxn−k + b, n ≥ k,
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where a1, a2, . . . , ak, b are given complex numbers and x1 = α1, x2 =

α2, . . . , xk−1 = αk−1. The method of attack consists of performing

a translation xn = yn + β, where β is the solution to the equation

(1 − a1 − a2 − · · · − ak)β = b when a1 + a2 + · · · + ak 6= 1. The sequence

(yn)n≥0 satisfies the linear recurrence (1).

Example. Let us find xn if x0 = α, xn = axn−1 + b, n ≥ 1.

If a = 1, we have an arithmetical sequence whose first term is α and

whose common difference is b. In this case xn = α+ nb.

If a 6= 1, we perform the translation xn = yn + β, where β =
b

1 − a
. In

this case (yn)n≥0 satisfies the recurrence y0 = α − β, yn = ayn−1, n ≥ 1,

which is a geometric sequence whose first term is α− β and whose ratio is

a. We obtain yn = (α− β)an, hence

xn =

(

α− b

1 − a

)

an +
b

1 − a
, n ≥ 0.

Problem 9.3.8. Let a and b be positive integers and let the sequence

(xn)n≥0 be defined by x0 = 1 and xn+1 = axn + b for all nonnegative

integers n. Prove that for any choice of a and b, the sequence (xn)n≥0

contains infinitely many composite numbers.

(1995 German Mathematical Olympiad)

Solution. Assume on the contrary that xn is composite for only finitely

many n. Take N large than all such n, so that xm is prime for all n > N .

Choose such a prime xm = p not dividing a− 1 (this excludes only finitely

many candidates). Let t be such that t(1 − a) ≡ b (mod p); then

xn+1 − t ≡ axn + b − b = a(xn − t) (mod p).

In particular,

xm+p−1 = t+ (xm+p−1 − t) ≡ t+ ap−1(xm − t) ≡ 0 (mod p).

However, xm+p−1 is a prime greater than p, yielding a contradiction.

Hence infinitely many of the xn are composite.

Problem 9.3.9. Find an if a0 = 1 and an+1 = 2an +
√

3a2
n − 2, n ≥ 0.

Solution. We have (an+1 − 2an)2 = 3a2
n − 2, so

a2
n+1 − 4an+1an + a2

n + 2 = 0, n ≥ 0.

Then

a2
n − 4anan−1 + a2

n−1 + 2 = 0, n ≥ 1,
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hence, by subtraction,

a2
n+1 − a2

n−1 − 4an(an+1 − an−1) = 0

for all n ≥ 1. Because it is clear that (an)n≥0 is increasing we have an+1 −
an−1 6= 0, for all n ≥ 1, so

an+1 + an−1 − 4an = 0, n ≥ 1,

that is an+1 = 4an − an−1, n ≥ 1. Moreover, a0 = 1 and a1 = 3. The

characteristic equation is t2 − 4t+ 1 = 0, whose roots are t1 = 2 +
√

3 and

t2 = 2 −
√

3. We obtain

an =
1

2
√

3
[(1 +

√
3)(2 +

√
3)n − (1 −

√
3)(2 −

√
3)n], n ≥ 0.

We can also write an as follows:

an =
1√
3





(

1 +
√

3

2

)2n+1

−
(

1 −
√

3

2

)2n+1


 , n ≥ 0.

Note that from a0 = 1, a1 = 3, and an+1 = 4an − an−1 it follows by

strong induction that an is a positive integer for all n.

Problem 9.3.10. Consider the sequence {an} such that a0 = 4, a1 = 22

and an−6an−1+an−2 = 0 for n ≥ 2. Prove that there exist sequences {xn}
and {yn} of positive integers such that

an =
y2

n + 7

xn − yn

for any n ≥ 0.

(2001 Bulgarian Mathematical Olympiad)

Solution. Consider the sequence {cn} of positive integers such that c0 =

2, c1 = 1 and cn = 2cn−1 + cn−2 for n ≥ 2.

We prove by induction that an = c2n+2 for n ≥ 0. We check the base

cases of a0 = 4 = c2 and a1 = 9 = c4. Then, for any k ≥ 2, assuming the

claim holds for n = k − 2 and n = k − 1,

c2k+2 = 2c2k+1 + c2k

= 2(2c2k + c2k−1) + ak−1

= 4c2k + (c2k − c2k−2) + ak−1

= 6ak−1 − ak−2

= ak,
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so the claim holds for n = k as well, and the induction is complete.

For n ≥ 1,
(

an+1 an

an+2 an+1

)

=

(

0 1

1 2

)(

an an−1

an+1 an

)

,

and
∣
∣
∣
∣
∣

an+1 an

an+2 an+1

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

0 1

1 2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

an an−1

an+1 an

∣
∣
∣
∣
∣
= −

∣
∣
∣
∣
∣

an an−1

an+1 an

∣
∣
∣
∣
∣
.

Thus, for n ≥ 0,

c2n+1 − cncn+2 = (−1)n(c21 − c0c2) = (−1)n(12 − 2 · 4) = (−1)n(−7).

In particular, for all n ≥ 0,

c22n+1 − c2nan = c22n+1 − c2nc2n+2 = (−1)2n(−7) = −7,

and

an =
c22n+1 + 7

c2n
.

We may therefore take yn = c2n+1 and xn = c2n + yn.

Problem 9.3.11. The sequence a1, a2, . . . is defined by the initial con-

ditions a1 = 20, a2 = 30 and the recursion an+2 = 3an+1 − an for n ≥ 1.

Find all positive integers n for which 1 + 5anan+1 is a perfect square.

(2002 Balkan Mathematical Olympiad)

Solution. The only solution is n = 3. We can check that 20 · 30 · 5 + 1 =

3001 and 30 ·70 ·5+1 = 10501 are not perfect squares, while 70 ·180 ·5+1 =

63001 = 2512 is a perfect square. Then we must only prove that 1+5anan+1

is not a perfect square for n ≥ 4. First, we will prove a lemma.

Lemma. For any integer n ≥ 2,

a2
n + 500 = an−1an+1.

Proof. We will prove this by induction on n. In the base case, 302+500 =

1400 = 20 · 70. Now assume that a2
n + 500 = an−1an+1. Then

anan+2 = (3an+1 − an)(an) = 3an+1an − a2
n

= 3an+1an − (an−1an+1 − 500) = 500 + an+1(3an − an−1) = 500 + a2
n+1,
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proving the inductive step. Therefore the desired statement is true from

induction. �

Now, for n ≥ 4, (an + an+1)
2 = a2

n + a2
n+1 + 2anan+1. But

a2
n+1 = 9a2

n + a2
n−1 − 6an−1an,

so

(an + an+1)
2 = 2anan+1 + 3an(3an − an−1) + a2

n−2 + a2
n − 3anan−1

= 5anan+1 + a2
n−1 − anan − 2

= 5anan+1 + a2
n−1 − (a2

n−1 + 500) = 5anan+1 − 500,

by the lemma and the definition of a.

Therefore (an + an+1)
2 = 5anan+1 − 500 < 5anan+1 + 1. Since an is

increasing and n ≥ 4,

an + an+1 ≥ 180 + 470 = 650,

so

(an + an+1 + 1)2 = (an + an+1)
2 + 2(an + an+1) + 1

> (an + an+1)
2 + 501 = 5anan+1 + 1.

Because two adjacent integers have squares above and below 5anan+1+1,

that value is not a perfect square for n ≥ 4.

Proposed problems

Problem 9.3.12. Let a, b be integers greater than 1. The sequence x1,

x2, . . . is defined by the initial conditions x0 = 0, x1 = 1 and the recursion

x2n = ax2n−1 − x2n−2, x2n+1 = bx2n − x2n−1

for n ≥ 1. Prove that for any natural numbers m and n, the product

xn+mxn+m−1 . . . xn+1 is divisible by xmxm−1.

(2001 St. Petersburg City Mathematical Olympiad)

Problem 9.3.13. Let m be a positive integer. Define the sequence

{an}n≥0 by a0 = 0, a1 = m and an+1 = m2an −an−1 for n ≥ 1. Prove that

an ordered pair (a, b) of nonnegative integers, with a ≤ b, is a solution of

the equation
a2 + b2

ab+ 1
= m2

if and only if (a, b) = (an, an+1) for some n ≥ 0.
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(1998 Canadian Mathematical Olympiad)

Problem 9.3.14. Let b, c be positive integers, and define the sequence

a1, a2, . . . by a1 = b, a2 = c, and

an+2 = |3an+1 − 2an|

for n ≥ 1. Find all such (b, c) for which the sequence a1, a2, . . . has only a

finite number of composite terms.

(2002 Bulgarian Mathematical Olympiad)

9.3.3 Nonstandard sequences of integers

Problem 9.3.15. Let k be a positive integer. The sequence an is defined

by a1 = 1, and an is the n-th positive integer greater than an−1 which is

congruent to n modulo k. Find an is closed form.

(1997 Austrian Mathematical Olympiad)

Solution. We have an =
n(2 + (n− 1)k

2
. If k = 2, then an = n2. First,

observe that a1 ≡ 1 (mod k). Thus, for all n, an ≡ n (mod k), and the first

positive integer greater than an−1 which is congruent to n modulo k must

be an−1 + 1. The n-th positive integer greater than an−1 that is congruent

to n modulo k is simply (n−1)k more than the first positive integer greater

than an−1 which satisfies that condition. Therefore, an = an−1+1+(n−1)k.

Solving this recursion gives

an = n+
(n− 1)n

2
k.

Problem 9.3.16. Let a1 = 19, a2 = 98. For n ≥ 1, define an+2 to be the

remainder of an + an+1 when it is divided by 100. What is the remainder

when

a2
1 + a2

2 + · · · + a2
1998

is divided by 8?

(1998 United Kingdom Mathematical Olympiad)

Solution. The answer is 0. Consider an (mod 4) which is not changed

by taking the remainder divided by 100, there’s the cycle 3, 2, 1, 3, 0, 3

which repeats 333 times. Then

a2
1 + a2

2 + · · · + a2
1998 ≡ 333(1 + 4 + 1 + 1 + 0 + 1) ≡ 0 (mod 8),
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as claimed.

Problem 9.3.17. A sequence of integers {an}n≥1 satisfies the following

recursive relation

an+1 = a3
n + 1999 for n = 1, 2, . . .

Prove that there exists at most one n for which an is a perfect square.

(1999 Austrian-Polish Mathematics Competition)

Solution. Consider the possible values of (an, an+1) modulo 4:

an 0 1 2 3

an+1 3 0 3 2

No matter what a1 is, the terms a3, a4, . . . are all 2 or 3 (mod 4). How-

ever, all perfect squares are 0 or 1 (mod 4), so at most two terms (a1 and

a2) can be perfect squares. If a1 and a2 are both perfect squares, then

writing a1 = a2, a2 = b2 we have a6 + 1999 = b2 or 1999 = b2 − (a3)2 =

(b+ a3)(b− a3). Because 1999 is prime, b− a3 = 1 and b+ a3 = 1999. Thus

a3 =
1999− 1

2
= 999, which is impossible. Hence at most one term of the

sequence is a perfect square.

Problem 9.3.18. Determine if there exists an infinite sequence of posi-

tive integers such that

(i) no term divides any other term;

(ii) every pair of terms has a common divisor greater than 1, but no

integer greater than 1 divides all the terms.

(1999 Hungarian Mathematical Olympiad)

Solution. The desired sequence exists. Let p0, p1, . . . be the primes

greater than 5 in order, and let q3i = 6, q3i+1 = 10, q3i+2 = 15 for

each nonnegative integer i. Then let si = piqi for all i ≥ 0. The sequence

s0, s1, s2, . . . clearly satisfies (i) because si is not even divisible by pj for

i 6= j. For the first part of (ii), any two terms have their indices both in

{0, 1}, both in {0, 2}, or both in {1, 2} (mod 3), so they have a common

divisor of 2, 3, or 5, respectively. For the second part, we just need to check

that no prime divides all the si. Indeed, 2 ∤ s2, 3 ∤ s1, 5 ∤ s0, and no prime

greater than 5 divides more than one si.

Problem 9.3.19. Let a1, a2, . . . be a sequence satisfying a1 = 2, a2 = 5

and

an+2 = (2 − n2)an+1 + (2 + n2)an
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for all n ≥ 1. Do there exist indices p, q and r such that apaq = ar?

(1995 Czech-Slovak Match)

Solution. No such p, q, r exist. We show that for all n, an ≡ 2 (mod 3).

This holds for n = 1 and n = 2 by assumption and follows for all n by

induction:

an+2 = (2 − n2)an+1 + (2 + n2)an

≡ 2(2 − n2) + 2(2 + n2) = 8 ≡ 2 (mod 3).

Hence for any p, q, r, apaq ≡ 1 (mod 3) while ar ≡ 2 (mod 3), so apaq 6=
ar.

Problem 9.3.20. Is there a sequence of natural numbers in which every

natural number occurs just once and moreover, for any k = 1, 2, 3, . . . the

sum of the first k terms is divisible by k?

(1995 Russian Mathematical Olympiad)

Solution. We recursively construct such a sequence. Suppose a1, . . . , am

have been chosen, with s = a1 + · · ·+am, and let n be the smallest number

not yet appearing. By the Chinese Remainder Theorem, there exists t such

that t ≡ −s (mod m+ 1) and t ≡ −s− n (mod m+ 2). We can increase t

by a suitably large multiple of (m+ 1)(m+ 2) to ensure it does not equal

any of a1, . . . , am. Then a1, . . . , am, t, n also has the desired property, and

the construction assures that 1, . . . ,m all occur among the first 2m terms.

Proposed problems

Problem 9.3.21. Let {an} be a sequence of integers such that for n ≥ 1

(n− 1)an+1 = (n+ 1)an − 2(n− 1).

If 2000 divides a1999, find the smallest n ≥ 2 such that 2000 divides an.

(1999 Bulgarian Mathematical Olympiad)

Problem 9.3.22. The sequence (an)n≥0 is defined by a0 = 1, a1 = 3

and

an+2 =

{

an+1 + 9an if n is even,

9an+1 + 5an if n is odd.

Prove that
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(a)
2000∑

k=1995

a2
k is divisible by 20,

(b) a2n+1 is not a perfect square for every n = 0, 1, 2, . . .

(1995 Vietnamese Mathematical Olympiad)

Problem 9.3.23. Prove that for any natural number a1 > 1, there exists

an increasing sequence of natural numbers a1, a2, . . . such that a2
1 + a2

2 +

· · · + a2
k is divisible by a1 + a2 + · · · + ak for all k ≥ 1.

(1995 Russian Mathematical Olympiad)

Problem 9.3.24. The sequence a0, a1, a2, . . . satisfies

am+n + am−n =
1

2
(a2m + a2n)

for all nonnegative integers m and n with m ≥ n. If a1 = 1, determine an.

(1995 Russian Mathematical Olympiad)

Problem 9.3.25. The sequence of real numbers a1, a2, a3, . . . satisfies

the initial conditions a1 = 2, a2 = 500, a3 = 2000 as well as the relation

an+2 + an+1

an+1 + an−1
=
an+1

an−1

for n = 2, 3, 4, . . . Prove that all the terms of this sequence are positive

integers and that 22000 divides the number a2000.

(1999 Slovenian Mathematical Olympiad)

Problem 9.3.26. Let k be a fixed positive integer. We define the se-

quence a1, a2, . . . by a1 = k + 1 and the recursion an+1 = a2
n − kan + k

for n ≥ 1. Prove that am and an are relatively prime for distinct positive

integers m and n.

Problem 9.3.27. Suppose the sequence of nonnegative integers a1,

a2, . . . , a1997 satisfies

ai + aj ≤ ai+j ≤ ai + aj + 1

for all i, j ≥ 1 with i + j ≤ 1997. Show that there exists a real number x

such that an = ⌊nx⌋ for all 1 ≤ n ≤ 1997.

(1997 USA Mathematical Olympiad)



208 9. SOME SPECIAL PROBLEMS IN NUMBER THEORY

Problem 9.3.28. The sequence {an} is given by the following relation:

an+1 =







an − 1

2
, if an ≥ 1,

2an

1 − an
, if an < 1.

Given that a0 is a positive integer, an 6= 2 for each n = 1, 2, . . . , 2001,

and a2002 = 2. Find a0.

(2002 St. Petersburg City Mathematical Olympiad)

Problem 9.3.29. Let x1 = x2 = x3 = 1 and xn+3 = xn + xn+1xn+2

for all positive integers n. Prove that for any positive integer m there is an

integer k > 0 such that m divides xk.

Problem 9.3.30. Find all infinite bounded sequences a1, a2, . . . of pos-

itive integers such that for all n > 2,

an =
an−1 + an−2

gcd(an−1, an−2)
.

(1999 Russian Mathematical Olympiad)

Problem 9.3.31. Let a1, a2, . . . be a sequence of positive integers satis-

fying the condition 0 < an+1 − an ≤ 2001 for all integers n ≥ 1. Prove that

there exist an infinite number of ordered pairs (p, q) of distinct positive

integers such that ap is a divisor of aq.

(2001 Vietnamese Mathematical Olympiad)

Problem 9.3.32. Define the sequence {xn}n≥0 by x0 = 0 and

xn =







xn−1 +
3r+1 − 1

2
, if n = 3r(3k + 1),

xn−1 −
3r+1 + 1

2
, if n = 3r(3k + 2),

where k and r are nonnegative integers. Prove that every integer appears

exactly once in this sequence.

(1999 Iranian Mathematical Olympiad)

Problem 9.3.33. Suppose that a1, a2, . . . is a sequence of natural num-

bers such that for all natural numbers m and n, gcd(am, an) = agcd(m,n).

Prove that there exists a sequence b1, b2, . . . of natural numbers such that

an =
∏

d|n
bd for all integers n ≥ 1.
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(2001 Iranian Mathematical Olympiad)
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10

Problems Involving Binomial

Coefficients

10.1 Binomial coefficients

One of the main problems leading to considering binomial coefficients

is the expansion of (a + b)n, where a, b are complex numbers and n is a

positive integer. It is well-known that

(a+ b)n =

(
n

0

)

an +

(
n

1

)

an−1b+ · · · +
(

n

n− 1

)

abn−1 +

(
n

n

)

bn,

where

(
n

k

)

=
n!

k!(n− k)!
, k = 0, 1, . . . , n with the convention 0! = 1. The

integers

(
n

0

)

,

(
n

1

)

, . . . ,

(
n

n

)

are called binomial coefficients. They can be

obtained recursively by using Pascal1’s triangle:

1Blaise Pascal (1623-1662) was a very influencial French mathematician and philoso-

phers who contributed to many areas of mathematics.
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

in which every entry different from 1 is the sum of the two entries above

adjacent to it.

The fundamental properties of the binomial coefficients are the following:

1) (symmetry)

(
n

k

)

=

(
n

n− k

)

;

2) (Pascal’s triangle property)

(
n

k + 1

)

=

(
n− 1

k + 1

)

+

(
n− 1

k

)

;

3) (monotonicity)

(
n

0

)

<

(
n

1

)

< · · · <
(

n
⌊

n−1
2

⌋
+ 1

)

=

(
n
⌊

n
2

⌋

)

;

4) (sum of binomial coefficients)

(
n

0

)

+

(
n

1

)

+ · · · +
(
n

n

)

= 2n;

5) (alternating sum)

(
n

0

)

−
(
n

1

)

+ · · · + (−1)n

(
n

n

)

= 0;

6) (Vandermonde property)

k∑

i=0

(
m

i

)(
n

k − i

)

=

(
m+ n

k

)

;

7) If p is a prime, then p|
(
p

k

)

, k = 1, . . . , p− 1.

Problem 10.1.1. Let n be an odd positive integer. Prove that the set
{(

n

1

)

,

(
n

2

)

, . . . ,

(
n

n−1
2

)}

contains an odd number of odd numbers.

Solution. For n = 1 the claim is clear, so let n ≥ 3.

Define Sn =

(
n

1

)

+

(
n

2

)

+ · · · +
(

n
n−1

2

)

. Then

2Sn =

(
n

1

)

+

(
n

2

)

+ · · · +
(

n

n− 1

)

= 2n − 2

or Sn = 2n−1 − 1. Because Sn is odd it follows that the sum Sn contains

an odd number of odd terms, as desired.
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Problem 10.1.2. Determine all the positive integers n ≥ 3, such that

22000 is divisible by

1 +

(
n

1

)

+

(
n

2

)

+

(
n

3

)

.

(1998 Chinese Mathematical Olympiad)

Solution. The solutions are n = 3, 7, 23. Since 2 is a prime,

1 +

(
n

1

)

+

(
n

2

)

+

(
n

3

)

= 2k

for some positive integer k ≤ 2000. We have

1 +

(
n

1

)

+

(
n

2

)

+

(
n

3

)

= (n+ 1)(n2 − n+ 6)/6,

i.e., (n + 1)(n2 − n + 6) = 3 × 2k+1. Let m = n + 1, then m ≥ 4 and

m(m2 − 3m+ 8) = 3 × 2k+1. We consider the following two cases.

(a) m = 2s. Since m ≥ 4, s ≥ 2. We have

22s − 3 × 2s + 8 = m2 − 3m+ 8 = 3 × 2t

for some positive integer t. If s ≥ 4, then

8 ≡ 3×2t (mod 16) ⇒ 2t = 8 ⇒ m2−3m+8 = 24 ⇒ m(m−3) = 16,

which is impossible. Thus either s = 3, m = 8, t = 4, n = 7, or s = 2,

m = 4, t = 2, n = 3.

(b) m = 3 × 2u. Since m ≥ 4, m > 4 and u ≥ 1. We have

9 × 22u − 9 × 2u + 8 = m2 − 3m+ 8 = 2v

for some positive integer v. It is easy to check that there is no solution

for v when u = 1, 2. If u ≥ 4, we have 8 ≡ 2v (mod 16) ⇒ v = 3 and

m(m − 3) = 0, which is impossible. So u = 3, m = 3 × 23 = 24, v = 9,

n = 23.

Problem 10.1.3. Let m and n be integers such that 1 ≤ m ≤ n. Prove

that m is a divisor of

n

m−1∑

k=0

(−1)k

(
n

k

)

.
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(2001 Hungarian Mathematical Olympiad)

Solution. We can write the given expression as follows:

n

m−1∑

k=0

(−1)k

(
n

k

)

= n

m−1∑

k=0

(−1)k

((
n− 1

k

)

+

(
n− 1

k − 1

))

= n

m−1∑

k=0

(−1)k

(
n− 1

k

)

+ n

m−1∑

k=1

(−1)k

(
n− 1

k − 1

)

= n

m−1∑

k=0

(−1)k

(
n− 1

k

)

− n

m−2∑

k=0

(−1)k

(
n− 1

k

)

= n(n− 1)m−1

(
n− 1

m− 1

)

= m(−1)m−1

(
n

m

)

.

The final expression is clearly divisible by m.

Problem 10.1.4. Show that for any positive integer n, the number

Sn =

(
2n+ 1

0

)

· 22n +

(
2n+ 1

2

)

· 22n−2 · 3 + · · · +
(

2n+ 1

2n

)

· 3n

is the sum of two consecutive perfect squares.

(1999 Romanian IMO Team Selection Test)

Solution. It is easy to see that:

Sn =
1

4
[(2 +

√
3)2n+1 + (2 −

√
3)2n+1].

The required property says: there exists k > 0 such that Sn = (k− 1)2 +

k2, or, equivalently,

2k2 − 2k + 1 − Sn = 0.

The discriminant of this equation is ∆ = 4(2Sn − 1), and, after usual

computations, we obtain

∆ =

(

(1 +
√

3)2n+1 + (1 −
√

3)2n+1

2n

)2

.

After solving the equation, we find that

k =
2n+1 + (1 +

√
3)2n+1 + (1 −

√
3)2n+1

2n+2
.
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Therefore, it is sufficient to prove that k is an integer number. Let us

denote Em = (1+
√

3)m +(1−
√

3)m, where m is a positive integer. Clearly,

Em is an integer. We shall prove that 2[m
2 ] divides Em, For E0 = 2, E1 =

2, E2 = 8, the assertion is true. Moreover, the numbers Em satisfy the

relation:

Em = 2Em−1 + 2Em−2.

The property now follows by induction.

Problem 10.1.5. Prove that for every pair m, k of natural numbers, m

has a unique representation in the form

m =

(
ak

k

)

+

(
ak−1

k − 1

)

+ · · · +
(
at

t

)

,

where

ak > ak−1 > · · · > at ≥ t ≥ 1.

(1996 Iranian Mathematical Olympiad)

Solution. We first show uniqueness. Suppose m is represented by two

sequences ak, . . . , at and bk, . . . , bt. Find the first position in which they

differ; without loss of generality, assume this position is k and that ak > bk.

Then

m ≤
(
bk
k

)

+

(
bk − 1

k − 1

)

+ · · · +
(
bk − k + 1

1

)

<

(
bk + 1

k

)

≤ m,

a contradiction.

To show existence, apply the greedy algorithm: find the largest ak such

that

(
ak

k

)

≤ m, and apply the same algorithm with m and k replaced by

m−
(
ak

k

)

and k−1. We need only make sure that the sequence obtained is

indeed decreasing, but this follows because by assumption, m <

(
ak + 1

m

)

,

and so m−
(
ak

k

)

<

(
ak

k − 1

)

.

Problem 10.1.6. Show that for any positive integer n ≥ 3, the least

common multiple of the numbers 1, 2, . . . , n is greater than 2n−1.

(1999 Czech-Slovak Match)



216 10. PROBLEMS INVOLVING BINOMIAL COEFFICIENTS

Solution. For any n ≥ 3 we have

2n−1 =

n−1∑

k=0

(
n− 1

k

)

<

n−1∑

k=0

(
n− 1
⌊

n−1
2

⌋

)

= n

(
n− 1
⌊

n−1
2

⌋

)

.

Hence it suffices to show that n

(
n− 1
⌊

n−1
2

⌋

)

divides lcm(1, 2, . . . , n). Using

an argument involving prime factorizations, we will prove the more gen-

eral assertion that for each k < n, lcm(n, n − 1, . . . , n − k) is divisible by

n

(
n− 1

k

)

.

Let k and n be fixed natural numbers with k < n, and let p ≤ n be an

arbitrary prime. Let pα be the highest power of p which divides lcm(n, n−
1, . . . , n − k), where pα|n − l for some l. Then for each i ≤ α, we know

that pi|n− l. Thus exactly

⌊
l

pi

⌋

of {n− l+ 1, n− l+ 2, . . . , n} and exactly
⌊
k − l

pi

⌋

of {n− l− 1, n− l− 2, . . . , n− k} are multiples of pi, so pi divides
⌊
l

pi

⌋

+

⌊
k − l

pi

⌋

≤
⌊
k

pi

⌋

of the remaining k numbers, that is, at most the

number of multiples of pi between 1 and k. It follows that p divides

n

(
n− 1

k

)

=
n(n− 1) . . . (n− l + 1)(n− l− 1) . . . (n− k)

k!
(n− l)

at most α times, so that indeed n

(
n− 1

k

)

|lcm(n, n− 1, . . . , n− k).

Proposed problems

Problem 10.1.7. Show that the sequence

(
2002

2002

)

,

(
2003

2002

)

,

(
2004

2002

)

, . . .

considered modulo 2002, is periodic.

(2002 Baltic Mathematical Competition)

Problem 10.1.8. Prove that
(

2p

p

)

≡ 2 (mod p2)

for any prime number p.
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Problem 10.1.9. Let k,m, n be positive integers such that m + k + 1

is a prime number greater than n + 1. Let us denote Cs = s(s+ 1). Show

that the product

(Cm+1 − Ck)(Cm+2 − Ck) . . . (Cm+n − Ck)

is divisible by C1C2 . . . Cn.

(18th IMO)

Problem 10.1.10. Let n, k be arbitrary positive integers. Show that

there exists positive integers a1 > a2 > a3 > a4 > a5 > k such that

n = ±
(
a1

3

)

±
(
a2

3

)

±
(
a3

3

)

±
(
a4

3

)

±
(
a5

3

)

.

(2000 Romanian IMO Team Selection Test)

Problem 10.1.11. Prove that if n and m are integers, and m is odd,

then

1

3mn

m∑

k=0

(
3m

3k

)

(3n− 1)k

is an integer.

(2004 Romanian IMO Team Selection Test)

Problem 10.1.12. Show that for any positive integer n the number

n∑

k=0

(
2n+ 1

2k + 1

)

23k

is not divisible by 5.

(16th IMO)

Problem 10.1.13. Prove that for a positive integer k there is an integer

n ≥ 2 such that

(
n

1

)

, . . . ,

(
n

n− 1

)

are all divisible by k if and only if k is

a prime.
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10.2 Lucas’ and Kummer’s Theorems

The following theorems by E. Lucas2 (1878) and E. Kummer3 (1852) are

very useful in number theory. Let n be a positive integer, and let p be a

prime. Let nmnm−1 . . . n0p denote the base p representation of n; that is,

n = nmnm−1 . . . n0p = n0 + n1p+ · · · + nmp
m,

where 0 ≤ n0, n1, . . . , nm ≤ p− 1 and nm 6= 0.

Theorem 10.2.1. (Lucas) Let p be a prime, and let n be a positive

integer with n = nmnm−1 . . . n0p. Let i be a positive integer less than n. If

i = i0 + i1p+ · · · + imp
m, where 0 ≤ i0, i1, . . . , im ≤ p− 1, then

(
n

i

)

≡
m∏

j=0

(
nj

ij

)

(mod p). (1)

Here

(
0

0

)

= 1 and

(
nj

ij

)

= 0 if nj < ij.

To prove this theorem, we need some additional techniques. Let p be a

prime, and let f(x) and g(x) be two polynomials with integer coefficients.

We say that f(x) is congruent to g(x) modulo p, and write f(x) ≡ g(x)

(mod p) if all of the coefficients of f(x) − g(x) are divisible by p. (Note

that the congruence of polynomials is different from the congruence of the

values of polynomials. For example, x(x + 1) 6≡ 0 (mod 2) even though

x(x + 1) is divisible by 2 for all integers x.) The following properties can

be easily verified:

(a) f(x) ≡ f(x) (mod p);

(b) if f(x) ≡ g(x) (mod p), then g(x) ≡ f(x) (mod p);

(c) if f(x) ≡ g(x) (mod p) and g(x) ≡ h(x) (mod p), then

f(x) ≡ h(x) (mod p);

(d) if f(x) ≡ g(x) (mod p) and f1(x) ≡ g1(x) (mod p), then

f(x) ± f1(x) ≡ g(x) ± g1(x) (mod p)

2Ernst Eduard Kummer (1810-1893), German mathematician who’s main achieve-

ment was the extension of results about integers to other integral domains by introducing

the concept of an ideal.
3François Edouard Anatole Lucas (1842-1891), French mathematician best known

for his results in number theory. He studied the Fibonacci sequence and divised the test

for Mersenne primes.
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and

f(x)f1(x) ≡ g(x)g1(x) (mod p).

Proof. By property 7), the binomial coefficients

(
p

k

)

, where 1 ≤ k ≤
p− 1, are divisible by p. Thus,

(1 + x)p ≡ 1 + xp (mod p)

and

(1 + x)p = [(1 + x)p]p ≡ [1 + xp]p ≡ 1 + xp2

(mod p),

and so on; so that for any positive integer r,

(1 + x)pr ≡ 1 + xpr

(mod p)

by induction.

We have

(1 + x)n = (1 + x)n0+n1p+···+nmpm

= (1 + x)n0 [(1 + x)p]n1 . . . [(1 + x)pm

]nm

≡ (1 + x)n0 (1 + xp)n1 . . . (1 + xpm

)nm (mod p).

The coefficient of xi in the expansion of (1 + x)n is

(
n

i

)

. On the other

hand, because i = i0+i1p+ · · ·+impm, the coefficient of xi is the coefficient

of xi0 (xp)i1 . . . (xpm

)im , which is equal to

(
n0

i0

)(
n1

i1

)

. . .

(
nm

im

)

. Hence

(
n

i

)

≡
(
n0

i0

)(
n1

i1

)

. . .

(
nm

im

)

(mod p),

as desired. �

Theorem 10.2.2. (Kummer) Let n and i be positive integers with i ≤ n,

and let p be a prime. Then pt divides

(
n

i

)

if and only if t is less than or

equal to the number of carries in the addition (n− i) + i in base p.

Proof. We will use the formula

ep(n) =
n− Sp(n)

p− 1
, (2)

where ep is the Legendre’s function and Sp(n) is the sum of digits of n in

base p (see Section 6.5). We actually prove that the largest nonnegative
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integer t such that pt divides

(
n

i

)

is exactly the number of carries in the

addition (n− i) + i in base p.

Let n! = amam−1 . . . a0p, i! = bkbk−1 . . . b0p, (n − i)! = (clcl−1 . . . c0)p.

Because 1 ≤ i ≤ n, it follows that k, l ≤ m. Without loss of generality,

we assume that k ≤ l. Let a, b, c, and t′ be integers such that pa‖n!, pb‖i!,
pc‖(n− i)!, and pt′‖

(
n

i

)

. Then t′ = a− b− c.

From formula (2) we have

a =
n− (am + am−1 + · · · + a0)

p− 1
,

b =
i− (bk + bk−1 + · · · + b0)

p− 1
,

c =
(n− i) − (cl + cl−1 + · · · + c0)

p− 1
.

Thus

t′ =
−(am + · · · + a0) + (bk + · · · + b0) + (cl + · · · + c0)

p− 1
. (3)

On the other hand, if we add n− i and i in base p, we have

bk bk−1 . . . b1 b0

cl cl−1 . . . ck ck−1 . . . c1 c0

am am−1 . . . al al−1 . . . ak ak−1 . . . a1 a0

Then we have either b0 + c0 = a0 (with no carry) or b0 + c0 = a0 + p

(with a carry of 1). More generally, we have

b0 + c0 = a0 + α1p,

b1 + c1 + α1 = a1 + α2p,

b2 + c2 + α2 = a2 + α3p,

. . .

bm + cm + αm = am,

where αi denotes the carry at the (i− 1)th digit from the right. (Note also

that bj = 0 for j > k and that cj = 0 for j > l.) Adding the above equations

together yields

(b0 + · · ·+ bk) + (c0 + · · ·+ cl) = (a0 + · · ·+ am) + (p− 1)(α1 + · · ·+ αm).
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Thus, equation (3) becomes

t′ = α1 + · · · + αm,

as desired. �

Problem 10.2.1. Let n be a positive integer. Prove that the number of

k ∈ {0, 1, . . . , n} for which

(
n

k

)

is odd is a power of 2.

Solution. Let the base 2 expansion of n be 20n0 + 21n1 + · · · + 2ana,

where ni ∈ {0, 1} for each i. Then for any k = 20k0 + 21k1 + · · ·+ 2aka, we

have (
n

k

)

≡
(
n0

k0

)(
n1

k1

)

. . .

(
na

ka

)

(mod 2)

by Lucas’ theorem. Thus

(
n

k

)

is odd if and only if ki ≤ ni for each i. Let m

be the number of ni’s equal to 1. Then the values of k ∈ {0, 1, . . . , 2a+1−1}
for which

(
n

k

)

is odd are obtained by setting ki = 0 or 1 for each of the m

values of i such that ni = 1, and ki = 0 for the other values of i. Thus there

are 2m values of k in {0, 1, . . . , 2a+1−1} for which

(
n

k

)

is odd. Finally, note

that for k > n,

(
n

k

)

= 0 is never odd, so the number of k ∈ {0, 1, . . . , n}

for which

(
n

k

)

is odd is 2m, a power of 2.

Problem 10.2.2. Determine all positive integers n, n ≥ 2, such that
(
n− k

k

)

is even for k = 1, 2, . . . ,
⌊n

2

⌋

.

(1999 Belarussian Mathematical Olympiad)

Solution. Suppose that p = 2, a = 2s−1, and as−1 = as−2 = · · · = a0 =

1. For any b with 0 ≤ b ≤ 2s − 1, each term

(
ai

bi

)

in the above equation

equals 1. Therefore,

(
a

b

)

≡ 1 (mod 2).

This implies that n+1 is a power of two. Otherwise, let s = ⌊log2 n⌋ and

let

k = n− (2s − 1) = n− 2s+1 − 2

2
≤ n− n

2
=
n

2
.

Then

(
n− k

k

)

=

(
2s − 1

k

)

is odd, a contradiction.

Conversely, suppose that n = 2s − 1 for some positive integer s. For

k = 1, 2, . . . ,
⌊n

2

⌋

, there is at least one 0 in the binary representation of
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a = n− k (not counting leading zeros, of course). Whenever there is a 0 in

the binary representation of n − k, there is a 1 in the corresponding digit

of b = k. Then the corresponding

(
ai

bi

)

equals 0, and by Lucas’ Theorem,
(
n− k

k

)

is even.

Therefore, n = 2s − 1 for integers s ≥ 2.

Problem 10.2.3. Prove that

(
2n

k

)

, k = 1, 2, . . . , 2n − 1, are all even

and that exactly one of them is not divisible by 4.

Solution. All these numbers are even, since

(
2n

k

)

=
2n

k

(
2n − 1

k − 1

)

and 2n/k is different from 1 for all k = 1, 2, . . . , 2n − 1.

From the same relation it follows that

(
2n

k

)

is a multiple of 4 for all k

different from 2n−1. For k = 2n−1 we have
(

2n

2n−1

)

= 2

(
2n − 1

2n−1 − 1

)

.

But from Lucas’ theorem it follows that

(
2n − 1

2n−1 − 1

)

is odd, since 2n − 1

contains only 1’s in its binary representation and

(
1

k

)

= 1 if k = 0 or 1.

This solves the problem.

Proposed problems

Problem 10.2.4. Let p be an odd prime. Find all positive integers n

such that

(
n

1

)

,

(
n

2

)

, . . . ,

(
n

n− 1

)

are all divisible by p.

Problem 10.2.5. Let p be a prime. Prove that p does not divide any

of

(
n

1

)

, . . . ,

(
n

n− 1

)

if and only if n = spk − 1 for some positive integer k

and some integer s with 1 ≤ s ≤ p− 1.

Problem 10.2.6. Prove or disprove the following claim: For any integer

k ≥ 2, there exists an integer n ≥ 2 such that the binomial coefficient

(
n

i

)

is divisible by k for any 1 ≤ i ≤ n− 1.

(1999 Hungarian-Israel Mathematical Competition)
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Miscellaneous Problems

Problem 11.1. Find all positive integers x, y, z which satisfy conditions:

x+ y ≥ 2z and x2 + y2 − 2z2 = 8.

(2003 Romanian Mathematical Olympiad)

Solution. There are two possible cases:

Case I. x ≥ y ≥ z.

We denote x− z = a ≥ 0, y− z = b ≥ 0, a ≥ b. One obtains the equation

2z(a + b) + a2 + b2 = 8. When z ≥ 3, there are no solutions. For z = 2,

we get (a+ 2)2 + (b + 2)2 = 16, which again has no solution. When z = 1

we obtain solutions (x, y, z) = (3, 1, 1) or (x, y, z) = (1, 3, 1). When z = 0,

a2 + b2 = 8 and we get the solution (x, y, z) = (2, 2, 0).

Case II. x ≥ z ≥ y.

Note again that x − z = a, y − z = b and obtain the solution (x, y, z) =

(n+ 2, n− 2, n) or (x, y, z) = (n− 2, n+ 2, n).

Problem 11.2. Let n be a positive integer. Find all integers that can be

written as:

1

a1
+

2

a2
+ · · · + n

an
,

for some positive integers a1, a2, . . . , an.
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Solution. First, observe that k =
1

a1
+

1

a2
+ · · · + n

an
, then

k ≤ 1 + 2 + 3 + · · · + n =
n(n+ 1)

2
.

We prove that any integer k ∈
{

1, 2, . . . ,
n(n+ 1)

2

}

can be written as

requested.

For k = 1, put a1 = a2 = · · · = an =
n(n+ 1)

2
.

For k = n, set a1 = 1, a2 = 2, . . . , an = n.

For 1 < k < n, let ak−1 = 1 and ai =
n(n+ 1)

2
− k + 1 for i 6= k − 1.

Thus

1

a1
+

2

a2
+ · · · + n

an
=
k − 1

1
+
∑

i=1
i6=k−1

i

ai
= k − 1 +

n(n+ 1)

2
− k + 1

n(n+ 1)

2
− k + 1

= k.

For n < k <
n(n+ 1)

2
, write k as

k = n+ p1 + p2 + · · · + pi,

with 1 ≤ pi ≤ · · · ≤ p2 ≤ p1 ≤ n− 1.

Setting ap1+1 = ap2+1 = · · · = api+1 = 1 and else aj = j we are done.

Problem 11.3. Find all the positive integers a < b < c < d with the

property that each of them divides the sum of the other three.

Solution. Since d|(a+b+c) and a+b+c < 3d, it follows that a+b+c = d

or a+ b+ c = 2d.

Case i). If a+ b+ c = d, as a|(b+ c+ d), we have a|2d and similarly b|2d,
c|2d.

Let 2d = ax = by = cz, where 2 < z < y < x. Thus
1

x
+

1

y
+

1

z
=

1

2
.

1◦ If z = 3, then
1

x
+

1

y
=

1

6
. The solutions are

(x, y) = {(42, 7), (24, 8), (18, 9), (15, 10)},

hence

(a, b, c, d) ∈ {(k, 6k, 14k, 21k), (k, 3k, 8k, 12k), (k, 2k, 6k, 9k),

(2k, 3k, 10k, 15k), (k, 3k, 8k, 12k)},

for k > 0.
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2◦ If z = 4, then
1

x
+

1

y
=

1

4
, and

(x, y) = {(20, 5), (12, 6)}.

The solutions are

(a, b, c, d) = (k, 4k, 5k, 10k) and (a, b, c, d) = (k, 2k, 3k, 6k),

for k > 0.

3◦ If z = 5, then
1

x
+

1

y
=

3

10
, and (3x− 10)(3y − 10) = 100.

As 3x − 10 ≡ 2 (mod 3), it follows that 3x − 10 = 20 and 3y − 10 = 5.

Thus y = 3, false.

4◦ If z ≥ 6 then
1

x
+

1

y
+

1

z
<

1

6
+

1

6
+

1

6
=

1

2
so there are no solutions.

Case ii). If a+ b+ c = 2d, we obtain a|3d, b|3d, c|3d.
Then 3d = ax = by = cz, with x > y > z > 3 and

1

x
+

1

y
+

1

z
=

2

3
. Since

x ≥ 4, y ≥ 5, z ≥ 6 we have
1

x
+

1

y
+

1

z
≤ 1

6
+

1

5
+

1

4
=

37

60
<

2

3
, so there

are no solutions in this case.

Problem 11.4. Find the greatest number that can be written as a product

of some positive integers with the sum 1976.

(18th IMO)

Solution. Let x1, x2, . . . , xn be the numbers having the sum x1 + x2 +

· · · + xn = 1976 and the maximum value of the product x1 · x2 · · ·xn = p.

If one of the numbers, say x1, is equal to 1, then x1 +x2 = 1+x2 > x2 =

x1x2. Hence the product (x1+x2)·x3 · · ·xn is greater than x1 ·x2 . . . xn = p,

false. Therefore xk ≥ 2 for all k.

If one of the numbers is equal to 4 we can replace him with two numbers

2 without changing the sum or the product.

Suppose that xk ≥ 5 for some k. Then xk < 3(xk − 3), so replacing the

number xk with the numbers 3 and xk −3, the sum remains constant while

the product increases, contradiction.

Therefore all the numbers are equal to 2 or 3. If there are more than

3 numbers equal to 2, we can replace them by two numbers equal to 3,

preserving the sum and increasing the product (as 2 · 2 · 2 < 3 · 3). Hence

at most two terms equal to 2 are allowed. Since 1976 = 3 · 658 + 2 the

maximum product is equal to 2 · 3658.
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Problem 11.5. Prove that there exist infinitely many positive integers

that cannot be written in the form

x3
1 + x5

2 + x7
3 + x9

4 + x11
5

for some positive integers x1, x2, x3, x4, x5.

(2002 Belarussian Mathematical Olympiad)

Solution. For each integer N , we consider the number of integers in

[1, N ] that can be written in the above form. Because x1 ≤ N
1
3 , there are

at most N
1
3 ways to choose x1. Similar argument applies to the other xis.

