

Better Buildings Residential Network Peer Exchange Call Series:

Going Deep—What Drives Deep Energy Retrofits? January 30, 2019

Agenda and Ground Rules

- Agenda Review and Ground Rules
- Opening Poll
- Residential Network Overview and Upcoming Call Schedule
- Featured Speakers:
 - Rebecca Olson, Center for Energy and Environment
 - Brennan Less, Lawrence Berkeley National Lab
 - Rick Wertheim, United Way Long Island
- Open Discussion
- Closing Poll and Announcements

Ground Rules:

- 1. Sales of services and commercial messages are not appropriate during Peer Exchange Calls.
- 2. Calls are a safe place for discussion; please do not attribute information to individuals on the call.

The views expressed by speakers are their own, and do not reflect those of the Dept. of Energy.

Better Buildings Residential Network

Join the Network

Member Benefits:

- Recognition in media and publications
- Speaking opportunities
- Updates on latest trends
- Voluntary member initiatives
- One-on-One brainstorming conversations

Commitment:

Members only need to provide one number: their organization's number of residential energy upgrades per year, or equivalent.

Upcoming Calls (2nd & 4th Thursdays):

- Feb 13: Comfort The Biggest Driver of Residential Energy Efficiency
- Feb 27: Heat Pump Water Heaters What You Need to Know Right Now
- Mar 12: The State of Gas Energy Efficiency Programs

Peer Exchange Call summaries are posted on the Better Buildings <u>website</u> a few weeks after the call For more information or to join, for no cost, email <u>bbresidentialnetwork@ee.doe.gov</u>, or go to <u>energy.gov/eere/bbrn</u> & click Join

Rebecca Olson
Center for Energy and Environment

CEE's Approach to Deeper Residential Retrofits

Rebecca Olson, Director of Residential Programs

Better Buildings Residential Network Peer Exchange January 30th, 2020

Deeper Retrofit Goals

- Complete comprehensive work scope
- Focus on cost effectiveness and health and safety
- Break down barriers to completing projects
- Use qualified and results-oriented contractors

Customer Experience

Program Process

Educate and promote	Visit type selection	Schedule customer	Complete diagnosis and installs	Create reports	Review reports with customer	Recommend projects	Engage customer	Review project scope	Schedule contractor work	Ensure rebate submission	QA and reporting
---------------------	-------------------------	----------------------	---------------------------------------	----------------	------------------------------	-----------------------	--------------------	----------------------------	--------------------------------	--------------------------------	------------------

Residential Retrofit Process

- Home Energy Squad
- Joint Gas and Electric Utility Program
 - Xcel Energy
 - Centerpoint Energy
- In over 8000 homes per year
 - Direct installation of gas and electric measures
 - Comprehensive Audits
- Action-oriented and customerfriendly report
 - Includes energy score and path

Contractor Relationships

- Trusted contractor network
 - 5 Insulation contractors
 - 2-3 HVAC contractors
- Negotiated pricing for Insulation scope
 - Keep costs transparent and consistent
- Deliver bids/scope of work at visit
 - Allows us to push for full scope of work
- CEE schedules work
 - Easy for customers
 - Helps us ensure work gets completed
- Quality Assurance on sample of jobs

Energy Advisor Service

Answer questions, provide guidance

Ensure rebate application

Case Study 1:

- 1-story (rambler)
- Built in 1950
- **Score:** from 81 to 97
- Furnace: 80% furnace replaced with 96% Model with programmable thermostat
- Attic Insulation: Added R18
- Air Sealing: Reduced leakage by 15%
- Water Heater: Power vented unit installed (safe combustion)
- Home Energy Squad installed efficient lighting
- Total Cost: \$6,000
- Annual Estimated Savings: \$298
- Payback of 20 years
- ~20% Reduction in Usage

ACHEVED	ACTION NEEDED by priority	
Walls are fully insulated	Replace your furnace with a 95% APUE model	
Windows meet minimum efficiency standards	Air seal and insulate your attic	
80% AFUE healing system		
Partial stric insulation and an seeiing		

HEALTH & SAFETY

ACHEVED	ACTION NEEDED
Adequate indeer vertilation	Have your water heater tested for combustion safety issues.

