
Golomb Rulers

Roger C. Alperin

San Jose State University

San Jose, CA 95192

alperin@math.sjsu.edu

Vladimir Drobot

Department of Computer Science

San Jose State University

San Jose, CA 95192

drobot@pacbell.net

The Math Factor podcast posed the problem of finding the smallest num-

ber of inch marks on a 12 inch ruler so that one could still measure any integer

length from 1 to 12. One needs only four additional marks besides 0 and 12;

for example 1, 4, 7, 10 works. This entertaining problem lead to others dur-

ing the next few minutes (you can listen at mathfactor.uark.edu/2005/10)

and inspired us to look for generalizations. After several false starts and

numerous literature searches we uncovered the fascinating theory of Golomb

and minimal spanning rulers, a generalization to the natural numbers and

relations to an unsolved conjecture of Erdös and Turan.

We begin the discussion with our first problem—– which led us to Golomb

rulers. A property of the ruler of length 6 with marks at 0, 1, 4, 6 is that

each of the lengths 1, 2, 3, 4, 5, and 6 can be measured and it can be done

in only one way. Can one choose marks on a ruler of length 12 so that each

length from 1 to 12 can measured in only one way?

Golomb rulers are sets of integers (marks) with the property that if a

distance can be measured using these marks then it can be done in a unique

way.

Definition 1. A set G of integers

a1 < a2 < · · · < ap−1 < ap
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is called a Golomb ruler if for every two distinct pairs of these integers, say

ai < aj and am < an, we have aj − ai 6= an − am.

The size of G is defined to be p (the number of marks in G) and is denoted

#G. The length of G is defined to be ap − a1 (the largest distance that can

be measured using the marks from G).

It is clear that we can translate these sets: if G = {a1, a2, · · · , ap} is a

Golomb ruler then so is {a1 + b, a2 + b, · · · , ap + b}. This makes the choice

of a1 immaterial, so it will usually be taken to be 0. It is also clear that if

G = {a1, a2, · · · , ap} is a Golomb ruler, then so is the reflection of G around

the midpoint (a1 + ap)/2. For example, {0, 1, 4, 6} is a Golomb ruler, as

is {0, 2, 5, 6} obtained by reflecting the first ruler around the point 3. To

simplify the statements of some of the theorems, a set {a1} consisting of a

single point is considered to be a Golomb ruler.

Golomb rulers have numerous applications. The best known is an appli-

cation to radio astronomy. Radio telescopes (antennas) are placed in a linear

array. For each pair of these antennas, the received signals are subtracted

from each other and an inference can be then made as to the location of the

source. These inferences can be made much more accurate if all the distances

between the antennas are multiples of the same common length, and many

such pairs with distinct distances between them are available and can be

utilized. The problem maximizing the number of distinct distances between

the pairs, while minimizing the number of the antennas and the length of the

array, was first considered by Solomon W. Golomb [8, 1, 2, 10].

Other applications include assignments of channels in radio communica-

tions, X-ray crystallography, and self-orthogonal codes. Rankin [12] gives

more information about these applications. There is also a wealth of infor-

mation in various writings by Martin Gardner [5, 6, 7 ].

The Golomb ruler {0, 1, 4, 6} has the additional property that every inte-

gral distance between 1 and 6 can be measured. We call such a ruler perfect.

Definition 2. A Golomb ruler G of length N is called perfect if every

integer d, 1 ≤ d ≤ N , can be expressed as d = a− a′, for some a, a′ ∈ G.
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Since G is a Golomb ruler, the representation of each d is unique. Unfor-

tunately, there are very few perfect Golomb rulers.

Theorem 1. (Golomb) Together with their translations and reflections

around the midpoint the only perfect Golomb rulers are {0}, {0, 1}, {0, 1, 3},
and {0, 1, 4, 6}.

This theorem was proved by Golomb, but apparently he never published

it. There are several places where the proof appears (A. Dimitromanolakis

[4] or W. Rankin [12]), but they are not very easily accessible, so we present

here a slight modification of the original argument.