Therefore, there are at most N
1
3N

1
5N

1
7N

1
9N

1
11 = N

3043
3465 combinations. So

there are at least N −N 3043
3465 integers not covered. It is easy to see that this

value can be arbitrarily large as N approaches infinity. Therefore, there

exist infinitely many positive integers that cannot be written in the form

x3
1 + x5

2 + x7
3 + x9

4 + x11
5 .

Proposed problems

Problem 11.6. Let a, b be positive integers. By integer division of a2+b2

to a+ b we obtain the quotient q and the remainder r. Find all pairs (a, b)

such that q2 + r = 1977.

(19th IMO)

Problem 11.7. Let m,n be positive integers. Show that 25n − 7m is

divisible by 3 and find the least positive integer of the form |25n−7m−3m|,
when m,n run over the set of non-negative integers.

(2004 Romanian Mathematical Regional Contest)

Problem 11.8. Given an integer d, let

S = {m2 + dn2|m,n ∈ Z}.

Let p, q ∈ S be such that p is a prime and r =
q

p
is an integer. Prove

that r ∈ S.

(1999 Hungary-Israel Mathematical Competition)

Problem 11.9. Prove that every positive rational number can be rep-

resented in the form
a3 + b3

c3 + d3
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where a, b, c, d are positive integers.

(1999 IMO Shortlist)

Problem 11.10. Two positive integers are written on the board. The

following operation is repeated: if a < b are the numbers on the board, then

a is erased and ab/(b−a) is written in its place. At some point the numbers

on the board are equal. Prove that again they are positive integers.

(1998 Russian Mathematical Olympiad)

Problem 11.11. Let f(x) + a0 + a1x + · · · + amx
m, with m ≥ 2 and

am 6= 0, be a polynomial with integer coefficients. Let n be a positive

integer, and suppose that:

i) a2, a3, . . . , am are divisible by all the prime factors of n;

ii) a1 and n are relatively prime.

Prove that for any positive integer k, there exists a positive integer c

such that f(c) is divisible by nk.

(2001 Romanian IMO Team Selection Test)

Problem 11.12. Let x, a, b be positive integers such that xa+b = abb.

Prove that a = x and b = xx.

(1998 Iranian Mathematical Olympiad)

Problem 11.13. Let m,n be integers with 1 ≤ m < n. In their decimal

representations, the last three digits of 1978m are equal, respectively, to

the last three digits of 1978n. Find m and n such that m+ n is minimal.

(20th IMO)
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Divisibility

12.1 Divisibility

Problem 1.1.10. Show that for any natural number n, between n2 and

(n+1)2 one can find three distinct natural numbers a, b, c such that a2 + b2

is divisible by c.

(1998 St. Petersburg City Mathematical Olympiad)

Solution. (We must assume n > 1.) Take

a = n2 + 2, b = n2 + n+ 1, c = n2 + 1.

Then a2 + b2 = (2n2 + 2n+ 5)c.

Problem 1.1.11. Find all odd positive integers n greater than 1 such

that for any relatively prime divisors a and b of n, the number a+ b− 1 is

also a divisor of n.

(2001 Russian Mathematical Olympiad)

Solution. We will call a number ”good” if it satisfies the given condi-

tions. It is not difficult to see that all prime powers are good. Suppose n is

a good number that has at least two distinct prime factors. Let n = prs,

where p is the smallest prime dividing n and s is not divisible by p. Be-

cause n is good, p + s − 1 must divide n. For any prime q dividing s,
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s < p+ s − 1 < s + q, so q does not divide p + s − 1. Therefore, the only

prime factor of p+ s− 1 is p. Then s = pc − p+ 1 for some c > 1. Because

pc must also divide n, pc + s − 1 = 2pc − p divides n. Because 2pc−1 − 1

has no factors of p, it must divide s. But a simple computation shows that
p− 1

2
<
pc − p+ 1

2pc−1 − 1
<
p+ 1

2
, therefore 2pc−1 − 1 cannot divide s.

Problem 1.1.12. Find all positive integers n such that 3n−1 + 5n−1

divides 3n + 5n.

(1996 St. Petersburg City Mathematical Olympiad)

Solution. This only occurs for n = 1. Let sn = 3n + 5n and note that

sn = (3 + 5)sn−1 − 3 · 5 · sn−2

so sn−1 must also divide 3 · 5 · sn−2. If n > 1, then sn−1 is coprime to 3

and 5, so sn−1 must divide sn−2, which is impossible since sn−1 > sn−2.

Remark. Alternatively, note that 1 <
3n + 5n

3n−1 + 5n−1
< 5 so we can only

have
3n + 5n

3n−1 + 5n−1
∈ {2, 3, 4} cases which are easily checked.

Problem 1.1.13. Find all positive integers n such that the set

{n, n+ 1, n+ 2, n+ 3, n+ 4, n+ 5}

can be split into two disjoint subsets such that the products of elements in

these subsets are the same.

(12th IMO)

Solution. At least one of six consecutive numbers is divisible by 5. From

the given condition it follows that two numbers must be divisible by 5.

These two numbers are necessarily n and n + 5. Therefore n and n + 5

are in distinct subsets. Since n(n + 1) > n + 5, it follows that a required

partition cannot be considered with subsets of different cardinality. Thus

each subset must contain three numbers. The following possibilities have

to be considered:

a) {n, n+ 2, n+ 4} ∪ {n+ 1, n+ 3, n+ 5}
b) {n, n+ 3, n+ 4} ∪ {n+ 1, n+ 2, n+ 5}.
In case a), n < n+ 1, n+ 2 < n+ 3 and n+ 4 < n+ 5.

In case b), the condition of the problem gives:

n(n+ 3)(n+ 4) = (n+ 1)(n+ 3)(n+ 5).
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We obtain n2 + 5n+ 10 = 0 and this equation has no real solution.

Remark. One can prove that if p is a prime of the form 4k + 3, then

one cannot partition p − 1 consecutive integers in two classes with equal

product. This problem is the particular case p = 7.

Problem 1.1.14. The positive integers d1, d2, . . . , dn divide 1995. Prove

that there exist di and dj among them, such that the numerator of the

reduced fraction di/dj is at least n.

(1995 Israeli Mathematical Olympiad)

Solution. Note that 3 · 5 · 7 · 19 = 1995. If the chosen divisors include

one divisible by 19 and another not divisible by 19, the quotient of the two

has numerator divisible by 19, solving the problem since n ≤ 16. If this is

not the case, either all divisors are or divisible by 19 or none of them has

this property, and in particular n ≤ 8. Without loss of generality, assume

the divisors are all not divisible by 19.

Under this assumption, we are done if the divisors include one divisible

by 7 and another not divisible by 7, unless n = 8. In the latter case all of

the divisors not divisible by 19 occur, including 1 and 3 · 5 · 7, so this case

also follows. We now assume that none of the chosen divisors is divisible

by 4, so that in particular n ≤ 4.

Again, we are done if the divisors include one divisible by 5 and another

not divisible by 5. But this can only fail to occur if n = 1 or n = 2. The

former case is trivial, while in the latter case we simply divide the larger

divisor by the smaller one, and the resulting numerator has at least one

prime divisor and so is at least 3. Hence the problem is solved in all cases.

Problem 1.1.15. Determine all pairs (a, b) of positive integers such that

ab2 + b+ 7 divides a2b+ a+ b.

(39th IMO)

Solution. From the divisibility ab2 + b+ 7|a2b+ a+ b we obtain:

ab2 + b+ 7|b(a2b+ a+ b) − a(ab2 + b+ 7) ⇒ ab2 + b+ 7|b2 − 7a.

When b2 − 7a = 0, it follows b2 = 7k, a = 7k2. Observe that all pairs

(7k2, 7k), k ≥ 1 are solutions for the problem.

Suppose b2−7a > 0. Then ab2+b+7 ≤ b2−7a and we get a contradiction:

b2 − 7a < b2 < ab2 + b+ 7.
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Suppose b2 − 7a < 0. Then ab2 + b + 7 ≤ 7a− b2. This is possible only

for b2 < 7, i.e. either b = 1 or b = 2. If b = 1, we obtain a = 11 or a = 49.

If b = 2, we obtain 4a+ 9|a+ 22 ⇒ 4a+ 9 ≤ a+ 22 ⇒ 3a ≤ 13. This

case cannot give a solution.

Hence, the solutions of the problem are: (7k2, 7k), (11, 1) and (49, 1).

Problem 1.1.16. Find all integers a, b, c with 1 < a < b < c such that

(a− 1)(b− 1)(c− 1) is a divisor of abc− 1.

(33rd IMO)

Solution. It is convenient to note a−1 = x, b−1 = y and c−1 = z. Then

we have the conditions: 1 ≤ x < y < z and xyz|xy + yz + zx+ x+ y + z.

The idea of the solution is to point out that we cannot have xyz ≤
xy + yz + zx + x + y + z for infinitely many triples (x, y, z) of positive

integers. Let f(x, y, z) be the quotient of the required divisibility.

From the algebraic form:

f(x, y, z) =
1

x
+

1

y
+

1

z
+

1

xy
+

1

yz
+

1

zx

we can see that f is decreasing function in one of the variables x, y, z. By

symmetry and because x, y, z are distinct numbers,

f(x, y, z) ≤ f(1, 2, 3) = 2 +
5

6
< 3.

Thus, if the divisibility is fulfilled we can have either f(x, y, z) = 1 or

f(x, y, z) = 2. So, we have to solve in positive integers the equations

xy + yz + zx+ x+ y + z = kxyz (1)

where k = 1 or k = 2.

Observe that f(3, 4, 5) =
59

60
< 1. Thus x ∈ {1, 2}. Also f(2, 3, 4) =

35

24
<

2. Thus, for x = 2, we necessarily have k = 1. The conclusion is that only

three equations have to be considered in (1).

Case 1. x = 1 and k = 1. We obtain the equation:

1 + 2(y + z) + yz = yz.

It has no solutions.

Case 2. x = 1 and k = 2. We obtain the equation:

1 + 2(y + z) = yz.
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Write it under the form: (y−2)(z−2) = 5 and obtain y−2 = 1, z−2 = 5.

It has a unique solution: y = 3, z = 7.

Case 3. x = 2 and k = 1. We obtain the equation:

2 + 3(y + z) = yz.

By writing it under the form: (y − 3)(z − 3) = 11 we find y − 3 = 1,

z − 3 = 11. Thus, it has a unique solution: y = 4, z = 15.

From Case 2 and Case 3 we obtain respectively: a = 2, b = 4, c = 8 and

a = 3, b = 5, c = 16. These are the solutions of the problem.

Problem 1.1.17. Find all pairs of positive integers (x, y) for which

x2 + y2

x− y

is an integer which divides 1995.

(1995 Bulgarian Mathematical Olympiad)

Solution. It is enough to find all pairs (x, y) for which x > y and x2 +

y2 = k(x − y), where k divides 1995 = 3 · 5 · 7 · 19. We shall use the

following well-known fact: if p is prime of the form 4q + 3 and if it divides

x2 + y2 then p divides x and y. (For p = 3, 7, 19 the last statement can be

proved directly). If k is divisible by 3, then x and y are divisible by 3 too.

Simplifying by 9 we get an equality of the form x2
1+y2

1 = k1(x1−y1), where

k1 divides 5 · 7 · 19. Considering 7 and 19, analogously we get an equality

of the form a2 + b2 = 5(a − b), where a > b. (It is not possible to get an

equality of the form a2 + b2 = a− b). From here (2a− 5)2 + (2b+ 5)2 = 50,

i.e. a = 3, b = 1, or a = 2, b = 1. The above consideration implies that the

pairs we are looking for are of the form (3c, c), (2c, c), (c, 3c), (c, 2c), where

c = 1, 3, 7, 19, 3 · 7, 3 · 19, 7 · 19, 3 · 7 · 19.

Problem 1.1.18. Find all positive integers (x, n) such that xn + 2n + 1

is a divisor of xn+1 + 2n+1 + 1.

(1998 Romanian IMO Team Selection Test)

Solution. The solutions are (x, n) = (4, 1) and (11,1). If n = 1, we need

x+ 3 = x+ 2 + 1|x2 + 4 + 1 = x2 + 5 = (x+ 3)(x− 3)+ 14, so x+ 3 divides

14 and x = 4 or 11. Suppose n ≥ 2. For x ∈ {1, 2, 3} we have

1 + 2n + 1 < 1 + 2n+1 + 1 < 2(1 + 2n + 1),

2n + 2n + 1 < 2n+1 + 2n+1 + 1 < 2(2n + 2n + 1),
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2(3n + 2n + 1) < 3n+1 + 2n+1 + 1 < 3(3n + 2n + 1),

so xn+2n+1 does not divide xn+1+2n+1+1. For x ≥ 4, xn = xn/2+xn/2 ≥
22n/2 + x2/2, so

(2n + 1)x ≤ ((2n + 1)2 + x2)/2

= (22n + 2n+1 + 1 + x2)/2 < 2n+1 + xn + 2n + 2.

Therefore

(x − 1)(xn + 2n + 1) = xn+1 + 2nx+ x− xn − 2n − 1

< xn+1 + 2n+1 + 1 < x(xn + 2n + 1);

again xn + 2n + 1 does not divide xn+1 + 2n+1 + 1. So the only solutions

are (4,1) and (11,1).

Problem 1.1.19. Find the smallest positive integer K such that every

K-element subset of {1, 2, . . . , 50} contains two distinct elements a, b such

that a+ b divides ab.

(1996 Chinese Mathematical Olympiad)

Solution. The minimal value is k = 39. Suppose a, b ∈ S are such that

a+ b divides ab. Let c = gcd(a, b), and put a = ca1, b = cb1, so that a1 and

b1 are relatively prime. Then c(a1 + b1) divides c2a1b1, so a1 + b1 divides

ca1b1. Since a1 and b1 have no common factor, neither do a1 and a1 + b1,

or b1 and a1 + b1. In short, a1 + b1 divides c.

Since S ⊆ {1, . . . , 50}, we have a + b ≤ 99, so c(a1 + b1) ≤ 99, which

implies a1 +b1 ≤ 9; on the other hand, of course a1 +b1 ≥ 3. An exhaustive

search produces 23 pairs a, b satisfying the condition:

a1 + b1 = 3 (6, 3), (12, 6), (18, 9), (24, 12),

(30, 15), (36, 18), (42, 21), (48, 24)

a1 + b1 = 4 (12, 4), (24, 8), (36, 12), (48, 16)

a1 + b1 = 5 (20, 5), (40, 10), (15, 10), (30, 20), (45, 30)

a1 + b1 = 6 (30, 6)

a1 + b1 = 7 (42, 7), (35, 14), (28, 21)

a1 + b1 = 8 (40, 24)

a1 + b1 = 9 (45, 36)
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12.2 Prime numbers

Problem 1.2.10. For each integer n such that n = p1p2p3p4, where

p1, p2, p3, p4 are distinct primes, let

d1 = 1 < d2 < d3 < · · · < d16 = n

be the sixteen positive integers which divide n. Prove that if n < 1995, then

d9 − d8 6= 22.

(1995 Irish Mathematical Olympiad)

Solution. Note that 35 · 57 = 1995 = 2 · 3 · 7 · 19. Suppose that n < 1995

and d9 − d8 = 22; then d8d9 = n, so d8 < 35. Moreover, d8 cannot be

even since that would make n divisible by 4, whereas n has distinct prime

factors. Hence d8, d9 and n are odd.

The divisors d1, . . . , d8 each are the product of distinct odd primes, since

they divide n. Since 3 · 5 · 7 > 35, none of d1, . . . , d8 is large enough to

have three odd prime factors, so each is either prime or the product of two

primes. Since n only has four prime factors, four of the di must be the

product of two odd primes. But the smallest such numbers are

15, 21, 33, 35, . . .

and so we must have d8 ≥ 35, contrary to assumption.

Problem 1.2.11. Prove that there are infinitely many positive integers

a such that the sequence (zn)n≥1, zn = n4 + a, does not contain any prime

number.

(11th IMO)

Solution. To consider all positive integers of the form n4 + a, n ≥ 1,

means to consider all values of the polynomial P (X) = X4 + a in the

positive integers. A decomposition of the polynomial P (X) gives us de-

compositions of the numbers n4 +a, unless the case of factors taking values

1.

The polynomial P (X) can have a decomposition in integer polynomials

only into quadratic factors:

P (X) = (X2 +mX + n)(X2 +m′X + n′).

Such a decomposition is possible if and only if:

m+m′ = 0, mm′ + n+ n′ = 0, mn′ +m′n = 0 and nn′ = a.
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We obtain: m′ = −m, n = n′, m2 − 2n = 0 and n2 = a.

Therefore, there is a unique possibility:

X4 + a = (X2 +mX + n)(X2 −mX + n).

This case may fulfill when m = 2k, n = 2k2 and a = 4k4, with k > 1.

Problem 1.2.12. Let p, q, r be distinct prime numbers and let A be the

set

A = {paqbrc : 0 ≤ a, b, c ≤ 5}.

Find the smallest integer n such that any n-element subset of A contains

two distinct elements x, y such that x divides y.

(1997 Romanian Mathematical Olympiad)

Solution. Define an order relation on A by setting paqbrc ≤ pa1qb1rc1

iff a ≤ a1, b ≤ b1, c ≤ c1. We must find thus the longest antichain with

respect to this relation, that is the maximal number n such that there is

B ⊂ A with |B| = n and no two elements of B are comparable. The answer

will then be n+ 1.

From now on, identity paqbrc with (a, b, c) and regard it as a laticial

point in R3. One can easily check that the set

B = {(a, b, c) | a, b, c ∈ {0, 1, . . . , 5}, a+ b+ c = 8}

has 27 elements and that it is an antichain. We will prove that any set with

28 elements contains two comparable elements. Of course, it suffices to find

27 chains which partition {(a, b, c) | 0 ≤ a, b, c ≤ 5} and such that each

chain has a unique representation from B. Take A = {(a, b) | 0 ≤ a, b ≤ 5}
and partition it into 6 chains (draw a picture!)

A1 = {(0, 0), (0, 1), . . . , (0, 5), (1, 5), . . . , (5, 5)},

A2 = {(1, 0), (1, 1), . . . , (1, 4), (2, 4), . . . , (5, 4)},

A3 = {(2, 0), (2, 1), . . . , (2, 3), (3, 3), . . . , (5, 8)},

A4 = {(3, 0), (3, 1), (3, 2), (4, 2), (5, 2)},

A5 = {(4, 0), (4, 1), (5, 1)},

A6 = {(5, 0)}.

Next define A1j = {(a, b, j) | (a, b) ∈ A1} and similarly for A2, A3. We

have found 18 chains till now.
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For (a, b) ∈ A4∪A5∪A6 we define the chainA(a,b) = {(a, b, j) | 0 ≤ j ≤ 5}
and we have 9 chains, for a total of 27 chains.

Problem 1.2.13. Prove Bonse’s inequality:

p1p2 . . . pn > p2
n+1

for n ≥ 4, where p1 = 2, p2 = 3, . . . is the increasing sequence of prime

numbers.

Solution. Let us define Ak = p1p2 . . . pk and ak = kAn−1 − pn for

1 ≤ k ≤ pn − 1. Observe that these numbers are relatively prime. Indeed,

a prime common divisor of ak1 and ak2 would divide (k1 − k2)An−1 and

since gcd(ak1 , pn) = 1, this divisor would be p1, . . . , pn−1, which is clearly

impossible. Of course, this implies that ak ≥ pn+k (since ak is relatively

prime with p1, . . . , pn−1). Thus for k = pn − 1 we have An −An−1 − pn >

ppn+n−1 and so p1p2 . . . pn > ppn+n−1 > p3n−1 for n ≥ 5. From here we

find that for n ≥ 6 we have p1 . . . pn >
(

p1 . . . p[n
2 ]

)2

> p2
3[n

2 ]−1
> p2

n+1.

For n = 5 one can easily check the inequality.

Problem 1.2.14. Show that there exists a set A of positive integers with

the following property: for any infinite set S of primes, there exist two

positive integers m ∈ A and n 6∈ A each of which is a product of k distinct

elements of S for some k ≥ 2.

(35th IMO)

Solution. There are several constructions for such A, involving different

ideas about the decomposition of integer numbers.

First example. Let p1 < p2 < · · · < pn < . . . be the increasing se-

quence of all prime numbers. Define A being the set of numbers of the

form pi1pi2 . . . pik
where i1 < i2 < · · · < ik and ik = pi1 . For example

3 · 5 · 7 ∈ A; 3 · 11 · 13 ∈ A and 5 · 7 · 11 6∈ A; 3 · 5 · 7 · 11 6∈ A.

We will see that A satisfies the required condition. Let S be an infinite

set of prime numbers, say q1 < q2 < · · · < qn < . . . Take m = q1q2 . . . qq1

and n = q1q2 . . . qq1+1. Then m ∈ A and n 6∈ A.

Second example. Define A =

∞⋃

i=1

Ai where Ai is the set of numbers

which are product of i+ 1 distinct primes which are different from pi. For

example 3 · 5 · 7 ∈ A2, 2 · 3 · 7 · 11 ∈ A3 and 2 · 3 · 7 6∈ A2, 3 · 5 · 7 · 13 6∈ A3.

Let S be an infinite set of prime numbers, say q1 < q2 < · · · < qn < . . .

Suppose that q1 = pi1 . If i1 > 1, note i1 = k. Then n = q1q2 . . . qk+1 6∈
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A, because it contains prime factor q1 = pi1 = pk. The number m =

q2q3 . . . qk+2 contains k+1 factors, all different from pk = q1. Thus m ∈ A.

If i1 = 1, take k = i2 and the same construction will answer the question.

Third example. Let P be the set of all positive primes and let P1 ⊂
P2 ⊂ · · · ⊂ Pn ⊂ . . . be an ascending chain of finite distinct subsets of P ,

such that P =

∞⋃

i=1

Pi. Define A to be the set of elements of the form

a = p1p2 . . . pk

k = i1 < i2 < · · · < ik and p1 ∈ Pi1 \ Pi1−1, p2 ∈ Pi2 , . . . , pk ∈ Pik
.

Let S be an infinite set of prime numbers and let Si = S ∩ Pi. It is

obvious that S1 ⊂ S2 ⊂ · · · ⊂ Sn ⊂ . . . This chain is not stationary

because S =

∞⋃

i=1

Si. Then, it contains an infinite subchain with distinct

sets:

Si1 ⊂ Si2 ⊂ · · · ⊂ Sin
⊂ . . .

Suppose that Sin
= Sin+1 = · · · = Sin+1−1 ⊂ Sin+1 . Set i1 = k > 1

and choose p1 ∈ Si1 \ Si1−1, p2 ∈ Si2 \ Si2−1, . . . , pk ∈ Sik
\ Sik−1 and

pk+1 ∈ Sik+1
\ Sik

. Then m = p1p2 . . . pk ∈ A and n = p2p3 . . . pk+1 6∈ A

because p2 6∈ Si1 = Sk.

Problem 1.2.15. Let n be an integer number, n ≥ 2. Show that if

k2 + k+n is a prime number for any integer number k, 0 ≤ k ≤
√
n

3
, then

k2 + k + n is a prime number for any k, 0 ≤ k ≤ n− 2.

(28th IMO)

Solution. It is not difficult to check that the property is verified for

n = 2, 3. So, we may suppose n ≥ 5 and assume the contrary: k2 + k + n

is prime for 0 ≤ k ≤
√
n

3
and there exists l,

√
n

3
< l ≤ n − 2 such that

l2 + l + n is not prime. Let p be the least number l such that l2 + l + n is

composed number and let p2 + p+ n = ab be a nontrivial decomposition,

such that 1 < a ≤ b. Then, l2 + l + n is a prime for all l, l < p.

We prove first that a ≥ p+ 1.

Assuming the contrary, one obtains 0 ≤ p− a < p and

(p− a)2 + (p− a) + n = p2 + p+ n+ a(a− 2p− 1) = a(b + a− 2p− 1).
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Since (p−a)2+(p−a)+n is a prime number, it follows that b+a−2p−1 = 1

and then, a+ b = 2(p+ 1). By AM-GM inequality,

ab ≤ (a+ b)2

4
= (p+ 1)2.

Since ab = p2 + p+ n, it follows that: p2 + p+ n ≤ (p+ 1)2. From the last

inequality, p ≥ n − 1 and this contradicts the choice of p. The conclusion

is a ≥ p+ 1.

Since n < 3p2, p2 + p+ n < 4p2 + p < (2p+ 1)2. Taking in account that

p2 + p+ n = ab, we have ab < (2p+ 1)2 and thus, a < 2p+ 1.

We may repeat the previous argument: 0 ≤ a − p − 1 < p and then

(a− p− 1)2 + (a− p− 1) + n is prime a number. A standard computation

gives:

(a−p−1)2 +(a−p−1)+n = p2 +p+n+a(a−2p−1) = a(b+a−2p−1).

We obtain, again b+ a = 2p+ 2 = 2(p+ 1).

On the other hand:

a+ b ≥ 2
√
ab = 2

√

p2 + p+ n > 2
√

p2 + p+ p+ 1 = 2(p+ 1).

Thus, we obtain a contradiction, so our initial assumption was incorrect.

Remark. The problem is related to the famous example of Euler of a

polynomial generator of primes: x2+x+41 produces primes for 0 ≤ x ≤ 39.

The problem shows that it suffices to check the primality only for the first

4 values of x.

Problem 1.2.16. A sequence q1, q2, . . . of primes satisfies the following

condition: for n ≥ 3, qn is the greatest prime divisor of qn−1 + qn−2 +2000.

Prove that the sequence is bounded.

(2000 Polish Mathematical Olympiad)

Solution. Let bn = max{qn, qn+1} for n ≥ 1. We first prove that bn+1 ≤
bn + 2002 for all such n. Certainly qn+1 ≤ bn, so it suffices to show that

qn+2 ≤ bn + 2002. If either qn or qn+1 equals 2, then we have qn+2 ≤
qn + qn+1 + 2000 = bn + 2002. Otherwise, qn and qn+1 are both odd, so

qn + qn+1 + 2000 is even. Because qn+2 6= 2 divides this number, we have

qn+2 ≤ 1

2
(qn + qn+1 + 2000) =

1

2
(qn + qn+1) + 1000 ≤ bn + 1000.

This proves the claim.
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Choose k large enough so that b1 ≤ k · 2003! + 1. We prove by induction

that bn ≤ k · 2003! + 1 for all n. If this statement holds for some n, then

bn+1 ≤ bn + 2002 ≤ k · 2003! + 2003. If bn+1 > k · 2003! + 1, then let

m = bn+1 − k · 2003!. We have 1 < m ≤ 2003, implying that m|2003!.

Hence, m is a proper divisor of k · 2003! +m = bn+1, which is impossible

because bn+1 is prime. Thus, qn ≤ bn ≤ k · 2003! + 1 for all n.

Problem 1.2.17. Let a > b > c > d be positive integers and suppose

ac+ bd = (b+ d+ a− c)(b + d− a+ c).

Prove that ab+ cd is not prime.

(42nd IMO)

Solution. The given equality is equivalent to a2−ac+ c2 = b2 + bd+d2.

Hence

(ab+ cd)(ad+ bc) = ac(b2 + bd+ d2) + bd(a2 − ac+ c2),

or equivalently,

(ab+ cd)(ad+ bc) = (ac+ bd)(a2 − ac+ c2). (1)

Now suppose that ab+ cd is prime. It follows from a > b > c > d that

ab+ cd > ac+ bd > ad+ bc; (2)

hence ac + bd is relatively prime with ab + cd. But then (1) implies that

ac+ bd divides ad+ bc, which is impossible by (2).

12.3 The greatest common divisor and the least

common multiple

Problem 1.3.9. The sequence a1, a2, . . . of natural numbers satisfies

gcd(ai, aj) = gcd(i, j) for all i 6= j.

Prove that ai = i for all i.

(1995 Russian Mathematical Olympiad)

Solution. For any integerm, we have (am, a2m) = (2m,m) and so m|am.

This means that for any other integer n,m divides an if and only if it divides
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(am, an) = (m,n). Hence an has exactly the same divisors as n and so must

equal n for all n.

Problem 1.3.10. The natural numbers a and b are such that

a+ 1

b
+
b + 1

a

is an integer. Show that the greatest common divisor of a and b is not

greater than
√
a+ b.

(1996 Spanish Mathematical Olympiad)

Solution. Let d = gcd(a, b) and put a = md and b = nd. Then we have

md+ 1

nd
+
nd+ 1

md
=
m2d+m+ n2d+ n

mnd

is an integer, so that in particular, d divides m2d +m+ n2d+ n and also

m+ n. However, this means d ≤ m+ n, and so d ≤
√

d(m+ n) =
√
a+ b.

Problem 1.3.11. The positive integers m,n,m, n are written on a black-

board. A generalized Euclidean algorithm is applied to this quadruple as

follows: if the numbers x, y, u, v appear on the board and x > y, then x− y,

y, u+ v, v are written instead; otherwise x, y− x, u, v+ u are written in-

stead. The algorithm stops when the numbers in the first pair become equal

(they will equal the greatest common divisor of m and n). Prove that the

arithmetic mean of the numbers in the second pair at that moment equals

the least common multiple of m and n.

(1996 St. Petersburg City Mathematical Olympiad)

Solution. Note that xv+ yu does not change under the operation, so it

remains equal to 2mn throughout. Thus when the first two numbers both

equal gcd(m,n), the sum of the latter two is 2mn/gcd(m,n) = 2lcm(m,n).

Problem 1.3.12. How many pairs (x, y) of positive integers with x ≤ y

satisfy gcd(x, y) = 5! and lcm(x, y) = 50!?

(1997 Canadian Mathematical Olympiad)

Solution. First, note that there are 15 primes from 1 to 50:

(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47).

To make this easier, let us define f(a, b) to be greatest power of b dividing

a. (Note g(50!, b) > g(5!, b) for all b < 50.) Therefore, for each prime p, we
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have either f(x, p) = f(5!, p) and f(y, p) = f(50!, p) or f(y, p) = f(5!, p)

and f(x, p) = f(50!, p). Since we have 15 primes, this gives 215 pairs, and

clearly x 6= y in any such pair (since the gcd and lcm are different), so there

are 214 pairs with x ≤ y.

Problem 1.3.13. Several positive integers are written on a blackboard.

One can erase any two distinct integers and write their greatest common di-

visor and least common multiple instead. Prove that eventually the numbers

will stop changing.

(1996 St. Petersburg City Mathematical Olympiad)

Solution. If a, b are erased and c < d are written instead, we have

c ≤ min(a, b) and d ≥ max(a, b); moreover, ab = cd. From this we may

conclude a + b ≤ c + d writing ab + a2 = cd + a2 ≤ ac + ad (the latter

since (d − a)(c − a) ≤ 0) and dividing both sides by a. Thus the sum of

the numbers never decrease, and it is obviously bounded (e.g. by n times

the product of the numbers, where n is the number of numbers on the

board); hence it eventually stops changing, at which time the numbers

never change.

Problem 1.3.14. (a) For which positive integers n do there exist positive

integers x, y such that

lcm(x, y) = n!, gcd(x, y) = 1998?

(b) For which n is the number of such pairs x, y with x ≤ y less than

1998?

(1998 Hungarian Mathematical Olympiad)

Solution. (a) Let x = 1998a, y = 1998b. So a, b are positive integers such

that a < b, gcd(a, b) = 1. We have lcm(x, y) = 1998ab = 2 · 33 · 37ab = n!.

Thus n ≥ 37 and it is easy to see that this condition is also sufficient.

(b) The answers are n = 37, 38, 39, 40. We only need to consider positive

integers n ≥ 37. For 37 ≤ n < 41, let k = ab = n!/1998. Since gcd(a, b) = 1,

any prime factor of k that occurs in a cannot occur in b, and vice-versa.

There are 11 prime factors of k, namely 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31.

For each of those prime factors, one must decide only whether it occurs in

a or in b. These 11 decisions can be made in a total of 211 = 2048 ways.

However, only half of these ways will satisfy the condition a < b. Thus

there will be a total of 1024 such pairs of (x, y) for n = 37, 38, 39, 40. Since
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41 is a prime, we can see by a similar argument that there will be at least

2048 such pairs of (x, y) for n ≥ 41.

Problem 1.3.15. Determine all positive integers k for which there exists

a function f : N → Z such that

(a) f(1997) = 1998;

(b) for all a, b ∈ N, f(ab) = f(a) + f(b) + kf(gcd(a, b)).

(1997 Taiwanese Mathematical Olympiad)

Solution. Such f exists for k = 0 and k = −1. First take a = b in (b)

to get f(a2) = (k + 2)f(a). Applying this twice, we get

f(a4) = (k + 2)f(a2) = (k + 2)2f(a).

On the other hand,

f(a4) = f(a) + f(a3) + kf(a) = (k + 1)f(a) + f(a3)

= (k + 1)f(a) + f(a) + f(a2) + kf(a)

= (2k + 2)f(a) + f(a2) = (3k + 4)f(a).

Setting a = 1997 so that f(a) 6= 0, we deduce (k + 2)2 = 3k + 4, which

has roots k = 0,−1. For k = 0, an example is given by

f(pe1
1 . . . pen

n ) = e1g(p1) + · · · + eng(pn),

where m is a prime factor of 1997, g(m) = 1998 and g(p) = 0 for all primes

p 6= m. For k = 1, an example is given by

f(pe1
1 . . . pen

n ) = g(p1) + · · · + g(pn).

Problem 1.3.16. Find all triples (x, y, n) of positive integers such that

gcd(x, n+ 1) = 1 and xn + 1 = yn+1.

(1998 Indian Mathematical Olympiad)

Solution. All solutions are of the form (a2 − 1, a, 1) with a even. We

have xn = yn+1 − 1 = (y − 1)m with m = yn + yn−1 + · · · + y + 1. Thus

m|xn and gcd(m,n+ 1) = 1. Rewrite m as

m = (y − 1)(yn−1 + 2yn−2 + 3yn−3 + · · · + (n− 1)y + n) + (n+ 1).
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Thus we have gcd(m, y−1)|n+1. But gcd(m,n+1) = 1, so gcd(m, y−1) = 1.

Since xn = (y − 1)m, m must be a perfect n-th power. But

(y + 1)n = yn +

(
n

1

)

yn−1 + · · · +
(

n

n− 1

)

y + 1 > m > yn,

for n > 1. So m can be a perfect n-th power only if n = 1 and x = y2 − 1.

Since x and n + 1 = 2 are relatively prime, y must be even, yielding the

presented solutions.

Problem 1.3.17. Find all triples (m,n, l) of positive integers such that

m+ n = gcd(m,n)2, m+ l = gcd(m, l)2, n+ l = gcd(n, l)2.

(1997 Russian Mathematical Olympiad)

Solution. The only solution is l = m = n = 2. Let d = gcd(l,m, n),

and put l = dl1, m = dm1, n = dn1. Then d(m1 + n1) = d2d2
mn, where

dmn = gcd(m1, n1), so m1 + n1 = dd2
mn. Defining dln and dlm likewise, we

get

2(l1 +m1 + n1) = d(d2
lm + d2

ln + d2
mn).

Since
d

gcd(d, 2)
divides l1 +m1 +n1 as well as m1 +n1, it divides l1 and

likewise m1 and n1. As these three numbers are relatively prime, we have
d

gcd(d, 2)
= 1 and so d ≤ 2.

Note that dlm, dln, dmn are pairwise relatively prime; therefore we can

write l1 = l2dlmdln, m1 = m2dlmdmn, n1 = n2dlndmn. Then we have

dlmdmnm2 + dlndmnn2 = dd2
mn

and so m2dlm + n2dln = ddmn and so forth. Assuming without loss of

generality that dmn is no larger than dlm, dln, we get

2dmn ≥ ddmn = dlmm2 + dlnn2 ≥ dlm + dln ≥ 2dmn.

Thus we have equality throughout: d = 2, m2 = n2 = 1 and dlm = dln =

dmn. But these three numbers are pairwise relatively prime, so they are all

1. Then m1 = n1 = 1 and from l1 + m1 = dd2
lm, l1 = 1 as well. Therefore

l = m = n = 2.
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12.4 Odd and even

Problem 1.4.5. We are given three integers a, b, c such that a, b, c, a+

b−c, a+c−b, b+c−a and a+b+c are seven distinct primes. Let d be the

difference between the largest and smallest of these seven primes. Suppose

that 800 ∈ {a + b, b + c, c + a}. Determine the maximum possible value of

d.

Solution. Answer: 1594.

First, observe that a, b, c must all be odd primes; this follows from the

assumption that the seven quantities listed are distinct primes and the fact

that there is only one even prime, 2. Therefore, the smallest of the seven

primes is at least 3. Next, assume without loss of generality that a+b = 800.

Because a+ b− c > 0, we must have c < 800. We also know that c is prime;

therefore, since 799 = 17 · 47, we have c ≤ 797. It follows that the largest

prime, a+b+c, is no more than 1597. Combining these two bounds, we can

bound d by d ≤ 1597− 3 = 1594. It remains to observe that we can choose

a = 13, b = 787, c = 797 to achieve this bound. The other four primes are

then 3, 23, 1571 and 1597.

Problem 1.4.6. Determine the number of functions f : {1, 2, . . . , n} →
{1995, 1996} which satisfy the condition that f(1)+ f(2) + · · ·+ f(1996) is

odd.

(1996 Greek Mathematical Olympiad)

Solution. We can send 1, 2, . . . , n − 1 anywhere, and the value of f(n)

will then be uniquely determined. Hence there are 2n−1 such functions.

Problem 1.4.7. Is it possible to place 1995 different natural numbers

along a circle so that for any two these numbers, the ratio of the greatest

to the least is a prime?

(1995 Russian Mathematical Olympiad)

Solution. No, this is impossible. Let a0, . . . , a1995 = a0 be the integers.

Then for i = 1, . . . , 1995, ak−1/ak is either a prime or the reciprocal of a

prime; suppose the former occurs m times and the latter 1995 −m times.

The product of all of these ratios is a0/a1995 = 1, but this means that the

product of somem primes equals the product of some 1995−m primes. This

can only occurs when the primes are the same (by unique factorization),

and in particular there have to be the same number on both sides. But

m = 1995 −m is impossible since 1995 is odd, contradiction.
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Problem 1.4.8. Let a, b, c, d be odd integers such that 0 < a < b < c < d

and ad = bc. Prove that if a+ d = 2k and b + c = 2m for some integers k

and m, then a = 1.

(25th IMO)

Solution. Since ad = bc, we have

a((a+ d) − (b + c)) = (a− b)(a− c) > 0.

Thus a + d > b + c, 2k > 2m and k > m. Since ad = a(2k − a) = bc =

b(2m − b) we obtain

2mb− 2ka = b2 − a2 = (b− a)(b + a).

By the equality 2m(b − 2k−ma) = (b − a)(b + a), we infer that 2m|(b −
a)(b+ a). But b − a and b+ a differ by 2a, an odd multiple of 2, so either

b− a or b+ a is not divisible by 4. Hence, either 2m−1|b− a or 2m−1|b+ a.

But 0 < b− a < b < 2m−1, so it must be that 2m−1|b+ a.

Since 0 < b+a < b+c = 2m, it follows that b+a = 2m−1 and b = 2m−1−a.
Then c = 2m−1 and ad = bc = (2m−1 − a)(2m−1 + a).

From this equality we obtain a(a+ d) = 22m−2, hence a = 1.

12.5 Modular arithmetics

Problem 1.5.7. Find all integers n > 1 such that any prime divisor of

n6 − 1 is a divisor of (n3 − 1)(n2 − 1).

(2002 Baltic Mathematics Competition)

Solution. We show that n = 2 is the only such integer. It is clear that

n = 2 satisfies the conditions. For n > 2, write

n6 − 1 = (n3 − 1)(n3 + 1) = (n3 − 1)(n+ 1)(n2 − n+ 1);

hence, all prime factors of n2 − n + 1 must divide n3 − 1 or n2 − 1 =

(n−1)(n+1). Note, however, that (n2−n+1, n3−1) ≤ (n3+1, n3−1) ≤ 2;

on the other hand, n2 −n+ 1 = n(n− 1)+ 1 is odd, so all prime factors of

n2 − n+ 1 must divide n+ 1. But n2 − n+ 1 = (n+ 1)(n− 2) + 3, so we

must have n2 −n+ 1 = 3k for some k. Because n > 2, we have k ≥ 2. Now

3|(n2 − n + 1) gives n ≡ 2 (mod 3); but for each of the cases n ≡ 2, 5, 8

(mod 9), we have n2 − n+ 1 ≡ 3 (mod 9), a contradiction.
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Problem 1.5.8. Let f(n) be the number of permutations a1, . . . , an of

the integers 1, . . . , n such that

(i) a1 = 1;

(ii) |ai − ai+1| ≤ 2, i = 1, . . . , n− 1.

Determine whether f(1996) is divisible by 3.

(1996 Canadian Mathematical Olympiad)

Solution. Let g(n) be the number of permutations of the desired form

with an = n. Then either an−1 = n − 1 or an−1 = n − 2; in the latter

case we must have an−2 = n − 1 and an−3 = n − 3. Hence g(n) = g(n −
1) + g(n − 3) for n ≥ 4. In particular, the values of g(n) modulo 3 are

g(1) = 1, 1, 1, 2, 0, 1, 0, 0, . . . repeating with period 8.

Now let h(n) = f(n)−g(n); h(n) counts permutations of the desired form

where n occurs in the middle, sandwiched between n−1 and n−2. Removing

n leaves an acceptable permutation, and any acceptable permutation on

n−1 symbols can be so produced except those ending in n−4, n−2, n−3,

n− 1. Hence h(n) = h(n− 1) + g(n− 1) − g(n− 4) = h(n− 1) + g(n− 2);

one checks that h(n) modulo 3 repeats with period 24.

Since 1996 ≡ 4 (mod 24), we have f(1996) ≡ f(4) = 4 (mod 3), so

f(1996) is not divisible by 3.

Problem 1.5.9. For natural numbers m,n, show that 2n − 1 is divisible

by (2m − 1)2 if and only if n is divisible by m(2m − 1).

(1997 Russian Mathematical Olympiad)

Solution. Since

2kn+d − 1 ≡ 2d − 1 (mod 2n − 1),

we have 2m − 1 divides 2n − 1 if and only if m divides n. Thus in either

case, we must have n = km, in which case

2km − 1

2m − 1
= 1 + 2m + · · · + 2m(k−1) ≡ k (mod 2m − 1).

The two conditions are now that k is divisible by 2m − 1 and that m is

divisible by m(2m − 1), which are equivalent.

Problem 1.5.10. Suppose that n is a positive integer and let

d1 < d2 < d3 < d4
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be the four smallest positive integer divisors of n. Find all integers n such

that

n = d2
1 + d2

2 + d2
3 + d2

4.

(1999 Iranian Mathematical Olympiad)

Solution. The answer is n = 130. Note that x2 ≡ 0 (mod 4) when x is

even and that x2 ≡ 1 (mod 4) when x is odd.

If n is odd, then all the di are odd and n ≡ d2
1+d

2
2+d

2
3+d

2
4 ≡ 1+1+1+1 ≡

0 (mod 4), a contradiction. Thus, 2|n.

If 4|n then d1 = 1 and d2 = 2, and n ≡ 1 + 0 + d2
3 + d2

4 6≡ 0 (mod 4), a

contradiction. Thus, 4 ∤ n.

Therefore {d1, d2, d3, d4} = {1, 2, p, q} or {1, 2, p, 2p} for some odd primes

p, q. In the first case, n ≡ 3 (mod 4), a contradiction. Thus n = 5(1 + p2)

and 5|n, so p = d3 = 5 and n = 130.

Problem 1.5.11. Let p be an odd prime. For each i = 1, 2, . . . , p − 1

denote by ri the remainder when ip is divided by p2. Evaluate the sum

r1 + r2 + · · · + rp−1.

(Kvant)

Solution. Denote the sum in question by S. Combine the first summand

with the last, the second one with the next-to-last, and so on, to get

2S = (r1 + rp−1) + (r2 + rp−2) + · · · + (rp−1 + r1). (1)

We have ri + rp−i ≡ ip + (p − i)p (mod p2) by the definition of the

numbers r1, r2, . . . , rp−1. Furthermore, because p is odd,

ip + (p− i)p = pp −
(
p

1

)

pp−1i+

(
p

2

)

pp−2i2 − · · · +
(

p

p− 1

)

pip−1.

