# Godiva IV Startup at NCERC **Delayed Critical through Prompt Critical**

<u>Joetta Goda</u>, John Bounds, Travis Grove, Dave Hayes, Jesson Hutchinson, Bill Myers, Rene Sanchez

NEN-2

March 26-27, 2014



I A-UR-14-21824

#### **Godiva Assembly Overview**



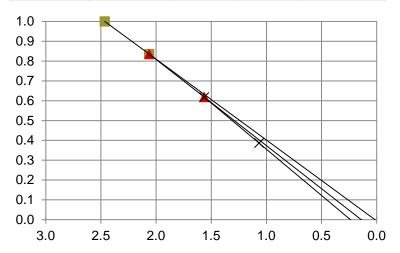
- Cylindrical uranium metal fast burst assembly
- 65 kg, 93% enriched
- 7-inch diameter (17.8 cm),
  6-inch tall (15.2 cm)
- Core without safety block or control rods
  - Multiplication ~10
  - $k_{eff} \sim 0.9$



**UNCLASSIFIED** 



#### **Timeline**


- Godiva IV was built in 1967 and operated at TA-18 until...
- July 2004—Last Prompt Burst
- August 2004—Last Critical Operation
- July 2005—Godiva was disassembled...
- April 2012—Godiva assembled
- October 2012—First Critical at DAF
- September 2013—First Prompt at DAF



#### **Approach to Critical**

 1/M on Sum of Control Rod positions

| Position | Total  |      |      | Predicted |
|----------|--------|------|------|-----------|
| (in)     | Counts | 1/M  | M    | Critical  |
| 2.47     | 52091  | 1.00 | 1.00 | -         |
| 2.06     | 62355  | 1.20 | 0.84 | 0.02      |
| 1.56     | 84252  | 1.62 | 0.62 | 0.14      |
| 1.07     | 134989 | 2.59 | 0.39 | 0.24      |



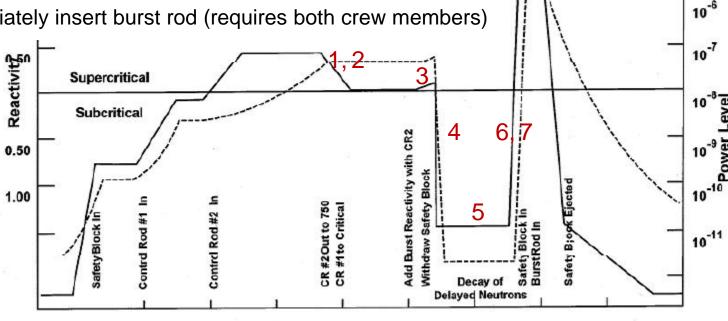
Excess reactivity \$1.07 compared to \$1.23 prior to disassembly



LA-UR-14-21824

Slide 4

#### Reproducibility of Control Elements


#### **Control Rod Burst Rod** Safety Block Establish positive period - Insert BR Insert CR 1 Find DC with CR 2 Measure period Establish positive period Record CR 2 position - Remove SB Measure period Remove CR 2 Insert SB Remove BR Repeat Repeat Repeat $0.250 \pm 0.001$ in $45.07 \pm 0.59$ sec 21.34 + 0.41 sec $\pm 0.04$ ¢ ± 0.15 ¢ $\pm 0.29 \, c$

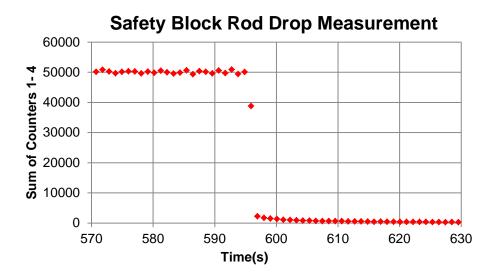
Comparable to values measured during 1993 restart



#### **Burst Operation**

- Move Control Rod 2 to 0.250"
- Find DC with Control Rod 1
- Insert (or remove) burst increment with Control Rod 2
- Retract safety block 2-5 inches
- Wait 15-20 minutes for delayed neutron decay
- Insert safety block
- Immediately insert burst rod (requires both crew members)