Proof. Suppose G is a perfect Golomb ruler of size p and length N then

we must have N =
(
p
2

)
= 1

2
p(p − 1), so N is a triangular number. This is

easy to see since there are N distances to be measured and and the number

of distinct pairs of these points is
(
p
2

)
. The triangular numbers below 10 are

0, 1, 3, 6 corresponding to the rulers listed in the theorem

Assume then that G is a perfect Golomb ruler of length N > 9 and we

seek a contradiction. Without loss of generality we may assume that a1, the

smallest number in G, is equal to 0 and so the largest number is ap = N . By

hypothesis, every number 1 ≤ d ≤ N is uniquely realizable as a difference

of two marks in G. Since N is realizable, 0 and N must belong to G. Since

N − 1 is realizable, either 1 or N − 1 belongs to G. By reflecting G around

N/2, we may assume that 1 ∈ G. Next, since N > 3 then N − 2 must be

realized. Since N − 2 > 1 then G must contain another point.

The possible pairs realizing N − 2 are {2, N}, {1, N − 1}, {0, N − 2}.
The first two produce duplications: 1− 0 = 2− 1 and 1− 0 = N − (N − 1).

The third is the only possibility so G contains N − 2 as well as 0, 1, N . The

realized distances are 1, 2, N − 3, N − 2, N − 1, and N .

Since N − 4 /∈ {1, 2} we need one of the pairs {0, N − 4}, {1, N − 3},
{2, N − 2}, {3, N − 1}, {4, N} to realize N − 4.. All but the last case yield

duplications: (N − 2)− (N − 4) = N − (N − 2), 1− 0 = (N − 2)− (N − 3),

2− 0 = N − (N − 2), 1− 0 = N − (N − 1).

The last case is okay, so G contains 0, 1, 4, N − 2, and N . The distances
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which can be realized by G are 1, 2, 3, 4, N − 6, N − 4, N − 3, N − 2, N − 1

and N .

Finally, consider the distance N − 5. Since N − 5 /∈ {1, 2, 3, 4} and

N > 9 this distance has not been realized. The possible pairs for realizing

the distance N − 5 are {0, N − 5}, {1, N − 4}, {2, N − 3}, {3, N − 2},
{4, N−1}, {5, N}. The reader may easily check that each of these case leads

to a duplication. This contradiction shows that N < 9 and the constructions

above give the perfect rulers asserted by the theorem. ¥

Since perfect Golomb rulers essentially do not exist, we seek “almost

perfect” rulers. Roughly speaking, given a length N , we try to place as

many points as possible in the interval [0, N ] so that the resulting set forms

a Golomb ruler. Alternatively, given the size p of the ruler (the number of

marks), we try to construct a Golomb ruler of shortest possible length N

with p points. Such rulers are called optimal.

Definition 3. For every positive integer p, let G(p) be the shortest

possible length of a Golomb ruler with p marks.

A Golomb ruler with p marks is called optimal if its length is G(p).

Dimitromanolakis [4] has a detailed discussion of optimal Golomb rulers. For

example, G(6) = 17, and there are 4 optimal rulers of size 6 and length 17:

{0, 1, 4, 10, 12, 17}, {0, 1, 4, 10, 15, 17}, {0, 1, 8, 11, 13, 17}, {0, 1, 8, 12, 14, 17}.
Computer searches give the largest known value of G(p). The current

record is G(26) = 492 and the corresponding optimal Golomb ruler has

marks

0 1 33 83 104 110 124 163 185 200 203 249 251 258

314 318 343 356 386 430 440 456 464 475 487 492.

The search took several years but it is not known if it is unique [13, 14].

Wikipedia is also a good source of information on the latest status of the

values of G(p).

Given a Golomb ruler with p marks, there are
(
p
2

)
∼ 1

2
p2 distinct distances

one can measure with this ruler. Thus, one expects G(p) to be roughly at
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least 1
2
p2. It is a conjecture, with strong empirical evidence, that G(p) < p2;

but it is only a conjecture.

Golomb rulers also have a close connection with additive number theory.

It is completely outside the scope of this paper to discuss this connection in

any depth, and we only state some facts and invite the reader to investigate

further.