Since p is a prime, each binomial coefficient above is divisible by p, which

yields the conclusion that ri + rp−i is divisible by p2. But 0 < ri < p2,

0 < rp−i < p2, because p is a prime (so neither one equals 0), and now we

may claim that

ri + rp−i = p2 for i = 1, 2, . . . , p− 1. (2)
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The equalities (1) and (2) show that

S =
p− 1

2
p2 =

p3 − p2

2
.

Problem 1.5.12. Find the number of integers x with |x| ≤ 1997 such

that 1997 divides x2 + (x+ 1)2.

(1998 Indian Mathematical Olympiad)

Solution. There are 4 such integers. With congruences all taken modulo

1997, we have

x2 + (x+ 1)2 ≡ 2x2 + 2x+ 1 ≡ 4x2 + 4x+ 2 ≡ 0,

i.e., (2x + 1)2 ≡ −1. Since 1997 is a prime of the form 4k + 1, there are

exactly two distinct solutions to u2 ≡ −1. Each corresponds to a different

solution to (2x+ 1)2 ≡ −1.

Also, the two solutions to (2x + 1)2 ≡ −1 are nonzero since 0 does not

satisfy the equation. Therefore, there are exactly two satisfactory integers

x from −1997 to −1 and two more from 1 to 1997, for a total of four integer

solutions, as claimed.

12.6 Chinese remainder theorem

Problem 1.6.3. Let P (x) be a polynomial with integer coefficients. Sup-

pose that the integers a1, a2, . . . , an have the following property: For any

integer x there exists an i ∈ {1, 2, . . . , n} such that P (x) is divisible by ai.

Prove that there is an i0 ∈ {1, 2, . . . , n} such that ai0 divides P (x) for any

integer x.

(St. Petersburg City Mathematical Olympiad)

Solution. Suppose that the claim is false. Then for each i = 1, 2, . . . , n

there exists an integer xi such that P (xi) is not divisible by ai. Hence,

there is a prime power pki

i that divides ai and does not divide P (xi). Some

of the powers pk1
1 , p

k2
2 , . . . , p

kn
n may have the same base. If so, ignore all

but the one with the least exponent. To simplify notation, assume that

the sequence obtained this way is pk1
1 , p

k2
2 , . . . , p

km
m , m ≤ n (p1, p2, . . . , pm

are distinct primes). Note that each ai is divisible by some term of this

sequence.
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Since pk1
1 , p

k2
2 , . . . , p

km
m are pairwise relatively prime, the Chinese Remain-

der Theorem yields a solution of the simultaneous congruences

x ≡ x1 (mod pk1
1 ), x ≡ x2 (mod pk2

2 ), . . . , x ≡ xm (mod pkm

m ).

Now, since P (x) is a polynomial with integer coefficients, the congruence

x ≡ xj (mod p
kj

j ) implies P (x) ≡ P (xj) (mod p
kj

j ) for each index j =

1, 2, . . . ,m. By the definition of p
kj

j , the number P (xj) is never divisible

by p
kj

j , j = 1, 2, . . . ,m. Thus, for the solution x given by the Chinese

Remainder Theorem, P (x) is not divisible by any of the powers p
kj

j . And

because each ai is divisible by some p
kj

j , j = 1, 2, . . . ,m, it follows that no

ai divides P (x) either, a contradiction.

Problem 1.6.4. For any positive integer set {a1, a2, . . . , an} there exists

a positive integer b such that the set {ba1, ba2, . . . , ban} consists of perfect

powers.

Solution. There is a finite number of primes p1, p2, . . . , pk that partici-

pate in the prime factorization of a1, a2, . . . , an. Let

ai = pαi1
1 pαi2

2 . . . pαik

k for i = 1, 2, . . . , n;

some of the exponents αij may be zeros. A positive integer with prime

factorization pu1
1 pu2

2 . . . puk

k is a perfect q-th power if and only if all the

exponents uj are divisible by q. Thus it suffices to find positive integers

q1, q2, . . . , qn greater than 1, and nonnegative integers l1, l2, . . . , lk such that

l1 + α11, l2 + α12, . . . , lk + α1k are divisible by q1,

l1 + α21, l2 + α22, . . . , lk + α2k are divisible by q2,

. . .

l1 + αn1, l2 + αn2, . . . , lk + αnk are divisible by qn.

Now it is clear that we have lots of choices; let, for example, qi be the

i-th prime number. As far as l1 is concerned, the above conditions translate

into

l1 ≡ −αj1 (mod qj), j = 1, 2, . . . , n.

This system of simultaneous congruences has a solution by the Chinese

Remainder Theorem, because q1, q2, . . . , qn are pairwise relatively prime.

Analogously, each of the systems of congruences

l2 ≡ −αj2 (mod qj), j = 1, 2, . . . , n
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l3 ≡ −αj3 (mod qj), j = 1, 2, . . . , n

. . .

lk ≡ −αjk (mod qj), j = 1, 2, . . . , n

is solvable by the same reason. Take l1, l2, . . . , lk such that all these con-

gruences are satisfied. Multiplying each ai by b = pl1
1 p

l2
2 . . . p

lk
k yields a

set {ba1, ba2, . . . , ban} consisting of perfect powers (more exactly, bai is a

perfect qi-th power).

Remarks. 1) The following problem is a direct consequence of the above

result:

Prove that for every positive integer n there exists a set of n positive

integers such that the sum of the elements of each of its nonempty subsets

is a perfect power.

(Korean proposal for the 33rd IMO)

Indeed, let {x1, x2, . . . , xm} be a finite set of positive integers and

S1, S2, . . . , Sr the element sums of its nonempty subsets (r = 2m − 1).

Choose a b so that bS1, bS2, . . . , bSr are all perfect powers. Then the set

{bx1, bx2, . . . , bxm} yields the desired example.

2) Another consequence is the following: There are arithmetic progres-

sions of arbitrary finite length consisting only of powers. Yet, no such infi-

nite progression exists.

12.7 Numerical systems

Problem 1.7.12. The natural number A has the following property: the

sum of the integers from 1 to A, inclusive, has decimal expansion equal to

that of A followed by three digits. Find A.

(1999 Russian Mathematical Olympiad)

Solution. We know that

k = (1 + 2 + · · · +A) − 1000A

=
A(A+ 1)

2
− 1000A = A

(
A+ 1

2
− 1000

)

is between 0 and 999, inclusive. If A < 1999 then k is negative. If A ≥ 2000

then
A+ 1

2
− 1000 ≥ 1

2
and k ≥ 1000. Therefore A = 1999, and indeed

1 + 2 + · · · + 1999 = 1999000.
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Problem 1.7.13. A positive integer is said to be balanced if the number

of its decimal digits equals the number of its distinct prime factors. For

instance, 15 is balanced, while 49 is not. Prove that there are only finitely

many balanced numbers.

(1999 Italian Mathematical Olympiad)

Solution. Let p1 = 2, p2 = 3, . . . be the sequence of primes. If x is

balanced and it has n numbers, then

10n ≥ p1p2 . . . pn ≥ 2 · 3 · 5 . . . (2n− 1) > 2 · 2 · 4 . . . (2n− 2) > (n− 1)!,

which implies that n is bounded and so is x, since x ≤ 10n.

Problem 1.7.14. Let p ≥ 5 be a prime and choose k ∈ {0, . . . , p −
1}. Find the maximum length of an arithmetic progression, none of whose

elements contain the digit k when written in base p.

(1997 Romanian Mathematical Olympiad)

Solution. We show that the maximum length is p − 1 if k 6= 0 and p

is k = 0. In a p-term arithmetic progression, the lowest nonconstant digit

takes all values from 0 to p − 1. This proves the upper bound for k 6= 0,

which is also a lower bound because of the sequence 1, . . . , p− 1. However,

for k = 0, it is possible that when 0 occurs, it is not actually a digit in the

expansion but rather a leading zero. This can only occur for the first term

in the progression, so extending the progression to p+1 terms would cause

an honest zero to appear. Thus the upper bound for k = 0 is p, and the

sequence 1, p+ 1, . . . , (p− 1)p+ 1 shows that it is also a lower bound.

Problem 1.7.15. How many 10-digit numbers divisible by 66667 are

there whose decimal representation contains only the digits 3, 4, 5, and 6?

(1999 St. Petersburg City Mathematical Olympiad)

Solution. Suppose that 66667n had 10 digits, all of which were 3, 4, 5,

and 6. Then

3333333333 ≤ 66667n ≤ 6666666666 ⇒ 50000 ≤ n ≤ 99999.

Now consider the following cases:

(i) n ≡ 0 (mod 3). Then

66667n =
2

3
n · 105 +

1

3
n,
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the five digits of 3 · n
3

followed by the five digits of
n

3
. These digits are all

3, 4, 5, or 6 if and only if
n

3
= 33333 and n = 99999.

(ii) n ≡ 1 (mod 3). Then

66667n =
2

3
(n− 1) · 105 +

1

3
(n+ 2) + 66666,

the five digits of
2

3
(n− 1) followed by the five digits of

1

3
(n+ 2) + 66666.

Because
1

3
(n + 2) + 66666 must be between 66667 and 99999, its digits

cannot be 3, 4, 5, or 6. Hence there are no satisfactory n ≡ 1 (mod 3).

(iii) n ≡ 2 (mod 3). Let a =
1

3
(n− 2). Then

66667n =

(
2

3
(n− 2) + 1

)

· 105 +
1

3
(n− 2) + 33334,

the five digits of x = 2a+1 followed by the five digits of y = a+33334. The

units digits in x and y are between 3 and 6 if and only if the units digit in

a is 1 or 2. In this case the other digits in x and y are all between 3 and

6 if and only if the other digits in a are 2 or 3. Thus there are thirty-two

satisfactory a - we can choose each of its five digits from two options - and

each a corresponds to a satisfactory n = 3a+ 2.

Therefore there is exactly one satisfactory n ≡ 0 (mod 3), and thirty-two

satisfactory n ≡ 2 (mod 3) - making a total of thirty-three values of n and

thirty-three ten-digit numbers.

Problem 1.7.16. Call positive integers similar if they are written using

the same set of digits. For example, for the set 1, 1, 2, the similar numbers

are 112, 121 and 211. Prove that there exist 3 similar 1995-digit numbers

containing no zeros, such that the sum of two them equals the third.

(1995 Russian Mathematical Olympiad)

Solution. Noting that 1995 is a multiple of 3, we might first trying to find

3 similar 3-digit numbers such that the sum of two of them equals the third.

There are various digits arrangements to try, one of which is abc+acb = cba.

The middle column must have a carry or else we would have c = 0 and no

integer can begin with a 0. If there is a carry, we must have c = 9, which

implies a = 4 by looking at the first column. From the third column, we

find b = 5 and discover that indeed 459 + 495 = 954. Now to solve the

original problem, simply write 459 . . .459+495 . . .495 = 954 . . .954, where

each three-digit number is repeated 1995/3 times.
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Problem 1.7.17. Let k and n be positive integers such that

(n+ 2)n+2, (n+ 4)n+4, (n+ 6)n+6, . . . , (n+ 2k)n+2k

end in the same digit in decimal representation. At most how large is k?

(1995 Hungarian Mathematical Olympiad)

Solution. We cannot have k ≥ 5, since then one of the terms would be

divisible by 5 and so would end in a different digit than those not divisible

by 5. Hence k ≤ 4. In fact, we will see that k = 3 is best possible.

Since x5 ≡ x (mod 10) for all x, xx (mod 10) only depends on x

(mod 20). Hence it suffices to tabulate the last digit of xx for x = 0, . . . , 19

and look for the longest run. For the evens, we get

0, 4, 6, 6, 6, 0, 6, 6, 6, 4

while for the odds we get

1, 7, 5, 3, 9, 1, 3, 5, 7, 9.

Clearly a run of 3 is best possible.

Problem 1.7.18. Let

1996∏

n=1

(1 + nx3n

) = 1 + a1x
k1 + a2x

k2 + · · · + amx
km ,

where a1, a2, . . . , am are nonzero and k1 < k2 < · · · < km, Find a1996.

(1996 Turkish Mathematical Olympiad)

Solution. Note that ki is the number obtained by writing i in base 2 and

reading the result as a number in base 3, and ai is the sum of the exponents

of the powers of 3 used. In particular, 1996 = 210+29+28+27+26+23+22,

so

a1996 = 10 + 9 + 8 + 7 + 6 + 3 + 2 = 45.

Problem 1.7.19. For any positive integer k, let f(k) be the number of

element in the set {k + 1, k + 2, . . . , 2k} whose base 2 representation has

precisely three 1s.

a) Prove that, for each positive integer m, there exists at least one positive

integer k, such that f(k) = m.

b) Determine all positive integers m for which there exists exactly one k

with f(k) = m.



12.7. NUMERICAL SYSTEMS 257

(35th IMO)

Solution. a) Let g : N → N be the function defined as follows: g(k) is

the number of elements in the set {1, 2, . . . , k} having three digits 1 in their

binary representation. The following equalities are obvious:

f(k) = g(2k)− g(k)

and

f(k + 1) − f(k) = g(2k + 2) − g(2k) − (g(k + 1) − g(k)).

The binary representation of 2k + 2 is obtained by adding a final 0 in

the binary representation of k + 1. Thus, we have the following result:

f(k + 1) − f(k) =







1 if binary representation of 2k + 1

contains three digits 1

0 otherwise

(1)

It proves that the function f increases with at most a unit from k to

k + 1.

Since g(2n) =

(
n

3

)

and f(2n) =

(
n+ 1

3

)

−
(
n

3

)

=

(
n

2

)

, it follows that

f is unbounded function. If combine with the above property and observe

that f(4) = 1 one obtains that the range of f is the set of all positive

integers.

b) Let suppose that the equation f(k) = m has a unique solution. It

follows that

f(k + 1) − f(k) = f(k) − f(k + 1) = 1.

By (1), it follows that binary representations of 2k+1 and 2k−1 contain

three digits 1. Then the binary representation of k contains two digits 1.

From 2k − 1 = 2(k − 1) + 1 one obtains that the binary representation of

k − 1 also contains two digits 1. Hence, the last digit of k − 1 is 1 and the

last but one digit is 0. Thus, k − 1 = 2n + 1 and k = 2n + 2, where n ≥ 2.

For such a number we have:

f(2n + 2) = g(2n+1 + 4) − g(2n + 2) = 1 + g(2n+1) − g(2n) = 1 +

(
n

2

)

.

Thus, we have proved that the equation f(k) = m has unique solution if

and only if m is a number of the form m = 1 +

(
n

2

)

, n ≥ 2.

Problem 1.7.20. For each positive integer n, let S(n) be the sum of

digits in the decimal representation of n. Any positive integer obtained by
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removing several (at least one) digits from the right-hand end of the decimal

representation of n is called a stump of n. Let T (n) be the sum of all stumps

of n. Prove that n = S(n) + 9T (n).

(2001 Asian Pacific Mathematical Olympiad)

Solution. Let di be the digit associated with 10i in the base 10 repre-

sentation of n, so that n = dmdm−1 . . . d0 for some integer m ≥ 0 (where

dm 6= 0). The stumps of n are

m∑

j=k

dj10j−k for k = 1, 2, . . . ,m, and their

sum is

T (n) =

m∑

k=1

m∑

j=k

dj10j−k =

m∑

j=1

dj

j
∑

k=1

10j−k

=

m∑

j=1

dj

j−1
∑

k=0

10k =

m∑

j=1

dj
10j − 1

10 − 1
.

Hence,

9T (n) =
m∑

j=1

dj(10j − 1) =
m∑

j=1

10jdj −
m∑

j=1

dj

=

m∑

j=0

10jdj −
m∑

j=0

dj = n− S(n),

as desired.

Problem 1.7.21. Let p be a prime number and m be a positive integer.

Show that there exists a positive integer n such that there exist m consec-

utive zeroes in the decimal representation of pn.

(2001 Japanese Mathematical Olympiad)

Solution. It is well-known that if gcd(s, t) = 1, then sk ≡ 1 (mod t) for

some k: indeed, of all the positive powers of s, some two sk1 < sk2 must be

congruent modulo t, and then sk2−k1 ≡ 1 (mod t).

First suppose that p 6= 2, 5. Then gcd(p, 10m+1) = 1, so there exists such

k that pk ≡ 1 (mod 10m+1). Then pk = a · 10m+1 + 1, so there are m

consecutive zeroes in the decimal representation of pk.

Now suppose that p = 2. We claim that for any a, some power of 2 has

the following final a digits: a−⌈log 2a⌉ zeroes, followed by the ⌈log 2a⌉ digits

of 2a. Because gcd(2, 5a) = 1, there exists k such that 2k ≡ 1 (mod 5a).
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Let b = k + a. Then 2b ≡ 2a (mod 5a), and 2b ≡ 0 ≡ 2a (mod 2a). Hence,

2b ≡ 2a (mod 10a). Because 2a < 10a, it follows that 2b has the required

property.

Now, simply choose a such that a−⌈log 2a⌉ ≥ m (for instance, we could

choose a =

⌈
m+ 1

1 − log 2

⌉

). Then 2b contains at least m consecutive zeroes,

as desired.

Finally, the case p = 5 is done analogously to the case p = 2.

Remark. Actually, the property holds for every integer p ≥ 2. If p is

a power of 2, it is trivial. Otherwise, one can prove using Kronecker1’s

theorem (stating that for α ∈ R \ Q the set of {nα} with n ∈ N is dense

in [0, 1]) that the numbers pn can start with any combination of digits we

may need, in particular with 1 00 . . .0
︸ ︷︷ ︸

m times

.

Problem 1.7.22. Knowing 229 is an 9-digit number whose digits are

distinct, without computing the actual number determine which of the ten

digits is missing. Justify your answer.

Solution. It is not difficult to see that, when divided by 9, the remainder

is 5. The ten-digit number containing all digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 is

a multiple of 9, because the sum of its digits has this property. So, in our

nine-digit number, 4 is missing.

Problem 1.7.23. It is well known that the divisibility tests for division

by 3 and 9 do not depend on the order of the decimal digits. Prove that 3

and 9 are the only positive integers with this property. More exactly, if an

integer d > 1 has the property that d|n implies d|n1, where n1 is obtained

from n through an arbitrary permutation of its digits, then d = 3 or d = 9.

Solution. Let d be a k-digit number. Then among the (k + 2)-digit

numbers starting with 10 there is at least one that is divisible by d. Denote

it by 10a1a2 . . . ak. The assumption implies that both numbers a1a2 . . . ak10

and a1a2 . . . ak01 are divisible by d, and then so is their difference. This

difference equals 9 and the proof is finished, since d may only be some

divisor of 9.

Remark. The following problem given in an old Russian Mathematical

Olympiad is much more restrictive and difficult:

1Leopold Kronecker (1823-1891), German mathematician with important contribu-

tions in the theory of equations. He made major contributions in elliptic functions and

the theory of algebraic numbers.
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Suppose that d > 1 has the property that d|n implies d|n1 where n1 is

obtained from n by reversing the order of its digits. Then d|99. Try to solve

this problem.
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13

Powers of Integers

13.1 Perfect squares

Problem 2.1.14. Let x, y, z be positive integers such that

1

x
− 1

y
=

1

z
.

Let h be the greatest common divisor of x, y, z. Prove that hxyz and

h(y − x) are perfect squares.

(1998 United Kingdom Mathematical Olympiad)

Solution. Let x = ha, y = hb, z = hc. Then a, b, c are positive integers

such that gcd(a, b, c) = 1. Let gcd(a, b) = g. So a = ga′, b = gb′ and a′ and

b′ are positive integers such that

gcd(a′, b′) = gcd(a′ − b′, b′) = gcd(a′, a′ − b′) = 1.

We have

1

a
− 1

b
=

1

c
⇔ c(b− a) = ab ⇔ c(b′ − a′) = a′b′g.

So g|c and gcd(a, b, c) = g = 1. Therefore gcd(a, b) = 1 and gcd(b −
a, ab) = 1. Thus b− a = 1 and c = ab. Now

hxyz = h4abc = (h2ab)2 and h(y − x) = h2
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are both perfect squares, as desired.

Problem 2.1.15. Let b an integer greater than 5. For each positive in-

teger n, consider the number

xn = 11 . . . 1
︸ ︷︷ ︸

n−1

22 . . . 2
︸ ︷︷ ︸

n

5,

written in base b. Prove that the following condition holds if and only if

b = 10: There exists a positive integer M such that for every integer n

greater than M , the number xn is a perfect square.

(44th IMO Shortlist)

Solution. Assume that b ≥ 6 has the required property. Consider the

sequence yn = (b − 1)xn. From the definition of xn we easily find that

yn = b2n + bn+1 + 3b− 5.

Then ynyn+1 = (b − 1)2xnxn+1 is a perfect square for all n > M . Also,

straightforward calculation implies

(

b2n+1 +
bn+2 + bn+1

2
− b3

)2

< ynyn+1 <

(

b2n+1 +
bn+2 + bn+1

2
+ b3

)2

.

Hence for every n > M there is an integer an such that |an| < b3 and

ynyn+1 = (b2n + bn+1 + 3b− 5)(b2n+2 + bn+2 + 3b− 5)

=

(

b2n+1 +
bn+1(b+ 1)

2
+ an

)2

. (1)

Now considering this equation modulo bn we obtain (3b − 5)2 ≡ a2
n, so

that assuming that n > 3 we get an = ±(3b− 5).

If an = 3b− 5, then substituting in (1) yields

1

4
b2n(b4 − 14b3 + 45b2 − 52b+ 20) = 0,

with the unique positive integer solution b = 10. Also, if an = −3b+ 5, we

similarly obtain

1

4
(b4 − 14b3 − 3b2 + 28b+ 20) − 2bn+1(3b2 − 2b− 5) = 0

for each n, which is impossible.
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For b = 10 it is easy to show that xn =

(
10n + 5

3

)2

for all n. This proves

the statement.

Second solution. In problems of this type, computing zn =
√
xn asymp-

totically usually works.

From lim
n→∞

b2n

(b − 1)xn
= 1 we infer that lim

n→∞
bn

zn
=

√
b− 1. Furthermore,

from

(bzn + zn+1)(bzn − zn+1) = b2xn − xn+1 = bn+2 + 3b2 − 2b− 5

we obtain

lim
n→∞

(bzn − zn+1) =
b
√
b− 1

2
.

Since the zn’s are integers for all n ≥M , we conclude that

bzn − zn+1 =
b
√
b − 1

2

for all n sufficiently large. Hence b− 1 is a perfect square, and moreover b

divides 2zn+1 for all large n. It follows that b|10; hence the only possibility

is b = 10.

Problem 2.1.16. Do there exist three natural numbers greater than 1,

such that the square of each, minus one, is divisible by each of the others?

(1996 Russian Mathematical Olympiad)

Solution. Such integers do not exist. Suppose a ≥ b ≥ c satisfy the

desired condition. Since a2 − 1 is divisible by b, the numbers a and b are

relatively prime. Hence the number c2 − 1, which is divisible by a and b,

must be a multiple of ab, so in particular c2 − 1 ≥ ab. But a ≥ c and b ≥ c,

so ab ≥ c2, a contradiction.

Problem 2.1.17. (a) Find the first positive integer whose square ends

in three 4’s.

(b) Find all positive integers whose squares end in three 4’s.

(c) Show that no perfect square ends with four 4’s.

(1995 United Kingdom Mathematical Olympiad)

Solution. It is easy to check that 382 = 1444 is the first positive integer

whose square ends in three 4’s. Now let n be any such positive integer.

Then n2 − 382 = (n − 38)(n+ 38) is divisible by 1000 = 23 · 53. Hence at

least one of n− 38, n+ 38 is divisible by 4, and thus both are, since their
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difference is 76 = 4 · 19. Since 5 ∤ 76, then 5 divides only one of the two

factors. Consequently n− 38 or n+ 38 is a multiple of 4 · 53 = 500, so we

have n = 500k ± 38. It is easy to check that the square of all numbers of

this form (where k is a positive integer) end in three 4’s.

Note that c) follows from Problem ??.

Problem 2.1.18. Let m,n be a natural numbers and m + i = aib
2
i for

i = 1, 2, . . . , n, where ai and bi are natural numbers and ai is squarefree.

Find all values of n for which there exists m such that a1+a2+· · ·+an = 12.

(1997 Bulgarian Mathematical Olympiad)

Solution. Clearly n ≤ 12. That means at most three of the m + i are

perfect squares, and for the others, ai ≥ 2, so actually n ≤ 7.

We claim ai 6= aj for i = j. Otherwise, we would have m + i = ab2i
and m + j = ab2j , so 6 ≥ n − 1 ≥ (m + j) − (m + i) = a(b2j − b2i ). This

leaves the possibilities (bi, bj , a) = (1, 2, 2) or (2, 3, 1), but both of those

force a1 + · · · + an > 12.

Thus the a’s are a subset of {1, 2, 3, 5, 6, 7, 10, 11}. Thus n ≤ 4, with

equality only if {a1, a2, a3, a4} = {1, 2, 3, 6}. But in that case,

(6b1b2b3b4)
2 = (m+ 1)(m+ 2)(m+ 3)(m+ 4) = (m2 + 5m+ 5)2 − 1,

which is impossible. Hence n = 2 or n = 3. One checks that the only

solutions are then

(m,n) = (98, 2), (3, 3).

Problem 2.1.19. For each positive integer n, denote by s(n) the greatest

integer such that for all positive integer k ≤ s(n), n2 can be expressed as a

sum of squares of k positive integers.

(a) Prove that s(n) ≤ n2 − 14 for all n ≥ 4.

(b) Find a number n such that s(n) = n2 − 14.

(c) Prove that there exist infinitely many positive integers n such that

s(n) = n2 − 14.

(33rd IMO)

Solution. (a) Representing n2 as a sum of n2 − 13 squares is equivalent

to representing 13 as a sum of numbers of the form x2 − 1, x ∈ N, such
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as 0, 3, 8, 15, . . . But it is easy to check that this is impossible, and hence

s(n) ≤ n2 − 14.

(b) Let us prove that s(13) = 132 − 14 = 155. Observe that

132 = 82 + 82 + 42 + 42 + 32

= 82 + 82 + 42 + 42 + 22 + 22 + 12

= 82 + 82 + 42 + 32 + 32 + 22 + 12 + 12 + 12.

Given any representation of n2 as a sum of m squares one of which is

even, we can construct a representation as a sum of m + 3 squares by

dividing the odd square into four equal squares. Thus the first equality

enables us to construct representations with 5, 8, 11, . . . , 155 squares, the

second to construct ones with 7, 10, 13, . . . , 154 squares, and the third with

9, 12, . . . , 153 squares. It remains only to represent 132 as a sum of k =

2, 3, 4, 6 squares. This can be done as follows:

132 = 122 + 52 = 122 + 42 + 32

= 112 + 42 + 42 + 42

= 122 + 32 + 22 + 22 + 22 + 22.

(c) We shall prove that whenever s(n) = n2− 14 for some n ≥ 13, it also

holds that s(2n) = (2n)2 − 14. This will imply that s(n) = n2 − 14 for any

n = 2t · 13.

If n2 = x2
1 + · · · + x2

r , then we have (2n)2 = (2x1)
2 + · · · + (2xr)

2.

Replacing (2xi)
2 with x2

i + x2
i + x2

i + x2
i as long as it is possible we can

obtain representations of (2n)2 consisting of r, r + 3, . . . , 4r squares. This

gives representations of (2n)2 into k squares for any k ≤ 4n2− 62. Further,

we observe that each number m ≥ 14 can be written as a sum of k ≥ m

numbers of the form x2 − 1, x ∈ N, which is easy to verify. Therefore if

k ≤ 4n2 − 14, it follows that 4n2 − k is a sum of k numbers of the form

x2−1 (since k ≥ 4n2−k ≥ 14), and consequently 4n2 is a sum of k squares.

Remark. One can find exactly the value of s(n) for each n:

s(n) =







1, if n has a prime divisor congruent to 3 mod 4,

2, if n is of the form 5 · 2k, k a positive integer,

n2 − 14, otherwise.

Problem 2.1.20. Let A be the set of positive integers representable in

the form a2 + 2b2 for integers a, b with b 6= 0. Show that if p2 ∈ A for a

prime p, then p ∈ A.
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(1997 Romanian IMO Team Selection Test)

Solution. The case p = 2 is easy, so assume p > 2. Note that if p2 =

a2 + 2b2, then 2b2 = (p − a)(p + a), In particular, a is odd, and since a

cannot be divisible by p, gcd(p−a, p+a) = gcd(p−a, 2p) = 2. By changing

the sign of a, we may assume p− a is not divisible by 4, and so

|p+ a| = m2, |p− a| = 2n2

Since |a| < |p|, both p + a and p − a are actually positive, so we have

2p = m2 + 2n2, so p = n2 + 2(m/2)2.

Problem 2.1.21. Is it possible to find 100 positive integers not exceeding

25000 such that all pairwise sums of them are different?

(42nd IMO Shortlist)

Solution. Yes. The desired result is an immediate consequence of the

following fact applied on p = 101.

Lemma. For any odd prime number p, there exist p nonnegative integers

less than 2p2 with all pairwise sums mutually distinct.

Proof. We claim that the numbers an = 2np + (n2) have the desired

property, where (x) denotes the remainder of x upon division by p.

Suppose that ak + al = am + an. By the construction of ai, we have

2p(k + l) ≤ ak + al ≤ 2p(k + l + 1).

Hence we must have k + l = m+ n, and therefore also

(k2) + (l2) = (m2) + (n2).

Thus

k + l ≡ m+ n and k2 + l2 ≡ m2 + n2 (mod p).

But then it holds that

(k − l)2 = 2(k2 + l2) − (k + l)2 ≡ (m− n)2 (mod p),

so k− l ≡ ±(m−n), which leads to (k, l) = (m,n). This proves the lemma.

Problem 2.1.22. Do there exist 10 distinct integers, the sum of any 9

of which is a perfect square?

(1999 Russian Mathematical Olympiad)
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Solution. Yes, there do exist 10 such integers. Write S = a1 +a2 + · · ·+
a10, and consider the linear system of equations

S − a1 = 9 · 12

S − a2 = 9 · 22

. . .

S − a10 = 9 · 102.

Adding all these gives

9S = 9 · (12 + 22 + · · · + 102)

so that

ak = S − 9k2 = 12 + 22 + · · · + 102 − 9k2.

Then all the ak’s are distinct integers, and any nine of them add up to

a perfect square.

Problem 2.1.23. Let n be a positive integer such that n is a divisor of

the sum

1 +

n−1∑

i=1

in−1

Prove that n is square-free.

(1995 Indian Mathematical Olympiad)

Solution. If n = mp2 for some prime p, then

1 +

n−1∑

i=1

in−1 = 1 +

p−1
∑

j=0

mp−1
∑

k=0

(kp+ j)n−1

≡ 1 + (mp)





p−1
∑

j=0

jn−1



 ≡ 1 (mod p)

and the sum is not even a multiple of p. Hence if the sum is a multiple of n,

n must have no repeated prime divisors, or equivalently no square divisors

greater than 1.

Remark. The famous Giuga’s conjecture states that if n > 1 verifies

n|1 +

n−1∑

i=1

in−1, then n is a prime.
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The reader can prove instead that for any such n we have: for any prime

divisor p of n, p− 1|n
p
− 1 and p|n

p
− 1.

Problem 2.1.24. Let n, p be integers such that n > 1 and p is a prime.

If n|(p− 1) and p|(n3 − 1), show that 4p− 3 is a perfect square.

(2002 Czech-Polish-Slovak Mathematical Competition)

Solution. From n|p− 1 it follows p− 1 ≥ n and p > n. Because

p|n3 − 1 = (n− 1)(n2 + n+ 1)

we get p|n2 + n+ 1, i.e. pk = n2 + n+ 1 for some positive integer k.

On the other hand n|p− 1 implies p ≡ 1 (mod n) and pk ≡ k (mod n).

We obtain n2 + n+ 1 ≡ k (mod n), hence k ≡ 1 (mod n).

It follows that p = an+ 1, k = bn+ 1 for some integers a > 0, b ≥ 0. We

can write

(an+ 1)(bn+ 1) = n2 + n+ 1,

so

abn2 + (a+ b)n+ 1 = n2 + n+ 1

i.e.

abn+ (a+ b) = n+ 1.

If b ≥ 1, then abn+(a+b) ≥ n+2 > n+1. So b = 0, k = 1, p = n2+n+1.

Therefore

4p− 3 = 4n2 + 4n+ 4 − 3 = 4n2 + 4n+ 1 = (2n+ 1)2.

Problem 2.1.25. Show that for any positive integer n > 10000, there

exists a positive integer m that is a sum of two squares and such that

0 < m− n < 3 4
√
n.

(Russian Mathematical Olympiad)

Solution. We have a2 < n ≤ (a + 1)2 for some integer a ≥ 100. If we

write n = a2 +k, this means that k ≤ 2a+1. We want m = a2+b2 for some

integer b. The condition 0 < m−n < 3 4
√
n becomes k < b2 < k+3 4

√
a2 + k.

We will show that

b =

{ √
k + 1 if k is a perfect square

⌈
√
k⌉ if k is a perfect square

will work.
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Note that in both cases, k < b2 ≤ (
√
k + 1)2. Thus we want

(
√
k + 1)2 < k + 3

4
√

a2 + k

2
√
k + 1 < 3

4
√

a2 + k

4k + 4
√
k + 1 < 9

√

a2 + k.

Since k ≤ 2a+ 1, it is sufficient to prove

4(2a+ 1) + 4
√

2a+ 1 + 1 < 9a

a > 4
√

2a+ 1 + 5

a2 − 10a+ 25 > 16(2a+ 1)

a2 − 42a+ 9 > 0.

Because a2 − 42a+ 9 = a(a− 42) + 9, this last inequality is clearly true

for a ≥ 100.

Problem 2.1.26. Show that a positive integer m is a perfect square if

and only if for each positive integer n, at least one of the differences

(m+ 1)2 −m, (m+ 2)2 −m, . . . , (m+ n)2 −m

is divisible by n.

(2002 Czech and Slovak Mathematical Olympiad)

Solution. First, assume that m is a perfect square. If m = a2, then

(m+ c)2 −m = (m+ c)2 − a2 = (m+ c+ a)(m+ c− a).

Clearly, there exists some c, with 1 ≤ c ≤ n, for which m + c + a is

divisible by n. Thus, one of the given differences is divisible by n if m is a

perfect square.

Now, we assume that m is not a perfect square and show that there

exists n for which none of the given differences is divisible by n. Clearly,

there exist a prime p and positive integer k such that p2k−1 is the highest

power of p which divides m. We may let m = bp2k−1, with b and p being

relatively prime. Furthermore, pick n = p2k. For the sake of contradiction,

assume there exists a positive integer c for which (m+ c)2 −m is divisible

by n. By expanding (m+ c)2 −m, we note that

p2k|(2bcp2k−1 + c2 − bp2k−1)
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If p2k divides the quantity, then so does p2k−1. Thus, p2k−1|c2 and so

pk|c. Let c = rpk. Then, we have

p2k|(2brp3k−1 + r2p2k − bp2k−1)

However, this implies that p|b, which contradicts the original assumption

that b and p are relatively prime. Therefore, if m is not a perfect square, n

may be chose so that none of the given differences are divisible by n. This

completes the proof.

13.2 Perfect cubes

Problem 2.2.5. Find all the positive perfect cubes that are not divisible

by 10 so that the number obtained by erasing the last three digits is also a

perfect cube.

Solution. We have (10m + n)3 = 1000a3 + b, where 1 ≤ n ≤ 9 and

b < 1000.

The equality gives

(10m+ n)3 − (10a)3 = b < 1000,

so

(10m+ n− 10a)[(10m+ n)2 + (10m+ n) · 10a+ 100a2] < 1000.

As (10m+n)2+(10m+n)·10a+100a2 > 100, we obtain 10m+n−10a <

10, hence m = a.

If m ≥ 2, then n(300m2 + 30mn+ n2) > 1000 false.

Then m = 1 and n(300 + 30n+ n2) < 1000, hence n ≤ 2. For n = 2, we

obtain 123 = 1728 and for n = 1 we get 113 = 1331.

Problem 2.2.6. Find all positive integers n less than 1999 such that n2

is equal to the cube of the sum of n’s digits.

(1999 Iberoamerican Mathematical Olympiad)

Solution. In order for n2 to be a cube, n must be a cube itself. Because

n < 1000 we must have n = 13, 23, . . . , or 93. Quick checks show that n = 1

and n = 27 work while n = 8, 64, and 125 don’t. As for n ≥ 63 = 216,

we have n2 ≥ 2162 > 272. However, the sum of n’s digits is at most

9 + 9 + 9 = 27, implying that no n ≥ 63 has the desired property. Thus

n = 1, 27 are the only answers.
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Problem 2.2.7. Prove that for any non-negative integer n the number

A = 2n + 3n + 5n + 6n

is not a perfect cube.

Solution. We will use modular arithmetic. A perfect cube has the form

7k, 7k + 1, or 7k − 1, since

(7x+ 1)3 ≡ (7x+ 2)3 = (7x+ 4)3 ≡ 1 (mod 7),

and

(7x+ 3)3 ≡ (7x+ 5)3 ≡ (7x+ 6)3 ≡ −1 (mod 7).

Now observe that

26 = 43 ≡ 1 (mod 7)

36 = 93 ≡ 23 ≡ 1 (mod 7)

56 = (−2)6 = 26 ≡ 1 (mod 7)

66 ≡ (−1)6 ≡ 1 (mod 7).

It follows that 26k ≡ 36k ≡ 57k ≡ 66k ≡ 1 (mod 7).

Denote an = 2n + 3n + 5n + 6n for n ≥ 0. Set n = 6k + r, with r ∈
{0, 1, 2, 3, 4, 5, 6}. As 2n ≡ 2r (mod 7), 3n ≡ 3r (mod 7), 5n ≡ 5r (mod 7),

and 6n ≡ 6r (mod 7) we have an ≡ ar (mod 7).

It is easy to observe that a0 ≡ a2 ≡ a6 ≡ 4 (mod 7), a1 ≡ a4 ≡ 2

(mod 7) and a3 ≡ 5 (mod 7). Therefore, an is not a perfect cube.

The actual representations are given by (1) and

6n+ 1 = 6n+ 13

6n+ 2 = 6(n− 1) + 23

6n+ 3 = 6(n− 4) + 33

6n+ 4 = 6(n+ 1) + (−2)3

6n+ 5 = 6(n+ 1) + (−1)3.

Problem 2.2.8. Prove that any integer is a sum of five cubes.

Solution. For any integer n we have the identity

6n = (n+ 1)3 + (n− 1)3 + (−n)3 + (−n)3. (1)

For an arbitrary integer m we choose the integer v such that v3 ≡ m

(mod 6). It follows that m − v3 = 6n for some integer n and we apply

identity (1).
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Problem 2.2.9. Show that any rational number can be written as a sum

of three cubes.

Solution. Let n be a rational number. We are looking for a relation of

the form

a3(x) + b3(x) = c3(x) + αx,

where a, b, c are rational functions and α ∈ Q.

Let ε = cos
2π

3
+ i sin

2π

3
. We have

a3(x) + b3(x) = (a(x) + b(x))(a(x) + εb(x))(a(x) + ε2b(x))

and consider {

a(x) + εb(x) = (x − ε)3

a(x) + ε2b(x) = (x− ε2)3

Solving the above system in terms of a(x) and b(x) we derive the identity

(
1 + 3x− x3

1 + x+ x2

)3

+

(
3x2 + 3x

x2 + x+ 1

)3

+ (x − 1)3 = 9x,

and the desired conclusion follows dividing by 9.

Remark. There are rational numbers which are not sum of two cubes.

We suggest to the reader to find a such example.

13.3 k
th powers of integers, k ≥ 4

Problem 2.3.6. Let p be a prime number and a, n positive integers.

Prove that if

2p + 3p = an,

then n = 1.

(1996 Irish Mathematical Olympiad)

Solution. If p = 2, we have 22 + 32 = 13 and n = 1. If p > 2, then p is

odd, so 5 divides 2p + 3p and so 5 divides a. Now if n > 1, then 25 divides

an and 5 divides

2p + 3p

2 + 3
= 2p−1 − 2p−2 · 3 + · · · + 3p−1 ≡ p2p−1 (mod 5),

a contradiction if p 6= 5. Finally, if p = 5, then 25+35 = 753 is not a perfect

power, so n = 1 again.
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Problem 2.3.7. Let x, y, p, n, k be natural numbers such that

xn + yn = pk.

Prove that if n > 1 is odd, and p is an odd prime, then n is a power of p.

(1996 Russian Mathematical Olympiad)

Solution. Let m = gcd(x, y). Then x = mx1, y = my1 and by virtue of

the given equation, mn(xn
1 +yn

1 ) = pk, and so m = pα for some nonnegative

integer α. It follows that

xn
1 + yn

1 = pk−nα. (1)

Since n is odd,

xn
1 + yn

1

x1 + y1
= xn−1

1 − xn−2
1 y1 + xn−3

1 y2
1 − · · · − x1y

n−2
1 + yn−1

1 . (2)

Let A denote the right side of the equation (2). By the condition p > 2,

it follows that at least one of x1, y1 is greater than 1, so since n > 1, A > 1.

From (1) it follows that A(x1 + y1) = pk−nα, so, since x1 + y1 > 1 and

A > 1, both of these numbers are divisible by p; moreover, x1 + y1 = pβ

for some natural number β. Thus

A = xn−1
1 − xn−2

1 (pβ − x1) + · · · − x1(p
β − x1)

n−2 + (pβ − x1)
n−1

= nxn−1
1 +Bp.

Since A is divisible by p and x1 is relatively prime to p, it follows that n

is divisible by p.

Let n = pq. Then xpq + ypq = pk or (xp)q + (yp)q = pk. If q > 1, then

by the same argument, p divides q. If q = 1, then n = p. Repeating this

argument, we deduce that n = pl for some natural number l.

Problem 2.3.8. Prove that a product of three consecutive integers cannot

be a power of an integer.

Solution. Let n be an integer and assume by contradiction that

n(n+ 1)(n+ 2) = xz

for some integers x and z, where z ≥ 2. We note that n(n+2) = (n+1)2−1

and n+ 1 and (n+ 1)2 − 1 are relatively prime. It follows
{

n+ 1 = az

(n+ 1)2 − 1 = bz
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for some integers a and b. It follows a2z − bz = 1, i.e.

(a2 − b)((a2)z−1 + (a2)z−2b+ · · · + bz−1) = 1.

We get a2 − b = 1, hence a2 = b+ 1. The equation (b+ 1)z − bz = 1 has

unique solution z = 1, a contradiction.

Remark. A famous theorem of Erdös and Selfridge, answering a conjec-

ture of more than 150 years, states that the product of consecutive integers

is never a power.

Problem 2.3.9. Show that there exists an infinite set A of positive inte-

gers such that for any finite nonempty subset B ⊂ A,
∑

x∈B

x is not a perfect

power.

(Kvant)

Solution. The set

A = {2n3n+1 : n ≥ 1}

has the desired property. Indeed, if B = {2n13n1+1, . . . , 2nknk+1} is a finite

subset of A, where n1 < · · · < nk, then

∑

x∈B

x = 2n13n1+1(1 + 2n2−n13n2−n1 + · · · + 2nk−n13nk−n1) = 2n13n1+1N,

where gcd(N, 2) = gcd(N, 3) = 1. Taking into account that n1 and n1 + 1

are relatively prime it follows that
∑

x∈B

x is not a perfect power.

Problem 2.3.10. Prove that there is no infinite arithmetic progression

consisting only of powers ≥ 2.

Solution. Assume that we have a such arithmetic progression, an + b,

n = 1, 2, . . . It is well known that

∑

n≥1

1

an+ b
= ∞ (1)

But on the other hand we have

∑

n≥1

1

an+ b
≤
∑

m,s≥2

1

ms
< +∞,

relation contradicting (1).
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14

Floor Function and Fractional Part

14.1 General problems

Problem 3.1.10. Let n be a positive integer. Find with proof a closed

formula for the sum:

⌊
n+ 1

2

⌋

+

⌊
n+ 2

22

⌋

+ · · · +
⌊
n+ 2k

2k+1

⌋

+ . . .

(10th IMO)

Solution. We rewrite the equality as
⌊
n

2
+

1

2

⌋

+

⌊
n

22
+

1

2

⌋

+ · · · +
⌊

n

2k+1
+

1

2

⌋

+ · · · = n,

and use a special case of Hermite’s identity (n = 2):

⌊

x+
1

2

⌋

= ⌊2x⌋ − ⌊x⌋.