EFFICIENT PRODUCTS

ACHIEVED	ACTION NEEDED
	Install efficient lighting in 50% of finance
	Install Programmable Thermostal

• Case Study 2:

- 1.5 story
- Built in 1949
- **Score:** from 73 to 100
- Wall Insulation: All dense packed
- Kneewall Insulation: Added R25
- Attic Insulation: Added R45 in side attics, added R29 in peak,
- Air Sealing: 48% leakage reduction
- Water Heater: Power vented unit installed (safe combustion)
- Home Energy Squad installed efficient lighting & programmable thermostat
- Total Cost: \$4,360
- Annual Estimated Savings: \$790
- Payback of 5.5 years
- ~50% savings

ACHEVED	ACTION NEEDED by priority	
99% AFUE heating system	Air seal and insulate your aftic	
Windows meet minimum efficiency standards	traubite your extensor walks	
Partial attic insulation and air scaling		

HEALTH & SAFETY	
ACHEVED	ACTION NEEDED
Adequate indoor ventilation	Have your water heater tested for combustion safety issues.

EFFICIENT PRODUC	TS
ACHEVED	ACTION NEEDED
	Install efficient lighting in 90% of fixtures
	Install Programmable Thermostat

Case Study 3:

- Split-Level
- Built in 1963
- Score: from 45 to 100
- Furnace: Replaced 70% furnace with 95% model with programmable thermostat
- Attic Insulation: Added R29
- Air Sealing: 36% air leakage reduction
- Wall Insulation: Dense packed exterior walls and tuck-under garage ceiling
- Water Heater: Power vented unit installed (safe combustion)
- Home Energy Squad installed efficient lighting
- Total Cost: \$8,870
- Annual Estimated Savings: \$1,015
- Payback of 8.7 years
- ~58% savings

ACHEVED	ACTION NEEDED by priority
Windows meet minimum efficiency standards	Replace your furnace with a 95% APUE model
Partial attic insulation and air scaling	insulate your oderior walls and the ceiling whose your back-under garage An seal and insulate your adic

HEALTH & SAFETY		
ACHEVED	ACTION NEEDED	
Water heater passed combustion salety testing	Install continuous indoor ventilation	

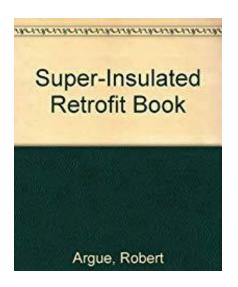
EFFICIENT PRODUCTS	
ACHIEVED	ACTION NEEDED
Programmable Thermostat:	Install efficient lighting in 50% of fixtures

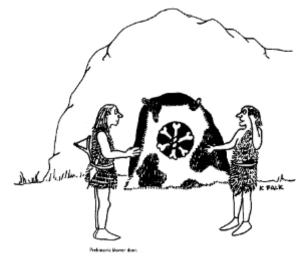
Brennan Less
Lawrence Berkeley National Lab

How Can We Get More Deep Energy Retrofits in the US?

2020-01-30
Brennan Less
LBNL, Residential Building Systems

"So many more deep residential energy retrofits are occurring than we ever hoped. Savings are high, budgets are low...We are on-track!"

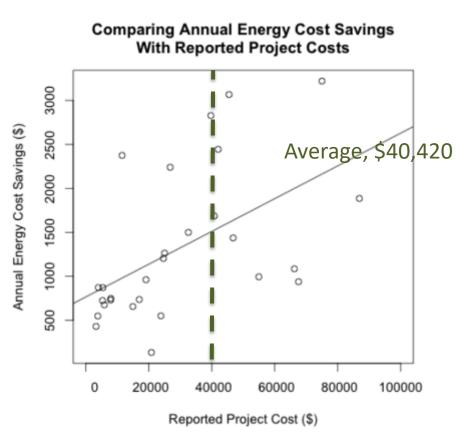




"So many more deep residential energy retrofits are occurring than we ever hoped. Savings are high, budgets are low...We are on-track!"

- No One Ever, PhD

- Every single country on the globe is struggling with this issue
- The problems are not technical (mostly)
- We've been doing this for >40 years


"Future DERs will need to look different than they have in (many) past demonstration projects...We are not going to be wrapping every existing home in the US with 4" of exterior insulation, air sealing them to 0.6 ACH_{50} , and custom engineering the HVAC."