Definition 4. A subset B of integers contained in [1, N ] is called a B2

basis, if for any two distinct pairs of integers from B, say a, a′ and b, b′ we

have

a+ a′ 6= b+ b′.

There is an old conjecture of Erdös and Turan which states that a B2

basis with b
√
Nc elements can be constructed in [1, N ] for any N . This

is very closely related to the conjecture that G(p) < p2. Halberstam and

Roth [9] give a comprehensive discussion of additive number theory and the

connection with Golomb rulers.

Perfect rulers on N

In this section we study infinite rulers. These are sets G of nonnegative

integers, such any positive integer d is realized as a distance between some

two elements of G. In addition, if we require that this representation is

unique, we may speak of infinite perfect Golomb rulers.

Definition 5. A subset G of the set N of natural numbers is called an

infinite perfect Golomb ruler if

1) for every positive integer d, there are elements a, a′ ∈ G so that d = a− a′, and

2) for every such d this representation is unique.

It is not entirely clear that such things exist, but in fact they do and

also they can be made arbitrarily thin (sparse) depending on the choice of a

function ϕ.

Theorem 2. Let ϕ : R+ −→ R+ be strictly increasing with ϕ(x) → ∞
as x→∞. Then there is a subset G of N which is an infinite perfect Golomb

5



ruler and such that for x > x0 = x0(G, ϕ)

#{k | k ∈ G, k ≤ x} ≤ ϕ(x). (1)

Proof. The basic idea to construct the set G is as follows: first we choose

a rapidly increasing sequence γk, k = 1, 2, · · · , and then construct G by

successively adding the points {γk, γk + k}. If a duplication should occur as

a result of this addition then we do not add the pair. Various things have to

be proved, for example, that skipping a pair does not result in some integer

d not being realized as the difference of two element of G, etc. The details

follow.

Choose a strictly increasing function ψ(x)such that

x <
1

2
ϕ(ψ(x)) (2)

and define a sequence {γk} by

γ1 = 0

γk+1 > ψ(k + 1) + 2(γk + k) + 1, for k ≥ 1.

(3)

Define A1 = {γ1, γ1 + 1} which of course equals {0, 1} and

Ak+1 =


Ak ∪ {γk+1, γk+1 + (k + 1)}

if this set Ak ∪ {γk+1, γk+1 + (k + 1)} has no duplicate distances

Ak otherwise.

This just says that we start with {γ1, γ1 + 1} and for each k > 1 add two

new points γk, γk + k provided that this does not introduce a duplication.

Finally, we set

G =
∞⋃
k=1

Ak.

First of all we show that the set G satisfies the density condition (1) in

the statement of the Theorem. Let x > 1 be given and let k0 be the largest

integer such that γk0 ≤ x. Then

#{k | k ∈ G, k ≤ x} ≤ 2k0
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because the elements of G come in pairs: γp and γp + p. Now

k0 <
1

2
ϕ(ψ(k0)) <

1

2
ϕ(γk0) ≤ 1

2
ϕ(x).

The first inequality follows from (2) and the second and third follow from

(3) and the fact that ϕ is monotonically increasing. Thus the density claim

(1) of the Theorem is true.

By construction, there are is no duplication of distances in G. This is

quite clear, since we made sure that there is no duplication of distances in

any of the sets Ak.
It remains to show that every distance d is realized as a difference of two

elements of G. It suffices to analyze the pairs which are not included by our

process: When a duplication occurs by inclusion of {γp, γp + p}, then we

claim that

p = a− a′ where a, a′ ∈ Ap−1 (4)

i.e., p is already realized as a distance in the set Ap−1. This would occur, for

example, in the following situation: Let a and a′ be two points in a set Aq,
for some q such that a − a′ > q. Then, further along in the process, adding

the pair {γa−a′ , γa−a′+(a−a′)} would surely create a duplication. The claim

is that this is essentially the only way it could happen. Now, if this claim

is true, then either every distance d occurs in G through the addition of the

pair {γd, γd + d} or d occurs already as a distance in the set Ad−1.