This allows us to write the equality as

⌊n⌋ −
⌊n

2

⌋

+
⌊n

2

⌋

−
⌊ n

22

⌋

+ · · · +
⌊ n

2k

⌋

−
⌊ n

2k+1

⌋

+ · · · = n.

The sum telescopes and ⌊n/2k+1⌋ = 0 for large enough k’s.
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Problem 3.1.11. Compute the sum

∑

0≤i<j≤n

⌊
x+ i

j

⌋

,

where x is a real number.

Solution. Denote the sum in question by Sn. Then

Sn − Sn−1 =
⌊x

n

⌋

+

⌊
x+ 1

n

⌋

+ · · · +
⌊
x+ n− 1

n

⌋

=
⌊x

n

⌋

+

⌊
x

n
+

1

n

⌋

+ · · · +
⌊
x

n
+
n− 1

n

⌋

,

and, according to Hermite’s identity,

Sn − Sn−1 =
⌊

n
x

n

⌋

= ⌊x⌋.

Because S1 = ⌊x⌋, it follows that Sn = n⌊x⌋ for all n.

Problem 3.1.12. Evaluate the difference between the numbers

2000∑

k=0

⌊
3k + 2000

3k+1

⌋

and
2000∑

k=0

⌊
3k − 2000

3k+1

⌋

.

Solution. We can write each term of the difference in question as

⌊
1

3
+ vk

⌋

−
⌊

1

3
− vk

⌋

,

where vk = 2000/3k+1. Since −⌊u⌋ = ⌊−u⌋ + 1 for each nonintegral value

of u, and since
1

3
− vk is never an integer, we have to examine the sum

2000∑

k=0

(⌊

vk +
1

3

⌋

+

⌊

vk − 1

3

⌋

+ 1

)

.

Taking n = 3 and x = v − 1

3
in (1) yields

⌊

v +
1

3

⌋

+

⌊

v − 1

3

⌋

+ 1 = ⌊3v⌋ − ⌊v⌋.

Hence the desired difference becomes

2000∑

k=0

(⌊
2000

3k

⌋

−
⌊

2000

3k+1

⌋)
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and telescopes to

⌊2000⌋ −
⌊

2000

3

⌋

+

⌊
2000

3

⌋

−
⌊

2000

32

⌋

+ · · · = 2000.

Problem 3.1.13. a) Prove that there are infinitely many rational posi-

tive numbers x such that:

{x2} + {x} = 0, 99.

b) Prove that there are no rational numbers x > 0 such that:

{x2} + {x} = 1.

(2004 Romanian Mathematical Olympiad)

Solution. a) Since 0, 99 =
99

100
, it is natural to look for a rational x

of the form
n

10
, for some positive integer n. It is not difficult to see that

x =
13

10
satisfies the given equality and then that x = 10k+

13

10
also satisfies

the equality for any positive integer k.

b) Suppose that x =
p

q
, with p, q positive integers, gcd(p, q) = 1, verifies

{x2} + {x} = 1. We can see that
p2 + pq − q2

q2
= x2 + x− 1 ∈ Z, thus q|p2

and since gcd(p, q) = 1, one has q = 1. Thus x ∈ Z and this is obviously

impossible.

Problem 3.1.14. Show that the fractional part of the number
√

4n2 + n

is not greater than 0.25.

(2003 Romanian Mathematical Olympiad)

Solution. From inequalities 4n2 < 4n2 + n < 4n2 + n + 1 one obtains

2n <
√

4n2 + n < 2n + 1. So, ⌊
√

4n2 + n⌋ = 2n. We have to prove that√
4n2 + n < 2n+ 0.25.

This is obvious, since by squaring the inequality one obtains:

4n2 + n < 4n2 + n+
1

16
.

Problem 3.1.15. Prove that for every natural number n,

n2
∑

k=1

{
√
k} ≤ n2 − 1

2
.
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(1999 Russian Mathematical Olympiad)

Solution. We prove the claim by induction on n. For n = 1, we have

0 ≤ 0. Now supposing that the claim is true for n, we prove it is true for

n+ 1.

Each of the numbers
√
n2 + 1,

√
n2 + 2, . . . ,

√
n2 + 2n is between n and

n+ 1. Thus

{
√

n2 + i} =
√

n2 + i− n <

√

n2 + i+
i2

4n2
− n =

i

2n
, i = 1, 2, . . . , 2n.

Therefore we have

(n+1)2
∑

k=1

{
√
k} =

n2
∑

k=1

{
√
k} +

(n+1)2
∑

k=n2+1

{
√
k} < n2 − 1

2
+

1

2n

2n∑

i=1

i+ 0

=
n2 − 1

2
+

2n+ 1

2
=

(n+ 1)2 − 1

2
,

completing the inductive step and the proof.

Problem 3.1.16. The rational numbers α1, . . . , αn satisfy

n∑

i=1

{kαi} <
n

2

for any positive integer k.

(a) Prove that at least one of α1, . . . , αn is an integer.

(b) Do there exist α1, . . . , αn that satisfy

n∑

i=1

{kαi} ≤ n

2
,

such that no αi is an integer?

(2002 Belarus Mathematical Olympiad)

Solution. (a) Assume the contrary. The problem would not change if

we replace αi with {αi}. So we may assume 0 < αi < 1 for all 1 ≤ i ≤ n.

Because αi is rational, let αi =
pi

qi
, andD =

n∏

i=1

qi. Because (D−1)αi+αi =

Dαi is an integer, and αi is not an integer, {(D − 1)αi} + {αi}. Then

1 >

n∑

i=1

{(D − 1)αi} +

n∑

i=1

{αi} =

n∑

i=1

1 = n
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contradiction. Therefore, one of the αi has to be an integer.

(b) Yes. Let αi =
1

2
for all i. Then

n∑

i=1

{kαi} = 0 when k is even and

n∑

i=1

{kαi} =
n

2
when k is odd.

14.2 Floor function and integer points

Problem 3.2.3. Prove that

n∑

k=1

⌊
n2

k2

⌋

=
n2
∑

k=1

⌊
n√
k

⌋

for all integers n ≥ 1.

Solution. Consider the function f : [1, n] → [1, n2],

f(x) =
n2

x2

Note that f is decreasing and bijective and

f−1(x) =
n√
x
.

Using formula in Theorem 3.2.3 we obtain

n∑

k=1

⌊
n2

k2

⌋

−
n2
∑

k=1

⌊
n√
k

⌋

= nα(1) − n2α(1) = 0,

hence
n∑

k=1

⌊
n2

k2

⌋

=

n2
∑

k=1

⌊
n√
k

⌋

, n ≥ 1,

as desired.

Problem 3.2.4. Let θ be a positive irrational number. Then, for any

positive integer m,

m∑

k=1

⌊kθ⌋ +

⌊mθ⌋
∑

k=1

⌊
k

θ

⌋

= m⌊mθ⌋.

Solution. Consider the function f : [1,m] → [θ,mθ], f(x) = θx. Because

θ is irrational, we have n(Gf ) = 0 and the conclusion follows from Theorem

3.2.5
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Problem 3.2.5. Let p and q be relatively prime positive integers and let

m be a real number such that 1 ≤ m < p.

1) If s =

⌊
mq

p

⌋

, then

⌊m⌋
∑

k=1

⌊
kq

p

⌋

+

s∑

k=1

⌊
kp

q

⌋

= ⌊m⌋s.

2) (Landau) If p and q are odd, then

p−1
2∑

k=1

⌊
kq

p

⌋

+

q−1
2∑

k=1

⌊
kp

q

⌋

=
(p− 1)(q − 1)

4
.

Solution. 1) Let f : [1,m] →
[
q

p
,
mq

p

]

, f(x) =
q

p
x. Because gcd(p, q) =

1 and m < p, we have n(Gf ) = 0 and the desired equality follows from

Theorem 3.2.1.

2) In the previous identity we take m =
p

2
. It follows that s =

q − 1

2
and

the conclusion follows.

14.3 An useful result

Problem 3.3.3. Let p be an odd prime and let q be an integer that is

not divisible by p. Shows that

p−1
∑

k=1

⌊

(−1)kk2 q

p

⌋

=
(p− 1)(q − 1)

2
.

Solution. For f : Z∗
+ → R, f(s) = (−1)ss2, conditions i) and ii) in

Theorem 3.3.1 are both satisfied. We obtain

p−1
∑

k=1

⌊

(−1)kk2 q

p

⌋

=
q

p
(−12 + 22 − · · · + (p− 1)2) − p− 1

2

=
q

p
· p(p− 1)

2
− p− 1

2
,

hence
p−1
∑

k=1

⌊

(−1)kk2 q

p

⌋

=
(p− 1)(q − 1)

2
.

Remarks. 1) By taking q = 1 we get

p−1
∑

k=1

⌊

(−1)k k
2

p

⌋

= 0.
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Using now the identity ⌊−x⌋ = 1−⌊x⌋, x ∈ R, the last display takes the

form
p−1
∑

k=1

(−1)k

⌊
k2

p

⌋

=
1 − p

2

2) Similarly, applying Theorem 3.3.1 to f : Z∗
+ → R, f(s) = (−1)ss4

yields
p−1
∑

k=1

⌊

(−1)kk4 q

p

⌋

=
q(p− 1)(p2 − p− 1)

2
− p− 1

2
.

Taking q = 1 gives

p−1
∑

k=1

⌊

(−1)k k
4

p

⌋

=
(p− 2)(p− 1)(p+ 1)

2
.

Problem 3.3.4. Let p be an odd prime. Show that

p−1
∑

k=1

kp − k

p
≡ p+ 1

2
(mod p).

Solution. For f(s) =
sp

p
, conditions i) and ii) in Theorem 3.3.1 are also

satisfied and for q = 1 we have

p−1
∑

k=1

⌊
kp

p2

⌋

=
1

p

p−1
∑

k=1

kp

p
− p− 1

2

=
1

p

p−1
∑

k=1

kp

p
− 1

p2

p−1
∑

k=1

k +
1

p2

p(p− 1)

2
− p− 1

2

=
1

p

p−1
∑

k=1

kp − k

p
− 1

p
· (p− 1)2

2
.

It follows
p−1
∑

k=1

kp − k

p
− (p− 1)2

2
= p

p
∑

k=1

⌊
kp

p2

⌋

,

i.e.
p−1
∑

k=1

kp − k

p
≡ (p− 1)2

2
(mod p).

The conclusion follows since

(p− 1)2

2
≡ p2 + 1

2
≡ p+ 1

2
(mod p).
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Remarks. 1) For each k = 1, 2, . . . , p − 1 denote by rk the remainder

when kp is divided by p2. We have

kp =

⌊
kp

p2

⌋

p2 + rk, k = 1, 2, . . . , p− 1,

hence

p−1
∑

k=1

kp = p2

p−1
∑

k=1

⌊
kp

p2

⌋

+

p−1
∑

k=1

rk = −p
2(p− 1)

2
+

p−1
∑

k=1

rk +

p−1
∑

k=1

kp.

It follows

r1 + r2 + · · · + rp−1 =
p2(p− 1)

2

2) The formula in our problem shows that the sum of the quotients

obtained when kp−k is divided by p (Fermat’s Little Theorem) is congruent

to
p+ 1

2
modulo p.
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15

Digits of Numbers

15.1 The last digits of a number

Problem 4.1.4. In how may zeroes can the number 1n + 2n + 3n + 4n

end for n ∈ N?

(1998 St. Petersburg City Mathematical Olympiad)

Solution. There can be no zeroes (i.e., n = 4), one zero (n = 1) or two

zeroes (n = 2). In fact, for n ≥ 3, 2n and 4n are divisible by 8, while 1n+3n

is congruent to 2 or 4 mod 8. Thus the sum cannot end in 3 or more zeroes.

Problem 4.1.5. Find the last 5 digits of the number 51981.

Solution. First, we prove that 51981 = 55 (mod 105). We have

51981 − 55 = (51976 − 1)55 = 55[(58)247 − 1]

= M[55(58 − 1)] = M[55(54 − 1)(54 + 1)]

= M[55(5 − 1)(5 + 1)(52 + 1)(54 + 1)]

= M5225 = M100, 000.

Therefore 51981 = M100, 000+55 = M100, 000+ 3125, so 03125 are the

last 5 digits of the number 51981.

Problem 4.1.6. Consider all pairs (a, b) of natural numbers such that

the product aabb, written in base 10, ends with exactly 98 zeroes. Find the

pair (a, b) for which the product ab is smallest.
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(1998 Austrian-Polish Mathematics Competition)

Solution. Let a2 be the maximum integer such that 2a2 |a. Define a5, b2,

and b5 similarly. Our taks translates into the following: find a, b such that

min{a5a+ b5b, a2a+ b2b} = 98 and ab is minimal. Since 5|a5a+ b5b, a5a+

b5b > 98 and min{a5a + b5b, a2a + b2b} = a2a + b2b = 98. Note that if

5|gcd(a, b), then a2a+ b2b 6= 98, contradiction. Without loss of generality,

suppose that a5 ≥ 1 and b5 = 0. Let a = 2a25a5x and 2b2y. (gcd(2, x) =

gcd(5, x) = gcd(2, y) = 1.) Then a5a = a5(2
a25a5x) > 98 and a2a =

a2(2
a25a5x) ≤ 98. So a5 > a2. We consider the following cases.

(a) a2 = 0. Then b2(2
b2y) = 98. So b2 = 1, y = 49, b = 98. Since

a5(5
a5x) ≥ 98 and x is odd a = 5a5x ≥ 125 for a5 ≥ 3; x ≥ 3 and a ≥ 75

for a5 = 2; x ≥ 21 and a ≥ 105 for a5 = 1. Hence for a2 = 0, b = 98,

a ≥ 75.

(b) a2 ≥ 1. Then a5 ≥ 2. We have 2a25a5x ≤ 98 and 5a5x ≤ 49. Thus

a5 = 2, x = 1, a2 = 1, a = 50. Then b2b = 48. Let b = 2b2y. Then

b2(2
b2y) = 48, which is impossible.

From the above, we have (a, b) = (75, 98) or (98, 75).

15.2 The sum of the digits of a number

Problem 4.2.7. Show that there exist infinitely many natural numbers

n such that S(3n) ≥ S(3n+1).

(1997 Russian Mathematical Olympiad)

Solution. If S(3n) < S(3n+1) for large n, we have (since powers of 3

are divisible by 9, as are their digit sums) S(3n) ≤ S(3n+1) − 9. Thus

S(3n) ≥ 9(n − c) for some c, which is eventually a contradiction since for

large n, 3n < 10n−c.

Problem 4.2.8. Do there exist three natural numbers a, b, c such that

S(a+ b) < 5, S(b+ c) < 5, S(c+ a) < 5, but S(a+ b+ c) > 50?

(1998 Russian Mathematical Olympiad)

Solution. The answer is yes. It is easier to find a+b, b+c, c+a instead.

Since a+b+c is an integer, their sum 2(a+b+c) must be even; since a, b, c

are positive, they must satisfy the triangle inequality. Finally, a+b+c must

have a digit sum of at least 51.



15.2. THE SUM OF THE DIGITS OF A NUMBER 285

This leads to the solution

a+ b = 100001110000, b+ c = 11110000000, c+ a = 100000001110.

These four numbers have digit sum 4, and

a+ b+ c = 105555555555

has digit sum 51. We get

a = 105555555555− 11110000000 = 94445555555

b = 105555555555− 100000001110 = 5555554445

c = 105555555555− 100001110000 = 5554445555.

Problem 4.2.9. Prove that there exist distinct positive integers

{ni}1≤i≤50 such that

n1 + S(n1) = n2 + S(n2) = · · · = n50 + S(n50).

(1999 Polish Mathematical Olympiad)

Solution. We show by induction on k that there exist positive integers

n1, . . . , nk with the desired property. For k = 1 the statement is obvious.

For k > 1, let m1 < · · · < mk−1 satisfy the induction hypothesis for k − 1.

Note that we can make all the mi arbitrarily large by adding some large

power of 10 to all of them, which preserves the described property. Then,

choose m with 1 ≤ m ≤ 9 and m ≡ m1 + 1 (mod 9). Observing that

S(x) ≡ x (mod 9), we have m1 −m + S(m1) − S(m) + 11 = 9l for some

integer l. By choosing the mi large enough we can ensure 10l > mk−1. Now

let ni = 10l+1 +mi for i < k and nk = m+ 10l+1 − 10. It is obvious that

ni + S(ni) = nj + S(nj) for i, j < k, and

n1 + S(n1) = (10l+1 +m1) + (1 + S(m+ 1)) = (m1 + S(m1) + 1) + 10l+1

= (9l+S(m)+m−10)+10l+1 = (m+10l+1−10)+(9l+S(m)) = nk+S(nk),

as needed.

Problem 4.2.10. The sum of the decimal digits of the natural number

n is 100, and that of 44n is 800. What is the sum of the digits of 3n?
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(1999 Russian Mathematical Olympiad)

Solution. The sum of the digits of 3n is 300.

Suppose that d is a digit between 0 and 9, inclusive. If d ≤ 2 then

S(44d) = 8d, and if d = 3 then S(8d) = 6 < 8d. If d ≥ 4, then 44d ≤ 44(9)

has at most 3 digits so that S(44d) ≤ 27 < 8d.

Now write n =
∑

ni · 10i, so that the ni are the digits of n in base 10.

Then
∑

8ni = S(44n) ≤
∑

S(44ni · 10i)

=
∑

S(44ni) ≤
∑

8ni,

so equality must occur in the second inequality – that is, each of the ni

must equal 0, 1, or 2. Then each digit of 3n is simply three times the

corresponding digit of n, and S(3n) = 3S(n) = 300, as claimed.

Alternative solution. Using properties 3, 5, we have

S(3n) ≤ 3S(n) = 300

and

800 = S(11 · 3n+ 11n) ≤ S(11 · 3n) + S(11n)

≤ S(11)S(3n) + S(11)S(n) = 2S(3n) + 200,

from where S(3n) ≥ 300. Thus, S(3n) = 300.

Problem 4.2.11. Consider all numbers of the form 3n2 + n+ 1, where

n is a positive integer.

(a) How small can the sum of the digits (in base 10) of such a number

be?

(b) Can such a number have the sum of its digits (in base 10) equal to

1999?

(1999 United Kingdom Mathematical Olympiad)

Solution. (a) Let f(n) = 3n2 +n+1. When n = 8, the sum of the digits

of f(8) = 201 is 3. Suppose that there was some m such that f(m) had a

smaller sum of digits. Then the last digit of f(m) must be either 0, 1, or

2. Because f(n) ≡ 1 (mod 2) for all n, f(m) must have units digit 1.

Because f(n) can never equal 1, this means we must have 3m2 +m+1 =

10k + 1 for some positive integer k, and m(3m + 1) = 10k. Because m

and 3m + 1 are relatively prime, and m < 3m + 1, we must either have



15.2. THE SUM OF THE DIGITS OF A NUMBER 287

(m, 3m + 1) = (1, 10k) – which is impossible – or (m, 3m + 1) = (2k, 5k).

For k = 1, 5k 6= 3 · 2k + 1; for k > 1, we have

5k = 5k−2 · 25 > 2k−2 · (12 + 1) ≥ 3 · 2k + 1.

Therefore, f(m) can’t equal 10k + 1, and 3 is indeed the minimum value

for the sum of digits.

(b) Consider n = 10222 − 1.

f(n) = 3 · 10444 − 6 · 10222 + 3 + 10222.

Thus, its decimal expansion is

2 9 . . .9
︸ ︷︷ ︸

221

5 0 . . . 0
︸ ︷︷ ︸

221

3,

and the sum of digits in f(10222 − 1) is 19999.

Problem 4.2.12. Consider the set A of all positive integers n with the

following properties: the decimal expansion contains no 0, and the sum of

the (decimal) digits of n divides n.

(a) Prove that there exist infinitely many elements in A with the following

property: the digits that appear in the decimal expansion of A appear the

same number of times.

(b) Show that for each positive integer k, there exists an element in A

with exactly k digits.

(2001 Austrian-Polish Mathematics Competition)

Solution. (a) We can take nk = 11 . . .1
︸ ︷︷ ︸

3k times

and prove by induction that

3k+2|103k − 1. Alternatively, one can observe that

103k − 1 = (10− 1)(102 + 10+1)(102·3 + 103 + 1) . . . (102·3k−1

+103k−1

+ 1)

and that 9|10−1 and 3|102·3i

+ 103i

+ 1 for 0 ≤ i ≤ k − 1.

(b) We will need the following lemmas.

Lemma 1. For every d > 0 there exists a d-digit number that contains

only ones and twos in its decimal expansion and is a multiple of 2d.

Proof. Exactly in the same way as in the proof of Theorem 1.7.1 one

can prove that any two d-digit numbers which have only ones and twos give

different residues mod 2d. Since there are 2d such numbers, one of them is

a multiple of 2d. �
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Lemma 2. For each k > 2 there exists d ≤ k such that the following

inequality holds: k + d ≤ 2d ≤ 9k − 8d.

Proof. For 3 ≤ k ≤ 5, d = 3 satisfies the inequalities. For 5 ≤ k ≤ 10,

d = 4 satisfies the inequalities. We will show that d = ⌊log2 4k⌋ satisfies for

all k > 10. If k > 3, then log2 4k ≤ 2k, so d < k. Additionally, k+d ≤ 2k ≤
2d. If k > 10, then 16k2 ≤ 2k, so 4k ≤ 2k/2 ≤ 25k/8, d ≤ log2 4k ≤ 5

8
n and

8k − 8d ≥ 4k ≥ 2d. �

Now, return to the original problem. For k = 1, n = 1 has the desired

property. For k = 2, n = 12 has the desired property. Now, for each k > 2 we

have some number d satisfying the condition Lemma 2. Consider a k-digit

integer n such that the last d digits of n have the property described in the

first Lemma. We can choose each of the other digits of n to be any number

between zero and nine. We know that the sum of the last d digits of n is

between d and 2d, and we can choose the sum of the other k−d digits to be

any number between k−d and 9(k−d). Since k−d+2d ≤ 2d ≤ 9(k−d)+d,
we can choose the other digits such that the sum of the digits of n is 2d.

This completes the proof because n is a multiple of 2d.

Remark. A number divisible by the sum of its digits is called a Niven1

number. It has been proved recently that the number of Niven numbers

smaller than x is

(
14

27
log 10 + o(1)

)
x

log x
. The courageous reader may try

to prove that there are arbitrarily long sequences of consecutive numbers

which are not Niven numbers (which is easily implied by the above result;

yet there is an elementary proof of the last assertion). For more details

one can read the article ”Large and small gaps between consecutive Niven

numbers”, Journal of Integer Sequences, Vol.6(2003), by J.-M. Koninck and

N. Doyon.

15.3 Other problems involving digits

Problem 4.3.3. A wobbly number is a positive integer whose digits in

base 10 are alternately non-zero and zero, the units digit being non-zero.

Determine all positive integers which do not divide any wobbly number.

(35th IMO Shortlist)

1Ivan Niven (1915- ), Canadian mathematician with contributions in the ones of

Diophantine approximation, the study of irrationality and transcendence of numbers,

and combinatorics.
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Solution. If n is a multiple of 10, then the last digit of any multiple of n

is 0. Hence it is not wobbly. If n is a multiple of 25, then the last two digits

of any multiple of n are 25, 50, 75 or 00. Hence it is not wobbly. We now

prove that these are the only numbers not dividing any wobbly number.

We first consider odd numbersm not divisible by 5. Then gcd(m, 10) = 1,

and we have gcd((10k − 1)m, 10) = 1, for any k ≥ 1. It follows that there

exists a positive integer l such that 10l ≡ 1 (mod (10k−1)m), and we have

10kl ≡ 1 (mod (10k − 1)m). Now

10kl − 1 = (10k − 1)(10k(l−1) + 10k(l−2) + · · · + 10k − 1).

Hence xk = 10k(l−1) + 10k(l−2) + · · ·+ 10k + 1 is a multiple of m for any

k ≥ 1. In particular, x2 is a wobbly multiple of m. If m is divisible by 5,

then 5x2 is a wobbly multiple of m.

Next, we consider powers of 2. We prove by induction on t that 22t+1 has a

wobbly multiple wt with precisely t non-zero digits. For t = 1, take w1 = 8.

Suppose wt exists for some t ≥ 1. Then wt = 22t+1d for some d. Let wt+1 =

102tc + wt where c ∈ {1, 2, 3, . . . , 9} is to be chosen later. Clearly, wt+1 is

wobbly, and has precisely t+1 non-zero digits. Since wt+1+22t(52tc+2d), it

is divisible by 22t+3 if and only if 52tc+2d ≡ 0 (mod 8) or c ≡ 6d (mod 8).

We can always choose c to be one of 8, 6, 4 and 2 in order to satisfy this

congruence. Thus the inductive argument is completed. It now follows that

every power of 2 has a wobbly multiple.

Finally, consider numbers of the form 2tm, where t ≥ 1 and gcd(m, 10) =

1. Such a number has wtx2t as a wobbly multiple.

Problem 4.3.4. A positive integer is called monotonic if its digits in

base 10, read from left right, are in nondecreasing order. Prove that for

each n ∈ N, there exists an n-digit monotonic number which is a perfect

square.

(2000 Belarussian Mathematical Olympiad)

Solution. Any 1-digit perfect square (namely, 1, 4, or 9) is monotonic,

proving the claim for n = 1. We now assume n > 1.

If n is odd, write n = 2k − 1 for an integer k ≥ 2, and let

xk = (10k + 2)/6 = 1 66 . . .6
︸ ︷︷ ︸

k−2

7.

Then

x2
k =

102k + 4 · 10k + 4

36
=

102k

36
+

10k

9
+

1

9
. (1)
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Observe that
102k

36
= 102k−2

(
72

36
+

28

36

)

= 2 · 102k−2 + 102k−2 · 7

9
= 2 77 . . .7

︸ ︷︷ ︸

2k−2

+
7

9
.

Thus, the right-hand side of (1) equals



2 77 . . .7
︸ ︷︷ ︸

2k−2

+
7

9



+



11 . . . 1
︸ ︷︷ ︸

k

+
1

9



+
1

9
= 2 77 . . .7

︸ ︷︷ ︸

k−2

88 . . . 8
︸ ︷︷ ︸

k−1

9,

an n-digit monotonic perfect square.

If n is even, write n = 2k for an integer k ≥ 1, and let

yk =
10k + 2

3
= 33 . . .3
︸ ︷︷ ︸

k−1

4.

Then

y2
k =

1

9
(102k + 4 · 10k + 4) =

102k

9
+ 4 · 10k

9
+

4

9

=



11 . . . 1
︸ ︷︷ ︸

2k

+
1

9



+



44 . . .4
︸ ︷︷ ︸

k

+
4

9



+
4

9
= 11 . . . 1
︸ ︷︷ ︸

k

55 . . .5
︸ ︷︷ ︸

k−1

6,

an n-digit monotonic perfect square. This completes the proof.
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16

Basic Principles in Number Theory

16.1 Two simple principles

Problem 5.1.7. Let n1 < n2 < · · · < n2000 < 10100 be positive inte-

gers. Prove that one can find two nonempty disjoint subsets A and B of

{n1, n2, . . . , n2000} such that

|A| = |B| ,
∑

x∈A

x =
∑

x∈B

x, and
∑

x∈A

x2 =
∑

x∈B

x2.

(2001 Polish Mathematical Olympiad)

Solution. Given any subset S ⊆ {n1, n2, . . . , n2000} of size 1000, we have

0 <
∑

x∈S

x < 1000 · 10100,

0 <
∑

x∈S

x2 < 1000 · 10200.

Thus, as S varies, there are fewer than (1000 ·10100)(1000 ·10200) = 10306

values of

(
∑

x∈S

x,
∑

x∈S

x2

)

.
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Because
2000∑

k=0

(
2000

k

)

= 22000 and

(
2000

1000

)

is the biggest term in the sum,

(
2000

1000

)

>
22000

2001
. There are

(
2000

1000

)

>
22000

2001
>

10600

2001
> 10306

distinct subsets of size 1000. By the Pigeonhole Principle, there exist

distinct subsets C and D of size 1000, such that
∑

x∈C

x2 =
∑

x∈D

x2 and

∑

x∈C

x =
∑

x∈D

x. Removing the common elements from C and D yields sets

A and B with the required properties.

Problem 5.1.8. Find the greatest positive integer n for which there ex-

ist n nonnegative integers x1, x2, . . . , xn, not all zero, such that for any

sequence ε1, ε2, . . . , εn of elements {−1, 0, 1}, not all zero, n3 does not di-

vide ε1x1 + ε2x2 + · · · + εnxn.

(1996 Romanian Mathematical Olympiad)

Solution. The statement holds for n = 9 by choosing 1, 2, 22, . . . , 28,

since in that case

|ε1 + · · · + ε92
8| ≤ 1 + 2 + · · · + 28 < 93.

However, if n = 10, then 210 > 103, so by the Pigeonhole Principle, there

are two subsets A and B of {x1, . . . , x10} whose sums are congruent modulo

103. Let εi = 1 if xi occurs in A but not in B, −1 if xi occurs in B but not

in A, and 0 otherwise; then
∑

εixi is divisible by n3.

Problem 5.1.9. Given a positive integer n, prove that there exists ε > 0

such that for any n positive real numbers a1, a2, . . . , an, there exists t > 0

such that

ε < {ta1}, {ta2}, . . . , {tan} <
1

2
.

(1998 St. Petersburg City Mathematical Olympiad)

Solution. More generally, we prove by induction on n that for any real

number 0 < r < 1, there exists 0 < ε < r such that for a1, . . . , an any

positive real numbers, there exists t > 0 with

{ta1}, . . . , {tan} ∈ (ε, r).
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The case n = 1 needs no further comment.

Assume without loss of generality that an is the largest of the ai. By

hypothesis, for any r′ > 0 (which we will specify later) there exists ε′ > 0

such that for any a1, . . . , an−1 > 0, there exists t′ > 0 such that

{t′a1}, . . . , {t′an−1} ∈ (ε′, r′).

Let N be an integer also to be specified later, A standard argument

using the Pigeonhole Principle shows that one of t′an, 2t
′an, . . . , Nt

′an has

fractional part in (−1/N, 1/N). Let st′an be one such term, and take t =

st′ + c for c = (r − 1/N)/an. Then

tan ∈ (r − 2/N, r).

So we choose N such that 0 < r−2/N , thus making {tan} ∈ (r−2/N, r).

Note that this choice of N makes c > 0 and t > 0, as well.

As for the other tai, for each i we have ki + ε′ < t′ai < ki + r′ for some

integer ki, so ski + sε′ < st′ai < ski + sr′ and

ski + ε′ < (st′ + c)ai < ski + sr′ +
ai(r − 1/N)

an
≤ ski +Nr′ + r − 1/N.

So we choose r′ such that Nr′ − 1/N < 0, thus making {tai} ∈ (ε′, r).

Therefore, letting ε = min{r − 2/N, ε′}, we have

0 < ε < {ta1}, {ta2}, . . . , {tan} < r

for any choices of ai. This completes the inductive step, and the claim is

true for all natural numbers n.

Problem 5.1.10. We have 2n prime numbers written on the blackboard

in a line. We know that there are less than n different prime numbers on

the blackboard. Prove that there is a compact subsequence of numbers in

that line whose product is a perfect square.

Solution. Suppose that p1, p2, . . . , pm (m < n) are primes which we

met in the sequence a1, a2, . . . , a2n written on the blackboard. It is enough

to prove that there is a compact subsequence, where each prime occurs

even times. Denote cij the exponent of the prime pi (1 ≤ i ≤ m), in the

product of the first j numbers a1 . . . a2 . . . aj from our sequence. Let dij be

the residue modulo 2 of cij , then we can write cij = 2tij + dij , dij ∈ {0, 1}.
Every system (d1j , d2j , . . . , dmj) is formed from m zeros and ones. Number

of possible such systems is 2m which is less than 2n. Hence by Pigeonhole



294 16. BASIC PRINCIPLES IN NUMBER THEORY

Principle there exist two identical systems.

(d1k, d2k, . . . , dmk) = (d1l, d2l, . . . , dml), 1 ≤ k < l ≤ 2n

We have dik = dil for 1 ≤ i ≤ m and from here

cil − cik = 2(til − tik) + (dil − dik) = 2(til − tik)

and cil − cik is divisible by 2 for 1 ≤ i ≤ m.

Thus the exponent of the pi in the product ak+1ak+2 . . . al =
a1a2 . . . al

a1a2 . . . ak
is equal to cil−cik, so every number pi has an even exponent is the product

ak+1ak+2 . . . al. Hence ak+1ak+2 . . . al is the perfect square.

Problem 5.1.11. Let x1 = x2 = x3 = 1 and xn+3 = xn + xn+1xn+2

for all positive integers n. Prove that for any positive integer m there is an

integer k > 0 such that m divides xk.

Solution. Observe that setting x0 = 0 the condition is satisfied for

n = 0.

We prove that there is integer k ≤ m3 such that xk divides m. Let rt be

the remainder of xt when divided by m for t = 0, 1, . . . ,m3 + 2. Consider

the triples (r0, r1, r2), (r1, r2, r3), . . . , (rm3 , rm3+1, rm3+2). Since rt can take

m values, it follows by the Pigeonhole Principle that at least two triples

are equal. Let p be the smallest number such that triple (rp, rp+1, rp+2) is

equal to another triple (rq, rq+1, rq+2), p < q ≤ m3. We claim that p = 0.

Assume by way of contradiction that p ≥ 1. Using the hypothesis we

have

rp ≡ rp−1 + rprp+1 (mod m) and rq+2 ≡ rq−1 + rqrq+1 (mod m).

Since rp = rq, rp+1 = rq+1 and rp+2 = rq+2, it follows that rp−1 =

rq−1, so (rp−1, rp, rp+1) = (rq−1, rq, rq+1), which is a contradiction with

the minimality of p. Hence p = 0, so rq = r0 = 0, and therefore xq ≡ 0

mod m.

16.2 Mathematical induction

Problem 5.2.7. Let p be an odd prime. The sequence (an)n≥0 is defined

as follows: a0 = 0, a1 = 1, . . . , ap−2 = p−2 and, for all n ≥ p−1, an is the

least positive integer that does not form an arithmetic sequence of length

p with any of the preceding terms. Prove that, for all n, an is the number

obtained by writing n in base p− 1 and reading the result in base p.
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(1995 USA Mathematical Olympiad)

Solution. Our proof uses the following result.

Lemma. Let B = {b0, b1, b2, . . . }, where bn is the number obtained by

writing n in base p− 1 and reading the result in base p. Then

(a) for every a 6∈ B, there exists d > 0 such that a − kd ∈ B for k =

1, 2, . . . , p− 1; and

(b) B contains no p-term arithmetic progression.

Proof. Note that b ∈ B if and only if the representation of b in base p

does not use the digit p− 1.

(a) Since a 6∈ B, when a is written in base p at least one digit is p−1. Let

d be the positive integer whose representation in base p is obtained from

that of a by replacing each p− 1 by 1 and each digit other than p− 1 by

0. Then none of the numbers a− d, a− 2d, . . . , a− (p− 1)d has p− 1 as a

digit when written in base p, and the result follows.

(b) Let a, a+d, a+2d, . . . , a+(p−1)d be an arbitrary p-term arithmetic

progression of nonnegative integers. Let δ be the rightmost nonzero digit

when d is written in base p, and let α be the corresponding digit in the

representation of a. Then α, α + δ, . . . , α + (p − 1)δ is a complete set of

residues modulo p. It follows that at least one of the numbers a, a+d, . . . , a+

(p − 1)d has p − 1 as a digit when written in base p. Hence at least one

term of the given arithmetic progression does not belong to B. �

Let (an)n≥0 be the sequence defined in the problem. To prove that an =

bn for all n ≥ 0, we use mathematical induction. Clearly a0 = b0 = 0.

Assume that ak = bk for 0 ≤ k ≤ n − 1, where n ≥ 1. Then an is the

smallest integer greater than bn−1 such that {b0, b1, . . . , bn−1, an} contains

no p-term arithmetic progression. By part (i) of the proposition, an ∈ B

so an ≥ bn. By part (ii) of the proposition, the choice of an = bn does not

yield a p-term arithmetic progression with any of the preceding terms. It

follows by induction that an = bn for all n ≥ 0.

Problem 5.2.8. Suppose that x, y and z are natural numbers such that

xy = z2+1. Prove that there exist integers a, b, c and d such that x = a2+b2,

y = c2 + d2, and z = ac+ bd.

(Euler’s problem)

Solution. We prove the claim by strong induction on z. For z = 1, we

have (x, y) = (1, 2) or (2,1); in the former (resp. latter) case, we can set

(a, b, c, d) = (1, 0, 1, 1) (resp. (0,1,1,1)).
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Suppose that the claim is true whenever z < z0, and that we wish to

prove it for (x, y, z) = (x0, y0, z0) where x0y0 = z2
0 + 1. Without loss of

generality, assume that x0 ≤ y0. Consider the triple (x1, y1, z1) = (x0, x0 +

y0 − 2z0, z0 − x0), so that (x0, y0, z0) = (x1, x1 + y1 + 2z1, x1 + z1).

First, using the fact that x0y0 = z2
0 +1, it is easy to check that (x, y, z) =

(x1, y1, z1) satisfies xy = z2 + 1.

Second, we claim that x1, y1, z1 > 0. This is obvious for x1. Next, note

that y1 = x0 + y0 − 2z0 ≥ 2
√
x0y0 − 2z0 > 2z0 − 2z0 = 0. Finally, because

x0 ≤ y0 and x0y0 = z2
0 + 1, we have x0 ≤

√

z2
0 + 1, or x0 ≤ z0. However,

x0 6= z0, because this would imply that z0y0 = z2
0 + 1, but z0 ∤ (z2

0 + 1)

when z0 > 1. Thus, z0 − x0 > 0, or z1 > 0.

Therefore, (x1, y1, z1) is a triple of positive integers (x, y, z) satisfying

xy = z2 + 1 and with z < z0. By the induction hypothesis, we can write

x1 = a2 + b2, y1 = c2 + d2 and z1 = ac+ bd. Then

(ac+ bd)2 = z2
1 = x1y1 − 1

= (a2 + b2)(c2 + d2) − 1

= (a2c2 + b2d2 + 2abcd) + (a2d2 + b2c2 − 2abcd) − 1

= (ac+ bd)2(ad− bc)2 − 1,

so that |ad− bc| = 1.

Now, note that x0 = x1 = a2+b2 and y0 = x1+y1+2z1 = a2+b2+c2+d2+

2(ac+bd) = (a+c)2+(b+d)2. In other words, x0 = a′2+b′2 and y0 = c′2+d′2

for (a′, b′, c′, d′) = (a, b, a + c, b + d). Then |a′d′ − b′c′| = |ad − bc| = 1,

implying (by logic analogous to the reasoning in the previous paragraph)

that z0 = a′c′ + b′d′, as desired. This completes the inductive step, and the

proof.

Problem 5.2.9. Find all pairs of sets A,B, which satisfy the conditions:

(i) A ∪B = Z;

(ii) if x ∈ A, then x− 1 ∈ B;

(iii) if x ∈ B and y ∈ B, then x+ y ∈ A.

(2002 Romanian IMO Team Selection Test)

Solution. We shall prove that either A = B = Z or A is the set of even

numbers and B the set of odd numbers.

First, assume that 0 ∈ B. Then we have x ∈ B, x+0 ∈ A and so B ⊂ A.

Then Z = A ∪ B ⊂ A and so A = Z. From (ii) we also find that B = Z.

Now, suppose that 0 6∈ B, thus 0 ∈ A and −1 ∈ B. Then, using (ii) we find
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−2 ∈ A, −3 ∈ B, −4 ∈ A and by induction −2n ∈ A and −2n − 1 ∈ B,

∀ n ∈ N. Of course, 2 ∈ A (otherwise 2 ∈ B and 1 = 2 + (−1) ∈ A and

0 = 1 − 1 ∈ B, false) and so 1 = 2 − 1 ∈ B. Let n > 1 minimal with

2n ∈ B. Then 2n−1 ∈ A and 2(n−1) ∈ B, contradiction. This shows that

2N ⊂ A \ B and all odd integers are in B \ A. One can also observe that

−1 6∈ A (otherwise −2 ∈ B implies −1 ∈ B i.e. −1 6∈ A) and so A = 2Z,

B = 2Z + 1.

Problem 5.2.10. Find all positive integers n such that

n =

m∏

k=0

(ak + 1),

where amam−1 . . . a0 is the decimal representation of n.

(2001 Japanese Mathematical Olympiad)

Solution. We claim that the only such n is 18. If n = am . . . a1a0, then

let

P (n) =

m∏

j=0

(aj + 1).

Note that if s ≥ 1 and t is a single-digit number, then P (10s + t) =

(s+ 1)P (t). Using this we will prove two following statements.

Lemma 1. If P (s) ≤ s, then P (10s+ t) ≤ 10s+ t.

Proof. Indeed, if P (s) ≤ s, then

10s+ t ≥ 10s ≥ 10P (s) ≥ (t+ 1)P (s) = P (10s+ t).

Equality must fail either in the first inequality (if t 6= 0) or in the third

inequality (if t 6= 9). �

Lemma 2. P (n) ≤ n+ 1 for all n.

Proof. We prove this by induction on the number of digits of n. First, we

know that for all one-digit n, P (n) = n+1. Now suppose that P (n) ≤ n+1

for all m-digit numbers n. Any (m+1)-digit number n is of the form 10s+t,

where s is an m-digit number. Then

t(P (s) − 1) ≤ 9((s+ 1) − 1)

tP (s) − 10s− t ≤ −s

P (s)(t+ 1) − 10s− t ≤ P (s) − s

P (10s+ t) − (10s+ t) ≤ P (s) − s ≤ 1,
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completing the inductive step. Thus, P (n) ≤ n+ 1 for all n. �

If P (n) = n, then n has more than one digit and we may write n = 10s+t.

From the first statement, we have P (s) ≥ s + 1. From the second one, we

have P (s) ≤ s+ 1. Thus, P (s) = s+ 1. Hence,

(t+ 1)P (s) = P (10s+ t) = 10s+ t

(t+ 1)(s+ 1) = 10s+ t

1 = (9 − t)s.

This is possible if t = 8 and s = 1, so the only possible n such that

P (n) = n is 18. Indeed, P (18) = (1 + 1)(8 + 1) = 18.

Problem 5.2.11. The sequence (un)n≥0 is defined as follows: u0 = 2,

u1 =
5

2
and

un+1 = un(u2
n−1 − 2) − u1 for n = 1, 2, . . .

Prove that [un] = 2
2n−(−1)n

3 , for all n > 0 ([x] denotes the integer part

of x).

(18th IMO)

Solution. To start, we compute a few members of the sequence. Write

u1 =
5

2
= 2 +

1

2
.

Then:

u2 = u1(u
2
0 − 2) −

(

2 +
1

2

)

=

(

2 +
1

2

)

(22 − 2) −
(

2 +
1

2

)

= 2 +
1

2

u3 = u2(u
2
1 − 2) −

(

2 +
1

2

)

=

(

2 +
1

2

)[(

2 +
1

2

)2

− 2

]

−
(

2 +
1

2

)

=

(

2 +
1

2

)(

22 +
1

22

)

−
(

2 +
1

2

)

=

(

2 +
1

2

)(

22 − 1 +
1

22

)

= 23 +
1

23

u4 =

(

23 +
1

23

)[(

2 +
1

2

)2

− 2

]

−
(

2 +
1

2

)

=

(

23 +
1

23

)(

22 +
1

22

)

−
(

2 +
1

2

)

= 25 +
1

2
+ 2 +

1

25
−
(

2 +
1

2

)

= 25 +
1

25
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u5 =

(

25 +
1

25

)[(

23 +
1

23

)2

− 2

]

−
(

2 +
1

2

)

=

(

25 +
1

25

)(

26 +
1

26

)

−
(

2 +
1

2

)

= 211 +
1

211

Taking into account the required result, we claim that un = 2an + 2−an ,

where an =
2n − (−1)n

3
, ∀ n ≥ 1. First, we observe that an is a positive

integer, because 2n ≡ (−1)n (mod 3).

Then, observe that claimed formula is true for n = 1, 2, 3, 4, 5. Using

induction and inductive formula which defined un we have:

un+1 = (2an + 2−an)[(2an−1 + 2−an−1) − 2] −
(

2 +
1

2

)

= (2an + 2−an)(22an−1 + 2−2an−1) −
(

2 +
1

2

)

= 2an+2an−1 + 2−an−2an−1 + 22an−1−an + 2an−2an−1 − 2 − 2−1.