-Brennan Less (that's me)

Bottlenecks and Burdens

- High project costs
- Extended project timelines
- Disruption and inconvenience
- Complexity too many players
- Inadequate workforce
- Information burden
- Risk of new technologies and practices (procurement, contractor, inspection, etc.)
- Financing (incentives split from homeowners and financing)
- Market valuation in real estate
- Inconsistent outcomes
- Lack of incentives commensurate with costs

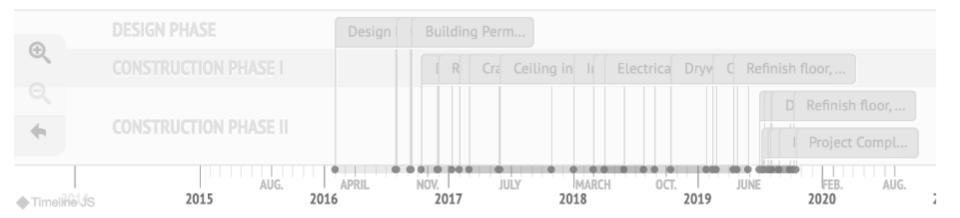
Cost Burden

Many cold climate projects have reported > \$100,000

At best, a DER costs as much as a kitchen remodel...

But then you don't have a new kitchen

shutterstock.com • 1414418570

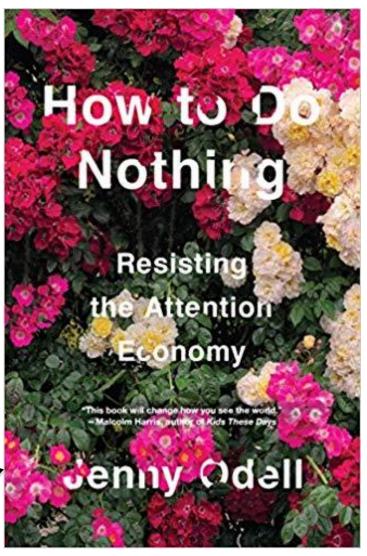


Time Burden

~2 Months Home performance project timeline Homeowner works with BPI accredited contractor to choose the best upgrades based on needs and budget Homeowner selects auditor Test out is completed Homeowner receives by contractor comprehensive audit report and recommendations Work is completed by a BPI certified contractor Comprehensive home energy assessment Documentation submitted conducted by to home performance program certified auditor ~8 Months 1 Feb 1 Mar 1 Apr 1 May 1 Jun 1 Jul Work begins Homeowner During-construction Site verification #3 Completion of project selects site verification #1 Site verification #2 contractor Post construction site verification Application is completed for Customer DER program (by homeowner agreement and contractor), finalized and submitted Pre-construction site verification visit Deep energy retrotit project timeline

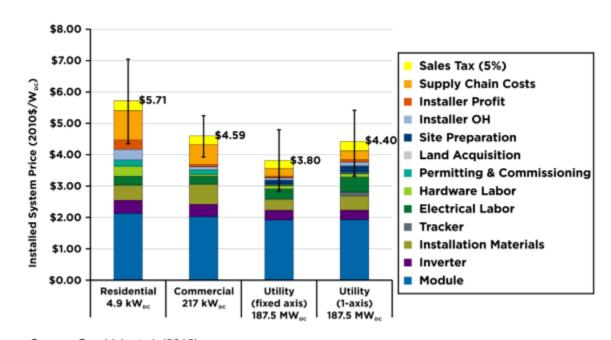
Figure 11. Home performance and deep energy retrofit program timelines. Source. EPA 2011, Neuhauser 2012.

Time Burden, Continued



Frugal Happy DIY DER timeline

Recommended by Barack Obama!


Options and Ideas Moving Forward

Options and Ideas Moving Forward

- Need to comprehensively address the actual barriers to widespread implementation of DERs
 - Make them easier, faster, more convenient, less disruptive, flexible, etc.
 - One Stop Shop program designs
 - Trigger Point program strategies
 - Time of Sale, Renovation or Energy Rate change
 - Over-time retrofits, with planning and implementation support
 - Standardized packages and approaches, NOT optimized
 - Marginal value of contractor familiarity, reliability and serviceability will outpace any marginal cost-performance benefit
 - Need to find sweet spot between Standardized and Individualized

DOE RBI Funding of DER Cost-Stacks and Research Prioritization

- Modeled on successful SunShot program by DOE
 - 75% reduction in installed PV costs
- DER work will inform targeted DER research strategy in upcoming years

Source: Goodrich et al. (2012)