Time





10-5

# Safety Block Rate of Shutdown

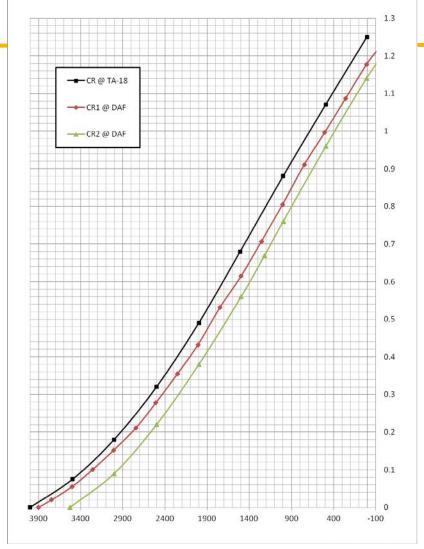


$$\rho(\$) = 1 - \frac{n_0}{n_1}$$

$$\rho(\$) = 1 - \frac{50082}{2256}$$

$$\rho(\$) = 1 - 22$$

$$\rho(\$) \approx -\$21$$


$$\Delta t = 2 s$$

Shutdown Rate is approx. -\$10/s





#### **Control Rod Calibration**





#### **Worth of Burst Rod**

| Period (sec) | Desired<br>Reactivity(\$) | Reactivity to Remove(\$) | CR 2<br>Position(i<br>n.) | Measured<br>Period(sec) | Measured<br>Reactivity(<br>\$) | Burst Rod<br>Worth(\$) |
|--------------|---------------------------|--------------------------|---------------------------|-------------------------|--------------------------------|------------------------|
| 15           | 0.32                      | 0.68                     | 2.050                     | 13.19                   | \$0.34                         | \$1.02                 |
| 10           | 0.39                      | 0.61                     | 1.850                     | 8.63                    | \$0.41                         | \$1.02                 |
| 5            | 0.51                      | 0.49                     | 1.500                     | 4.38                    | \$0.54                         | \$1.03                 |
| 1            | 0.78                      | 0.22                     | 0.825                     | 0.85                    | \$0.80                         | \$1.02                 |
| 0.2          | 0.93                      | 0.07 0.09                | 0.450                     | 0.181                   | \$0.94                         | \$1.01+.02             |
| 0.1          | 0.96                      | 0.04-0.06                | 0.296                     | 0.0510                  | \$0.98                         | \$1.02+.02             |
| 0.05         | 0.98                      | 0.02 0.05                | 0.279                     | 0.0354                  | \$0.985                        | \$1.01+.03             |
| 0.012        | 0.995                     | 0.005 0.045              | 0.261                     | 0.0301                  | \$0.987                        | \$.992+.04             |

**Burst Rod Worth** 

\_\_> \$1.032



\*\* \$0.04 Adjustment

UNCLASSIFIED



# **Burst Reproducibility**



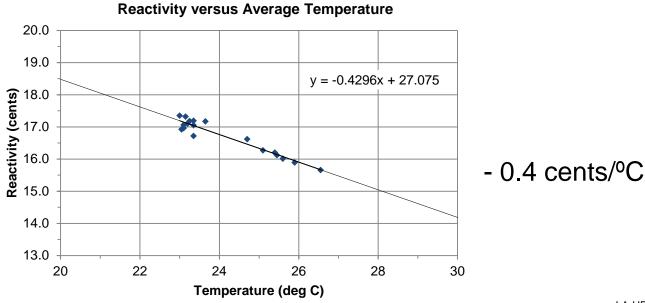
- Establish DC
- Remove burst increment
- Remove SB
- Wait
- Insert SB
- Insert BR/burst
- BR out
- Repeat

 $90.69 \pm 0.13 ¢$ 



- Remove burst increment
- Remove SB
- Wait
- Insert SB




- Insert BR/burst
- BR out
- Repeat

 $90.19 \pm 0.03 ¢$ 

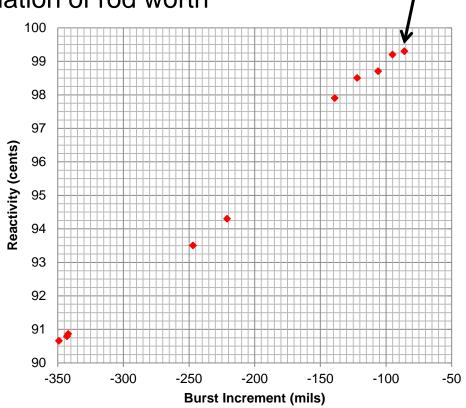


# **Reactivity Quenching (Temperature Coefficient)**

- For characterization plan, we started on a positive period and showed that as temperature increased, period decreased.
- A free run would also demonstrate a negative temperature coefficient.
- Enough variation in room temperature over characterization to plot excess reactivity versus temperature.