We only have to consider the equalities:

an + 2an−1 = an+1

2an−1 − an = (−1)n,

which are easy to check. Hence, we obtain the general formula:

un = 2
2n−(−1)n

3 +
1

2
2n−(−1)n

3

, ∀ n ≥ 1.

The required result,

[un] = 2
2n−(−1)n

3 ,

is now obvious.

Second solution. We have u0 ≥ 2, u1 ≥ 5

2
. We prove by induction that

un ≥ 5

2
, for all n ≥ 1.

un+1 = un(u2
n−1 − 2) − 5

2
≥ 5

2

(
25

4
− 2

)

− 5

2
=

5

2

(
25

4
− 3

)

>
5

2
.

The equation

x+
1

x
= un
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has a unique real solution xn, with xn > 1. Indeed, write the equation

under the form

x2 − unx+ 1 = 0

and we observe that ∆ = u2
n − 4 ≥ 25

4
− 4 > 0. The equation has two

positive real solutions, only one being greater than 1.

Therefore, there exists a unique real sequence (xn)n≥1 such that xn > 1

and

xn +
1

xn
= un.

Put this formula in the definition for un+1 and obtain

xn+1 +
1

xn+1
= xnx

2
n−1 +

1

xnx2
n−1

+

(
xn

x2
n−1

+
x2

n−1

xn

)

− 5

2
.

We claim that the sequence (xn)n≥1 is uniquely defined by one the con-

ditions:

xn+1 = xnx
2
n−1 (1)

xn+1

x2
n−1

= 2(−1)n−1

. (2)

Actually, from condition (1) and x1 = 2, x2 = 2 we deduce

x3 = 21+2 = 23, x4 = 21+2 · 21·2 = 25

and generally, xn = 2
2n−(−1)n

3 . After that, the solution follows like in the

first part.

16.3 Infinite descent

Problem 5.3.2. Find all primes p for which there exist positive integers

x, y and n such that pn = x3 + y3.

(2000 Hungarian Mathematical Olympiad)

Solution. Observe 21 = 13 + 13 and 32 = 23 + 13. We will prove that

the only answers are p = 2 or p = 3. Assume, by contradiction that there

exists p ≥ 5 such that pn = x3 + y3 with x, y, n positive integers and n

of the smallest possible value. Hence at least one of x and y is greater

than 1. We have x3 + y3 = (x + y)(x2 − xy + y2) with x + y ≥ 3 and

x2−xy+y2 = (x−y)2 +xy ≥ 2. It follows that both x+y and x2−xy+y2

are divisible by p. Therefore (x+y)2− (x2−xy+y2) = 3xy is also divisible

by p. However, 3 is not divisible by p, so at least one of x or y must be
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divisible by p. As x + y is divisible by p, both x and y are divisible by p.

Then x3 + y3 ≥ 2p3 and necessarily n > 3. We obtain

pn−3 =
pn

p3
=
x3

p3
+
y3

p3
=

(
x

p

)3

+

(
y

p

)3

,

and this contradicts the minimality of n (see the remark after FMID Variant

1).

16.4 Inclusion-exclusion

Problem 5.4.2. The numbers from 1 to 1000000 can be colored black or

white. A permissible move consists of selecting a number from 1 to 1000000

and changing the color of that number and each number not relatively prime

to it. Initially all of the numbers are black. Is it possible to make a sequence

of moves after which all of the numbers are colored white?

(1999 Russian Mathematical Olympiad)

Solution. It is possible. We begin by proving the following lemma:

Lemma. Given a set S of positive integers, there is a subset T ⊆ S such

that every element of S divides an odd number of elements in T .

Proof. We prove the claim by induction on |S|, the number of elements

in S. If |S| = 1 then let T = S.

If |S| > 1, then let α be the smallest element of S. Consider the set

S′ = S \{a}, the set of the largest |S|−1 elements in S. By induction there

is a subset T ′ ⊆ S′ such that every element in S′ divides an odd number

of elements in T ′.

If a also divides an odd number of elements in T ′, then the set T = T ′

suffices. Otherwise, consider the set T = T ′∪{a}. a divides an odd number

of elements in T . Every other element in T is bigger than a and can’t divide

it, but divides an odd number of elements in T ′ = T \{a}. Hence T suffices,

completing the induction and the proof of the lemma. �

Now, write each number n > 1 in its prime factorization

n = pa1
1 p

a2
2 . . . pak

k ,

where the pi are distinct primes and the ai ate positive integers. Notice that

the color of n will always be the same as the color of P (n) = p1p2 . . . pk.

Apply the lemma to the set S consisting in all P (i) for i =

2, 3, . . . , 1000000 to find a subset T ⊂ S such that every element of S
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divides an odd number of elements in T . For each q ∈ S, let t(q) equal the

number of elements in T that q divides, and let u(q) equal the number of

primes dividing q.

Select all the numbers in T , and consider how the color of a number n > 1

changes. By the Inclusion-Exclusion Principle, the number of elements in

T not relatively prime to n equals

∑

q|P (n),q>1

(−1)u(q)+1t(q).

In particular, if q|P (n) is divisible by exactly m > 0 primes, then it is

counted

(
m

1

)

−
(
m

2

)

+

(
m

3

)

− · · · = 1 time in the sum. (For example,

if n = 6 then the number of elements in T divisible by 2 or 3 equals

t(2) + t(3) − t(6).)

By the definition of T , each of the values t(q) is odd. Because there are

2k − 1 divisors q > 1 of P (n), the above quantity is the sum of 2k − 1 odd

numbers and is odd itself. Therefore after selecting T , every number n > 1

will switch color an odd number of times and will turn white.

Finally, select 1 to turn 1 white to complete the process.

Note. In fact, a slight modification of the above proof shows that T is

unique. With some work, this stronger result implies that there is in essence

exactly one way to make all the numbers white up to trivial manipulations.

Second solution. Yes, it is possible. We prove a more general statement,

where we replace 1000000 in the problem by some arbitrary positive integer

m. We also focus on the numbers divisible by just a few primes instead of

all the primes.

Lemma. For a finite set of distinct primes S = {p1, p2, . . . , pn}, let

Qm(S) be the set of numbers between 2 and m divisible only by primes in

S. The elements of Qm(S) can be colored black or white. A permissible

move consists of selecting a number in Qm(S) and changing the color of

that number and each number not relatively prime to it. Then it is possible

to reverse the coloring of Qm(S) by selecting several numbers in a subset

Rm(S) ⊆ Qm(S).

Proof. We prove the lemma by induction on n. If n = 1, then selecting

p1 suffices. Now suppose n > 1, and assume without loss of generality that

the numbers are all black to start with.

Let T = {p1, p2, . . . , pn−1}, and define t to be the largest integer such

that tpn ≤ m. We can assume t ≥ 1 because otherwise we could ignore
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pn and just use the smaller set T , and we’d be done by our induction

hypothesis.

Now select the numbers in Rm(T ), Rt(T ), and pnRt(T ) = {pnx| x ∈
Rt(T )}, and consider the effect of this action on a number y:

• y is not a multiple of pn. Selecting the numbers in Rm(T ) makes

y white. If selecting x ∈ Rt(T ) changes y’s color, selecting xpn will

change it back so that y will become white.

• y is a power of pn. Selecting the numbers in Rm(T ) and Rt(T ) has

no effect on y, but each of the |Rt(T )| numbers in xRt(T ) changes

y’s color.

• pn|y but y is not a power of pn. Selecting the numbers in Rm(T )

makes y white. Because y 6= pi
n, it is divisible by some prime in T so

selecting the numbers in Rt(T ) makes y black again. Finally, each of

the |Rt(T )| numbers in xRt(T ) changes y’s color.

Therefore, all the multiples of pn are the same color (black if |Rt(T )| is

even, white if |Rt(T )| is odd), while all the other numbers in Qm(S) are

white. If the multiples of pn are still black, we can select pn to make them

white, and we are done. �

We now return to the original problem. Set m = 1000000, and let S be

the set of all primes under 1000000. From the lemma, we can select numbers

between 2 and 1000000 so that all the numbers 2,3,. . . ,1000000 are white.

Finally, complete the process by selecting 1.
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17

Arithmetic Functions

17.1 Multiplicative functions

Problem 6.1.6. Let f be a function from the positive integers to the

integers satisfying f(m + n) ≡ f(n) (mod m) for all m,n ≥ 1 (e.g., a

polynomial with integer coefficients). Let g(n) be the number of values (in-

cluding repetitions) of f(1), f(2), . . . , f(n) divisible by n, and let h(n) be

the number of these values relatively prime to n. Show that g and h are

multiplicative functions related by

h(n) = n
∑

d|n
µ(d)

g(d)

d
= n

k∏

j=1

(

1 − g(pj)

pj

)

,

where n = pα1
1 . . . pαk

k is the prime factorization of n.

(American Mathematical Monthly)

Solution. Let m and n be positive integers such that gcd(m,n) = 1 and

let 1 ≤ a ≤ m, 1 ≤ b ≤ n. From Chinese Remainder Theorem and the

properties of f it follows that m|f(a) and n|f(b) if and only if mn|f(x),

where x = x(a, b) is the unique integer such that x ≡ a (mod m), x ≡
b (mod n), and 1 ≤ x ≤ min{m,n}. Thus g is multiplicative. For d|n,

the number of values of f(1), . . . , f(n) divisible by d is just
n

d
g(d). By a
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straightforward inclusion-exclusion count,

h(n) = n−
k∑

i=1

n

pi
g(pi) +

∑

1≤i<j≤k

n

pipj
(pipj) − . . .

and we get

h(n) = n

k∏

j=1

(

1 − g(pj)

pj

)

Problem 6.1.7. Define λ(1) = 1, and if n = pα1
1 . . . pαk

k , define

λ(n) = (−1)α1+···+αk

1) Show that λ is completely multiplicative.

2) Prove that

∑

d|n
λ(d) =

{

1 if n is a square

0 otherwise

3) Find the convolutive inverse of λ.

Solution. 1) Assume m = pα1
1 . . . pαk

k and n = pβ1

1 . . . pβk

k , where

α1, . . . , αk, β1, . . . , βk ≥ 0. Then mn = pα1+β1

1 . . . pαk+βk

k and

λ(mn) = (−1)α1+β1+···+αk+βk = (−1)α1+···+αk(−1)β1+···+βk = λ(m)λ(n).

2) Because λ is multiplicative, according to Theorem 6.1.2, it follows that

its summation function Λ has also this property. Therefore, it is sufficient

to calculate Λ on a power of a prime. we have

Λ(pα) = Λ(1) + Λ(p) + · · · + Λ(pα) =

{

1 if α even

0 if α odd

If n = pα1
1 . . . pαk

k , then Λ(n) = Λ(pα1
1 ) . . .Λ(pαk

k ) = 1 if all α1, . . . , αk are

even and 0 otherwise. Hence

Λ(n) =

{

1 if n is a square

0 otherwise

3) Let g be the convolution inverse of λ. From Problem 1.6.4.2) it follows

that g is multiplicative, hence it is perfectly by its values on powers of

primes. From g∗λ = ε we get (g∗λ)(p) = g(1)λ(p)+g(p)λ(1) = −1+g(p) =

0, i.e. g(p) = 1 for any prime p. Also, (g∗λ)(p2) = 0 implies 1−1+g(p2) = 0,
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i.e. g(p2) = 0. A simple inductive argument shows that g(pα) = 0 for any

positive integer α ≥ 2. It follows

g(n) =







1 if n = 1

0 if p2|n for some prime p > 1

1 if n = p1 . . . pk, where p1, . . . , pk are distinct primes,

i.e. g = µ2, where µ is the Möbius function.

Problem 6.1.8. Let an integer n > 1 be factored into primes: n =

pα1
1 . . . pαm

m (pi distinct) and let its own positive integral exponents be fac-

tored similarly. The process is to be repeated until it terminates with a

unique ”constellation” of prime numbers. For example, the constellation

for 192 is 192 = 222·3 · 3 and for 10000 is 10000 = 222 · 52. Call an arith-

metic function g generally multiplicative if g(ab) = g(a)g(b) whenever the

constellations for a and b have no prime in common.

1) Prove that every multiplicative function is generally multiplicative. Is

the converse true?

2) Let h be an additive function (i.e. h(ab) = h(a) + h(b) whenever

gcd(a, b) = 1). Call a function k generally additive if k(ab) = k(a) + k(b)

whenever the constellations for a and b have no prime in common. Prove

that every additive function is generally additive. Is the converse true?

(American Mathematical Monthly)

Solution. 1) Let f be multiplicative. If the constellations for a and b

have no prime in common, then the same is true of their factorizations, so

f(ab) = f(a)f(b). Hence f is generally multiplicative.

The converse is not true. Indeed, define g(a) to the product of all primes

in the constellation of a, taken once only, regardless of how many times

they appear in the constellation. Then g is clearly generally multiplicative,

but g(9) = 6, g(2) = 2 and g(18) = 6, so g(9 · 2) 6= g(9)g(2).

2) The statement ”additive implies generally additive” can be proved in

the same way. If k(a) is the sum of all primes in the constellation of a each

taken once only, then k is generally additive but k(9) = 5, k(2) = 2 and

k(18) = 5.

17.2 Number of divisors

Problem 6.2.5. Does there exist a positive integer such that the product

of its proper divisors ends with exactly 2001 zeroes?
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(2001 Russian Mathematical Olympiad)

Solution. Yes. Given an integer n with τ(n) is equal to

√
√
√
√
√




∏

d|n
d








∏

d|n
(n/d)



 =

√
∏

d|n
d(n/d) =

√

nτ(n).

Thus, the product of all proper positive divisors of n equals

n
1
2 τ(n)−1.

If n =

k∏

i=1

pqi

i with the pi’s distinct primes and the qi’s positive integers,

then τ(n) =

k∏

i=1

(qi + 1). Hence, if we set n = 21 · 51 · 76 · 1110 · 1312, then

1

2
τ(n) − 1 =

1

2
(2 · 2 · 7 · 11 · 13) − 1 = 2001.

Thus, the product of the proper divisors of n is equal to 22001 · 52001 ·
76·2001 · 1110·2001 · 1312·2001, an integer ending in exactly 2001 zeroes.

Problem 6.2.6. Prove that the number of divisors of the form 4k+ 1 of

each positive integer is not less than the number of its divisors of the form

4k + 3.

Solution. To solve the problem, consider the function

f(n) =







0, if n is even

1, if n ≡ 1 (mod 4)

−1, if n ≡ 3 (mod 4).

It follows directly from this definition that f(n) is multiplicative. Now

we apply (1). The even divisors of n do not influence its left-hand side.

Each divisor of the form 4k + 1 contributes a 1, and each divisor of the

form 4k + 3 contributes a − 1. Consequently, it suffices to prove that the

summation function of f ,
∑

d|n
f(d) is nonnegative for each positive integer

n.

Take any prime divisor pi of n. If pi ≡ 1 (mod 4), then the same congru-

ence holds for all powers of pi, so the ith factor in the right-hand side of

(1) is positive. If pi is congruent to 3 modulo 4, then so are its odd powers

while the even powers are congruent to 1 modulo 4. In this case the ith
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factor in the right-hand side has the form 1− 1 + 1− 1 + . . . , and it equals

1 or 0 according as αi is even or odd. Summing up, we conclude that the

sum in question is nonnegative.

Problem 6.2.7. Let d1, d2, . . . , dl be all positive divisors of a positive

integer. For each i = 1, 2, . . . , l denote by ai the number of divisors of di.

Then

a3
1 + a3

2 + · · · + a3
l = (a1 + a2 + · · · + al)

2.

Solution. We have

a1 + a2 + · · · + al =
∑

d|n
τ(d) =

k∏

i=1

(1 + τ(pi) + · · · + τ(pαi

i ))

a3
1 + a3

2 + · · · + a3
l =

∑

d|n
τ(d)3 =

k∏

i=1

(1 + τ(pi)
3 + · · · + τ(pαi

i )3)

where n = pα1
1 . . . pαk

k is the prime factorization of n.

Since

1 + τ(pi) + · · · + τ(pαi

i ) = 1 + 2 + · · · + (αi + 1)

and

1+τ(pi)
3+· · ·+τ(pαi

i )3 = 13+23+· · ·+(α+i+1)3 = [1+2+· · ·+(α+i+1)]2,

the conclusion follows.

For example, if n = 12 we have d1 = 1, d2 = 2, d3 = 3, d4 = 4, d5 = 6,

d6 = 12; a1 = 1, a2 = 2, a3 = 2, a4 = 3, a5 = 4, a6 = 6 and

13 + 23 + 23 + 33 + 43 + 63 = 324 = (1 + 2 + 2 + 3 + 4 + 6)2.

Remark. The above identity shows that solving the equation

(x1 + x2 + · · · + xn)2 = x3
1 + x3

2 + · · · + x3
n

is positive integers is a very difficult job. If we assume that xi 6= xj for

i 6= j, there are only a few solutions. Try to prove this last assertion.

17.3 Sum of divisors

Problem 6.3.5. For any n ≥ 2,

σ(n) < n
√

2τ(n).
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(1999 Belarusian Mathematical Olympiad)

Solution. Let d1, d2, . . . , dτ(n) be the divisors of n. They can be rewritten

in the form
n

d1
,
n

d2
, . . . ,

n

dτ(n)
.

By the Power Mean Inequality,

σ(n) ≤

√
√
√
√τ(n)

τ(n)
∑

i=1

d2
i .

Now,

1

n2





τ(n)
∑

i=1

d2
i



 =

τ(n)
∑

i=1

1

d2
i

≤
τ(n)
∑

j=1

1

j2
<

∞∑

j=1

1

j2
=
π2

6
.

Hence

σ(n) ≤

√
√
√
√τ(n)

τ(n)
∑

i=1

di <

√

τ(n)
n2π2

6
< n

√

2τ(n).

Problem 6.3.6. Find all the four-digit numbers so that when decomposed

in prime factors have the sum of the prime factors equal to the sum of the

exponents.

Solution. 1) If the number has at least four prime divisors, then n ≥
214 · 3 · 5 · 7 > 9999, a contradiction.

2) If n has 3 prime divisors, these must be 2, 3 or 5. The numbers are

28 · 3 · 5 = 3840, 27 · 32 · 5 = 5760, 26 · 33 · 5 = 8640 and 27 · 3 · 52 = 9600.

3) If n has 2 prime divisors, at least one of them must be 2 or 3. The

numbers

24 · 53 = 2000, 23 · 54 = 5000, 28 · 7 = 1792, 27 · 72 = 6272

satisfy the solutions.

4) If n has only one prime factor, then 55 = 3125.

Therefore there are 9 solutions.

Problem 6.3.7. Let m,n, k be positive integers with n > 1. Show that

σ(n)k 6= nm.

(2001 St. Petersburg City Mathematical Olympiad)
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Solution. Let n = pe1
1 p

e2
2 . . . pek

k . Because σ(n) > n, if σ(n)k = nm, then

σ(n) = pf1

1 p
f2

2 . . . pfk

k where fi > ei. This implies fi ≥ ei + 1, for all i and

σ(n) ≥ p1+e1
1 p1+e2

2 . . . p1+ek

k >
p1+e1
1 − 1

p1 − 1

p1+e2
2 − 1

p2 − 1
. . .

p1+ek

k − 1

pk − 1

= (1 + p1 + · · · + pe1
1 )(1 + p2 + · · · + pe2

2 ) . . . (1 + pk + · · · + pek

k )

= σ(n).

This is a contradiction.

Remark. Actually, we have shown that for n > 1, σ(n) has a prime

factor different from any prime factor of n!.

17.4 Euler’s totient function

Problem 6.4.5. For a positive integer n, let ψ(n) be the number of prime

factors of n. Show that if ϕ(n) divides n−1 and ψ(n) ≤ 3, then n is prime.

(1998 Korean Mathematical Olympiad)

Solution. Note that for prime p, if p2|n then p|ϕ(n) but p ∤ n − 1,

contradiction. So we need only show that n 6= pq, n 6= pqr for primes

p < q < r.

First assume n = pq, so (p − 1)(q − 1)|pq − 1. Note that q ≥ 3 implies

that the left side is even, so the right is too and p, q are odd. But if p = 3,

q = 5 then
pq − 1

(p− 1)(q − 1)
< 2;

the left side is decreasing in each variable and always > 1 so it cannot be

an integer, contradiction.

Now let n = pqr. As before p, q, r are odd; if p = 3, q = 7, and r = 11

then
pqr − 1

(p− 1)(q − 1)(r − 1)
< 2

and again the left side is decreasing and > 1; this eliminates all cases except

where p = 3, q = 5. Then for r = 7 we have

pqr − 1

(p− 1)(q − 1)(r − 1)
< 3

so the only integer value ever attainable is 2. Note that (15r−1)/8(r−1) = 2

gives r = 15 which is not a prime and we have eliminated all cases.
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Remarks. 1) The problem is a direct consequence of Problem 1.1.16.

2) A long stonaling conjecture due to Lehmer asserts that if ϕ(n)|n− 1,

then n is a prime. This has been proved so far for ψ(n) ≤ 14. The proofs

are very long and computational and no further progress has been made

on this conjecture.

Problem 6.4.6. Show that the equation ϕ(n) = τ(n) has only the solu-

tions n = 1, 3, 8, 10, 18, 24, 30.

Solution. We check directly that the listed integers satisfy the equation

and there are no others ≤ 30 with this property. We will prove that for

n ≥ 31, ϕ(n) > τ(n). For this we consider the multiplicative function

f(n) =
ϕ(n)

τ(n)
. If n is a prime, we have f(n) =

n− 1

2
, hence f increases on

the set of primes.

For a prime p, define Sp = {pα|α ≥ 1}. Because

f(pα) =
pα−1(p− 1)

α+ 1
and

p

α+ 2
≥ 2

α+ 2
>

1

α+ 1
,

we obtain f(pα+1) > f(pα), that is f increases on Sp. Using the fact that

min
p,α

f(pα) = f(2) =
1

2
, it follows that in order to solve the given equation

we need to consider the integers pα with f(pα) ≤ 2. These are 2, 3, 4, 5, 8,

9, 16, whose prime factors are only 2, 3, or 5 and the conclusion follows.

Problem 6.4.7. Let n > 6 be an integer and a1, a2, . . . , ak be all positive

integers less than n and relatively prime to n. If

a2 − a1 = a3 − a2 = · · · = ak − ak−1 > 0,

prove that n must be either a prime number or a power of 2.

(32nd IMO)

Solution. It is given that the reduced system of residues modn chosen

from the set {1, 2, . . . , n − 1} is an arithmetic progression. We write it as

an increasing sequence 1 = a1 < a2 < · · · < ak = n− 1.

For a prime number n the reduced system of residues is the sequence

1 < 2 < · · · < n − 1 and it is an arithmetic progression with ratio 1. If

n = 2l the reduced system of residues is 1 < 3 < 5 < · · · < 2l − 1 and it

is an arithmetic progression with ratio 2. The problem asks to prove that

only these cases can appear.

Let a2 be the second member of the progression. Because a2 > 1 is the

least positive number relatively prime to n, it is a prime number, say p
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and p > 3. Then, the ratio of the progression is a2 − a1 = p − 1 and

ak = n− 1 = 1 + (k − 1)(p− 1). We obtain a ”key” formula:

n− 2 = (k − 1)(p− 1).

Remembering the choice of p, n is divisible by 3 and then n − 2 ≡ 1

(mod 3). Thus, by the key formula we cannot have p ≡ 1 (mod 3). Since

p > 3 we have p ≡ 2 (mod 3). Then a3 = 1+2(p−1) ≡ 0 (mod 3) and this

contradicts the supposition that a3 and n are relatively prime numbers.

17.5 Exponent of a prime and Legendre’s formula

Problem 6.5.7. a) If p is a prime, prove that for any positive integer

n,

−
⌊

lnn

ln p

⌋

+ n

⌊ ln n
ln p ⌋∑

k=1

1

pk
< ep(n) <

n

p− 1
.

b) Prove that

lim
n→∞

ep(n)

n
=

1

p− 1
.

Solution. a) From Legendre’s formula,

ep(n) =
∑

k≥1

⌊
n

pk

⌋

≤
∑

k≥1

n

pk
< n

∞∑

j=1

1

pj
=

n

p− 1
.

For the left bound note that

⌊
lnn

ln p

⌋

is the least nonnegative integer s

such that n < ps+1. That is

⌊
n

pk

⌋

= 0 for k ≥ s+ 1. It follows that

ep(n) =

s∑

k=1

⌊
n

pk

⌋

>

s∑

k=1

(
n

pk
− 1

)

= n

s∑

k=1

1

pk
− s,

and we are done.

b) From the inequalities

− 1

n

⌊
lnn

ln p

⌋

+

⌊ ln n
ln p ⌋∑

k=1

1

pk
<
ep(n)

n
<

1

p− 1

and the fact that

lim
n→∞

1

n

⌊
lnn

ln p

⌋

= 0 and lim
n→∞

⌊ ln n
ln p ⌋∑

k=1

1

pk
=

1

p− 1
,
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the desired formula follows.

Problem 6.5.8. Show that for all nonnegative integers m,n the number

(2m)!(2n)!

m!n!(m+ n)!

is also an integer.

(14th IMO)

Solution. It is sufficient to prove that for any prime number p

ep(2m) + ep(2n) ≥ ep(m) + ep(n) + ep(m+ n).

Again, it is sufficient to prove that for all i, j ≥ 1, the following inequality

holds: ⌊
2m

pi

⌋

+

⌊
2n

pi

⌋

≥
⌊
m

pi

⌋

+

⌊
n

pi

⌋

+

⌊
m+ n

pi

⌋

.

It follows from a more general result.

Lemma. For any real numbers a, b

⌊2a⌋+ ⌊2b⌋ ≥ ⌊a⌋ + ⌊b⌋ + ⌊a+ b⌋.

Proof. Let a = ⌊a⌋ + x, b = ⌊b⌋ + y where 0 ≤ x, y < 1. If x+ y < 1 we

have ⌊a+ b⌋ = ⌊a⌋ + ⌊b⌋ and the required inequality becomes:

⌊2a⌋+ ⌊2b⌋ ≥ 2(⌊a⌋ + ⌊b⌋).

In this form, it is obvious.

Let 1 ≤ x+ y < 2. Then 2x ≥ 1 or 2y ≥ 1. Let 2x ≥ 1. Then

⌊2a⌋ = 2⌊a⌋+ 1 and ⌊a+ b⌋ = ⌊a⌋ + ⌊b⌋ + 1.

Thus:

⌊2a⌋ + ⌊2b⌋ = 2⌊a⌋+ 1 + ⌊2b⌋ ≥ 2⌊a⌋+ 1 + 2⌊b⌋ = ⌊a⌋ + ⌊b⌋ + ⌊a+ b⌋.

The other cases follow in a similar way.

Problem 6.5.9. Prove that
(3a+ 3b)!(2a)!(3b)!(2b)!

(2a+ 3b)!(a+ 2b)!(a+ b)!a!(b!)2
is an inte-

ger for any positive integers a, b.

(American Mathematical Monthly)



17.5. EXPONENT OF A PRIME AND LEGENDRE’S FORMULA 315

Solution. First, let us clearify something. When we write

⌊
n

p

⌋

+

⌊
n

p2

⌋

+

⌊
n

p3

⌋

+ . . . ,

we write in fact
∑

k≥1

⌊
n

pk

⌋

and this sum has clearly a finite number of non-

zero terms. Now, let us take a prime p and let us apply Legendre’s formula

formula as well as the first observations. We find that

vp((3a+ 3b)!(2a)!(3b)!(2b)!) =
∑

k≥1

(⌊
3a+ 3b

pk

⌋

+

⌊
2a

pk

⌋

+

⌊
3b

pk

⌋

+

⌊
2b

pk

⌋)

and also

vp((2a+ 3b)!(a+ 2b)!(a+ b)!a!(b!)2)

=
∑

k≥1

(⌊
2a+ 3b

pk

⌋

+

⌊
a+ 2b

pk

⌋

+

⌊
a+ b

pk

⌋

+

⌊
a

pk

⌋

+ 2

⌊
b

pk

⌋)

Of course, it is enough to prove that for each k ≥ 1 the term correspond-

ing to k in the first sum is greater than or equal to the term corresponding

to k in the second sum. With the substitution x =
a

pk
, y =

b

pk
, we have to

prove that for any nonnegative real numbers x, y we have

⌊3x+3y⌋+⌊2x⌋+⌊3y⌋+⌊2y⌋ ≥ ⌊2x+3y⌋+⌊x+2y⌋+⌊x+y⌋+⌊x⌋+2⌊y⌋.

This isn’t easy, but with another useful idea the inequality will become

easy. The idea is that

⌊3x+ 3y⌋ = 3⌊x⌋ + 3⌊y⌋+ ⌊3{x} + 3{y}⌋

and similar relations for the other terms of the inequality. After this oper-

ation, we see that it suffices to prove the inequality only for 0 ≤ x, y < 1.

Because we can easily compute all terms, after splitting in some cases, so

that to see when ⌊2{x}⌋, ⌊3{y}⌋, ⌊2{y}⌋ are 0, 1 or 2.

Problem 6.5.10. Prove that there exists a constant c such that for any

positive integers a, b, n that verify a! · b!|n! we have a+ b < n+ c lnn.

(Paul Erdös)

Solution. This time the second formula for ep(n) is useful. Of course,

there is no reasonable estimation of this constant, so we should better

see what happens if a! · b!|n!. Then e2(a) + e2(b) ≤ e2(n!), which can be
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translated as a−S2(a)+b−S2(b) ≤ n−S2(n) < n. So, we have found almost

exactly what we needed: a+ b < n+ S2(a) + S2(b). Now, we need another

observation: the sum of digits of a number A when written in binary is

at most the number of digits of A in base 2, which is 1 + ⌊log2A⌋ (this

follows from the fact that 2k−1 ≤ A < 2k, where k is the number of digits

of A in base 2). So, we have the estimations a + b < n + S2(a) + S2(b) ≤
n + 2 + log2 ab ≤ n + 2 + 2 log2 n (since we have of course a, b ≤ n). And

now the conclusion is immediate.

Problem 6.5.11. Prove that the equation

1

10n
=

1

n1!
+

1

n2!
+ · · · + 1

nk!

does not have integer solutions such that 1 ≤ n1 < n2 < · · · < nk.

(Tuymaada Olimpiad)

Solution. Suppose we have found a solution of the equation and let us

consider

P = n1!n2! . . . nk!.

We have

10n((n1 + 1) . . . (nk − 1)nk + · · · + (nk−1 + 1) . . . (nk − 1)nk + 1) = nk!

which shows that nk divides 10n. Let us write nk = 2x · 5y. First of all,

suppose that x, y are positive. Thus,

(n1 + 1) . . . (nk − 1)nk + · · · + (nk−1 + 1) . . . (nk − 1)nk + 1

is relatively prime with 10 and it follows that e2(nk) = e5(nk). This implies

of course that
⌊nk

2j

⌋

=
⌊nk

5j

⌋

for all j (because we clearly have
⌊nk

2j

⌋

>
⌊nk

5j

⌋

) and so nk ≤ 3. A verification by hand shows that there is no solution

in this case.

Next, suppose that y = 0. Then

(n1 + 1) . . . (nk − 1)nk + · · · + (nk−1 + 1) . . . (nk − 1)nk + 1

is odd and thus e2(nk) = n ≤ e5(nk). Again this implies e2(nk) = e5(nk)

and we have seen that this gives no solution. So, actually x = 0. A crucial

observation is that if nk > nk−1 + 1, then

(n1 + 1) . . . (nk − 1)nk + · · · + (nk−1 + 1) . . . (nk − 1)nk + 1
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is again odd and thus we find again that e2(nk) = n ≤ e5(nk), impossible.

So, nk = nk−1 + 1. But then, taking into account that nk is a power of 5,

we deduce that

(n1 + 1) . . . (nk − 1)nk + · · · + (nk−1 + 1) . . . (nk − 1)nk + 1

is congruent to 2 modulo 4 and thus e2(nk) = n+1 ≤ e5(nk)+1. It follows

that
⌊nk

2

⌋

≤ 1 +
⌊nk

5

⌋

and thus nk ≤ 6. Since nk is a power of 5, we find

that nk = 5, nk−1 = and a quick research of all possibilities shows that

there are no solutions.
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18

More on Divisibility

18.1 Fermat’s Little Theorem

Problem 7.1.11. Let 3n − 2n be a power of a prime for some positive

integer n. Prove that n is a prime.

Solution. Let 3n − 2n = pα for some prime p and some α ≥ 1, and let

q be a prime divisor of n. Assume that q 6= n; then n = kq, where k > 1.

Since pα = 3kq − 2kq = (3k)q − (2k)q, we observe that pα is divisible by

3k − 2k. Hence 3k − 2k = pβ for some β ≥ 1. Now we have

pα = (2k + pβ)q − 2kq

= q2k(q−1)pβ +
q(q − 1)

2
2k(q−2)p2β + · · · + pqβ .

Since α > β (because pβ = 3k − 2k is less than pα = 3kq − 2kq), it

follows that pα is divisible by a power of p at least as great as pβ+1. Then

the above equality implies that p divides q2k(q−1). On the other hand, p

is obviously odd and hence it divides q. Being a prime, q must be then

equal to p. Therefore n = kq = kp and pα = (3p)k − (2p)k is divisible by

3p − 3p, implying 3p − 2p = pγ for some γ ≥ 1. In particular, we infer that

3p ≡ 2p (mod p). Now, observing that p 6= 2, 3, we reach a contradiction

with Fermat’s Little Theorem, by which

3p ≡ 3 (mod p), 2p ≡ 2 (mod p).
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Problem 7.1.12. Let f(x1, . . . , xn) be a polynomial with integer coeffi-

cients of total degree less than n. Show that the number of ordered n-tuples

(x1, . . . , xn) with 0 ≤ xi ≤ 12 such that f(x1, . . . , xn) ≡ 0 (mod 13) is

divisible by 13.

(1998 Turkish Mathematical Olympiad)

Solution. (All congruences in this problem are modulo 13.) We claim

that
12∑

x=0

xk ≡ 0 for 0 ≤ k < 12.

The case k = 0 is obvious, so suppose k > 0. Let g be a primitive root

modulo 13; then the numbers g, 2g, . . . , 12g are 1, 2, . . . , 12 in some order,

so
12∑

x=0

xk ≡
12∑

x=0

(gx)k = gk
12∑

x=0

xk;

since gk 6≡ 1, we must have

12∑

x=0

xk ≡ 0. This proves our claim.

Now let S = {(x1, . . . , xn)|0 ≤ xi ≤ 12}. It suffices to show that the

number of n-tuples (x1, . . . , xn) ∈ S with f(x1, . . . , xn) 6≡ 0 is divisible by

13, since |S| = 13n is divisible by 13. Consider the sum
∑

(x1,...,xn)∈S

(f(x1, . . . , xn))12.

This sum counts the number of n-tuples (x1, . . . , xn) ∈ S such that

f(x1, . . . , xn) 6≡ 0, since by Fermat’s Little Theorem

(f(x1, . . . , xn))12 ≡
{

1, if f(x1, . . . , xn) 6≡ 0

0, if f(x1, . . . , xn) ≡ 0.

On the other hand, we can expand (f(x1, . . . , xn))12 in the form

(f(x1, . . . , xn))12 =

N∑

j=1

cj

n∏

i=1

x
eji

i

for some integers N, cj , eji. Since f is a polynomial of total degree less than

n, we have ej1 + ej2 + · · ·+ ejn < 12n for every j, so for each j there exists

an i such that eji < 12. Thus by our claim

∑

(x1,...,xn)∈S

cj

n∏

i=1

x
eji

i = cj

n∏

i=1

12∑

x=0

x
eji

i ≡ 0
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since one of the sums in the product is 0. Therefore

∑

(x1,...,xn)∈S

(f(x1, . . . , xn))12 =
∑

(x1,...,xn)∈S

N∑

j=1

cj

n∏

i=1

x
eji

i ≡ 0,

so the number of (x1, . . . , xn) such that f(x1, . . . , xn) 6≡ 0 (mod 13) divis-

ible by 13 and we are done.

Problem 7.1.13. Find all pairs (m,n) of positive integers, with m,n ≥
2, such that an − 1 is divisible by m for each a ∈ {1, 2, . . . , n}.

(2001 Romanian IMO Team Selection Test)

Solution. The solution is the set of all (p, p− 1), for odd primes p. The

fact that all of these pairs are indeed solutions follows immediately from

Fermat’s Little Theorem. Now we show that no other solutions exist.

Suppose that (m,n) is a solution. Let p be a prime dividing m. We first

observe that p > n. Otherwise, we could take a = p, and then pn −1 would

not be divisible by p, and alone m. Then because n ≥ 2, we have p ≥ 3 and

hence p is odd.

Now we prove that p < n+ 2. Suppose on the contrary that p ≥ n+ 2.

If n is odd, then n+ 1 is even and less than p. Otherwise, if n is even, then

n+2 is even and hence less than p as well, because p is odd. In either case,

there exists an even d such that n < d < p with
d

2
≤ n. Setting a = 2,

d

2
in the given condition, we find that

dn ≡ 2n

(
d

2

)n

≡ 1 · 1 ≡ 1 (mod m),

so that dn − 1 ≡ 0 (mod m) as well. Because n < d < p < m, we see

that 1, 2, . . . , n, d are n + 1 distinct roots of the polynomial congruence

xn − 1 ≡ 0 (mod p). By Lagrange’s Theorem, however, this congruence

can have at most n roots, a contradiction.

Thus, we have sandwiched p between n and n+2, and the only possibility

is that p = n+ 1. Therefore, all solutions are of the form (pk, p − 1) with

p an odd prime. It remains to prove that k = 1. Using a = n = p − 1, it

suffices to prove that

pk ∤ ((p− 1)p−1 − 1).
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Expanding the term (p − 1)p−1 modulo p2, and recalling that p is odd,

we have

(p− 1)p−1 =

p−1
∑

i=0

(
p− 1

i

)

(−1)p−1−ipi

≡
(
p− 1

0

)

(−1)p−1 +

(
p− 1

1

)

(−1)p−2p

≡ 1 − p(p− 1)

≡ 2 6≡ (mod p2).

It follows immediately that k cannot be greater than 1, completing the

proof.

Problem 7.1.14. Let p be a prime and b0 an integer, 0 < b0 < p. Prove

that there exists a unique sequence of base p digits b0, b1, b2, . . . , bn, . . . with

the following property: If the base p representation of a number x ends in

the group of digits bnbn−1 . . . b1b0 then so does the representation of xp.

Solution. We are looking for a sequence b0, b1, b2, . . . , bn, . . . of base p

digits such that the numbers xn = b0+b1p+· · ·+bnpn and xp
n are congruent

modulo pn+1 for each n = 0, 1, 2, . . . Of course, the choice of the first term

b0 is predetermined, and given in the problem statement; let us note that

the numbers x0 = b0 and xp
0 are congruent modulo p by Fermat’s Little

Theorem. Suppose that the base p digits b1, b2, . . . , bn are already chosen

in such a way that xp
n ≡ xn (mod pn+1). We shall prove that there is a

unique digit bn+1 such that

(xn + bn+1p
n+1)p ≡ xn + bn+1p

n+1 (mod pn+2);

this proves the existence and the uniqueness at the same time. Since

(xn + bn+1p
n+1)p = xp

n +

(
p

1

)

xp−1
n bn+1p

n+1 + Cpn+2

for some integer constant C, and since

(
p

1

)

is divisible by p, we get

(xn + bn+1p
n+1)p ≡ xp

n (mod pn+2).

Hence bn+1 should satisfy the congruence

xp
n − xn − bn+1p

n+1 ≡ 0 (mod pn+2). (1)

By the induction hypothesis, the number xp
n − xn is divisible by pn+1.

This implies that its (n + 2)nd base p digit (from the right to left) is



18.1. FERMAT’S LITTLE THEOREM 323

indeed the only choice for bn+1 such that (1) holds. The inductive proof is

complete.

Problem 7.1.15. Determine all integers n > 1 such that
2n + 1

n2
is an

integer.

(31st IMO)

Solution. We will prove that the problem has only solution n = 3. First,

observe that n is odd number. Then, we prove that 3|n.

Let p be the least prime divisor of n. Since n2|2n +1, 2n +1 ≡ 0 (mod p)

and 22n ≡ 1 (mod p). By Fermat’s Little Theorem, 2p−1 ≡ 1 (mod 3).

Then 2d ≡ 1 (mod p), where d = gcd(p − 1, 2n). By the definition of p,

d has no prime divisor greater than 2, which shows that d = 2. It follows

p = 3.

Let n = 3km, where k ≥ 1 and (3,m) = 1. Using the identity

x3k

+ 1 = (x+ 1)(x2 − x+ 1)(x2·3 − x3 + 1) . . . (x2·3k−1 − x3k−1

+ 1)

we obtain the decomposition:

23km+1 = (2m+1)(22m−2m+1)(22·3m−23m+1) . . . (32·3k−1m−23k−1m+1).

(1)

Since 22s − 2s + 1 ≡ 3 (mod 9) for s of the form 3j we obtain in (1) that

3k|(22m − 2m + 1)(22·3m − 23m + 1) . . . (22·3k−1m − 23k−1m + 1)

but 3k+1 does not divides the product. Therefore, 3k|2m + 1. Since 3 does

not divide m and

2m + 1 = 3m −
(
m

1

)

3m−1 + · · · −
(

m

m− 1

)

3

we obtain k = 1.

Now, we have n = 3m and 9m2|23m + 1. We repeat, in some way, the

starting argument. Take q the least prime divisor of m, 26m ≡ 1 (mod q)

and 2q−1 ≡ 1 (mod q), δ = gcd(6m, q − 1). By the definition of q we can

have δ = 1, 2, 3 or 6 and we also have 2δ ≡ 1 (mod q). Thus q can be chosen

among prime divisors of the numbers 3, 7, 63. Since q > 3, we can have

only q = 7. Returning to m2|23m + 1, we obtain 49|23m + 1. But we have

23m + 1 ≡ 2 (mod 7) and we get a contradiction.

Thus, m = 1 and n = 3.
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Problem 7.1.16. Let p be a prime number. Prove that there exists a

prime number q such that for every integer n, the number np − p is not

divisible by q.

(44th IMO)

Solution. Suppose that for every prime q, there exists an n for which

np ≡ p (mod q). Assume that q = kp+ 1. By Fermat’s Little Theorem we

deduce that pk ≡ nkp = nq−1 ≡ 1 (mod q), so q|pk − 1.

It is known that any prime q such that q|p
p − 1

p− 1
must satisfy q ≡ 1

(mod p). Indeed, from q|pq−1−1 it follows that q|pgcd(p,q−1)−1; but q ∤ p−1

because
pp − 1

p− 1
≡ 1 (mod p−1), so gcd(p, q−1) 6= 1. Hence gcd(p, q−1) =

p. Now suppose q is any prime divisor of
pp − 1

p− 1
. Then q|gcd(pk−1, pp−1) =

pgcd(p,k) − 1, which implies that gcd(p, k) > 1, so p|k. Consequently q ≡ 1

(mod p2). However, the number
pp − 1

p− 1
= pp−1 + · · · + p + 1 must have

at least one prime divisor that is not congruent to 1 modulo p2. Thus we

arrived at a contradiction.

Remark. Taking q ≡ 1 (mod p) is natural, because for every other q, np

takes all possible residues modulo p (including p too). Indeed, if p ∤ q − 1,

then there is an r ∈ N satisfying pr ≡ 1 (mod q − 1); hence for any a the

congruence np ≡ a (mod q) has the solution n ≡ ar (mod q).

The statement of the problem itself is a special case of the Chebotarev

theorem.

Problem 7.1.17. Prove that for any n > 1 we cannot have n|2n−1 + 1.

(Sierpinski)

Solution. Although very short, the proof is tricky. Let n =
s∏

i=1

pki

i where

p1 < · · · < ps are prime numbers. The idea is to look at v2(pi − 1). Choose

that pi which minimizes this quantity and write pi = 1 + 2rimi with mi

odd. Then of course we have n ≡ 1 (mod 2mi). Hence we can write n−1 =

2mt. We have 22mt ≡ −1 (mod pi) thus we surely have −1 ≡ 22mtmi ≡
2(pi−1)t ≡ 1 (mod pi) (the last congruence being derived from Fermat’s

theorem). Thus pi = 2, which is clearly impossible.
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Problem 7.1.18. Prove that for any natural number n, n! is a divisor

of
n−1∏

k=0

(2n − 2k).