We now prove the assertion (4). Suppose that the addition of the pair

{γp, γp + p} to the set Ap−1 results in duplications. Because there are no

duplications in the set Ap−1 these duplications must involve the points from

the pair under discussion. It follows, because of (3), that both points of the

pair are larger than any of the points in Ap−1, and so the possibilities are:

i) (γp + p)− γp = a− a′

ii) (γp + p)− a = γp − a′

iii) (γp + p)− a = a′ − a′′

iv) γp − a = a′ − a′′
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where the numbers a, a′, a′′ are elements of the set Ap−1. In cases i) and

ii) then p is a difference of some elements in Ap−1, hence (4) holds. The

possibilities iii) and iv) cannot occur because the largest element of Ap−1

is at most γp−1 + (p − 1) and from (3) then γp > 2(γp−1 + p − 1). But, if

either iii) or iv) were true, then either γp or γp + p would be at most twice

the largest element of Ap−1. Thus our claim (4) is shown and the theorem is

proved. ¥

Thus, thin infinite perfect Golomb rulers do exist. The construction in

Theorem 2 does not give a “formula” for the nth mark— it just constructs

these marks one by one.

It would be interesting to know how thick an infinite perfect Golomb can

be. In particular is it possible to have

δG(x) = #{ k | k ∈ G, k ≤ x} ∼
√
x? (5)

By arguments similar to the discussion of finite perfect Golomb rulers, it is

easy to see that δG(x) should roughly be at least 1
2
x2, and (5) is motivated

by the Erdös-Turan conjecture about B2 bases (it does not follow from nor

does it imply the conjecture).

Minimal spanning rulers

Next we return to rulers of finite length and discuss those that can be

used to measure every distance. They differ from Golomb rulers in that

there might be a distance that can be measured in two different ways, but

we require that every eligible distance can be measured. We call such rulers

spanning.

Definition 6. Let S = {0 = a1 < a2 < · · · < ap = N} be a set

of integers. We say that S is a spanning ruler on [0, N ] if every integer

1 ≤ d ≤ N can be expressed as d = a− a′, with a and a′ ∈ S.

We say that a spanning rulerM is minimal on [0, N ], if wheneverM′ is

a proper subset of M then the set M′ is not a spanning ruler on [0, N ].
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Minimal spanning rulers obviously exist. Just start with {0, 1, · · · , N}
and remove one point at a time until you can’t do it anymore.

However, minimal rulers cannot be very “thin”. If M is a minimal ruler

of length N and p = #M, then
(
p
2

)
= 1

2
p(p− 1) ≥ N ; so p is roughly at least√

2N . We now show that we can come fairly close to this lower bound.

Theorem 3. For every integer N ≥ 4 there is a minimal spanning ruler

MN ⊂ [0, N ] such that

2
√
N − 1 ≤ #MN < 2

√
N (6)

and the equality on the left side holds only when N is a perfect square.

Proof. The basic idea of the proof can best be seen by an example of a

thin minimal ruler for N = 100. The ruler M100 is in this case taken to be

M100 = {0, 1, 2, 3, · · · , 9, 20, 30, 40, · · · , 90, 100}.

Notice that the number 10 is not included. The number of elements inM100

is 19 which is equal to 2
√

100− 1. Every distance 1 ≤ d ≤ 100 is realizable:

for d = 10 = 30− 20 say whereas any other multiple d of 10 is d = d− 0. If

d = q · 10 + j, 1 ≤ q, j ≤ 9 then d = (q + 1) · 10− (10− j).
Finally, if 1 ≤ d ≤ 9 then d = d−0. None of the numbers can be removed.

For example, d = 7 cannot be removed because then 13 = 20− 7 would not

be realizable. The number 30 cannot be removed because then 21 = 30− 9

would not be realizable. If 10 is included the ruler is not minimal. The actual

proof is based on this example although some care must be taken when N is

not a perfect square. Here are the details.

By inspection, when N ∈ {5, 6, 7, 8} then the minimal spanning rulers

satisfying (6) are, respectively:

{0, 1, 3, 5}, {0, 1, 4, 6}, {0, 1, 4, 5, 7}, {0, 1, 4, 6, 8}.