DOE RBI Funding of DER Cost-Stacks and Research Prioritization

- Tasks
 - Literature review of US and international DER programs, market assessments
 - Develop reproducible cost-stack methodology to guide future research funding
 - Create baseline cost-stacks for present-day Deep Retrofits in the US
 - Survey of DER contractors and associated professionals to identify research opportunities
- May include time burdens along with costs

DOE RBI Funding of DER Cost-Stacks and Research Prioritization

- To help support DER R&D at the Federal level
- Please provide your valuable input:
- Brennan Less
 - bdless@lbl.gov
- Iain Walker
 - iswalker@lbl.gov

Options and Ideas Moving Forward, Contd

- Different types of DERs with more Consumer Benefits
 - Minimum disruption retrofit
 - Low risk retrofit
 - Smart home retrofit
 - Resilient retrofits (power outage resilience, etc.)
 - Contractor-friendly retrofit designed around familiarity, durability, longevity
 - Current Code retrofit
 - Grid responsive retrofits
 - Water, carbon ...
- Role of PV, electrification, car charging, thermal/battery storage
 - How can we still get most (but not all) of the thermal comfort, IAQ/health, durability and other co-benefits?

European Panelized Approaches

- Energiesprong Panelized retrofits
- Complete reskinning best for uniformly shaped buildings
 - Integrate walls, windows, HVAC
 - Questions remain about moisture considerations
- Integrate financing, planning, contracting, etc. Simplify for owners/occupants. Make it one decision. ONE STOP SHOP.

European Panelized Approaches

- Energiesprong Panelized retrofits
- Complete reskinning best for uniformly shaped buildings
 - Integrate walls, windows, HVAC
 - Questions remain about moisture considerations
- Integrate financing, planning, contracting, etc. Simplify for owners/occupants. Make it one decision. ONE STOP SHOP.

- Panelized retrofit activity in US
 - RMI REALIZE initiative
 - NYSERDA <u>RetrofitNY</u>, 10-years, \$30 million
 - California, \$7.2 million to operationalize a market facilitation platform to deliver Energiesprongtype projects.

THANK YOU

- Let us know if you want to contribute to current DOE Cost-Stack Assessment and Contractor Survey
- Brennan Less
 - bdless@lbl.gov
- Iain Walker
 - <u>iswalker@lbl.gov</u>
- Residential Building Systems Group
- Indoor Environment Group

Rick Wertheim

United Way Long Island

Deep Energy Retrofit From the Outside – Circa 1890's Colonial

Rick Wertheim

Senior VP Housing & Green Initiatives

Organizational Mission

"Develop Healthy, Durable Energy Efficient Housing for the Special Needs and affordable Housing Sector on Long Island, New York."

Performance

Comfort and Health

Basic Project Parameters

- Take an older home that uses a lot of energy and is drafty and uncomfortable and convert it into a "High Performance" Energy Efficient home with low operational costs
- 2. Augment existing oil fired steam boiler with cast iron radiators with new state of the art Air Source Heat Pumps
- 3. Produce significant Building Envelope improvements
- ALL without disturbing the interior of the home or disruption of occupancy

Existing conditions

- House was originally Masonry Stucco over lathe on plank skip sheathing with NO insulation and Plaster interior walls
- Prior owner had "resided" the home with Vinyl Siding and fanfold "insulation" and re-roofed the home to attempt comfort solutions
- 3. Next attempt was to change out existing windows with more efficient Vinyl Replacement Windows
- Owner after raising a family was unable to remain in the home due to his fixed income and outrageous operational costs.
- House purchased by United Way for the Deep Energy Retrofit

Grand Winner

U.S. Dept. of Energy

"Housing Innovation Award"

Affordable Housing Category

Take our New Construction Methodology...

Apply it to a Deep Energy Retrofit!

- Layout: 3 hdkm, 2 baln, 1 II, 1360 12 Climate: ICCC 4A, mixed-humid
- Completed: May 2019
- Category: affordable

MODELED PERFORMANCE DATA

- HERS Index; without Pd St; with PV 45. Annual Energy Costs: without FV
- \$1,7000 with PV SNO Annual Energy Cost Savings: (vs.
- typical new homes) without PV \$1,800, with PV \$3,200 Annual Energy Sevings: without PV:
- 8,646 kWh; with PV 2,785 kWh
- Savings in the First 30 Years: \$136,900