Solution. So, let us take a prime number p. Of course, for the argument

to be non-trivial, we take p ≤ n (otherwise doesn’t divide n!). First, let us

see what happens with p = 2. We have

e2(n) = n− S2(n) ≤ n− 1

and also

v2

(
n−1∏

k=0

(2n − 2k)

)

=
n−1∑

k=0

v2(2
n − 2k) ≥ n− 1

(since 2n − 2k is even for k ≥ 1), so we are done with this case. Now, let us

assume that p > 2. We have p|2p−1 − 1 from Fermat’s theorem, so we also

have p|2k(p−1) − 1 for all k ≥ 1. Now,

n−1∏

k=0

(2n − 2k) = 2
n(n−1)

2

n∏

k=1

(2k − 1)

and so, from the above remarks we infer that

v2

(
n−1∏

k=0

(2n − 2k)

)

=

n∑

k=1

v2(2
k − 1)

≥
∑

1≤k(p−1)≤n

v2(2
k(p−1) − 1) ≥ card{k|1 ≤ k(p− 1) ≤ n}

Since

card{k|1 ≤ k(p− 1) ≤ n} =

[
n

p− 1

]

,

we have found that

v2

(
n−1∏

k=0

(2n − 2k)

)

≥
[

n

p− 1

]

.

But we know that

e2(n) =
n− sp(n)

p− 1
≤ n− 1

p− 1
<

n

p− 1

and since e2(n) is an integer, we must have

e2(n) ≤
[

n

p− 1

]

.
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From these two inequalities, we conclude that

v2

(
n−1∏

k=0

(2n − 2k)

)

≥ e2(n)

and now the problem is solved.

18.2 Euler’s Theorem

Problem 7.2.5. Prove that, for every positive integer n, there exists a

polynomial with integer coefficients whose values at 1, 2, . . . , n are different

powers of 2.

(1999 Hungarian Mathematical Olympiad)

Solution. It suffices to prove the claim when n ≥ 4, because the same

polynomials which works for n ≥ 4 works for n ≤ 3. For each i = 1, 2, . . . , n,

consider the product si =

n∏

j=1
j 6=i

(i − j). Because n ≥ 4, one of the terms

i − j equals 2 and si is even. Thus, we can write si = 2qimi for positive

integers qi,mi with mi odd. Let L be the least common multiple of all the

qi, and let ri = L/qi. For each i, there are infinitely many powers of 2

which are congruent to 1 modulo |mri

i |. (Specifically, by Euler’s Theorem,

2φ(|mri
i
|)j ≡ 1 (mod |mri

i |) for all j ≥ 0. Thus there are infinitely many

integers ci such that cim
ri

i + 1 is a power of 2. Choose such ci, and define

P (x) =

n∑

i=1

ci







n∏

j=1
j 6=i

(x− j)







ri

+ 2L.

For each k, 1 ≤ k ≤ n, in the sum each term







n∏

j=1
j 6=i

(x− j)







ri

vanishes

for all i 6= k. Then

P (k) = ck







n∏

j=1
j 6=k

(k − j)







ri

+ 2L = 2L(ckm
rk

k + 1),

a power of 2. Moreover, by choosing the ci appropriately, we can guarantee

that these values are all distinct, as needed.
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Problem 7.2.6. Let a > 1 be an odd positive integer. Find the least

positive integer n such that 22000 is a divisor of an − 1.

(2000 Romanian IMO Team Selection Test)

Solution. Since a is odd, (a, 2k) = 1, for any k ≥ 0. Hence, by Euler’s

Theorem, aϕ(2k) ≡ 1 (mod 2k). Since ϕ(2k) = 2k−1 and we are looking for

the least exponent n such that an ≡ 1 (mod 22000) it follows that n is a

divisor of 21999 = ϕ(22000).

If a ≡ 1 (mod 22000) it follows that n = 1. We shall omit this case.

Consider the decomposition:

a2m − 1 = (a− 1)(a+ 1)(a2 + 1)(a22

+ 1) . . . (a2m−1

+ 1).

Assume a ≡ 1 (mod 2s) and a 6≡ 1 (mod 2s+1), where 2 ≤ s ≤ 1999.

That is, a = 2sb + 1, where b is an odd number. Equivalently, a has the

binary representation

a = 1 . . . 1 00 . . .1
︸ ︷︷ ︸

s digits

.

It is easy to show that for any integer x, x2 + 1 is not divisible by 4.

Then, by the above decomposition a2m − 1 is divisible by 2s+m and it is

not divisible by 2s+m+1. Hence, the required number is 22000−s.

Assume that a ≡ −1 (mod 2s) and a 6≡ −1 (mod 2s+1), where s ≥ 2.

Equivalently, a has the binary representation

a = 1 . . . 0 11 . . .1
︸ ︷︷ ︸

s digits

.

Like before, a− 1 is divisible by 2 and nondivisible by 22 and a2k

+ 1 is

divisible by 2 and nondivisible by 22, ∀ k ≥ 1. From the above decompo-

sition a2m − 1 is divisible by 2s+m and nondivisible by 2s+m+1. Hence, in

this case, the required exponent is n = 21999−s when s < 1999 and n = 2,

when s ≥ 1999.

Problem 7.2.7. Let n = pr1
1 . . . prk

k be the prime factorization of the

positive integer n and let r ≥ 2 be an integer. Prove that the following are

equivalent:

(a) The equation xr ≡ a (mod n) has a solution for every a.

(b) r1 = r2 = · · · = rk = 1 and (pi −1, r) = 1 for every i ∈ {1, 2, . . . , k}.

(1995 UNESCO Mathematical Contest)
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Solution. If (b) holds, then ϕ(n) = (p1 − 1) . . . (pk − 1) is coprime to

r, thus there exists s with rs ≡ 1 (mod φ(n)), and the unique solution

of xr ≡ a (mod n) is a = xs. Conversely, suppose xr ≡ a (mod n) has a

solution for every a; then xr ≡ a (mod pri

i ) also has a solution for every a.

However, if r1 > a and a is a number divisible by p but not by p2, then xr

cannot be congruent to a, since it is not divisible by p unless x is divisible

by p, in which case it is already divisible by p2. Hence r1 = 1.

Let d = (pi−1, r) and put m = (pi−1)/d. If xr ≡ a (mod pi) and a 6≡ 0,

then

am ≡ xrm = xpi−1 ≡ 1 (mod pi).

However, if a is a primitive root of pi, then this only occurs for m ≡ 0

(mod pi − 1), which implies d = 1. Hence ri = 1 and (r, pi − 1) = 1, as

desired.

18.3 The order of an element

Problem 7.3.6. Find all ordered triples of primes (p, q, r) such that

p|qr + 1, q|rp + 1, r|pq + 1.

(2003 USA IMO Team Selection Test)

Solution. It is quite clear that p, q, r are distinct. Indeed, if for example

p = q, then the relation p|qr +1 is impossible. We will prove that we cannot

have p, q, r > 2. Suppose this is the case. The first condition p|qr +1 implies

p|q2r − 1 and so op(q)|2r. If op(q) is odd, it follows that p|qr − 1, which

combined with p|qr + 1 yields p = 2, which is impossible. Thus, op(q) is

either 2 or 2r. Could we have op(q) = 2r? No, since this would imply that

2r|p − 1 and so 0 ≡ pq + 1 (mod r) ≡ 2 (mod r), that is r = 2, false.

Therefore, the only possibility is op(q) = 2 and so p|q2−1. We cannot have

p|q − 1, because p|qr + 1 and p 6= 2. Thus, p|q + 1 and in fact p|q + 1

2
. In

the same way, we find that q|r + 1

2
and r|p+ 1

2
. This is clearly impossible,

just by looking at the largest among p, q, r. So, our assumption was wrong

and indeed one of the three primes must equal 2. Suppose without loss

of generality that p = 2. Then q is odd, q|r2 + 1 and r|2q + 1. Similarly,

or(2)|2q. If q|or(2), then q|r − 1 and so q|r2 + 1 − (r2 − 1) = 2, which

contradicts the already established result that q is odd. Thus, or(2)|2 and
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r|3. As a matter of fact, this implies that r = 3 and q = 5, yielding the

triple (2,5,3). It is immediate to verify that this triple satisfies all conditions

of the problem. Moreover, all solutions are given by cyclic permutations of

the components of this triple.

Problem 7.3.7. Find all primes p, q such that pq|2p + 2q.

Solution. Note that (p, q) = (2, 2), (2, 3), (3, 2) satisfy this property and

let us show that there are no other such pairs. Assume, by contradiction,

that p 6= 2 and q 6= 2. Write p− 1 = 2ln, q − 1 = 2km, where l, k are odd

positive integers. Because pq|2p + 2q, using Fermat’s Little Theorem, we

obtain 0 ≡ 2p + 2q ≡ 2p + 2 (mod q). It follows 2p−1 ≡ −1 (mod q). If we

denote x = 2n, then we have x2l ≡ −1 (mod q), hence o(x) = 2l+1 (since

x2l+1 ≡ 1 (mod q) and x2l 6≡ 1 (mod q)). It follows 2l+1 = oq(x)|ϕ(q) =

q − 1 = 2km, i.e. l + 1 ≤ k.

In similar way we can prove that k+ 1 ≤ l and we get l ≤ k− 1 ≤ l− 2,

a contradiction. Therefore, it is necessary to have p = 2 or q = 2. If, for

example, q = 2, then p|2p +2q = 2p +22, 0 ≡ 2p +22 ≡ 2+22 = 6 (mod p),

and we get p ∈ {2, 3}.
Problem 7.3.8. Prove that for any positive integer n, 3n − 2n is not

divisible by n.

Solution. Assume by contradiction that n|3n − 2n for some positive

integer n. Let us denote by p the smallest prime divisor of n. Since n|3n−2n,

it follows that p ≥ 5. Consider a positive integer a such that 2a ≡ 1

(mod p). From 3n ≡ 2n (mod p) we obtain (3a)n ≡ 1 (mod p). Let us

denote d = op(3a). It follows d|p − 1 and d|n. But d < p and d|n implies

d = 1, because the minimality of p. We get 3a ≡ 1 (mod p) and 2a ≡ 1

(mod p), i.e. a ≡ 0 (mod p), contradiction with 2a ≡ 1 (mod p).

Problem 7.3.9. Find all positive integers m,n such that n|1 + m3n

+

m2·3n

.

(Bulgarian IMO Team Selection Test)

Solution. From n|1+m3n

+m2·3n

it follows n|m3n+1−1, hence d = on(m)

divides 3n+1, i.e. d = 3k for some positive integer k. If k ≤ n, then d|3n

implies n|m3n − 1. Combining with n|1 + m3n

+ m2·3n

it follows n = 3.

If k ≥ n + 1, then d = 3n+1 and d|ϕ(n) implies d < n, impossible since

3n+1 > n. Therefore n = 3 and, consequently m ≡ 1 (mod 3).
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Problem 7.3.10. Let a, n > 2 be positive integers such that n|an−1 − 1

and n does not divide any of the numbers ax − 1, where x < n − 1 and

x|n− 1. Prove that n is a prime number.

Solution. Denote d = on(a). Since n|an−1 − 1 it follows d|n − 1. If

d < n−1, then we contradict the hypotheses that n does not divide ad −1.

Hence d ≥ n− 1 and consequently d = n− 1.

On the other hand, we have d|ϕ(n), hence n−1|ϕ(n). Taking into account

that ϕ(n) ≤ n − 1, we find ϕ(n) = n − 1 and it follows that n must be a

prime number.

Problem 7.3.11. Find all prime numbers p, q for which the congruence

α3pq ≡ α (mod 3pq)

holds for all integers α.

(1996 Romanian Mathematical Olympiad)

Solution. Without loss of generality assume p ≤ q; the unique solution

will be (11,17), for which one may check the congruence using the Chinese

Remainder Theorem. We first have 23pq ≡ 2 (mod 3), which means p and

q are odd. In addition, if α is a primitive root mod p, then α3pq−1 ≡ 1

(mod p) implies that p− 1 divides 3pq− 1 as well as 3pq− 1− 3q(p− 1) =

3q − 1, and conversely that q − 1 divides 3p− 1. If p = q, we now deduce

p = q = 3, but 427 ≡ 1 (mod 27), so this fails. Hence p < q.

Since p and q are odd primes, q ≥ p + 2, so (3p− 1)/(q − 1) < 3. Since

this quantity is an integer, and it is clearly greater than 1, it must be 2.

That is, 2q = 3p+ 1. On the other hand, p− 1 divides 3q− 1 = (9p+ 1)/2

as well as (9p+ 1) − (9p− 9) = 10. Hence p = 11, q = 17.

Remark. An integer n such that an ≡ a (mod n) for all integers a is

called a Carmichael number. Very recently W.R. Alford, A. Granville, C.

Pomerance [Annals Math., 1994, 703-722] proved that there are infinitely

many Carmichael numbers. Using the ideas outlined in this solution of the

above problem, one can show that n is a Carmichael number if and only

if it is of the form p1p2 . . . pk, with pi different prime numbers such that

pi − 1|n− 1 for all i = 1, 2, . . . , k.

18.4 Wilson’s Theorem

Problem 7.4.5. Let p be an odd prime. Prove that

12 · 32 . . . (p− 2)2 ≡ (−1)
p+1
2 (mod p)
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and

22 · 42 . . . (p− 1)2 ≡ (−1)
p+1
2 (mod p).

Solution. Using Wilson’s Theorem, we have (p − 1)! ≡ −1 (mod p),

hence

(1 · 3 . . . (p− 2))(2 · 4 . . . (p− 1)) ≡ −1 (mod p).

On the other hand,

1 ≡ −(p− 1) (mod p), 3 ≡ −(p− 3) (mod p), . . . ,

p− 2 ≡ −(p− (p− 2)) (mod p),

therefore

1 · 3 . . . (p− 2) ≡ (−1)
p−1
2 (2 · 4 . . . (p− 1)) (mod p)

and the conclusion follows.

Problem 7.4.6. Show that there do not exist nonnegative integers k and

m such that k! + 48 = 48(k + 1)m.

(1996 Austrian-Polish Mathematics Competition)

Solution. Suppose such k,m exist. We must have 48|k!, so k ≥ 7 = 6;

one checks that k = 6 does not yield a solution, so k ≥ 7. In that case k!

is divisible by 32 and by 9, so that (k! + 48)/48 is relatively prime to 6, as

then is k + 1.

If k+1 is not prime, it has a prime divisor greater than 3, but this prime

divides k! and not k! + 48. Hence k+ 1 is prime, and by Wilson’s Theorem

k! + 1 is a multiple of k + 1. Since k! + 48 is as well, we find k + 1 = 47,

and we need only check that 46!/48+1 is not a power of 47. We check that

46!/48 + 1 ≡ 29 (mod 53) (by cancelling as many terms as possible in 46!

before multiplying), but that 47 has order 12 modulo 53 and that none of

its powers is congruent to 29 modulo 53.

Problem 7.4.7. For each positive integer n, find the greatest common

divisor of n! + 1 and (n+ 1)!.

(1996 Irish Mathematical Olympiad)

Solution. If n + 1 is composite, then each prime divisor of (n + 1)! is

a prime less than n, which also divides n! and so does not divide n! + 1.

Hence f(n) = 1. If n+ 1 is prime, the same argument shows that f(n) is
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a power of n+ 1, and in fact n+ 1|n! + 1 by Wilson’s Theorem. However,

(n+ 1)2 does not divide (n+ 1)!, and thus f(n) = n+ 1.

Problem 7.4.8. Let p ≥ 3 be a prime and let σ be a permutation of

{1, 2, . . . , p− 1}. Prove that there are i 6= j such that p|iσ(i) − jσ(j).

(1986 Romanian IMO Team Selection Test)

Solution. Assume by contradiction that p does not divide iσ(i)− jσ(j)

for any i, j = 1, 2, . . . , p−1, i 6= j. Then, the integers iσ(i), i = 1, 2, . . . , p−1,

are all not divisible by p and give distinct residues modulo p. We have

p−1
∏

i=1

(iσ(i)) ≡
p−1
∏

i=1

i = (p− 1)! ≡ −1 (mod p).

On the other hand,

p−1
∏

i=1

(iσ(i)) =

p−1
∏

i=1

((p − 1)!)2 ≡ 1 (mod p), a contra-

diction.
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Diophantine Equations

19.1 Linear Diophantine equations

Problem 8.1.4. Solve in integers the equation

(x2 + 1)(y2 + 1) + 2(x− y)(1 − xy) = 4(1 + xy).

Solution. The equation is equivalent to

x2y2 − 2xy + 1 + x2 + y2 − 2xy + 2(x− y)(1 − xy) = 4,

or

(xy − 1)2 + (x− y)2 + 2(x− y)(1 − xy) = 4.

Hence (1 − xy + x− y)2 = 4 and, consequently, |(1 + x)(1 − y)| = 2.

We have two cases:

I. (1 + x)(1 − y) = 2. Then

a) 1 + x = 2, 1 − y = 1, so x = 1, y = 0.

b) 1 + x = −2, 1 − y = −1, so x = −3, y = 2.

c) 1 + x = 1, 1 − y = 2, so x = 0, y = −1.

d) 1 + x = −1, 1 − y = −2, so x = −2, y = 3.

II. (1 + x)(1 − y) = −2. Then

a) 1 + x = 2, 1 − y = −1, so x = 1, y = 2.
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b) 1 + x = −2, 1 − y = 1, so x = −3, y = 0.

c) 1 + x = 1, 1 − y = −2, so x = 0, y = 3.

d) 1 + x = −1, 1 − y = 2, so x = −2, y = −1.

Problem 8.1.5. Determine the side lengths of a right triangle if they are

integers and the product of the legs’ lengths equals three times the perime-

ter.

(1999 Romanian Mathematical Olympiad)

Solution. Let a, b, c be the lengths of triangle’s sides. We have

a2 = b2 + c2,

and

bc = 3(a+ b+ c).

Let P = a+ b+ c. Then bc = 3P and

b2 + c2 = (b + c)2 − 2bc = (P − a)2 − 6P = P 2 + a2 − 2aP − 6P.

It follows that

a2 = P 2 + a2 − 2aP − 6P,

so

P = 2a+ 6,

that is,

a = b+ c− 6.

We have then:

b2 + c2 = b2 + c2 + 2bc− 12b− 12c+ 36

if and only if

bc− 6b− 6c+ 18 = 0,

that is

(b− 6)(c− 6) = 18.

Analyzing the ways in which 18 can be written as a product of integers,

we find the following solutions:

(a, b, c)∈{(25, 7, 24), (25, 24, 7), (17, 8, 15), (17, 15, 8), (15, 9, 12), (15, 12, 9)}.

Problem 8.1.6. Let a, b and c be positive integers, each two of them

being relatively prime. Show that 2abc− ab− bc− ca is the largest integer

which cannot be expressed in the form xbc+ yca+ zab where x, y and z are

nonnegative integers.



19.1. LINEAR DIOPHANTINE EQUATIONS 335

(24th IMO)

Solution. We will solve the problem in two steps.

First step. The number 2abc − ab − bc − ca cannot be expressed in the

required form. Assume contrary, that:

2abc− ab− bc− ca = xbc+ yca+ zab,

where x, y, z ≥ 0. Then, one obtains the combination

2abc = bc(x+ 1) + ca(y + 1) + ab(z + 1)

where x+1 > 0, y+1 > 0, z+1 > 0. It leads to the divisibility a|bc(x+1).

Since a is relatively prime to b and c, a divides x+ 1 and then a ≤ x+ 1.

Using similar arguments, b ≤ y+1 and c ≤ z+1. Thus, 2abc = bc(x+1)+

ca(y + 1) + ab(z + 1) ≥ 3abc. This is a contradiction.

Second step. Any number N , N > 2abc− ab− bc− ca, can be expressed

in the form N = xbc+ yca+ zab.

First, observe that 2abc−ab− bc− ca+1 > 0. It follows by the following

argument:

1

abc
(2abc−ab−bc−ca+1) = 2− 1

a
− 1

b
− 1

c
+

1

abc
> 2− 1

1
− 1

2
− 1

3
+

1

abc
> 0.

Going further, we have two situations. When N ≡ 0 (mod abc), since

N = abcq, we may consider the combination N = (ab)cq+ bc · 0 + ca · 0. It

is of required form, under notations x = y = 0 and z = cq.

Suppose that N 6≡ 0 (mod abc). Because gcd(bc, a) = 1, the congruence

xbc ≡ N (mod a)

has a solution x0, 0 < x0 < a. Similarly, the congruences

yca ≡ N (mod b)

zab ≡ N (mod c)

have solutions y0, z0, respectively, 0 < y0 < b, 0 < x0 < c.

Let A = x0bc+ y0ca+ z0ab. Then we have:

A ≡ x0bc ≡ N (mod a), A ≡ N (mod b), A ≡ N (mod c).

Since a, b, c are pairwise respectively prime, we obtain A ≡ N (mod abc).
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The number A is a combination of required form. Since x0 ≤ a − 1,

y0 ≤ b − 1, and z0 ≤ c − 1 it follows that A ≤ 3abc− bc − ca − ab. Using

A ≡ N (mod abc), we may write N = A + kabc. In this sum k ≥ 0, since

N > 2abc− bc− ca− ab. Therefore we found for N , as it was required, the

expression

N = (x0 + ka)bc+ y0ca+ z0ab

where x0 + ka ≥ 0, y0 ≥ 0, z0 ≥ 0.

Remark. One can prove that if a1, a2, . . . , ak ∈ Z are positive integers

such that gcd(a1, . . . , ak) = 1, then any sufficiently large n is a linear com-

bination with nonnegative coefficients of a1, . . . , ak. It is not known the

smallest such n for k ≥ 4. This is the famous problem of Frobenius.

19.2 Quadratic Diophantine equations

19.2.1 Pythagorean equations

Problem 8.2.2. Find all Pythagorean triangles whose areas are numer-

ically equal to their perimeters.

Solution. From (3), the side lengths of such a triangle are

k(m2 − n2), 2kmn, k(m2 + n2).

The condition in the problem is equivalent to

k2mn(m2 − n2) = 2km(m+ n),

which reduces to

kn(m− n) = 2.

A simple case analysis shows that the only possible triples (k,m, n) are

(2,2,1), (1,3,2), (1,3,1), yielding the Pythagorean triangles 6 − 8 − 10 and

5 − 12 − 13.

Problem 8.2.3. Prove that for every positive integer n there is a positive

integer k such that k appears in exactly n nontrivial Pythagorean triples.

(American Mathematical Monthly)

Solution. We will prove by induction that 2n+1 appears in exactly n

Pythagorean triples. The base case n = 1 holds for (3, 22, 5) is the only

such triple. Assume that (xk, yk, zk), where xk = u2
k−v2

k, yk = 2ukvk, zk =

u2
k+v2

k, k = 1, . . . , n are the n triples containing 2n+1. Then (2xk, 2yk, 2zk),
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k = 1, . . . , n are n non-primitive Pythagorean triples containing 2n+2 and

(22n+2 − 1, 2n+2, 22n+2 + 1) is the only such primitive triple.

No other triple with this property exists. Indeed, if (u2−v2, 2uv, u2+v2)

were a triple containing 2n+2, then we would have the following cases:

i) u2 + v2 = 2n+2. Simplifying by the greatest possible power of 2 we

get a2 + b2 = 2k where a and b ate not both even. Then the left-hand side

is congruent to 1 or 2 (mod 4), while the right-hand side is 0 (mod 4), a

contradiction.

ii) 2uv = 2n+2. We simplify again by the greatest power of 2 and obtain

ab = 2s, where a > b are not both even and s ≥ 1. It follows that a = 2s and

b = 1, yielding the triple generated by (22s − 1, 2s+1, 22s +1) multiplied by

a power of 2, that is clearly among the non-primitive triples (2xk, 2yk, 2zk).

iii) u2−v2 = 2n+2. Simplifying again by the greatest power of 2 we arrive

at a2 − b2 = 2t, where a and b are not both even and t ≥ 3. If one of a and

b are even, then the left-hand side is odd, while the right-hand side is even,

a contradiction. If a and b are both odd, then a− b = 2 and a+ b = 2t−1,

yielding a − 2t−2 and b = 2t−2 − 1. Again, we get a triple generated by

(2t, 2(22t−4 − 1), 2(22t−4 + 1)) multiplied by a power of 2, which is clearly

already among a non-primitive triple (2xk, 2yk, 2zk).

19.2.2 Pell’s equation

Problem 8.2.6. Let p be a prime number congruent to 3 modulo 4.

Consider the equation

(p+ 2)x2 − (p+ 1)y2 + px+ (p+ 2)y = 1.

Prove that this equation has infinitely many solutions in positive integers,

and show that if (x, y) = (x0, y0) is a solution of the equation in positive

integers, then p|x0.

(2001 Bulgarian Mathematical Olympiad)

Solution. We show first that p|x. Substituting y = z + 1 and rewriting,

we obtain

x2 = (z − x)((p+ 1)(z + x) + p).

Let q = gcd(z−x, (p+1)(z+x)+p). Then q|x, therefore q|z, and therefore

q|p. On the other hand, q 6= 1, because otherwise both factors on the right

hand side must be perfect squares, yet (p+1)(z+x)+p ≡ 3 (mod 4). Thus

q = p and p|x as desired.
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Now, write x = px1 and z = pz1 to obtain

x2
1 = (z1 − x1)((p+ 1)(z1 + x1) + 1).

By what we showed above, the two terms on the right are coprime and

must be perfect squares. Therefore, for some a, b we have

z1 − x1 = a2, (p+ 1)(z1 + x1) + 1 = b2, x1 = ab.

The above equality implies

b2 = (p+ 1)((a2 + 2ab) + 1),

i.e.

(p+ 2)b2 − (p+ 1)(a+ b)2 = 1.

Vice versa, given a and b satisfying the last equation, there exists a

unique pair (x1, y1) satisfying the equation above, and hence a unique pair

(x, y) satisfying the original equation.

Thus, we reduced the original equation to a ”Pell-type” equation. To get

some solutions, look at the odd powers of
√
p+ 2+

√
p+ 1. It follows easily

that

(
√

p+ 2 +
√

p+ 1)2k+1 = mk

√

p+ 2 + nk

√

p+ 1

for some positive integers mk, nk. Then

(
√

p+ 2 −
√

p+ 1)2k+1 = mk

√

p+ 2 − nk

√

p+ 1,

and, multiplying the left and right sides gives

(p+ 2)m2
k − (p+ 1)n2

k = 1.

Clearly, nk > mk, so setting bk = mk, ak = nk −mk gives a solution for

(a, b). Finally, it is easy to see that the sequences {mk}, {nk} are strictly

increasing, so we obtain infinitely many solutions this way.

Problem 8.2.7. Determine all integers a for which the equation

x2 + axy + y2 = 1

has infinitely many distinct integer solutions (x, y).

(1995 Irish Mathematical Olympiad)
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Solution. The equation has infinitely many solutions if and only if a2 ≥
4. Rewrite the given equation in the form

(2x+ ay)2 − (a2 − 4)y2 = 4.

If a2 < 4, the real solutions to this equation form an ellipse and so

only finitely integer solutions occur. If a = ±2, there are infinitely many

solutions, since the left side factors as (x ± y)2. If a2 > 4, then a2 − 4 is

not a perfect square and so the Pell’s equation u2 − (a2 − 4)v2 = 1 has

infinitely many solutions. But setting x = u − av, y = 2v gives infinitely

many solutions of the given equation.

Problem 8.2.8. Prove that the equation

x3 + y3 + z3 + t3 = 1999

has infinitely many integral solutions.

(1999 Bulgarian Mathematical Olympiad)

Solution. Observe that (m−n)3+(m+n)3 = 2m3+6mn2. Now suppose

we want a general solution of the form

(x, y, z, t) =

(

a− b, a+ b,
c

2
− d

2
,
c

2
+
d

2

)

for integers a, b and odd integers c, d. One simple solution to the given

equation is (x, y, z, t) = (10, 10,−1, 0), so we try setting a = 10 and c = −1.

Then

(x, y, z, t) =

(

10 − b, 10 + b,−1

2
− d

2
,−1

2
+
d

2

)

is a solution exactly when

(2000 + 60b2) − 1 + 3d2

4
= 1999, i.e. d2 − 80b2 = 1.

The second equation is a Pell’s equation with solution (d1, b1) = (9, 1).

We can generate infinitely many more solutions by setting

(dn+1, bn+1) = (9dn + 80bn, 9bn + dn) for n = 1, 2, 3, . . .

This can be proven by induction, and it follows from a general recursion

(pn+1, qn+1) = (p1pn + q1qnD, p1qn + q1pn)

for generating solutions to p2−Dq2 = 1 given a nontrivial solution (p1, q1).
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A quick check also shows that each dn is odd. Thus because there are

infinitely many solutions (bn, dn) to the Pell’s equation (and with each dn

odd), there are infinitely many integral solutions

(xn, yn, zn, tn) =

(

10 − bn, 10 + bn,−
1

2
− dn

2
,−1

2
+
dn

2

)

to the original equation.

19.2.3 Other quadratic equations

Problem 8.2.11. Prove that the equation

x2 + y2 + z2 + 3(x+ y + z) + 5 = 0

has no solutions in rational numbers.

(1997 Bulgarian Mathematical Olympiad)

Solution. Let u = 2x + 3, v = 2y + 3, w = 2z + 3. Then the given

equation is equivalent to

u2 + v2 + w2 = 7.

It is equivalent to ask that the equation

x2 + y2 + z2 = 7w2

has no nonzero solutions in integers; assume on the contrary that (x, y, z, w)

is a nonzero solution with |w| + |x|+ |y|+ |z| minimal. Modulo 4, we have

x2 + y2 + z2 ≡ 7w2, but every perfect square is congruent to 0 or 1 modulo

4. Thus we must have x, y, z, w even, and (x/2, y/2, z/2, w/2) is a smaller

solution, contradiction.

Remark. Try to prove the following theorem of Davenport and Cassels:

for n ∈ Z, the equation x2 + y2 + z2 = n has rational solutions if and only

if it has integer solutions. There is a beautiful elementary geometric proof.

Try to find it!

Problem 8.2.12. Find all integers x, y, z such that 5x2 − 14y2 = 11z2.

(2001 Hungarian Mathematical Olympiad)

Solution. The only solution is (0,0,0).
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Assume, for sake of contradiction, that there is a triple of integers

(x, y, z) 6= (0, 0, 0) satisfying the given equation, and let (x, y, z) =

(x0, y0, z0) be a nonzero solution that minimizes |z + y + z| > 0.

Because 5x2
0 − 14y2

0 = 11z2
0, we have

−2x2
0 ≡ 4z2

0 (mod 7),

or x2
0 ≡ −2z2

0 ≡ 5z2
0 (mod 7). Therefore, we have z0 ≡ 0 (mod 7), because

otherwise we have

5 ≡ (x0z
−1
0 )2 (mod 7),

which is impossible because 5 is not a quadratic residue modulo 7. (The

squares modulo 7 are 0, 1, 2 and 4.)

It follows that x0 and z0 are divisible by 7, so that 14y2 = 5x2 − 11z2 is

divisible by 49. Therefore, 7|y0. Then
(x0

7
,
y0
7
,
z0
7

)

is also a solution, but
∣
∣
∣
x0

7
+
y0
7

+
z0
7

∣
∣
∣ < |x0+y0+z0|, contradicting the minimality of (x0, y0, z0).

Therefore, our original assumption was false, and the only integer solu-

tion is (0,0,0).

Problem 8.2.13. Let n be a nonnegative integer. Find the nonnegative

integers a, b, c, d such that

a2 + b2 + c2 + d2 = 7 · 4n.

(2001 Romanian JBMO Team Selection Test)

Solution. For n = 0, we have 22 + 12 + 12 + 12 = 7, hence (a, b, c, d) =

(2, 1, 1, 1) and all permutations. If n ≥ 1, then a2+b2+c2+d2 ≡ 0 (mod 4),

hence the numbers have the same parity. We analyze two cases.

a) The numbers a, b, c, d are odd. We write a = 2a′ + 1, etc. We obtain:

4a′(a′ + 1) + 4b′(b′ + 1) + 4c′(c′ + 1) + 4d′(d′ + 1) = 4(7 · 4n−1 − 1).

The left hand side of the equality is divisible by 8, hence 7 ·4n−1−1 must

be even. This happens only for n = 1. We obtain a2 + b2 + c2 + d2 = 28,

with the solutions (3,3,3,1) and (1,1,1,5).

b) The number a, b, c, d are even. Write a = 2a′, etc. We obtain

a′
2
+ b′

2
+ c′

2
+ d′

2
= 7 · 4n−1,

so we proceed recursively.
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Finally, we obtain the solutions (2n+1, 2n, 2n, 2n), (3 ·2n, 3 ·2n, 3 ·2n, 2n),

(2n, 2n, 2n, 5 · 2n), n ∈ N, and the respective permutations.

Problem 8.2.14. Prove that the equation

x2 + y2 + z2 + t2 = 22004,

where 0 ≤ x ≤ y ≤ x ≤ t, has exactly two solutions in the set of integers.

(2004 Romanian Mathematical Olympiad)

Solution. The solutions are (0, 0, 0, 21002) and (21001, 21001, 21001, 21001).

In order to prove the statement, let (x, y, z, t) be a solution. Observe that

for odd a we have a = 4n± 1, and a2 gives the remainder 1 when divided

by 8. Thus the equation has no solution with an odd component.

We thus must have x = 2x1, y = 2y1, z = 2z1, t = 2t1, where 0 ≤ x1 ≤
y1 ≤ z1 ≤ t1 are integers and x2

1+y
2
1+z

2
1+t21 = 22002. By the same argument

x1 = 2x2, y1 = 2y2, z1 = 2z2, t1 = 2t2, where 0 ≤ x2 ≤ y2 ≤ z2 ≤ t2 are

integers and x2
2 + y2

2 + z2
2 + t22 = 22000.

Recursively, x = 22001a, y = 22001b, z = 22001c, t = 22002d, where 0 ≤
a ≤ b ≤ c ≤ d are integers and a2 + b2 + c2 + d2 = 4. This relation simply

implies the conclusion.

Problem 8.2.15. Let n be a positive integer. Prove that the equation

x+ y +
1

x
+

1

y
= 3n

does not have solutions in positive rational numbers.

Solution. Suppose x =
a

b
, y =

c

d
satisfies the given equation, where

(a, b) = (c, d) = 1. Clearing denominators,

(a2 + b2)cd+ (c2 + d2)ab = 3nabcd.

Thus, ab|(a2 + b2)cd and cd|(c2 + d2)ab. Now (a, b) = 1 implies (a, a2 +

b2) = (a, b2) = 1, so ab|cd; likewise, cd|ab, and together these give ab = cd.

Thus,

a2 + b2 + c2 + d2 = 3nab.

Now each square on the left is congruent to either 0 or 1 modulo 3.

Hence, either all terms are divisible by 3 or exactly one is. The first case

is impossible by the assumption (a, b) = (c, d) = 1, and the second is

impossible because ab = cd.
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19.3 Nonstandard Diophantine equations

19.3.1 Cubic equations

Problem 8.3.5. Find all triples (x, y, z) of natural numbers such that y

is a prime number, y and 3 do not divide z, and x3 − y3 = z2.

(1999 Bulgarian Mathematical Olympiad)

Solution. We rewrite the equation in the form

(x− y)(x2 + xy + y2) = z2.

Any common divisor of x− y and x2 + xy + y2 also divides both z2 and

(x2 + xy + y2) − (x + 2y)(x− y) = 3y2. Because z2 and 3y2 are relatively

prime by assumption, x − y and x2 + xy + y2 must be relatively prime as

well. Therefore, both x− y and x2 + xy + y2 are perfect squares.

Writing a =
√
x− y, we have

x2 + xy + y2 = (a2 + y)2 + (a2 + y)y + y2 = a4 + 3a2y + 3y2

and

4(x2 + xy + y2) = (2a2 + 3y)2 + 3y2.

Writing m = 2
√

x2 + xy + y2 and n = 2a2 + 3y, we have

m2 = n2 + 3y2

or

(m− n)(m+ n) = 3y2,

so (m− n,m+ n) = (1, 3y2), (y, 3y), or (3, y2).

In the first case, 2n = 3y2 − 1 and 4a2 = 2n− 6y = 3y2 − 6y− 1. Hence,

a2 ≡ 2 (mod 3), which is impossible.

In the second case, n = y < 2a2 + 3y = n, a contradiction.

In the third case, we have 4a2 = 2n − 6y = y2 − 6y − 3 < (y − 3)2.

When y ≥ 10 we have y2−6y−3 > (y−4)2. Hence, we must actually have

y = 2, 3, 5, or 7. In this case we have a =

√

y2 − 6y − 3

2
, which is real only

when y = 7, a = 1, x = y + a2 = 8, and z = 13. This yields the unique

solution (x, y, z) = (8, 7, 13).

Problem 8.3.6. Find all the positive integers a, b, c such that

a3 + b3 + c3 = 2001.
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(2001 Junior Balkan Mathematical Olympiad)

Solution. Assume without loss of generality that a ≤ b ≤ c.

It is obvious that 13 + 103 + 103 = 2001. We prove that (1, 10, 10) is the

only solution of the equation, except for its permutations.

We start proving a useful

Lemma. Suppose n is an integer. The remainder of n3 when divided by

9 is 0, 1 or −1.

Indeed, if n = 3k, then 9|n3 and if n = 3k±1, then n3 = 27k3±27k2
9k±

1 = M9 ± 1.

Since 2001 = 9 · 222 + 3 = M9 + 3, then a3 + b3 + c3 = 2001 implies

a3 = M9 + 1, b3 = M9 + 1 and c3 = M9 + 1, hence a, b, c are numbers of

the form M3 + 1. We search for a, b, c in the set {1, 4, 7, 10, 13, . . .}.
If c ≥ 13 then c3 ≥ 2197 > 2001 = a3 + b3 + c3, which is false. If

c ≤ 7 then 2001 = a3 + b3 + c3 ≤ 3 · 343 and again is false. Hence c = 10

and consequently a3 + b3 = 1001. If b < c = 10 then a ≤ b ≤ 7 and

1001 = a3 + b3 ≤ 2 · 73 = 2 · 343, a contradiction. Thus b = 10 and a = 1.

Therefore (a, b) ∈ {(1, 10, 10), (10, 1, 10), (10, 10, 1)}.
Problem 8.3.7. Determine all ordered pairs (m,n) of positive integers

such that
n3 + 1

mn− 1

is an integer.

(35th IMO)

Solution. Let
n3 + 1

mn− 1
= k, k a positive integer.

From n3 + 1 = k(mn − 1), one obtains k + 1 = n(km − n2). Thus, n

divides k + 1 and by noting km − n2 = q one has k = nq − 1. Using this

form of k we have

n3 + 1 = (nq − 1)(mn− 1) ⇔ n(mq − n) = m+ q.

Since m+q > 0 it follows that x = mq−n > 0. Thus we have the system:

{

xn = m+ q

x+ n = mq

By adding these equations we obtain:

xn+mq = x+ n+m+ q ⇔ xn+mq − x− n−m− q + 2 = 2 ⇔
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(x− 1)(n− 1) + (m− 1)(q − 1) = 2.

The equation

(x− 1)(n− 1) + (m− 1)(q − 1) = 2

has only finite number of positive integer solutions. These are listed bellow:

1) x = 1, m−1 = 2, q−1 = 1 ⇒ x = 1, m = 3, q = 2 ⇒ m = 3, n = 5.

2) x = 1, m− 1 = 1, q − 1 = 2 ⇒ m = 2, n = 5.

3) n = 1, m− 1 = 2, q − 1 = 1 ⇒ n = 1, m = 3.

4) n = 1, m− 1 = 1, q − 1 = 2 ⇒ n = 1, m = 2.

5) m = 1, x− 1 = 2, n− 1 = 1 ⇒ m = 1, n = 2.

6) m = 1, x− 1 = 1, n− 1 = 2 ⇒ m = 1, n = 3.

7) q = 1, x− 1 = 1, n− 1 = 2 ⇒ n = 3, m = 5.

8) q = 1, x− 1 = 2, n− 1 = 1 ⇒ n = 2, m = 5.

9) x− 1 = n− 1 = m− 1 = q − 1 = 1 ⇒ m = n = 2.

Thus, we have obtained the following nine pairs (m,n): (5,3), (3,5), (5,2),

(2,5), (3,1), (1,3), (2,1), (1,2), (2,2). All pairs are solutions of the problem.

19.3.2 High-order polynomial equations

Problem 8.3.12. Prove that there are no positive integers x and y such

that

x5 + y5 + 1 = (x + 2)5 + (y − 3)5.

Solution. Notice that z5 ≡ z (mod 10), hence x+y+1 ≡ (x+2)+(y−3)

(mod 10), impossible.

Problem 8.3.13. Prove that the equation y2 = x5 − 4 has no integer

solutions.

(1998 Balkan Mathematical Olympiad)

Solution. We consider the equation mod 11. Since

(x5)2 = x10 ≡ 0 or 1 (mod 11)

for all x, we have x5 ≡ −1, 0, or 1 (mod 11), so the right-hand side is either

6, 7, or 8 modulo 11. However, all squares are 0, 1, 3, 4, 5, or 9 modulo 11,

so the equation y2 = x5 − 4 has no integer solutions.

Problem 8.3.14. Let m,n > 1 be integer numbers. Solve in positive

integers the equation

xn + yn = 2m.
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(2003 Romanian Mathematical Olympiad)

Solution. Let d = gcd(x, y) and x = da, y = db, where (a, b) = 1. it is

easy to see that a and b are both odd numbers and an + bn = 2k, for some

integer k.

Suppose that n is even. As a2 ≡ b2 ≡ 1 (mod 8), we have also an ≡ bn ≡
1 (mod 8). As 2k = an+bn ≡ 2 (mod 8), we conclude t = 1 and u = v = 1,

thus x = y = d. The equation becomes xn = 2m−1 and it has an integer

solution if and only if n is a divisor of m− 1 and x = y = 2
m−1

n .

Consider the case when n is odd. From the decomposition

an + bn = (a+ b)(an−1 − an−2b+ an−3b2 − · · · + bn−1),

we easily get a + b = 2k = an + bn. In this case a = b = 1, and the proof

goes on the line of the previous case.

To conclude, the given equations have solutions if and only if
m− 1

n
is

an integer and in this case x = y = 2p.

Problem 8.3.15. For a given positive integer m, find all pairs (n, x, y) of

positive integers such that m,n are relatively prime and (x2+y2)m = (xy)n,

where n, x, y can be represented in terms of m.

(1995 Korean Mathematical Olympiad)

Solution. If (n, x, y) is a solution, then the AM-GM inequality yields

(xy)n = (x2 + y2)m ≥ (2xy)m > (xy)m,

so n > m. Let p be a common prime divisor of x and y and let pa‖x, pb‖y.
Then p(a+b)n‖(xy)n = (x2 + y2)m. Suppose b > a. Since p2a‖x2, p2b‖y2, we

see that p2a‖x2 +y2 and p2am‖(x2 +y2)m. Thus 2am = (a+b)n > 2an and

m > n, a contradiction. Likewise, a > b produces a contradiction, so we

must have a = b and x = y. This quickly leads to x = 2t for some integer t

and all solutions are of the form

(n, x, y) = (2t+ 1, 2t, 2t)

for nonnegative integers t.
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19.3.3 Exponential Diophantine equations

Problem 8.3.19. Determine all triples (x, k, n) of positive integers such

that

3k − 1 = xn.

(1999 Italian Mathematical Olympiad)

Solution. All triples of the form (3k−1, k, 1) for positive integers k, and

(2,2,3).

The solutions when n = 1 are obvious. Now, n cannot be even because

then 3 could not divide 3k = (x
n
2 )2 + 1 (because no square is congruent to

2 modulo 3). Also, we must have x 6= 1.

Assume that n > 1 is odd and x ≥ 2. Then 3k = (x + 1)

n−1∑

i=0

(−x)i,

implying that both x + 1 and
n−1∑

i=0

(−x)i are powers of 3. Because x + 1 ≤

x2 − x + 1 ≤
n−1∑

i=0

(−x)i we must have 0 ≡
n−1∑

i=0

(−x)i ≡ n (mod x + 1), so

that x+ 1|n. Specifically, this means that 3|n.