Incidentally, there are no minimal spanning rulers satisfying the condition

(6) for N ∈ {1, 2, 4} and there is one for N = 3, namely {0, 1, 3}.
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Let ξ =
⌊√

N
⌋

so that ξ2 ≤ N < (ξ+ 1)2 = (ξ+ 2)ξ+ 1. We assume that

ξ ≥ 3. There are two possibilities:

α) N = 0 mod ξ so that N = Kξ, K = ξ, ξ + 1, or ξ + 2;

β) N 6= 0 mod ξ so that N = Kξ + η, K = ξ or ξ + 1, and 1 ≤ η < ξ.

(7)

In case α) take

MN = {0, 1, · · · , ξ − 1, 2ξ, 3ξ, · · · , Kξ} (ξ is not included)

with K as in (7).

Every distance 1 ≤ d ≤ N is realized as the following analysis shows:

If 1 ≤ d ≤ ξ − 1 then d = d − 0; When d = ξ, then d = 3ξ − 2ξ since

both 2ξ, 3ξ ∈ MN for ξ ≥ 3; For d = qξ, q > 1 then d = qξ − 0; Finally if

d = qξ + η, 1 ≤ q < K, 1 ≤ η < ξ, then d = (q + 1)ξ − (ξ − η).

Also, we see that none of the marks can be removed: The endpoints 0

and N cannot be deleted because N = N − 0; The points 1 ≤ d < ξ cannot

be deleted because of the distance ξ + (ξ − d) = 2ξ − d; Finally, the points

qξ, 2 ≤ q ≤ K, cannot be deleted because of the distance (q − 1)ξ + 1 =

qξ − (ξ − 1).

In addition we have that #MN = ξ+K − 1. Thus, to show (6) we must

prove that for t = 0, 1, 2 then

2
√
ξ(ξ + t)− 1 ≤ 2ξ + t− 1 < 2

√
ξ(ξ + t)

with equality holding on the left side only when t = 0. This is done in a

straightforward mannner by squaring each side of the inequality to eliminate

radical expressions.

In case β) take

MN = {0, 1, · · · , ξ − 1, 2ξ, 3ξ, · · · , Kξ,Kξ + η} (ξ not included)

where K, η are as specified in (7). Again, all the distances 1 ≤ d ≤ N = Kξ+

η can be realized: If 1 ≤ d ≤ Kξ then the argument is the same as in case α);

If d = Kξ + δ, 1 ≤ δ ≤ η, d = (Kξ + η)− (η − δ).
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None of the marks can be removed: The endpoints cannot be removed

because of the distance N = N−0; The points ξ−c, 1 ≤ c < ξ, c 6= η cannot

be removed because of the distance ξ + c = 2ξ − (ξ − c).
The point ξ − η cannot be removed because of the distance

(K − 1)ξ + η = Kξ − (ξ − η). (7)

However also (K − 1)ξ + η = (Kξ + η) − ξ and we see that (7) is the only

way to realize the distance (K − 1)ξ + η since ξ /∈MN

The points 2ξ, 3ξ, · · · , Kξ cannot be removed for the following reason:

Let τ be such that τ 6= η, 1 ≤ τ < ξ. If kξ is removed then the distance

(k − 1)ξ + τ = kξ − (ξ − τ) is not realizable. (It can’t be realized using the

mark Kξ + η.)

Finally, #MN = ξ + K and to show (6) we must prove that for t = 0, 1

and 1 ≤ η < ξ then

2
√
ξ(ξ + t) + η − 1 < 2ξ + t < 2

√
ξ(ξ + t) + η.

Again, squaring both sides of each inequality to eliminate radicals and some

algebra does the job. ¥

The minimal spanning rulers can also be quite thickly marked.

Theorem 4. For any N > 0 there is a minimal spanning rulerMN with

#MN >
1

2
N.

Proof. A moment’s reflection shows that if N = 2n or N = 2n + 1 then

MN = {0, 1, · · · , n,N} works. ¥
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