LA-UR-14-21824 Slide 11

UNCLASSIFIED Slide



#### **Approach-to-Prompt**

- Perform successively larger bursts
  - Most accurate determination of rod worth
  - Demonstrates process





LA-UR-14-21824 Slide 12

99.3¢

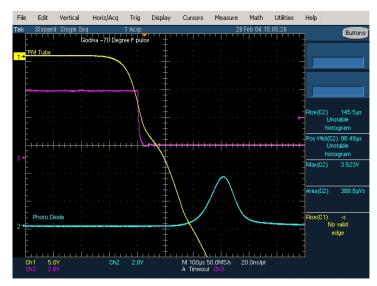


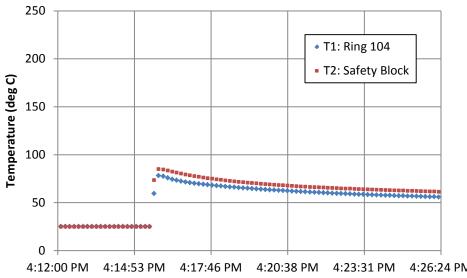
# First Super-Prompt Burst at DAF, September 2013



On September 10, 2013, Godiva IV burst for the first time in Nevada.

Burst #1963 had a temperature rise of 60° C and a reactivity of \$1.03.


Three more bursts of increasing size followed over the next two days.

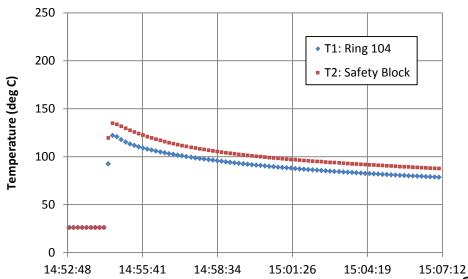



I A-UR-14-21824

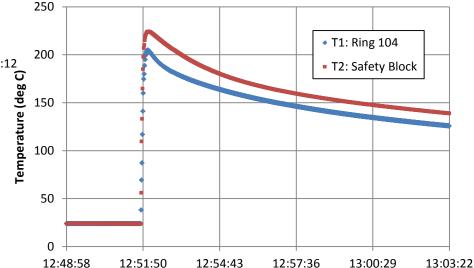
#### **Super-Prompt Bursts**

- Burst Size Measured by:
  - Temperature Rise
  - Initial Period Measurement on PMT
  - FWHM on PD
  - Fission Foils









LA-UR-14-21824

Slide 14

#### **Super-Prompt Bursts**



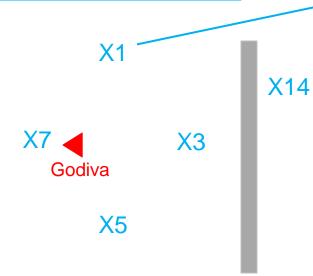
- 108 °C Temperature Rise
- \$1.06 Reactivity

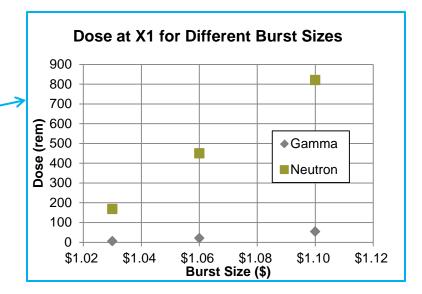


- 200 °C Temperature Rise
- \$1.10 Reactivity



LA-UR-14-21824 Slide 15


**UNCLASSIFIED** 




# **Dosimetry**

#### \$1.03/60° Burst

|     | Gamma Dose | Neutron Dose | Total Dose |
|-----|------------|--------------|------------|
|     | (rem)      | (rem)        | (rem)      |
| X1  | 6          | 169          | 175        |
| Х3  | 7          | 134          | 141        |
| X5  | 13         | 330          | 343        |
| X7  | 17         | 272          | 288        |
| X14 | 0          | .1           | .1         |