Writing x′ = x
n
3 , we have 3k = x′3 +1 = (x′ +1)(x′2 −x′ +1). As before

x′ + 1 must equal some power of 3, say 3t. Then 3k = (3t − 1)3 + 1 = 33t −
32t+1 +3t+1, which is strictly between 33t−1 and 33t for t > 1. Therefore we

must have t = 1, x′ = 2, and k = 2, giving the solution (x, k, n) = (2, 2, 3).

Problem 8.3.20. Find all pairs of nonnegative integers x and y which

satisfy the equation

px − yp = 1

where p is a given odd prime.

(1995 Czech-Slovak Match)

Solution. If (x, y) is a solution, then

px = yp + 1 = (y + 1)(yp−1 − · · · + y2 − y + 1)

and so y + 1 = pn for some n. If n = 0, then x = y = 0 and p may be

arbitrary. Otherwise,

px = (pn − 1)p + 1
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= pnp − p · pn(p−1) +

(
p

2

)

pn(p−2) + · · · −
(

p

p− 2

)

p2n + p · pn.

Since p is a prime, all of the binomial coefficients are divisible by p. Hence

all terms are divisible by pn+1, and all but the last by pn+2. Therefore the

highest power of p dividing the right side is pn+1 and so x = n+1. We also

have

0 = pnp − p · pn(p−1) +

(
p

2

)

pn(p−2) + · · · −
(

p

p− 2

)

p2n.

For p = 3 this reads 0 = 33n − 3 · 32n, which only occurs for n = 1,

yielding x = y = 2. For p ≥ 5, the coefficient

(
p

p− 2

)

is not divisible by

p2, so every term but the last on the right side is divisible by p2n+2, while

the last term is not. Since the terms sum to 0, this is impossible.

Hence the only solutions are x = y = 0 for all p and x = y = 2 for p = 3.

Problem 8.3.21. Let x, y, z be integers with z > 1. Show that

(x+ 1)2 + (x+ 2)2 + · · · + (x+ 99)2 6= yz.

(1998 Hungarian Mathematical Olympiad)

Solution. We prove the statement by contradiction. Suppose, on the

contrary, that there are integers x, y, z such that z > 1, and

(x+ 1)2 + (x+ 2)2 + · · · + (x+ 99)2 = yz.

We notice that

yz = (x+ 1)2 + (x+ 2)2 + · · · + (x+ 99)2

= 99x2 + 2(1 + 2 + · · · + 99)x+ (12 + 22 + · · · + 992)

= 99x2 +
2 · 99 · 100

2
x+

99 · 100 · 199

6

= 33(3x2 + 300x+ 50 · 199),

which implies that 3|y. Since z ≥ 2, 32|yz, but 32 does not divide 33(3x2 +

300x+50 ·199), contradiction. So our assumption in fact must be false and

the original statement in the problem is correct.

Problem 8.3.22. Determine all solutions (x, y, z) of positive integers

such that

(x+ 1)y+1 + 1 = (x+ 2)z+1.
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(1999 Taiwanese Mathematical Olympiad)

Solution. Let a = x+ 1, b = y + 1, c = z + 1. Then a, b, c ≥ 2 and

ab + 1 = (a+ 1)c

((a+ 1) − 1)b + 1 = (a+ 1)c.

Taking the equations mod (a+ 1) yields (−1)b + 1 ≡ 0, so b is odd.

Taking the second equation mod (a + 1)2 after applying the binomial

expansion yields

(
b

1

)

(a+ 1)(−1)b−1 + (−1)b + 1 ≡ 0 (mod (a+ 1)2)

so (a+1)|b and a is even. On the other hand, taking the first equation mod

a2 after applying the binomial expansion yields

1 ≡
(
c

1

)

a+ 1 (mod a2),

so c is divisible by a and is even as well. Write a = 2a1 and c = 2c1. Then

2bab
1 = ab = (a+ 1)c − 1 = ((a+ 1)c1 − 1)((a+ 1)c1 + 1).

It follows that gcd((a+ 1)c1 − 1, (a+ 1)c1 + 1) = 2. Therefore, using the

fact that 2a1 is a divisor of (a+ 1)c1 − 1, we may conclude that

(a+ 1)c1 − 1 = 2ab
1

(a+ 1)c1 + 1 = 2b−1.

We must have 2b−1 > 2ab
1 ⇒ a1 = 1. Then these equations give c1 = 1

and b = 3. Therefore the only solution is (x, y, z) = (1, 2, 1).
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Printer: Opaque this

20

Some special problems in number

theory

20.1 Quadratic residues. Legendre’s symbol

Problem 9.1.7. Let f, g : Z+ → Z+ functions with the properties:

i) g is surjective;

ii) 2f2(n) = n2 + g2(n) for all positive integers n.

If, moreover, |f(n) − n| ≤ 2004
√
n for all n, prove that f has infinitely

many fixed points.

(2005 Moldavian IMO Team Selection Test)

Solution. Let pn be the sequence of prime numbers of the form 8k + 3

(the fact that there are infinitely many such numbers is a trivial conse-

quence of Dirichlet’s theorem, but we invite the reader to find an elemen-

tary proof). It is obvious that for all n we have

(
2

pn

)

= (−1)
p2

n−1

8 = −1.

Using the condition i) we can find xn such that g(xn) = pn for all n. It

follows that 2f2(xn) = x2
n + p2

n, which can be rewritten as 2f2(xn) ≡ x2
n

(mod pn). Because

(
2

pn

)

= −1, the last congruence shows that pn|xn

and pn|f(xn). Thus there exist sequences of positive integers an, bn such

that xn = anpn, f(xn) = bnpn for all n. Clearly, ii) implies the relation
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2b2n = a2
n + 1. Finally, using the property |f(n) − n| ≤ 2004

√
n we infer

that
2004√
xn

≥
∣
∣
∣
∣

f(xn)

xn
− 1

∣
∣
∣
∣
=

∣
∣
∣
∣

bn
an

− 1

∣
∣
∣
∣
,

that is

lim
n→∞

√

a2
n + 1

an
=

√
2.

The last relation immediately implies that lim
n→∞

an = 1. Therefore, start-

ing from a certain rank, we have an = 1 = bn that is f(pn) = pn. The

conclusion now follows.

Problem 9.1.8. Suppose that the positive integer a is not a perfect

square. Then

(
a

p

)

= −1 for infinitely many primes p.

Solution. One may assume that a is square-free. Let us write a =

2eq1q2 . . . qn, where qi are different odd primes and e ∈ {0, 1}. Let us as-

sume first that n ≥ 1 and consider some odd distinct primes r1, . . . , rk each

of them different from q1, . . . , qn. We will show that there exists a prime p,

different from r1, . . . , rk, such that

(
a

p

)

= −1. Let s be a non quadratic

residue modulo qn.

Using the Chinese Remainder Theorem, we can find a positive integer b

such that 





b ≡ 1 (mod ri), 1 ≤ i ≤ k

b ≡ 1 (mod 8),

b ≡ qi, 1 ≤ i ≤ n− 1

b ≡ s (mod qn)

Now, write b = p1 . . . pm with pi odd primes, not necessarily distinct.

Using the quadratic reciprocity law, it follows immediately that

m∏

i=1

(
2

pi

)

=
m∏

i=1

(−1)
p2

i
−1

8 = (−1)
b2−1

8 = 1

and

m∏

j=1

(
qi
pj

)

=

m∏

j=1

(−1)
pj−1

2 · qi−1

2

(
pj

qi

)

= (−1)
qi−1

2 · b−1
2

(
b

qi

)

=

(
b

qi

)

for all i ∈ {1, 2, . . . , n}. Hence

m∏

i=1

(
a

pi

)

=





m∏

j=1

(
2

pj

)




2
n∏

i=1

m∏

j=1

(
qi
pj

)
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=

n∏

i=1

(
b

qi

)

=

(
b

qn

)

=

(
s

qn

)

= −1.

Thus, there exists i ∈ {1, 2, . . . ,m} such that

(
a

pi

)

= −1. Because b ≡ 1

(mod ri), 1 ≤ i ≤ k we also have pi ∈ {1, 2, . . .}\{r1, . . . , rk} and the claim

is proved.

The only remaining case is a = 2. But this one is very simple, since it

suffices to use Dirichlet’s theorem to find infinitely many primes p such

that
p2 − 1

8
is odd.

Problem 9.1.9. Suppose that a1, a2, . . . , a2004 are nonnegative integers

such that an
1 + an

2 + · · · + an
2004 is a perfect square for all positive integers

n. What is the minimal number of such integers that must equal 0?

(2004 Mathlinks Contest)

Solution. Suppose that a1, a2, . . . , ak are positive integers such that an
1 +

an
2 + · · · + an

k is a perfect square for all n. We will show that k is a perfect

square. In order to prove this, we will use the above result and show that
(
k

p

)

= 1 for all sufficiently large prime p. This is not a difficult task.

Indeed, consider a prime p, greater than any prime divisor of a1a2 . . . ak.

Using Fermat’s little theorem, ap−1
1 + ap−1

2 + · · · + ap−1
k ≡ k (mod p),

and since ap−1
1 + ap−1

2 + · · · + ap−1
k is a perfect square, it follows that

(
k

p

)

= 1. Thus k is a perfect square. And now the problem becomes

trivial, since we must find the greatest perfect square smaller than 2004.

A quick computation shows that this is 442 = 1936 and so the desired

minimal number is 68.

Problem 9.1.10. Find all positive integers n such that 2n − 1|3n − 1.

(American Mathematical Monthly)

Solution. We will prove that n = 1 is the only solution to the problem.

Suppose that n > 1 is a solution. Then 2n − 1 cannot be a multiple of

3, hence n is odd. Therefore, 2n ≡ 8 (mod 12). Because any odd prime

different from 3 is of one of the forms 12k ± 1, 12k ± 5 and since 2n −
1 ≡ 7 (mod 12), it follows that 2n − 1 has at least a prime divisor of the

form 12k ± 5, call it p. Obviously, we must have

(
3

p

)

= 1 and using the

quadratic reciprocity law, we finally obtain
(p

3

)

= (−1)
p−1
2 . On the other
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hand
(p

3

)

=

(±2

3

)

= −(±1). Consequently, −(±1) = (−1)
p−1
2 = ±1,

which is the desired contradiction. Therefore the only solution is n = 1.

Problem 9.1.11. Find the smallest prime factor of 12215

+ 1.

Solution. Let p be this prime number. Because p|12216 − 1, we find that

op(12)|216. We find that op(12) = 216 and so 216|p−1. Therefore p ≥ 1+216.

But it is well-known that 216 + 1 is a prime (and if you do not believe, you

can check; it is not that difficult). So, we might try to see if this number

divides 12215

+ 1. Let q = 216 + 1. Then

12215

+ 1 = 2q−1 · 3 q−1
2 + 1 ≡ 3

q−1
2 + 1 (mod q).

It remains to see whether

(
3

q

)

= −1. The answer is positive (use the

quadratic reciprocity law), so indeed 3
q−1
2 + 1 ≡ 0 (mod 2) and 216 + 1 is

the smallest prime factor of the number 12215

+ 1.

20.2 Special numbers

20.2.1 Fermat’s numbers

Problem 9.2.4. Find all positive integers n such that 2n−1 is a multiple

of 3 and
2n − 1

3
is a divisor of 4m2 + 1 for some integer m.

(1999 Korean Mathematical Olympiad)

Solution. The answer is all n = 2k where k = 1, 2, . . .

First observe that 2 ≡ −1 (mod 3). Hence 3|2n − 1 if and only if n is

even.

Suppose, by way of contradiction, that l ≥ 3 is a positive odd divisor of

n. Then 2l − 1 is not divisible by 3 but it is a divisor of 2n − 1, so it is a

divisor of 4m2 + 1 as well. On the other hand, 2l − 1 has a prime divisor

p of the form 4r + 3. Then (2m)2 ≡ −1 (mod 4r + 3), but we have that a

square cannot be congruent to −1 modulo a prime of the form 4r + 3 (see

also Problem 1 in Section 7.1).

Therefore, n is indeed of the form 2k for k ≥ 1. For such n, we have

2n − 1

3
= (221

+ 1)(222

+ 1)(223

+ 1) . . . (22k−1

+ 1).

The factors on the right side are all relatively prime since they are Fermat

numbers. Therefore by the Chinese Remainder Theorem, there is a positive
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integer c simultaneously satisfying

c ≡ 22i−1

(mod 22i

+ 1) for all i = 1, 2, . . . , k − 1

and c ≡ 0 (mod 2). Putting c = 2m, 4m2 + 1 is a multiple of
2n − 1

3
, as

desired.

Problem 9.2.5. Prove that the greatest prime factor of fn, n ≥ 2, is

greater than 2n+2(n+ 1).

(2005 Chinese IMO Team Selection Test)

Solution. From Problem 9.2.3 we can write

fn =
s∏

i=1

(1 + 2n+2ri)
ki , (1)

where pi = 1 + 2n+2ri are distinct primes and ki ≥ 1. Taking relation (1)

modulo 4n+2 it follows

0 ≡
s∑

i=1

kiri (mod 2n+2),

hence
s∑

i=1

kiri ≥ 2n+2.

From (1) it is clear that

fn ≥ (1 + 2n+2)k1+···+ks ,

hence

k1 + · · · + ks ≤ lg(1 + 22n

)

lg(1 + 2n+2)
.

It follows

2n+2 ≤
(

max
1≤i≤s

) s∑

j=1

kj ≤
(

max
1≤i≤s

ri

)
lg(1 + 22n

)

lg(1 + 2n+2)
.

Assume that

(

max
1≤i≤s

)

≤ n. Applying the last inequality we get

2n+2 ≤ n
lg(1 + 22n

)

lg(1 + 2n+2)
< n

lg(1 + 22n

)

(n+ 2) lg 2
,

i.e.
n+ 2

n
· 2n+2 < log2(1 + 22n

),

hence 22n+2

< 1 + 22n

, a contradiction. Therefore max
1≤i≤s

ri ≥ n + 1, and

max
1≤i≤s

pi > 2n+2(n+ 1).
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20.2.2 Mersenne’s numbers

Problem 9.2.7. Let P ∗ denote all the odd primes less than 10000, and

suppose p ∈ P ∗. For each subset S = {p1, p2, . . . , pk} of P ∗, with k ≥ 2 and

not including p, there exists a q ∈ P ∗ \ S such that

(q + 1)|(p1 + 1)(p2 + 1) . . . (pk + 1).

Find all such possible values of p.

(1999 Taiwanese Mathematical Olympiad)

Solution. Direct calculation shows that the set T of Mersenne primes

less that 10000 is

{M2,M3,M5,M7,M13} = {3, 7, 31, 127, 8191}.

211 −1 is not prime, it equals 23 ·89. We claim this is the set of all possible

values of p.

If some prime p is not in T , then look at the set S = T . Then there must

be some prime q 6∈ S less than 10000 such that

(q + 1)|(M2 + 1)(M3 + 1)(M5 + 1)(M7 + 1)(M13 + 1) = 230.

Thus, q + 1 is a power of 2 and q is a Mersenne prime less than 10000,

and therefore q ∈ T = S, a contradiction.

On the other hand, suppose p is in T . Suppose we have a set S =

{p1, p2, . . . , pk} ⊆ P ∗ not including p, with k ≥ 2 and p1 < p2 < · · · <
pk. Suppose, by way of contradiction, that for all q ∈ P ∗ such that

(q + 1)|(p1 + 1) . . . (pk + 1), we have q ∈ S. Then

4|(p1 + 1)(p2 + 1) ⇒ M2 ∈ S

8|(M2 + 1)(p2 + 1) ⇒ M3 ∈ S

32|(M2 + 1)(M3 + 1) ⇒ M5 ∈ S

128|(M2 + 1)(M5 + 1) ⇒ M7 ∈ S

8192|(M3 + 1)(M5 + 1)(M7 + 1) ⇒ M13 ∈ S.

Then p, a Mersenne prime under 10000, must be in S, a contradiction.

Therefore there is some prime q < 10000 not in S with q+1|(p1+1) . . . (pk+

1), as desired. This completes the proof.
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20.2.3 Perfect numbers

Problem 9.2.9. Prove that if n is an even perfect number, then 8n+ 1

is a perfect square.

Solution. From Problem 1, we have n =
m(m+ 1)

2
for some positive

integer m, hence

8n+ 1 = 4m(m+ 1) + 1 = (2m+ 1)2.

Problem 9.2.10. Show that if k is an odd positive integer, then 2k−1Mk

can be written as the sum of the cubes of the first 2
k−1
2 odd positive integers.

In particular, any perfect number has this property.

Solution. Standard summation formulas verify that

n∑

i=1

(2i− 1)3 = n2(2n2 − 1).

With n = 2
k−1
2 , the right-hand side becomes 2k−1(2k−1), that is 2k−1Mk

and we are done.

20.3 Sequences of integers

20.3.1 Fibonacci and Lucas sequences

Problem 9.3.5. Determine the maximum value of m2 + n2, where m

and n are integers satisfying 1 ≤ m,n ≤ 1981 and (n2 −mn−m2)2 = 1.

(22nd IMO)

Solution. Let S be the set of pairs (n,m) of positive integers satisfying

the equation

(x2 − xy − y2)2 = 1. (1)

If n = m, then n = m = 1. Hence (1, 1) ∈ S. It is clear that (1,0) and

(0,1) are also solutions to the equation (1).

We will consider solutions (n,m) with distinct components. Using Fer-

mat’s method of infinite descent we obtain the following important result

on the set S.

Lemma. If (n,m) is a positive solution to the equation (1) and n 6= m,

then n > m > n−m and (m,n−m) is also a solution to (1).

Proof. From n2 − nm−m2 = ±1, we obtain

n(n−m) = m2 ± 1 > 0.
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Thus, n > m. Also from n2 − nm−m2 = ±1, we obtain

m2 −m(n−m) − (n−m)2 = m2 +mn− n2 = ∓1.

Apply first part to solution (m,n−m) and obtain m > n−m.

From the Lemma we deduce that any pair (n,m) ∈ S gives rise to a

pair (m,n − m) ∈ M , which gives rise to a pair (a + b, a) ∈ M . In this

way by descending method (n,m) → (m,n −m) or by ascending method

(a, b) → (a+ b, a), we obtain new solutions of the equation. The ascending

and descending methods are reverse to one another.

By applying the descending method to a pair (n,m) ∈ S we can have only

finitely many steps, because n−m < m. Hence, in a finite number of steps

we obtain a pair with n = m, that is the pair (1,1). Thus, all solutions

(n,m) ∈ S are obtained from the pair (1,0) by applying the ascending

method:

(1, 0) → (1, 1) → (2, 1) → (3, 2) → (5, 3) → . . .

The components of all such pairs are Fibonacci numbers Fn. In this way

the ascending transformation is exactly the following:

(Fn, Fn−1) → (Fn+1, Fn).

Thus, to obtain the solution (n,m) with maximum value of n2 +m2 we

consider the members of the Fibonacci sequence, not exceeding 1981:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597.

So, the required maximum is 9872 + 15972.

Remark. Fibonacci numbers Fn have the property:

F 2
n+1 − FnFn+1 − F 2

n = ±1, for all n ≥ 0.

To prove it for n = 0 or n = 1 is equivalent to see that (1, 0) ∈ S and

that (1, 1) ∈ S. Further, we can use induction. The relation

F 2
n+1 − FnFn+1 − F 2

n = ±1

implies

F 2
n+2 − Fn+1Fn+2 − F 2

n+1 = (Fn+1 + Fn)2 − Fn+1(Fn+1 + Fn) − F 2
n+1

= −(F 2
n+1 − FnFn+1 − F 2

n) = ∓1.
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Problem 9.3.6. Prove that for any integer n ≥ 4, Fn+1 is not a prime.

Solution. We have the identity

F 4
n − 1 = Fn−2Fn−1Fn+1Fn+2 (1)

Assume that Fn + 1 is a prime for some positive integer n ≥ 4. Using

(1), it follows that Fn + 1 divides at least one of the integers Fn−2, Fn−1,

Fn+1, Fn+2. Since Fn + 1 is greater than Fn−2 and Fn−1, it follows that

Fn + 1 divides Fn+1 or Fn+2. But Fn+1 < 2Fn and Fn+2 < 4Fn, hence

Fn + 1 cannot divides Fn+1 or Fn+2, and the desired conclusion follows.

Problem 9.3.7. Let k be an integer greater than 1, a0 = 4, a1 = a2 =

(k2 − 2)2 and

an+1 = anan−1 − 2(an + an−1) − an−2 + 8 for n ≥ 2.

Prove that 2 +
√
an is a perfect square for all n.

Solution. The Fibonacci numbers are involved here again but it is much

harder to guess how they are related to the solution.

Let λ, µ be the roots of the equation t2−kt+1 = 0. Notice that λ+µ = k,

λµ = 1. Amending the Fibonacci sequence by setting F0 = 0, we claim that

an = (λ2Fn + µ2Fn)2 for n = 0, 1, 2, . . .

This is readily checked for n = 0, 1, 2. Assume it holds for all k ≤ n. Note

that the given recurrence can be written as

an+1 − 2 = (an − 2)(an−1 − 2) − (an−2 − 2),

and that ak = (λ2Fk + µ2Fk)2 is equivalent to ak − 2 = λ4Fk + µ4Fk . Using

the induction hypothesis for k = n− 2, n− 1, n, we obtain

an+1 − 2 = (λ4Fn + µ4Fn)(λ4Fn−1 + µ4Fn−1) − (λ4Fn−2 + µ4Fn−2)

= λ4(Fn+Fn−1) + µ4(Fn+Fn−1) + λ4(Fn−1+Fn−2)µ4Fn−1

+µ4(Fn−1+Fn−2)λ4Fn−1 − (λ4Fn−2 + µ4Fn−2)

= λ4Fn+1 + µ4Fn+1 + (λµ)4Fn−1(λ4Fn−2 + µ4Fn−2) − (λ4Fn−2 + µ4Fn−2).

Since λµ = 1, it follows that

an+1 = 2 + λ4Fn+1 + µ4Fn+1 = (λ2Fn+1 + µ2Fn+1)2

and the induction is complete.
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Now

2 +
√
an = 2 + λ2Fn + µ2Fn = (λFn + µFn)2.

Since

(λm−1 + µm−1)(λ+ µ) = (λm + µm) + λµ(λm−2 + µm−2),

we have

λm + µm = k(λm−1 + µm−1) − (λm−2 + µm−2),

leading to an easy proof by induction that λm + µm is an integer for all

nonnegative integers m. The solution is complete.

20.3.2 Problems involving linear recursive relations

Problem 9.3.12. Let a, b be integers greater than 1. The sequence x1,

x2, . . . is defined by the initial conditions x0 = 0, x1 = 1 and the recursion

x2n = ax2n−1 − x2n−2, x2n+1 = bx2n − x2n−1

for n ≥ 1. Prove that for any natural numbers m and n, the product

xn+mxn+m−1 . . . xn+1 is divisible by xmxm−1.

(2001 St. Petersburg City Mathematical Olympiad)

Solution. We will show that xm|xkm, and then show that

gcd(xm, xm−1) = 1.

First, consider our sequence modulo xm for some m. Each xk+1 is

uniquely determined by xk, xk−1 and the parity of k. Express each xi as

a function fi(a, b). We have xi ≡ fi(a, b)x1 (mod xm). Suppose xr ≡ 0

(mod xm) for some r. Since each term is a linear combination of two pre-

ceding ones,

xi+r ≡ fi(a, b)xr+1 (mod xm) if m is even, (1)

xi+r ≡ fi(b, a)xr+1 (mod xm) if m is odd. (2)

Now we need to prove the following statement.

Lemma. The function fi(a, b) is symmetric for any odd i.

Proof. We will prove also that fi(a, b) is symmetric function multiplied

by a. Now, we are to prove that f2k−1(a, b) is symmetric and f2k−2(a, b) =

ag2k−2(a, b), where g2k−2 is symmetric too, for any positive integer k. Pro-

ceed by induction on k. For k = 1 we have f1(a, b) = 1 and g0(a, b) = 0.
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Suppose that f2k−1(a, b) is symmetric and f2k−2(a, b) = ag2k−2(a, b) where

g2k−2(a, b) is symmetric too. Then we can write

f2k(a, b) = x2k = ax2k−1 − x2k−2

= a(x2k−1 − g(a, b))

= a(f2k−1(a, b) − g2k−2(a, b))

and

f2k+1(a, b) = x2k+1 = abx2k−1 − bx2k−2 − x2k−1

= abx2k−1 − abq − x2k−1

= (ab− 1)f2k−1(a, b) − abg2k−2(a, b).

It shows that f2k+1 and g2k are symmetric too and completes the step

of induction. �

Now we are to prove that xm|xkm. Proceed by induction on k. For k = 1

this statement is true. Let xm|xkm. Then from (1) and (2) putting r = km

and i = m, we obtain the following. If km is even, then

xm(k+1) ≡ fm(a, b)xkm+1 ≡ xmxkm+1 ≡ 0 (mod xm).

For km odd m is odd too and fm(a, b) = fm(b, a). Hence, we have

xm(k+1) ≡ fm(b, a)xkm+1 ≡ fm(a, b)xkm+1 ≡ xmxkm+1 ≡ 0 (mod xm).

So, for each nonnegative integers k,m xm|xkm.

Since the product xn+1xn+2 . . . xn+m has m terms, one of their indices

is divisible by m and another’s index is divisible by m − 1. Thus both

xm and xm−1 divide the product. If we can show that xm is relatively

prime to xm−1, we would be done. We will prove this by induction. For

the base case, x0 is relatively prime to x1. Now, x2n = ax2n−1 − x2n−2.

Any prime factor common to x2n and x2n−1 must also divide x2n−2, but

because x2n−2 is relatively prime to x2n−1, there is no such prime factor.

A similar argument holds for x2n+1 because x2n+1 = bx2n − x2n−1. Thus

xmxm−1|(xn+1xn+2 . . . xn+m).

Problem 9.3.13. Let m be a positive integer. Define the sequence

{an}n≥0 by a0 = 0, a1 = m and an+1 = m2an − an−1 for n ≥ 1. Prove

that an ordered pair (a, b) of nonnegative integers, with a ≤ b, is a solution

of the equation
a2 + b2

ab+ 1
= m2

if and only if (a, b) = (an, an+1) for some n ≥ 0.
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(1998 Canadian Mathematical Olympiad)

Solution. The ”if” direction of the claim is easily proven by induction

on n; we prove the ”only if” direction by contradiction. Suppose, on the

contrary, that there exist pairs satisfying the equation but not of the de-

scribed form; let (a, b) be such a pair with minimal sum a + b. We claim

that (c, a) = (m2a− b, a) is another such a pair but with smaller sum c+a,

which leads to a contradiction.

(a) a = 0. Then (a, b) = (0,m) = (a0, a1), a contradiction.

(b) a = m. Then (a, b) = (m,m3) = (a1, a2), a contradiction.

(c) a = 1. Then b ≥ 1 = 1 and (b + 1)|(b2 + 1); but (b + 1)|(b2 − 1),

thus (b + 1)|[(b2 + 1) − (b2 − 1)] = 2. We have b = 1, thus m = 1 and

(a, b) = (1, 1) = (a1, a2), a contradiction.

(d) 2 ≤ a < m. Rewrite (a2 + b2)/(ab+ 1) = m2 as

b2 −m2ab+ a2 −m2 = 0,

we know that t = b is a root of the quadratic equation

t2 −m2at+ a2 −m2 = 0. (1)

Thusm4a2+4m2−4a2 the discriminant of the equation must be a perfect

square. But

(m2a+ 1)2 = m4a2 + 2m2a+ 1

> m4a2 + 4m2 − 4a2 > (m2a)2

for 2 ≤ a < m. So the discriminant cannot be a perfect square, a contra-

diction.

(e) a > m. Again t = b is a root of (1). It is easy to check that t =

m2a − b = c also satisfies the equation. We have bc = a2 −m2 > 0; since

b ≥ 0, c > 0. Since a > 0 and c > 0, ac+ 1 > 0, we have

c2 + a2

ca+ 1
= m2.

Since c > 0, b ≥ a and bc = a2 −m2 < a2, we have c < a. Thus (c, a) is

a valid pair. Also, it cannot be of the form (an, an+1) or else

(a, b) = (an+1,m
2an+1 − an) = (an+1, an+2).

But then, c+ a < a+ a ≤ b+ a, as desired.
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From the above, we see that our assumption is false. Therefore every pair

satisfying the original equation must be of the described form.

Problem 9.3.14. Let b, c be positive integers, and define the sequence

a1, a2, . . . by a1 = b, a2 = c, and

an+2 = |3an+1 − 2an|

for n ≥ 1. Find all such (b, c) for which the sequence a1, a2, . . . has only a

finite number of composite terms.

(2002 Bulgarian Mathematical Olympiad)

Solution. The only solutions are (p, p) for p not composite, (2p, p) for p

not composite, and (7, 4).

The sequence a1, a2, . . . cannot be strictly decreasing because each an is a

positive integer, so there exists a smallest k ≥ 1 such that ak+1 ≥ ak. Define

a new sequence b1, b2, . . . by bn = an+k−1, so b2 ≥ b1, bn+2 = |3bn+1 − 2bn|
for n ≥ 1, and b1, b2, . . . has only a finite number of composite terms. Now,

if bn+1 ≥ bn,

bn+2 = |3bn+1 − 2bn| = 3bn+1 − 2bn = bn+1 + 2(bn+1 − bn) ≥ bn+1,

so by induction bn+2 = 3bn+1 − 2bn for n ≥ 1.

Using the general theory of linear recurrence relations (a simple induction

proof also suffices), we have

bn = A · 2n−1 +B

for n ≥ 1, where A = b2 − b1, B = 2b1 − b2. Suppose (for contradiction)

that A 6= 0. Then bn is an increasing sequence, and, since it contains only

finitely many composite terms, bn = p for some prime p > 2 and some

n ≥ 1. However, then bn+l(p−1) is divisible by p and thus composite for

l ≥ 1, because

bn+l(p−1) = A · 2n−1 · 2l(p−1) +B ≡ A · 2n−1 + b ≡ 0 (mod p)

by Fermat’s Little Theorem. This is a contradiction, so A = 0 and bn = b1

for n ≥ 1. Therefore b1 is not composite; let b1 = p, where p = 1 or p is

prime.

We now return to the sequence a1, a2, . . . , and consider different possible

values of k. If k = 1, we have a1 = b1 = b2 = a2 = p, so b = c = p for
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p not composite are the only solutions. If k > 1, consider that ak−1 > ak

by the choice of k, but ak+1 = |3ak − 2ak−1|, and ak+1 = b2 = b1 = ak,

so ak+1 = 2ak−1 − 3ak, and thus ak−1 = 2p. For k = 2, this means that

b = 2p, c = p for p not composite are the only solutions. If k > 2, the same

approach yields

ak−2 =
3ak−1 + ak

2
=

7

2
p,

so p = 2. For k = 3, this gives the solution b = 7, c = 4, and because
3 · 7 + 4

2
is not an integer, there are no solutions for k > 3.

Remark. The reader may try to prove the following more gene-

ral statement: Let f ∈ Z[X1, . . . , Xk] be a polynomial and F (n) =

f(n, 2n, 3n, . . . , (k − 1)n), n ≥ 1. If lim
n→∞

F (n) = ∞, then the set of primes

dividing terms of sequence (F (n))n≥1 is infinite.

20.3.3 Nonstandard sequences of integers

Problem 9.3.21. Let {an} be a sequence of integers such that for n ≥ 1

(n− 1)an+1 = (n+ 1)an − 2(n− 1).

If 2000 divides a1999, find the smallest n ≥ 2 such that 2000 divides an.

(1999 Bulgarian Mathematical Olympiad)

Solution. First, we note that the sequence an = 2n − 2 works. Then

writing bn = an − (2n− 2) gives the recursion

(n− 1)bn+1 = (n+ 1)bn.

For n ≥ 2, observe that

bn = b2

n−1∏

k=2

k + 1

k − 1
= b2

n∏

k=3

k

n−2∏

k=1

k

=
n(n− 1)

2
b2.

Thus when n ≥ 2, the solution to the original equation of the form

an = 2(n− 1) +
n(n− 1)

2
c

for some constant c. Plugging in n = 2 shows that c = a2 − 2 is an integer.



20.3. SEQUENCES OF INTEGERS 365

Now, because 2000|a1999 we have

2(1999 − 1) +
1999 · 1998

2
c ≡ 0

implies −4 + 1001c ≡ 0, hence c ≡ 4 (mod 2000).

Then 2000|an exactly when

2(n− 1) + 2n(n− 1) ≡ 0 (mod 2000) ⇔

(n− 1)(n+ 1) ≡ 0 (mod 1000).

(n − 1)(n + 1) is divisible by 8 exactly when n is odd, and it is divisible

by 125 exactly when either n− 1 or n+ 1 is divisible by 125. The smallest

n ≥ 2 satisfying these requirements is n = 249.

Problem 9.3.22. The sequence (an)n≥0 is defined by a0 = 1, a1 = 3

and

an+2 =

{

an+1 + 9an if n is even,

9an+1 + 5an if n is odd.

Prove that

(a)
2000∑

k=1995

a2
k is divisible by 20,

(b) a2n+1 is not a perfect square for every n = 0, 1, 2, . . .

(1995 Vietnamese Mathematical Olympiad)

Solution. (a) We will first prove the sum is divisible by 4, then by 5. Note

that an+2 ≡ an+1 + an (mod 4) whether n is odd or even. The sequence

modulo 4 thus proceeds 1, 3, 0, 3, 3, 2, 1, 3,. . . in a cycle of 6, so the sum

of squares of any six consecutive terms in congruent to 12 + 32 + 02 + 32 +

32 + 22 ≡ 0 (mod 4).

Now let us work modulo 5, in which case an+2 ≡ an+1 + 4an if n is even

and an+2 ≡ 4an+1 if n is odd. Hence the sequence modulo 5 proceeds 1, 3,

2, 3, 1, 4, 3, 2, 4, 1, 2, 3,. . . in a cycle of 8 beginning with a2. This means

a2
1995+ · · ·+a2

2000 ≡ a2
3+ · · ·+a2

8 ≡ 32+12+42+32+22+42 ≡ 0 (mod 5).

(b) Notice that a2n+1 ≡ 5a2n−1 (mod 9). Since a1 = 3, by induction

a2n+1 ≡ 3 (mod 9) for all n. However, no perfect square is congruent to 3

modulo 9, since any square divisible by 3 is also divisible by 9. Hence a2n+1

is not a square.

Problem 9.3.23. Prove that for any natural number a1 > 1, there exists

an increasing sequence of natural numbers a1, a2, . . . such that a2
1 + a2

2 +

· · · + a2
k is divisible by a1 + a2 + · · · + ak for all k ≥ 1.
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(1995 Russian Mathematical Olympiad)

Solution. We will prove in fact that any finite sequence a1, . . . , ak with

the property can be extended by a suitable ak+1. Let sk = a1 + · · ·+ak and

tk = a2
1 + · · ·+a2

k. Then we are seeking ak+1 such that ak+1 + sk|a2
k+1 + tk.

This is clearly equivalent to ak+1 + sk|s2k + tk. Why not, then, choose

ak+1 = s2k − sk + tk? Certainly this is greater than ak and ensures that the

desired property is satisfied.

Problem 9.3.24. The sequence a0, a1, a2, . . . satisfies

am+n + am−n =
1

2
(a2m + a2n)

for all nonnegative integers m and n with m ≥ n. If a1 = 1, determine an.

(1995 Russian Mathematical Olympiad)

Solution. The relations a2m + a2m = 2(a2m + a0) = 4(am + am) imply

a2m = 4am, as well as a0 = 0. Thus we compute a2 = 4, a4 = 16. Also,

a1 + a3 = (a2 + a4)/2 = 10 so a3 = 9. At this point we guess that ai = i2

for all i ≥ 1.

We prove our guess by induction on i. Suppose that aj = j2 for j < i.

Then the given equation with m = i− 1, j = 1 gives

ai =
1

2
(a2i−2 + a2) − ai−2

= 2ai−1 + 2a1 − ai−2

= 2(i2 − 2i+ 1) + 2 − (i2 − 4i+ 4) = i2.

Problem 9.3.25. The sequence of real numbers a1, a2, a3, . . . satisfies

the initial conditions a1 = 2, a2 = 500, a3 = 2000 as well as the relation

an+2 + an+1

an+1 + an−1
=
an+1

an−1

for n = 2, 3, 4, . . . Prove that all the terms of this sequence are positive

integers and that 22000 divides the number a2000.

(1999 Slovenian Mathematical Olympiad)

Solution. From the recursive relation it follows that an+2an−1 = a2
n+1

for n = 2, 3, . . . No term of our sequence can equal 0, and hence it is

possible to write
an+2

an+1an
=

an+1

anan−1
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for n = 2, 3, . . . It follows by induction that the value of the expression

an+1

anan−1

is constant, namely equal to
a3

a2a1
= 2. Thus an+2 = 2anan+1 and all terms

of the sequence are positive integers.

From this new relation, we also know that
an+1

an
is an even integer for

all positive integers n. Write

a2000 =
a2000

a1999

a1999

a1998
. . .

a2

a1
a1.

In this product each of the 1999 fractions is divisible by 2, and a1 = 2 is

even as well. Thus a2000 is indeed divisible by 22000.

Problem 9.3.26. Let k be a fixed positive integer. We define the sequence

a1, a2, . . . by a1 = k + 1 and the recursion an+1 = a2
n − kan + k for n ≥ 1.

Prove that am and an are relatively prime for distinct positive integers m

and n.

Solution. We claim that

an =

n−1∏

i=0

ai + k, n > 0,

assuming that a0 = 1. Since aj+1 − k = aj(aj − k), we have

an − k =

n−1∏

j=1

aj+1 − k

aj − k
=

n−1∏

j=1

aj,

which is what we wanted.

Therefore, we have that an ≡ k (mod ai) for i < n. Hence, if there

exist integers d > 1, x, y ≥ 1 such that d|ax and d|ay, d divides k. We

now show that for i > 0, ai ≡ 1 (mod k) by induction on i. For the base

case, a1 = k + 1 ≡ 1 (mod k). Now assume that ai ≡ 1 (mod k). Then,

ai+1 ≡ a2
i − kai + k ≡ a2

i ≡ 1 (mod k). Thus, because all common divisors

d of ax and ay must be divisors of k, we have ax ≡ 1 (mod d) and ay ≡ 1

(mod d). Therefore, no such divisors exist and ai is relatively prime to aj

for all i, j > 0, as desired.

Problem 9.3.27. Suppose the sequence of nonnegative integers a1,

a2, . . . , a1997 satisfies

ai + aj ≤ ai+j ≤ ai + aj + 1
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for all i, j ≥ 1 with i + j ≤ 1997. Show that there exists a real number x

such that an = ⌊nx⌋ for all 1 ≤ n ≤ 1997.

(1997 USA Mathematical Olympiad)

Solution. Any x that lies in all of the half-open intervals

In =

[
an

n
,
an + 1

n

)

, n = 1, 2, . . . , 1997

will have the desired property. Let

L = max
1≤n≤1997

an

n
=
ap

p
and U = min

1≤n≤1997

an + 1

n
=
aq + 1

q
.

We shall prove that
an

n
<
am + 1

m
,

or, equivalently,

man < n(am + 1) (∗)

for all m,n ranging from 1 to 1997. Then L < U , since L ≥ U implies

that (∗) is violated when n = p and m = q. Any point x in [L,U) has the

desired property.

We prove (∗) for all m,n ranging from 1 to 1997 by strong induction. The

base case m = n = 1 is trivial. The induction step splits into three cases. If

m = n, then (∗) certainly holds. If m > n, then the induction hypothesis

gives (m−n)an < n(am−n+1), and adding n(am−n+an) ≤ nam yields (∗).
If m < n, then the induction hypothesis yields man−m < (n−m)(am + 1),

and adding man ≤ m(am + an−m + 1) gives (∗).
Problem 9.3.28. The sequence {an} is given by the following relation:

an+1 =







an − 1

2
, if an ≥ 1,

2an

1 − an
, if an < 1.

Given that a0 is a positive integer, an 6= 2 for each n = 1, 2, . . . , 2001,

and a2002 = 2. Find a0.

(2002 St. Petersburg City Mathematical Olympiad)

Solution. Answer: a0 = 3 · 22002 − 1.

We will first show that this value actually satisfies the condition a2002 = 2

and ai 6= 2 for any i < 2002. Applying the first rule, an+1 =
an − 1

2002
times
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will show that a2002 is in fact 2 and ai is actually greater than 2 for all

i < 2002.

Lemma. For n ≤ 2000, if an is not an integer, an = pn/qn, where pn

and qn are positive odd integers, (p, q) = 1 and q > 1.

Proof. We proceed by using induction. Case case: n = 2000. a2000 is

either 5/7 or 1/5. Suppose an+1 = p/q. Then:

Case 1. an = 2p/q + 1. Then an = (2p + q)/q. Suppose d|(2p + q) and

d|q. Then d|(2p + q − q) or d|2p. Since q is odd, d must also be odd. So

(d, 2) = 1 and therefore d|p. Because d|p, d|q, and (p, q) = 1, d must equal

1. Therefore (2p+q, q) = 1 and since 2p+qa and q are both odd as well, an

satisfies the conditions stated in the lemma, thus completing the inductive

step.

Case 2. an =
p

q
/

(

2 +
p

q

)

=
p

2q + p
. Again suppose d divides both the

numerator p and denominator 2p+q. Then d|(2p+q−p) or d|2q. But since

p is odd, d is odd, and so d|q. Because (p, q) = 1, d is equal to 1 and so

(p, 2q + p) = 1. Since p and 2q + p are odd and are relatively prime, an

satisfies the conditions and completes the proof.

We must now only consider the case where a2001 = 1/2. In this case, a2000

is either 2 or 5/7. If it is 2, the conditions of the problem are violated. The

lemma says that from the 5/7, we will never see an integer value for any

previous term.

Problem 9.3.29. Let x1 = x2 = x3 = 1 and xn+3 = xn + xn+1xn+2

for all positive integers n. Prove that for any positive integer m there is an

integer k > 0 such that m divides xk.

Solution. Observe that setting x0 = 0 the condition is satisfied for

n = 0.

We prove that there is integer k ≤ m3 such that xk divides m. Let rt be

the remainder of xt when divided by m for t = 0, 1, . . . ,m3 + 2. Consider

the triples (r0, r1, r2), (r1, r2, r3), . . . , (rm3 , rm3+1, rm3+2). Since rt can take

m values, it follows by the Pigeonhole Principle that at least two triples

are equal. Let p be the smallest number such that triple (rp, rp+1, rp+2) is

equal to another triple (rq, rq+1, rq+2), p < q ≤ m3. We claim that p = 0.

Assume by way of contradiction that p ≥ 1. Using the hypothesis we

have

rp+2 ≡ rp−1 + rprp+1 (mod m)

and

rq+2 ≡ rq−1 + rqrq+1 (mod m).
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Since rp = rq, rp+1 = rq+1 and rp+2 = rq+2, it follows that rp−1 =

rq−1 so (rp−1, rp, rp+1) = (rq−1, rq, rq+1), which is a contradiction with

the minimality of p. Hence p = 0, so rq = r0 = 0, and therefore xq ≡ 0

(mod m).

Problem 9.3.30. Find all infinite bounded sequences a1, a2, . . . of posi-

tive integers such that for all n > 2,

an =
an−1 + an−2

gcd(an−1, an−2)
.

(1999 Russian Mathematical Olympiad)

Solution. The only such sequence is 2,2,2,. . . which clearly satisfies the

given condition.

Let gn = gcd(an, an+1). Then gn+1 divides both an+1 and an+2, so it

divides gnan+2 − an−1 = an as well. Thus gn+1 divides both an and an+1,

and it divides their greatest common divisor gn.

Therefore, the gi form a nonincreasing sequence of positive integers and

eventually equal some positive constant g. At this point, the ai satisfy the

recursion

gan = an−1 + an−2.

If g = 1, then an = an−1 + an−2 > an−1 so the sequence is increasing

and unbounded.

If g ≥ 3, then

an =
an−1 + an−2

g
<
an−1 + an−2

2
≤ max{an−1, an−2}.

Similarly, an+1 < max{an−1, an} ≤ max{an−2, an−1}, so that

max{an, an+1} < max{an−2, an−1}.