- Walls: 2-6-24" nr. advanced harning, 8-31 four 5.9" tithen filtings str, vi. 00% plywood sheething, house wrat, 2" XP5 taped rigit foam, virial sicing,
- Roof: Gable roof: 52" CDX is pixuod aheathing, under layment, ice-and-water shield; architectural shingles, ridge yent. Truss design has insulated chase for II VAC,
- Attion Vented attic, 191 R-50 to R-74 blown filterplass, trustes designed with partier chase for TNAC, 2' 9.14 rigid from plus IS' blown fiberglass our 1990 chase 18' reset hed trusses.
- · Foundation: traulated casement if i pound concrete wall, 2, xirts exterior rigid fram-
- Windows: Pipie pane, argonifiled, low-eg, virylicasement frames, u+o/it, sicsid=0.21.
- · Air Sealing: Lts ACH SC
- · Ventilation: ERV, MERV 12 files, whole house calcumidification, motion and humidity sensors on apol sentifición fora-
- HVMC: Ducted microsoft heat pump, SULESPE 16.2 SPER, rigid met it publis.
- Hot Weters Heat during water herter, S.Co.F.F., SCHgallg compact, during ng with PEX piping. . Lighting: 1003: Lttl. integrated lighting controls.
- Appliances: FNFIXIV STAR retrigerator, dishwidher, and digites washer.
- Solat: 1.8-kW PV system.
- Water Consorvation: EVA WaterSerse hybers, smart impation, shuckural draintois. differency, below-grade storm drainage rings.
- Energy Management System: Smart energy including system indoor air quality monitors.
- Other: Electric sehicle changing spoon, low-timeshold entries, wider doors, low-to-no-VCC paints, CARB-compilant cabinets, acrobic on-site wastowater treatment.

iz de wertheim

631-940-3772

For more other state on the COC fore Endow Ready Home. exerving as to the poly-managed and delibration are the teller are or seen the GR code.

Plan for Retrofit

- "Gut" the home from the outside to achieve building envelope improvements
- Leave existing vinyl replacement windows, as they were replaced recently
- 3. Plan a PV solar Array for south facing renewable energy
- Leave existing steam boiler and cast iron radiators for historical aesthetics and back-up heat
- 5. Install 2 separate Air Source Heat Pumps medium static, ducted.
- LEAVE the interior alone. Re-Paint and floor refinishing only improvements done inside

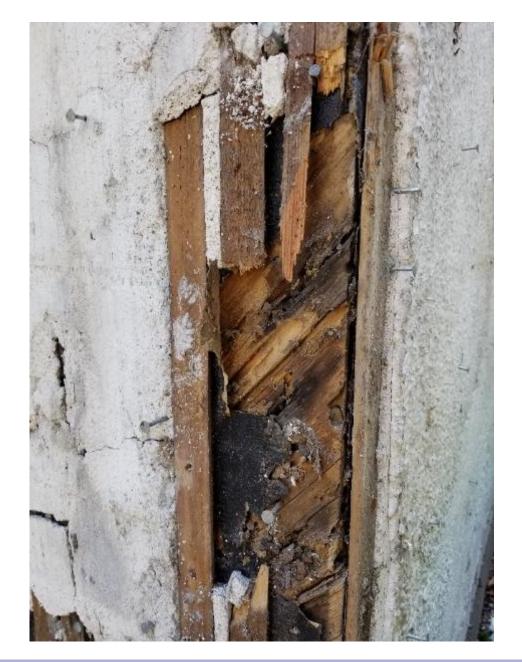
Wall Retrofit – Priority One

- 1. Remove Vinyl Siding
- 2. Chip away all of the Masonry Stucco
- 3. Repair any sheathing defects
- 4. Drill and Dense Pack with Cellulose (R-12.6)
- "Outsulate" and provide new continuous air barrier and WRB with Zip R-Sheathing and attached 1.5" foam. (R- 6.6)
- LEAVE the interior alone. Re-Paint and floor refinishing only improvements done inside
- 7. New siding to be PVC clapboard and PVC trim
- 8. Total R Value Wall = R-20

Remove exisiting siding

Expose Stucco

Expose Stucco


Expose Stucco

Rear

Repair Defects

Rot at corner

Prepare for Dense Pack

Prepare for Dense Pack

Drilling holes

taping holes to keep out weather until cavity is filled

Prepare for Dense Pack

Rear

Install Zip R-Sheathing

Install Zip R-Sheathing

Install Zip R-Sheathing

Rear

Starting to tape seams

Install Zip R-Sheathing

Details

Water table

Windows

Siding

Siding

Done

Siding

Done

Mechanical System— Heat Pump for large home?