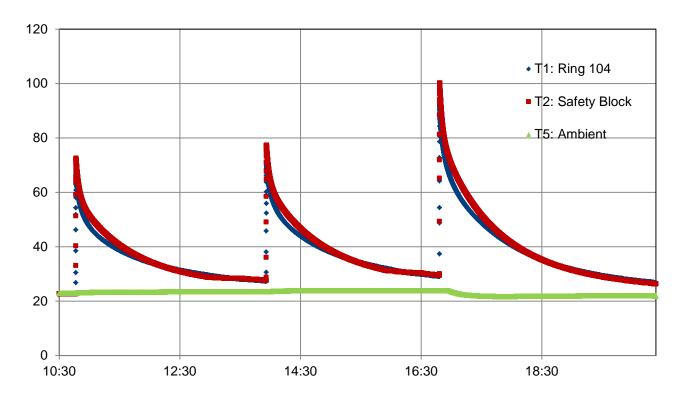






LA-UR-14-21824 Slide 16

**UNCLASSIFIED** 

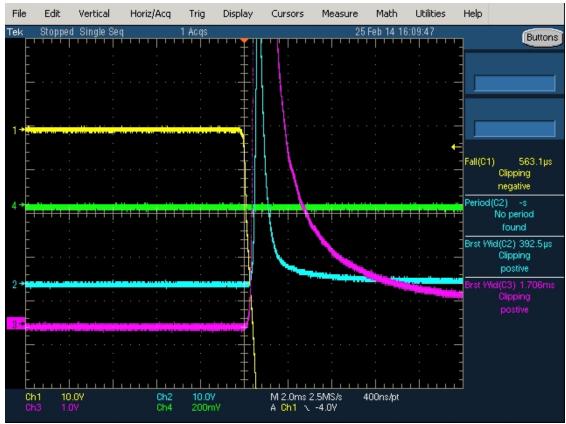

# **Available Burst Sizes and Specifications**

| Delta T (C)    | Mini-burst | 70 degree | 150 degree | 250 degree |
|----------------|------------|-----------|------------|------------|
| Reactivity     | \$0.993    | \$1.04    | \$1.07     | \$1.10     |
| Initial Period | 15 msec    | 30 µsec   | 18 µsec    | 11 µsec    |
| alpha          | 66/sec     | 33000/sec | 55000/sec  | 91000/sec  |
| FWHM           | N/A        | 100 µsec  | 55 µsec    | 33 µsec    |
| # fissions     |            | 1 E 16    | 2 E 16     | 4 E 16     |



# Recent Data – January 14, 2014

#### Three bursts in one day



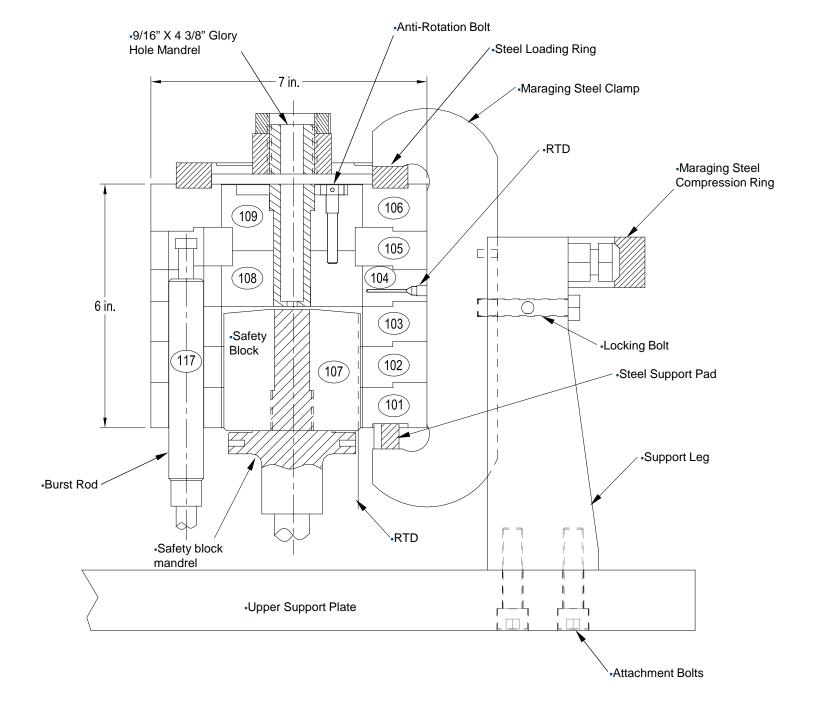



LA-UR-14-21824

# Recent Data – January 25, 2014

#### Photomultiplier and photodiode setup and checkout continue






# **Acknowledgements**

This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.