Therefore the maximum values of successive pairs of terms form an infi-

nite decreasing sequence of positive integers, a contradiction.

Thus g = 2 and eventually we have 2an = an−1 + an−2 or an − an−1 =

−1

2
(an−1−an−2). This implies that ai−ai−1 converges to 0 and that the ai

are eventually constant as well. From 2an =
an−1 + an−2

gcd(an−1, an−2)
this constant

must be 2.
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Now if an = an+1 = 2 for n > 1, then gcd(an−1, an) = gcd(an−1, 2)

either equals 1 or 2. Now

2 = an+1 =
an−1 + an

gcd(an−1, 2)
,

implying either that an−1 = 0, which is impossible, or that an−1 = 2.

Therefore all the ai equal 2, as claimed.

Problem 9.3.31. Let a1, a2, . . . be a sequence of positive integers sat-

isfying the condition 0 < an+1 − an ≤ 2001 for all integers n ≥ 1. Prove

that there exist an infinite number of ordered pairs (p, q) of distinct positive

integers such that ap is a divisor of aq.

(2001 Vietnamese Mathematical Olympiad)

Solution. Obviously, if (an)n is such a sequence, so is (an+k)n for all k.

Thus it suffices to find p < q such that ap|aq. Observe that from any 2001

consecutive natural numbers, at least one is a term of the sequence. Now,

consider the table:

a1 + 1 a1 + 2 . . . a1 + 2001

a1 + 1 + x a1 + 2 + x1 . . . a1 + 2001 + x1

a1 + 1 + x1 + x2 a1 + 2 + x1 + x2 . . . a1 + 2001 + x1 + x2

...

where

x1 =

2001∏

i=1

(a1 + i), x2 =

2001∏

i=1

(a1 + i+ x1), x3 =

2001∏

i=1

(a1 + x1 + x2 + i)

and so on. Observe then that if x, y are on the same column, then x|y or

y|x. Now, look at the first 2002 lines. We find in this 2002 × 2001 matrix

at least 2002 terms of the sequence (at least one on each line), thus there

are two terms of the sequence on the same column and one will divide the

other.

Problem 9.3.32. Define the sequence {xn}n≥0 by x0 = 0 and

xn =







xn−1 +
3r+1 − 1

2
, if n = 3r(3k + 1),

xn−1 −
3r+1 + 1

2
, if n = 3r(3k + 2),

where k and r are nonnegative integers. Prove that every integer appears

exactly once in this sequence.
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(1999 Iranian Mathematical Olympiad)

Solution. We prove by induction on t ≥ 1 that

(i) {x0, x1, . . . , x3t−2} =

{

−3t − 3

2
,−3t − 5

2
, . . . ,

3t − 1

2

}

.

(ii) x3t−1 = −3t − 1

2
.

These claims imply the desired result, and they are easily verified for

t = 1. Now supposing they are true for t, we show they are true for t+ 1.

For any positive integer m, write m = 3r(3k+s) for nonnegative integers

r, k, s, with s ∈ {1, 2}, and define rm = r and sm = s.

Then for m < 3t, observe that

rm = rm+3t = rm+2·3t and sm = sm+3t = rm+2·3t ,

so that

xm − xm−1 = x3t+m − x3t+m−1 = x2·3t+m − x2·3t+m−1.

Setting m = 1, 2, . . . , k < 3t and adding the resulting equations, we have

xk = x3t+k − x3t

xk = x2·3t+k − x2·3t .

Now, setting n = 3t in the recursion and using (ii) from the induction

hypothesis, we have x3t = 3t, and

{x3t , . . . , x2·3t−2} =

{
3t + 3

2
, . . . ,

3t+1 − 1

2

}

,

x2·3t−1 =
3t + 1

2
.

Then setting n = 2 · 3t in the recursion we have x2·3t = −3t, giving

{x2·3t , . . . , x3t+1−2} =

{

−3t+1 − 3

2
, . . . ,

3t + 1

2

}

x2·3t+1−1 = −3t+1 − 1

2
.

Combining this with (i) and (ii) from the induction hypothesis proves

the claims for t+ 1. This completes the proof.

Second solution. For ni ∈ {−1, 0, 1}, let the number

[nmnm−1 . . . n0]
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in base 3 equal

m∑

i=0

ni · 3i. It is simple to prove by induction on k that the

base 3 numbers with at most k digits equal

{

−3k − 1

2
,−3k − 3

2
, . . . ,

3k − 1

2

}

,

which implies that every integer has a unique representation in base 3.

Now we prove by induction on n that if n = amam−1 . . . a0 in base 3,

then xn = [bmbm−1 . . . b0] in base 3, where bi = −1 if ai = 2 and bi = ai

for all other cases.

For the base case, x0 = 0 = [0]. Now assume the claim is true for n− 1.

If n = amam−1 . . . ar+11 00 . . .0
︸ ︷︷ ︸

r

, then

xn = xn−1 +
3r+1 − 1

2

= [bmbm−1 . . . bi0−1 − 1 · · · − 1
︸ ︷︷ ︸

r

] + [11 . . .1
︸ ︷︷ ︸

r+1

]

= [bmbm−1 . . . bi1 00 . . .0
︸ ︷︷ ︸

r

].

If instead n = amam−1 . . . ai2 00 . . .0
︸ ︷︷ ︸

r

, then

xn = xn−1 +

(

−3r+1 + 1

2

)

= [bmbm−1 . . . bi1−1− 1 · · · − 1
︸ ︷︷ ︸

r

] + [−1 11 . . .1
︸ ︷︷ ︸

r+1

= [bmbm−1 . . . bi − 1 00 . . .0
︸ ︷︷ ︸

r

].

In either case, the claim is true for n, completing the induction.

To finish the proof, note that every integer appears exactly once in base

3. Thus each integer appears exactly once in {xn}n≥0, as desired.

Problem 9.3.33. Suppose that a1, a2, . . . is a sequence of natural num-

bers such that for all natural numbers m and n, gcd(am, an) = agcd(m,n).

Prove that there exists a sequence b1, b2, . . . of natural numbers such that

an =
∏

d|n
bd for all integers n ≥ 1.

(2001 Iranian Mathematical Olympiad)
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Solution. For each n, let rad(n) denote the largest square-free divisor

of n (i.e. the product of all distinct prime factors of n). We let bn equal to

the ratio of the following two numbers:

• En, the product of all an/d such that d is square-free, divides n, and

has an even number of prime factors.

• On, the product of all an/d such that d is square-free, divides n, and

has an odd number of prime factors.

Lemma 1.
∏

d|an

bd = an.

Proof. Fix n, and observe that
∏

d|n
bn equals

∏

d|n
Ed

∏

d|n
Od

. (∗)

In the numerator of (∗), each Ed is the product of am such that m|d.
Also, d|n, implying that the numerator is the product of various am such

that m|n. For fixed m that divides n, how many times does am appears in

the numerator
∏

d|n
Ed of (∗)?

If am appears in Ed and d|n, then let t = d/m. By the definition of Ed,

we know that (i) t is square-free and (ii) t has an even number of prime

factors. Because d|n and t = d/m, we further know that (iii) t divides n/m.

Conversely, suppose that t is any positive integer satisfying (i), (ii), and

(iii), and write d = tm. By (iii), d is a divisor of n. Also, t is square-free

by (i), is a divisor of d, and has an even number of prime factors by (ii).

Thus, am appears in Ed.

Suppose that n/m has l distinct prime factors. Then it has

(
l

0

)

+

(
l

2

)

+

. . . factors t satisfying (i), (ii), and (iii), implying that am appears in the

numerator of (∗) exactly
(
l

0

)

+

(
l

2

)

+ . . .

times. Similarly, am appears in the denominator of (∗) exactly
(
l

1

)

+

(
l

3

)

+ . . .
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times. If m < n, then l ≥ 1 and these expressions are equal, so that the

am’s in the numerator and denominator of (∗) cancel each other out. If

m = n, then l = 0, so that an appears in the numerator once and in the

denominator zero times. Therefore,

∏

d|n
bd =

∏

d|n
Ed

∏

d|n
Od

= an,

as desired. �

Lemma 2. For any integer α that divides some term in a1, a2, . . . , there

exists an integer d such that

α|an ⇔ d|n.

Proof. Of all the integers n such that α|an, let d be the smallest.

If α|an, then α|gcd(ad, an) = agcd(d,n). By the minimal definition of d,

gcd(d, n) ≥ d. But gcd(d, n)|n as well, implying that gcd(d, n) = d. Hence,

d|n.

If d|n, then gcd(ad, an) = agcd(d,n) = ad. Thus, ad|an. Because α|ad, it

follows that α|an as well. �

Lemma 3. For each positive integer n, bn = En/On is an integer.

Proof. Fix n. Call an integer d a top divisor (resp. a bottom divisor) if

d|n, n/d is square-free, and n/d has an even (resp. odd) number of prime

factors. By definition, Ed is the product of ad over all top divisors d, and

Od is the product of ad over all bottom divisors d.

Fix any prime p. We show that p divides En at least as many times as

it divides On. To do this, it suffices to show the following for any positive

integer k:

(1) The number of top divisors d with an/d divisible by pk is greater than

or equal to the number of bottom divisors d with an/d divisible by pk.

Let k be any positive integer. If pk divides none of a1, a2, . . . , then (1)

holds trivially. Otherwise, by the previous lemma, there exists an integer

d0 such that

pk|am ⇔ d0|m.
Hence, to show (1) it suffices to show:

(2) The number of top divisors d such that d0|(n/d), is greater than or

equal to the number of bottom divisors d such that d0|(n/d).
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If d0 ∤ n, then (2) holds because d0 does not divide n/d for any divisor d

of n, including top or bottom divisors.

Otherwise, d0|n. For which top and bottom divisors d does d0 divide

n/d? Precisely those for which d divides n/d0. If n/d0 has l ≥ 1 distinct

prime factors, then there are as many top divisors with this property as

there are bottom divisors, namely
(
l

0

)

+

(
l

2

)

+ · · · = 2l−1 =

(
l

1

)

+

(
l

3

)

+ . . .

If instead d0 = n and l = 0, then the top divisor 1 is the only value d

with d|(n/d0). In either case, there are at least as many top divisors d with

d|(n/d0) as there are bottom divisors with the same property. Therefore,

(2) holds. This completes the proof. �

Therefore, an =
∏

d|n
bd, and bn = En/On is an integer for each n.

Alternative solution. (Gabriel Dospinescu) Let us define b1 = a1 and

bn =
an

lcm
d|n
d 6=n

ad
for n > 1. Of course, if d|n, then ad|an and so lcm

d|n
d 6=n

ad|an and

bn ∈ Z.

Now comes the hard part, proving that
∏

d|n
bd = an, which is the same as

∏

d|n
d 6=n

bd = lcm
d|n
d 6=n

ad. (1)

We will prove (1) by strong induction. For n = 1 it is clear

Now, for all d|n, d 6= n, by inductive hypothesis we have

ad =
∏

d′|d
bd′ |

∏

d|n
d 6=n

bd,

thus
∏

d|n
d 6=n

bd is a multiple of lcm
d|n
d 6=n

ad. It remains to prove that
∏

d|n
d 6=n

bd| lcm
d|n
d 6=n

ad.

The essential observation is:

Lemma. If gcd(bu, bv) > 1, then u|v or v|u.
Proof. We may assume that u < v. Assume that u does not divide v.

Then

bu =
au

lcm
d|u
d 6=u

ad
| au

agcd(u,v)
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(since gcd(u, v) 6= u) and also

bv|
av

agcd(u,v)
.

But then

gcd(bu, bv)|gcd
(

au

agcd(u,v)
,

av

agcd(u,v)

)

=
gcd(au, av)

agcd(u,v)
.

Now, let p be a prime number and let i1 < i2 < · · · < ik such that iq|n,

iq 6= n for all q and biq
has the exponent of p equal to eq ≥ 1 and any bd

with d|n, d 6= n, d 6= iq for all q is not a multiple of p. From the lemma we

find i1|i2| . . . |ik. But then from the inductive hypothesis we have

aik
=
∏

d|ik

bd

is a multiple of bi1bi2 . . . bik
, thus lcm

d|n
d 6=n

ad has the exponent of p greater than

or equal to the exponent of p in
∏

d|n
d 6=n

bd. This ends the solution.
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Problems Involving Binomial

Coefficients

21.1 Binomial coefficients

Problem 10.1.7. Show that the sequence
(

2002

2002

)

,

(
2003

2002

)

,

(
2004

2002

)

, . . .

considered modulo 2002, is periodic.

(2002 Baltic Mathematical Competition)

Solution. We will show that the sequence, taken modulo 2002, has pe-

riod m = 2002 · 2002!. Indeed,
(
x+m

2002

)

=
(x+m)(x− 1 +m) . . . (x− 2001 +m)

2002!

=
x(x − 1) . . . (x− 2001) + km

2002!

=
x(x − 1) . . . (x− 2001)

2002!
+ 2002k

≡
(

x

2002

)

(mod 2002).

Problem 10.1.8. Prove that
(

2p

p

)

≡ 2 (mod p2)
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for any prime number p.

Solution. A short solution uses the popular Vandermonde identity

k∑

i=0

(
m

i

)(
n

k − i

)

=

(
m+ n

k

)

.

Set m = n = k = p to get
(

2p

p

)

=

(
p

0

)(
p

p

)

+

(
p

1

)(
p

p− 1

)

+ · · · +
(

p

p− 1

)(
p

1

)

+

(
p

p

)(
p

0

)

.

The first and the last term on the right-hand side equal 1. Since p is a

prime, it divides each binomial coefficient

(
p

k

)

for 1 ≤ k ≤ p− 1. So each

of the remaining terms is divisible by p2, and hence

(
2p

p

)

is congruent to

2 modulo p2, as required.

Problem 10.1.9. Let k,m, n be positive integers such that m+ k+ 1 is

a prime number greater than n+1. Let us denote Cs = s(s+1). Show that

the product

(Cm+1 − Ck)(Cm+2 − Ck) . . . (Cm+n − Ck)

is divisible by C1C2 . . . Cn.

(18th IMO)

Solution. We use the identity:

Cp − Cq = p(p+ 1) − q(q + 1) = (p− q)(p+ q + 1),

which is valid for all positive integers p and q. Then one has:

Cm+i − Ck = (m− k + i)(m+ k + i+ 1), ∀ i = 1, 2, . . . , n.

For the given products we obtain respectively, the formulas

(Cm+1 − Ck) . . . (Cm+n − Ck) =

n∏

i=1

(m− k + i)

n∏

i=1

(m+ k + 1 + i)

C1C2 . . . Cn = n!(n+ 1)!

Their quotient is the product of two rational fractions:

n∏

i=1

(m− k + i)

n!
and

n∏

i=1

(m+ k + 1 + i)

(n+ 1)!



21.1. BINOMIAL COEFFICIENTS 381

It is known that the product of any consecutive integers is divisible by

n! and their quotient is zero or a binomial coefficient, possible multiplied

by −1. In our case we have

1

n!

n∏

i=1

(m− k + i) =

(
m− k + n

n

)

.

For the second fraction, a factor is missing to the numerator. We support

our argument by using that m+k+1 is a prime number greater than n+1:

1

(n+ 1)!

n∏

i=1

(m+ k + 1 + i) =
1

m+ k + 1
· 1

(n+ 1)!

n∏

i=0

(m+ k + 1 + i)

=
1

m+ k + 1

(
mk + n+ 1

n+ 1

)

.

The binomial coefficient

(
m+ k + n+ 1

n+ 1

)

is an integer number which is

divisible by m+ k + 1, then our number is integer.

Problem 10.1.10. Let n, k be arbitrary positive integers. Show that there

exists positive integers a1 > a2 > a3 > a4 > a5 > k such that

n = ±
(
a1

3

)

±
(
a2

3

)

±
(
a3

3

)

±
(
a4

3

)

±
(
a5

3

)

.

(2000 Romanian IMO Team Selection Test)

Solution. For fixed k, choose m > k such that n +

(
m

3

)

is an odd

number. This is possible after considering the parity of n. If n is an odd

number, take m ≡ 0 (mod 4) and if n is an even number take m ≡ 3

(mod 4).

Since n+

(
m

3

)

is an odd number, we express it under the form

m+

(
m

3

)

= 2a+ 1.

Then use the identity:

2a+ 1 =

(
a

3

)

−
(
a+ 1

3

)

−
(
a+ 2

3

)

+

(
a+ 3

3

)

and obtain:

n =

(
a

3

)

−
(
a+ 1

3

)

−
(
a+ 2

3

)

+

(
a+ 3

3

)

−
(
m

3

)

.
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Notice that for large m we may insure that

a =

n− 1 +

(
m

3

)

2
> m

yielding the desired representation.

Problem 10.1.11. Prove that if n and m are integers, and m is odd,

then
1

3mn

m∑

k=0

(
3m

3k

)

(3n− 1)k

is an integer.

(2004 Romanian IMO Team Selection Test)

Solution. Let ω = e
2πi
3 . Then

3
m∑

k=0

(
3m

3k

)

(3n− 1)k

= (1 + 3
√

3n− 1)3m + (1 + ω 3
√

3n− 1)3m + (1 + ω2 3
√

3n− 1)3m. (1)

The right side of the above equality is the sum of the 3m-th power of the

roots x1, x2, x3 of the polynomial

(X − 1)3 − (3n− 1) = X3 − 3X2 + 3X − 3n.

Let sk = xk
1 + xk

2 + xk
3 . Then s0 = s1 = s2 = 3 and

sk+3 = 3sk+2 − 3sk+1 + 3nsk. (2)

It follows by induction that each sk is an integer divisible by 3[ k
3 ]+1. A

repeated application of (2) yields

sk+7 = 63nsk+2 − 9(n2 − 3n− 3)sk+1 + 27n(2n+ 1)sk.

Since s3 = 9n, it follows inductively that s6k+3 is divisible by 32k+2n for

all nonnegative integers k, and the conclusion follows by (1).

Problem 10.1.12. Show that for any positive integer n the number

n∑

k=0

(
2n+ 1

2k + 1

)

23k

is not divisible by 5.
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(16th IMO)

Solution. Let us consider the binomial formula:

(1 + 2
√

2)2n+1 = (1 + 2
3
2 )2n+1 =

2n+1∑

i=0

(
2n+ 1

i

)

2
3i
2

=

n∑

i=0

(
2n+ 1

2i

)

23i +

n∑

i=0

(
2n+ 1

2i+ 1

)

23i · 2 3
2 = an + bn

√
8,

where

an =

n∑

i=0

(
2n+ 1

2i

)

23i and bn =

n∑

i=0

(
2n+ 1

2i+ 1

)

23i.

In a similar way,

(1 − 2
3
2 )2n+1 = an − bn

√
8.

After multiplying these two equalities we obtain −72n+1 = a2
n − 8b2n. If

bn ≡ 0 (mod 5) the above equality gives a2
n ≡ −2 (mod 5) ≡ 3 (mod 5).

Since 3 is not a perfect square modulo 5, we obtain a contradiction.

Problem 10.1.13. Prove that for a positive integer k there is an integer

n ≥ 2 such that

(
n

1

)

, . . . ,

(
n

n− 1

)

are all divisible by k if and only if k is

a prime.

Solution. If k is a prime we take n = k and the property holds (see

property 7)). There are k’s for which

(
n

1

)

, . . . ,

(
n

n− 1

)

are not all divisible

by k, for any n ≥ 2. Indeed, for k = 4,

(
n

1

)

+ · · · +
(

n

n− 1

)

= 2n − 2 ≡ −2 (mod 4) for all n ≥ 2.

We prove that the set of positive integers k for which the claim holds is

exactly the set of primes.

Suppose now that k is not a prime. Then consider two cases:

(a) k = pr, where p is a prime and r > 1. We find a value of i for which

the statement does not hold.

Suppose, on the contrary, that there is a positive integer n such that for

all 1 ≤ i ≤ n− 1,

(
n

i

)

is divisible by pr. Clearly, n is divisible by pr, and

we write n = pαβ for some β with gcd(β, p) = 1. Take i = pα−1. Then

(
n

i

)

=

pα−1−1
∏

j=0

βpα − j

pα−1 − j
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If j = 0, then
βpα − j

pα−1 − j
= βp. If gcd(j, p) = 1, then both the above

numerator and the denominator are coprime with p. In all other cases, we

write j = δpγ for some δ coprime with p and γ ≤ α− 2. Thus,

βpα − j

pα−1 − j
=

βpα − δpγ

pα−1 − δpγ
=

pγ(βpα−γ − δ)

pγ(pα−γ−1 − δ)

Now, since α−γ−1 ≥ 1, we have βpα−γ−δ and pα−γ−1−δ coprime with

p. In this case, the power of p in the above numerator and the denominator

is γ, and the power of p in the above product of fractions, which is an

integer, is 1. This contradicts the assumption that pr|n.

(b) k is divisible by at least two distinct primes p, q. Assume by contra-

diction that there is a positive integer n as required. Then n is divisible

by pq and we can write n = pαβ where gcd(p, β) = 1 and β > 1 (since q

divides β). Take i = pα. Then

(
n

i

)

=

pα−1
∏

j=0

βpα − j

pα − j
.

When j = 0,
βpα − j

pα − j
= β is coprime with p. In all other cases, both

the numerator and the denominator of
βpα − j

pα − j
are either coprime with

p or are divisible by the same power of p, and therefore the product of

those fractions is not divisible by p. But p divides k, and hence

(
n

i

)

is not

divisible by k, contrary to our assumption.

Therefore the only positive integers k for which the claim holds are the

primes.

21.2 Lucas’ and Kummer’s Theorems

Problem 10.2.4. Let p be an odd prime. Find all positive integers n

such that

(
n

1

)

,

(
n

2

)

, . . . ,

(
n

n− 1

)

are all divisible by p.

Solution. Express n in base p: n = n0 + n1p+ · · · + nmp
m, where 0 ≤

n0, n1, . . . , nm ≤ p−1 and nm ≤ 0. We also write k = k0+k1p+· · ·+kmp
m,

where 0 ≤ k0, k1, . . . , km ≤ p − 1, where km can be zero. From Lucas’

Theorem we have
(
n

k

)

≡
m∏

j=0

(
nj

kj

)

(mod p).
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For n = pm, the property clearly holds. Assume by way of contradiction

that n 6= pm. If nm > 1, then letting k = pm < n, we have
(
n

k

)

≡ nm · 1 . . . 1
︸ ︷︷ ︸

m−1 times

≡ nm 6≡ 0 (mod p),

a contradiction.

Problem 10.2.5. Let p be a prime. Prove that p does not divide any of(
n

1

)

, . . . ,

(
n

n− 1

)

if and only if n = spk − 1 for some positive integer k

and some integer s with 1 ≤ s ≤ p− 1.

Solution. If n is of the form spk − 1, then its representation in base p is

n = (s− 1) (p− 1) . . . (p− 1)
︸ ︷︷ ︸

k times

.

For 1 ≤ i ≤ n − 1, i = i0 + i1p + · · · + imp
m, where 0 ≤ ih ≤ p − 1,

h = 1, . . . ,m−1 and 0 ≤ im ≤ s−1. Because p is a prime, it follows that p

does not divide either

(
p− 1

ih

)

or

(
s− 1

im

)

. Applying Lucas’ Theorem, we

obtain that p does not divide

(
n

i

)

, for all i = 1, . . . , n− 1.

Conversely, if n cannot be written in the form spk − 1, then nj < p− 1

for some 0 ≤ j ≤ m − 1, where n0n1 . . . nm is the representation of n in

base p. For

i = (p− 1) 0 . . . 0
︸ ︷︷ ︸

j−1 times

in base p, applying again Lucas’ Theorem, we have
(
n

i

)

≡ 0 (mod p).

Problem 10.2.6. Prove or disprove the following claim: For any integer

k ≥ 2, there exists an integer n ≥ 2 such that the binomial coefficient

(
n

i

)

is divisible by k for any 1 ≤ i ≤ n− 1.

(1999 Hungarian-Israel Mathematical Competition)

Solution. The statement is false. To prove this, take k = 4 and assume

by contradiction that there exists a positive integer n > 1 for which

(
n

i

)

is divisible by 4 for every 1 ≤ i ≤ n− 1. Then

0 ≡
n−1∑

i=1

(
n

i

)

= 2n − 2 ≡ −2 (mod 4),
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a contradiction.

Remark. As we have already seen in Problem 10.1.13, the set of all such

integers k is precisely the set of primes. Here we give an argument based

on Kummer’s Theorem.

Now, suppose the claim holds for some k > 1 with the number n. If

some prime p divides k, the claim must also hold for p with the number n.

Thus n must equal a prime power pm where m ≥ 1. Then k = pr for some

r ≥ 1 as well, because if two primes p and q divided k then n would equal

a perfect power of both p and q, which is impossible.

Choose i = pm−1. Kummer’s Theorem states that pt|
(
n

i

)

if and only if

t is less than or equal to the number of carries in the addition (n − i) + i

in base p. There is only such carry, between the pm−1 and pm places:

1

1 0 0 . . . 0

+ p− 1 0 0 . . . 0

1 0 0 0 . . . 0

Thus, we must have r ≤ 1 and k must be prime, as claimed.

(Alternatively, for n = pm and i = pm−1 we have

(
n

i

)

=

pm−1−1
∏

j=0

pm − j

pm−1 − j
.

When j = 0 then
pm − j

pm−1 − j
= p. Otherwise, 0 < j < pm−1 so that if pt <

pm−1 is the highest power of p dividing j, then it is also the highest power

of p dividing both pm − j and pm−1 − j. Therefore
pm − j

pm−1 − j
contributes

one factor of p to

(
n

i

)

when j = 0 and zero factors of p when j > 0. Thus

p2 does not divide binomi, and hence again r ≤ 1.)
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Miscellaneous Problems

Problem 11.6. Let a, b be positive integers. By integer division of a2+b2

to a+ b we obtain the quotient q and the remainder r. Find all pairs (a, b)

such that q2 + r = 1977.

(19th IMO)

Solution. There are finitely many possibilities to obtain 1977 = q2 + r.

Since 1977 is not a perfect square, 0 < r < a+ b. Also, q ≤ [
√

1977] = 44.

From a2 + b2 = q(a+ b) + r, we obtain:

q =

[
a2 + b2

a+ b

]

≥ a2 + b2

a+ b
− 1 ≥ 1

2
(a+ b) − 1 >

r

2
− 1.

Suppose q ≤ 43. Then r = 1977 − q2 ≥ 1977 − 432 = 128 and 43 ≥ q >
r

2
− 1 ≥ 63, contradiction.

We obtained q = 44 and r = 1977− 442 = 41. To finish, we have to solve

in integer numbers the equation

a2 + b2 = 44(a+ b) + 41.

Write it under the form:

(a− 22)2 + (b− 22)2 = 1009.
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It is not difficult to have all pairs of perfect squares having their sum

1009. There exists only the representation 1009 = 282 + 152. Then the

solutions are a = 50, b = 37 or a = 37, b = 50.

Problem 11.7. Let m,n be positive integers. Show that 25n − 7m is

divisible by 3 and find the least positive integer of the form |25n−7m−3m|,
when m,n run over the set of non-negative integers.

(2004 Romanian Mathematical Regional Contest)

Solution. Because 25 ≡ 1 (mod 3) and 7 ≡ 1 (mod 3), it follows that

25n − 7m ≡ 0 (mod 3).

For the second part of the problem, we first remark that if m is odd,

then any number a = 25n − 7m − 3m is divisible by 15. This follows from

the first part together with

7m + 3m ≡ 2m + (−2)m ≡ 0 (mod 5).

Moreover, for m = n = 1 one obtains 25 − 7 − 3 = 15.

Assume now that m is even, say m = 2k. Then

7m + 3m = 72k + 32k ≡ ((−3)2k + 32k) (mod 10)

≡ 2 · 9k (mod 10) ≡ ±2 (mod 10) ≡ 2 or 8 (mod 10).

So, the last digit of the number 25n − 7m − 3m is either 3 or 7. Because

the number 25n − 7m − 3m is divisible by 3, the required number cannot

be 7. The situation |25n − 7m − 3m| = 3 also cannot occur, because 25n −
7m − 3m ≡ 1 (mod 8).

Problem 11.8. Given an integer d, let

S = {m2 + dn2|m,n ∈ Z}.

Let p, q ∈ S be such that p is a prime and r =
q

p
is an integer. Prove

that r ∈ S.

(1999 Hungary-Israel Mathematical Competition)

Solution. Note that

(x2 + dy2)(u2 + dv2) = (xu ± dyv)2 + d(xv ∓ yu)2.

Write q = a2 + db2 and p = x2 + dy2 for integers a, b, x, y. Reversing

the above construction yields the desired result. Indeed, solving for u and
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v after setting a = xu + dyv, b = xv − yu and a = xu − dyv, b = xv + yu

gives

u1 =
ax− dby

p
, v1 =

ay + bx

p
,

u2 =
ax+ dby

p
, v2 =

ay − bx

p
.

Note that

(ay + bx)(ay − bx) = (a2 + db2)y2 − (x2 + dy2)b2 ≡ 0 (mod p).

Hence p divides one of ay+ bx, ay− bx so that one of v1, v2 is an integer.

Without loss of generality, assume that v1 is an integer. Because r = u2
1 +

dv2
1 is an integer and u1 is rational, u1 is an integer as well and r ∈ S, as

desired.

Problem 11.9. Prove that every positive rational number can be repre-

sented in the form
a3 + b3

c3 + d3

where a, b, c, d are positive integers.

(1999 IMO Shortlist)

Solution. We firstly claim if m,n are positive integers such that the ra-

tional number r =
m

n
belongs to the interval (1,2) then r can be represented

in the form
a3 + b3

c3 + d3
.

This can be realized by taking a2 − ab+ b2 = a2 − ad+ d2, i.e. b+ d = a

and a + b = 3m, a + d = 2a − b = 3n, that is a = m + n, b = 2m − n,

d = 2n−m.

We will prove now the required conclusion. If s > 0 is a rational number

take positive integers p, q such that q <
p3

q3
s < 2. There exists positive

integers a, b, d such that
p3

q3
s =

a3 + b3

a3 + d3
, whence s =

(aq)3 + (bq)3

(ap)3 + (bp)3
.

Problem 11.10. Two positive integers are written on the board. The

following operation is repeated: if a < b are the numbers on the board, then

a is erased and ab/(b−a) is written in its place. At some point the numbers

on the board are equal. Prove that again they are positive integers.

(1998 Russian Mathematical Olympiad)
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Solution. Call the original numbers x and y and let L = lcm(x, y). For

each number n on the board consider the quotient L/n; during each oper-

ation, the quotients L/b and L/a become L/b and L/a− L/b. This is the

Euclidean algorithm, so the two equal quotients would be gcd(L/b, L/a)

and the two equal numbers on the board are L/gcd(L/x, L/y). But

gcd(L/x, L/y) = 1, because otherwise x and y would both divide

L/gcd(L/x, L/y) and L would not be a least common multiple. So, the

two equal numbers equal L = lcm(x, y), an integer.

Second solution. Again, let x and y be the original numbers and sup-

pose both numbers eventually equal N . We prove by induction, on the

number of steps k before we obtain (N,N), that all previous numbers di-

vide N . Specifically, x|N , so N must be an integer.

The claim is clear for k = 0. Now assume that k steps before we obtain

(N,N), the numbers on the board are (c, d) = (N/p,N/q) for some integers

p < q. Then reversing the operation, the number erased in the (k + 1)st

step must be cd/(c+ d) = N/(p+ q) or cd/(c− d) = N/(q− p), completing

the inductive step.

Problem 11.11. Let f(x) + a0 + a1x + · · · + amx
m, with m ≥ 2 and

am 6= 0, be a polynomial with integer coefficients. Let n be a positive integer,

and suppose that:

i) a2, a3, . . . , am are divisible by all the prime factors of n;

ii) a1 and n are relatively prime.

Prove that for any positive integer k, there exists a positive integer c such

that f(c) is divisible by nk.

(2001 Romanian IMO Team Selection Test)

Solution. Consider any integers c1, c2 such that c1 6≡ c2 (mod nk). Ob-

serve that if nk|st for some integers s, t where t is relatively prime to n,

then nk|s. In particular, nk ∤ (c1 − c2)t if t is relatively prime to n.

Note that

f(c1) − f(c2) = (c1 − c2)a1 +

m∑

i=2

ai(c
i
1 − ci2)

= (c1 − c2)



a1 +

m∑

i=2



ai

i−1∑

j=0

(cj1c
i−1−j
2 )









︸ ︷︷ ︸

t

.
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For any prime p dividing n, p divides a2, . . . , am but not a1. Hence, p

does not divide the second factor t in the expression above. This implies

that t is relatively prime to n, so nk does not divide the product (c1−c2)t =

f(c1) − f(c2).

Therefore, f(0), f(1), . . . , f(nk − 1) are distinct modulo nk, and one of

them, say f(c), must be congruent to 0 modulo nk. That is, nk|f(c), as

desired.

Problem 11.12. Let x, a, b be positive integers such that xa+b = abb.

Prove that a = x and b = xx.

(1998 Iranian Mathematical Olympiad)

Solution. If x = 1, then a = b = 1 and we are done. So we may assume

x > 1. Write x =
n∏

i=1

pγi

i , where the pi are the distinct prime factors of x.

Since a and b divide xa+b, we have a =
∏

pαi

i and b =
∏

pβi

i for some

nonnegative integers αi, βi.

First suppose that some βi is zero, that is, pi does not divide b. Then the

given equation implies that γi(a+ b) = αib, so that (αi − γi)b = aγi. Now

pαi

i divides a but is coprime to b, so pαi

i divides αi − γi also. But pαi

i > αi

for αi > 0, contradiction. We conclude that βi > 0.

Now from the fact that

γi(a+ b) = βi + bαi

and the fact that pβi does not divide βi (again for size reasons), we deduce

that pβi also does not divide a, that is, αi < βi for all i and so a divides

b. Moreover, the equation above implies that a divides βi, so we may write

b = ca with c ≥ 2 a positive integer.

Write x/a = p/q in lowest terms (so gcd(p, q) = 1). Then the original

equation becomes xapb = bqb. Now pb must divide b, which can only occur

if p = 1. That is, x divides a.

If x 6= a, then there exists i with αi ≥ γi + 1, so

γi(a+ b) = βi + αib ≥ (γi + 1)b

and so γia > b. On the other hand, a is divisible by pγi

i , so in particular

a ≥ γi. Thus a2 > b = ca, or
√
c < a1/a; however, a1/a <

√
2 for a ≥ 5, so

this can only hold for c = 2 and a = 3, in which case b = 8 is not divisible

by a, contrary to our earlier observation.
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Thus x = a, and from the original equation we get b = xx, as desired.

Problem 11.13. Let m,n be integers with 1 ≤ m < n. In their decimal

representations, the last three digits of 1978m are equal, respectively, to the

last three digits of 1978n. Find m and n such that m+ n is minimal.

(20th IMO)

Solution. Since 1978n and 1978m agree in their last three digits, we

have

1978n − 1978m = 1978m(1978n−m − 1) ≡ 0 (mod 103).

From the decomposition 103 = 23 · 53 and since 1978n−m − 1 is odd we

obtain 23|1978m. From 1978 = 2 · 989, it follows m ≥ 3.

Let us write m+ n = (n−m) + 2m. Our strategy is to minimize m+ n

by taking m = 3 and seek the smallest value of n−m such that

1978n−m ≡ 1 (mod 53).

Since (1978, 5) = 1, the problem is to find the order h of the residue-class

1978 (mod 125). It is known that the order h of an inversible residue-class

modulo m is a divisor of ϕ(m), where ϕ is the Euler function. In our case,

ϕ(125) = 52(5 − 1) = 100.

Hence, h|100. From 1978h ≡ 1 (mod 125) we also have 1978h ≡ 1

(mod 5). But 1978h ≡ 3h (mod 5). Since the order of the residue-class 3

(mod 5) is 4, it follows 4|h. Using the congruence 1978 ≡ −22 (mod 125)

we obtain:

19784 ≡ (−22)4 ≡ 24 · 114 ≡ 42 · 1212

≡ (4 · (−4))2 ≡ (−1)2 ≡ 256 ≡ 6 6≡ 1 (mod 125).

So we rule out the case h = 4. Because h|100, the next possibilities are

h = 20 or h = 100. By a standard computation we have:

197820 ≡ 65 ≡ 25·35 ≡ 32·(−7) ≡ −224 ≡ 26 (mod 125) 6≡ 1 (mod 125).

Hence we necessarily have: h = m− n = 100 and n+m = 106.
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Arithmetic function

A function defined on the positive integers and which is complex valued.

Arithmetic-Geometric Means Inequality

If n is a positive integer and a1, a2, . . . , an are nonnegative real numbers,

then
1

n

n∑

i=1

ai ≥ (a1a2 · · · an)1/n,

with equality if and only if a1 = a2 = · · · = an. This inequality is a special

case of the power mean inequality.

Base b representation

Let b be an integer greater than 1. For any integer n ≥ 1 there is a unique

system (k, a0, a1, . . . , ak) of integers such that 0 ≤ ai ≤ b−1, i = 0, 1, . . . , k,

ak 6= 0 and

n = akb
k + ak−1b

k−1 + · · · + a1b+ a0.

Beatty’s Theorem

Let α and β be two positive irrational real numbers such that

1

α
+

1

β
= 1.
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The sets {⌊α⌋, ⌊2α⌋, ⌊3α⌋, . . . }, {⌊β⌋, ⌊2β⌋, ⌊3β⌋, . . .} form a partition of

the set of positive integers.

Bernoulli’s Inequality

For x > −1 and a > 1,

(1 + x)a ≥ 1 + ax,

with equality when x = 0.

Bezout’s Identity

For positive integers m and n, there exist integers x and y such that mx+

by = gcd(m,n).

Binomial Coefficient
(
n

k

)

=
n!

k!(n− k)!
,

the coefficient of xk in the expansion of (x+ 1)n.

Binomial Theorem

The expansion

(x+y)n =

(
n

0

)

xn+

(
n

1

)

xn−1y+

(
n

2

)

xn−2y+· · ·+
(

n

n− 1

)

xyn−1+

(
n

n

)

yn

Canonical factorization

Any integer n > 1 can be written uniquely in the form

n = pα1
1 . . . pαk

k ,

where p1, . . . , pk are distinct primes and α1, . . . , αk are positive integers.

Carmichael’s integers

The composite integers n satisfying an ≡ a (mod n) for any integer a.

Complete set of residue classes modulo n

A set S of integers such that for each 0 ≤ i ≤ n − 1 there is an element

s ∈ S with i ≡ s (mod n).

Congruence relation

Let a, b, and m be integers, with m 6= 0. We say that a and b are congruent

modulo m if m|a− b. We denote this by a ≡ b (mod m). The relation ”≡”

on the set Z of integers is called the congruence relation.
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Convolution product

The arithmetic function defined by

(f ∗ g)(n) =
∑

d|n
f(d)g

(n

d

)

,

where f and g are two arithmetic functions.

Division Algorithm

For any positive integers a and b there exists a unique pair (q, r) of non-

negative integers such that b = aq + r and r < a.

Euclidean Algorithm

Repeated application of the Division Algorithm:

m = nq1 + r1, 1 ≤ r1 < n,

n = r1q2 + r2, 1 ≤ r2 < r1,

. . .

rk−2 = rk−1qk + rk, 1 ≤ rk < rk−1,

rk−1 = rkqk+1 + rk+1, rk+1 = 0

This chain of equalities is finite because n > r1 > r2 > · · · > rk.

Euler’s Theorem

Let a and m be relatively prime positive integers. Then

aϕ(m) ≡ 1 (mod m).

Euler’s totient function

The function ϕ defined by ϕ(m) = the number of all positive integers n

less than m that are relatively prime to m.

Factorial base expansion

Every positive integer k has a unique expansion

k = 1! · f1 + 2! · f2 + 3! · f3 + · · · +m! · fm,

where each fi is an integer, 0 ≤ fi ≤ i and fm > 0.

Fermat’s Little Theorem (F.L.T.)
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Let a be a positive integer and let p be a prime. Then

ap ≡ a (mod p).

Fermat’s numbers

The integers fn = 22n

+ 1, n ≥ 0.

Fibonacci sequence

The sequence defined by F0 = 1, F1 = 1 and Fn+1 = Fn + Fn−1 for every

positive integer n.

Floor function

For a real number x there is a unique integer n such that n ≤ x < n + 1.

We say that n is the greatest integer less than or equal to x or the floor of

x and we denote n = ⌊x⌋.

Fractional part

The difference x − ⌊x⌋ is called the fractional part of x and is denoted by

{x}.

Fundamental Theorem of Arithmetic

Any integer n greater than 1 has a unique representation (up to a permu-

tation) as a product of primes.

Hermite’s Identity

For any real number x and for any positive integer n,

⌊x⌋ +

⌊

+
1

n

⌋

+

⌊

+
2

n

⌋

+ · · · +
⌊

+
n− 1

n

⌋

= ⌊nx⌋.

Legendre’s formula

For any prime p and any positive integer n,

ep(n) =
∑

i≥1

⌊
n

pi

⌋

.

Legendre’s function

Let p be a prime. For any positive integer n, let ep(n) be the exponent of

p in the prime factorization of n!.
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Legedre’s symbol

Let p be an odd prime and let a be a positive integer not divisible by p.

The Legendre’s symbol of a with respect to p is defined by

(
a

p

)

=

{

1 if a is a quadratic residue mod p

−1 otherwise

Linear Diophantine equation

An equation of the form

a1x1 + · · · + anxn = b,

where a1, a2, . . . , an, b are fixed integers.

Linear recurrence of order k

A sequence x0, x1, . . . , x2, . . . of complex numbers defined by

xn = a1xn−1 + a2xn−2 + · · · + akxn−k, n ≥ k

where a1, a2, . . . , ak are given complex numbers and x0 = α0, x1 = α1, . . . ,

xk−1 = αk−1 are also given.

Lucas’ sequence

The sequence defined by L0 = 2, L1 = 1, Ln+1 = Ln + Ln−1 for every

positive integer n.

Mersenne’s numbers

The integers Mn = 2n − 1, n ≥ 1.

Möbius function

The arithmetic function µ defined by

µ(n) =







1 if n = 1,

0 if p2|n for some prime p > 1,

(−1)k if n = p1 . . . pk, where p1, . . . , pk are distinct primes

Möbius inversion formula

Let f be an arithmetic function and let F be its summation function. Then

f(n) =
∑

d|n
µ(d)F

(n

d

)
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Multiplicative function

An arithmetic function f 6= 0 with the property that for any relative prime

positive integers m and n,

f(mn) = f(m)f(n).

Number of divisors

For a positive integer n denote by τ(n) the number of its divisors. It is

clear that

τ(n) =
∑

d|n
1

Order modulo m

We say that a has order d modulo m, denoted by om(a) = d, if d is the

smallest positive integer such that ad ≡ 1 (mod m).

Pell’s equation

The quadratic equation u2 −Dv2 = 1, where D is a positive integer that

is not a perfect square.

Perfect number

An integer n ≥ 2 with the property that the sum of its divisors is equal to

2n.

Prime Number Theorem

The relation

lim
n→∞

π(n)
n

logn

= 1,

where π(n) denotes the number of primes ≤ n.

Prime Number Theorem for arithmetic progressions

Let π
(n)
r,a be the number of primes in the arithmetic progression a, a+ r, a+

2r, a+ 3r, . . . , less than n, where a and r are relatively prime. Then

lim
n→∞

πr,a(n)
n

logn

=
1

ϕ(r)

This was conjectured by Legendre and Dirichlet and proved by de la

Vallée Poussin.
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Pythagorean equation

The Diophantine equation x2 + y2 = z2.

Pythagorean triple

A triple of the form (m2 − n2, 2mn,m2 + n2), where m and n are positive

integers.

Quadratic residue mod m

Let a and m be positive integers such that gcd(a,m) = 1. We say that a

is a quadratic residue mod m if the convergence x2 ≡ a (mod m) has a

solution.

Quadratic Reciprocity Law of Gauss

If p and q are distinct odd primes, then

(
q

p

)(
p

q

)

= (−1)
p−1
2 · q−1

2

Sum of divisors

For a positive integer n denote by σ(n) the sum of its positive divisors

including 1 and n itself. It is clear that

σ(n) =
∑

d|n
d

Summation function

For an arithmetic function f the function F defined by

F (n) =
∑

d|n
f(d)

Wilson’s Theorem

For any prime p, (p− 1)! ≡ −1 (mod p).
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