Will this Work?

Performance has SIGNIFICANTLY improved

Panasonic "EXTERIOS" Cold climate model data...

Panasonic

				Wall Mou	nt Heat Pumps				
Model No.			XE9SKUA			XE12SKUA		XE15SKUA	
Unit Model No.			Indoor Unit	Outdoor Unit	Indoor Unit	Outdoor Unit	Indoor Unit	Outdoor Unit	
			CS-XE9SKUA	CU-XE9SKUA	CS-XE12SKUA	CU-XE12SKUA	CS-XE15SKUA	CU-XE15SKUA	
erformance & Electrical	Ratings								
Capacity	Cooling	Btu/h	8,700 (2,800-12,000)		11	11,500 (2,800-14,000)		15,000 (3,300-19,000)	
	Heating	Btu/h	10,900 (3,000-18,000) (10,600 at 17°F)		13,600 (3,0	13,600 (3,000-23,000) (13,500 at 17°F)		18,000 (3,300-24,000) (16,500 at 17°F)	
Moisture Removal	High	Pints/H	1.3			2.3		2.70	
Dry Air Flow	High	CFM	470			520		550	
SEER	Cooling		30.6			26.2		22.10	
EER	Cooling		17.05			14.7		12.50	
HSPF	Heating		14.0			12.5		12.00	
Power Supply	V, Phase, Hz		230/208V, 1PH, 60Hz		2	230/208V, 1PH, 60Hz		230/208V, 1PH, 60Hz	
Running Amps	Cooling	A	2.4 / 2.7			3.7 / 4.1		5.7 / 6.3	
	Heating	A	3.1 / 3.5			4.4 / 4.9		5.9 / 6.7	
Power Input	Cooling	W	510 (150-850)			780 (150-1,050)		1.20k (250-1.90k)	
	Heating	W	670 (150–1,650)			950 (150-2,100)		1.30k (200-2.65k)	
Back-up Heater W		80			80		80		
Fuse or Circuit Breaker Canacity A		15			20		75		

More Manufacturers

Some Models creating HEAT at -15 deg. F

More Configurations

Ductless

Ducted

Finished Installation - Attic

Ducted with flex

Finished Installation - Attic

Ducted with flex

4- 10" ports

Open Cell SPF Foam- Attic

"Hot Roof"

Brings attic into conditioned space

10" = R-34

High Performance Details added

Energy Recovering Ventilator

Lighting Controls

LED lighting

High Performance Details to be added

PV Solar will get deep energy retrofit project to "Near Zero"

PV Solar

High Performance Details added

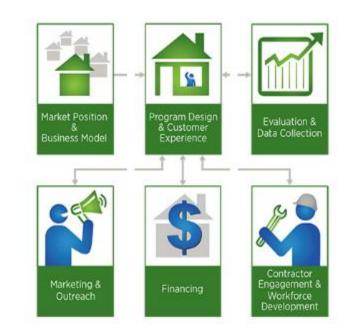
Heat Pump Hot Water Heater

Summary

- Deep Energy Retrofits costs SHOULD be assessed by Life Cycle Cost savings vs. First Costs
- This project has produced over 40% energy savings based upon improvements over original condition of home
- Comfort and health have been improved SIGNIFICANTLY
- New detailing will lower ongoing operational and maintenance costs for a not for profit housing agency to house and run health and human services for clients
- These improvements are sustainable and buffer the agency from energy spikes

Available Programs to guide you

Thank you


Questions: rwertheim@unitedwayli.org

Invest in what matters. Changing lives where you live.

Explore the Residential Program Solution Center

Resources to help improve your program and reach energy efficiency targets:

- Handbooks explain why and how to implement specific stages of a program.
- Quick Answers provide answers and resources for common questions.
- Proven Practices posts include lessons learned, examples, and helpful tips from successful programs.
- Technology Solutions NEW! present resources on advanced technologies, HVAC & Heat Pump Water Heaters, including installation guidance, marketing strategies, & potential savings.

https://rpsc.energy.gov

Thank You!

Follow us to plug into the latest Better Buildings news and updates!

Better Buildings Twitter with #BBResNet

Better Buildings LinkedIn

Office of Energy Efficiency and Renewable Energy Facebook

Please send any follow-up questions or future call topic ideas to:

bbresidentialnetwork@ee.doe.gov

