Good practice for drug calculations

A step-by-step guide for nurses, doctors and all other healthcare professionals

Pharmacyservices
Baxter

Contents

Introduction3
Commonly used abbreviations 4
Top tips 5
Converting units of weight and volume 6
Calculating concentrations 8
Ratios 10
Calculating Oral doses in tablets 12
Oral doses for children and neonates 14
IV drug doses 16
Drip rates for gravity flow infusions 18
Infusion rates for infusion devices 20
Rates for syringe drivers 23
IV drug doses for children and neonates 25
Further reading 28
\square

Introduction

Calculation errors are listed as one of the main risks with injectable medicines, outlined in the National Patient Safety Agency (NPSA) alert 20.1*

Of all medication errors successfully reported to the National Patient Safety Agency's National Reporting and Learning system between January 2005 and June 2006, wrong dose, strength or frequency was the most common type of error (28.9\%). ${ }^{1}$
The aim of this pocket guide is to reduce patient safety incidents related to drug calculations by providing clear instructions and examples for healthcare professionals who perform such calculations.

Paediatric calculations have also been included and are highlighted with a green heading.

Double-checking calculations

When double-checking a calculation, perform the calculation independently and then compare your answer with your colleague's answer. The answers should be the same. If the answers are different, both practitioners should repeat the calculation independently and compare answers again.
If they are still different, contact a more senior colleague or a pharmacist for advice before prescribing or administering the dose.

* Note that the NPSA is now part of NHS England.
\square
\square

Commonly used abbreviations

NOTE: Many Trusts' drug policies state that certain abbreviations should not be used in prescriptions because they are a source of errors if misunderstood.

kilogram	Usually accepted abbreviations
gram	kg
milligram	g
microgram	should always be written as microgram
nanogram	should always be written as nanogram
litre	L
millilitre	ml or mL
units or international units	should always be written as units or international units
millimoles	mMol or mmol

The use of fractional doses is unsafe and should be avoided e.g.
0.1 g should be written as 100 mg
0.5 mg should be written as 500 microgram

The unnecessary use of decimal points should be avoided e.g. 3mg not 3.0mg.

Top tips

- Drugs are formulated into medicines in such a way that most adult doses are easily calculated and predictable, e.g. 1 or 2 tablets, 1 or 2 capsules, 1 vial or ampoule of an injectable medicine, 1 suppository
- Before doing a calculation, it is sensible to estimate the dose you are likely to require so that you know whether your calculated answer seems reasonable, i.e. roughly what you expected
- To check doses use a reliable reference source, such as the BNF or BNF for Children
- For recommended administration methods, see local drug policies or national guides such as The IV Guide
- Dose volumes of oral liquid medicines are typically $5-20 \mathrm{ml}$ for adults and 5 ml or less for children
- Crushing tablets should be avoided wherever possible. Some tablets, such as 'modified release' products should never be crushed. Always ask your pharmacist's advice before crushing tablets. If it must be done, a pestle and mortar or tablet crusher should be used and the tablet ground to as fine a powder as possible
- Always check children's and babies' weights carefully. Make sure they are weighed in kg and that their weight is recorded in kg
- If a calculation using weight or surface area gives an answer equivalent to or greater than the normal adult dose, reconfirm that it is what is really required
- If you are in any doubt about a calculation, stop and contact the ward pharmacist, an on-call pharmacist or the prescriber

Converting units of weight and volume

Metric units of measurement

Weight

1 kg	$=1000 \mathrm{~g}$
1 g	$=1000 \mathrm{mg}$
1 mg	$=1000$ micrograms
1 microgram	$=1000$ nanograms

Volume

1 L
$=1000 \mathrm{ml}$
Weighs 1g
Weighs 1000 g or 1 kg

10- or 100-fold errors can occur if dosing units are converted incorrectly.

Principles

Doses may be calculated by bodyweight or body surface area.
For body surface area calculations in paediatrics, see BNF for Children.

Converting units of weight and volume

Example 1

A prescription for metformin 1g. How many milligrams is this?
To convert grams to milligrams multiply by 1000
$1 \mathrm{~g}=1 \times 1000=1000 \mathrm{mg}$

Example 2

A patient is prescribed 0.0625 mg digoxin. How many micrograms is this?
To convert milligrams to micrograms multiply by 1000
$0.0625 \mathrm{mg}=0.0625 \times 1000$ micrograms $=62.5$ micrograms

Example 3

Amiodarone 5 mg per kg body weight in 100ml 5% glucose over 20 mins is prescribed.
The patient weighs 60 kg .
To calculate the dose
Dose $=5(\mathrm{mg}) \times 60(\mathrm{~kg})=300 \mathrm{mg}$
See also pages 14 and 15 for examples of this type of calculation.

Calculating concentrations

Principles

The way the strength of a drug in a solution is described will affect the way a dose calculation is carried out. Doses may be expressed in a number of different ways:

1. Mass (weight) per volume of solution, e.g. mg in $10 \mathrm{ml}, \mathrm{mMol} / \mathrm{L}$.
2. Units of activity per volume of solution, e.g. units per ml.
3. Percentage. This is the weight of the drug in grams that is contained in each 100 ml of the solution. Common examples are 0.9% sodium chloride; 5% glucose.

\% strength of solution	1 ml of solution contains	100 ml of solution contains	250 ml of solution contains	1000 ml of solution contains
1%	10 mg of drug	1 g of drug	2.5 g of drug	10 g of drug
10%	100 mg of drug	10 g of drug	25 g of drug	100 g of drug
20%	200 mg of drug	20 g of drug	50 g of drug	200 g of drug

- If you know the number of grams in 1000 ml , divide by 10 to convert to \% strength
- If you know the $\%$ strength, multiply by 10 to give the number of grams of drug in 1000 ml
- If you know the \% strength, divide by 100 to calculate the amount of drug in 1 ml

Calculating concentrations

Example 1

The prescribed dose is 1 g magnesium sulphate. Magnesium sulphate 50% injection is available.
$50 \%=50 \mathrm{~g}$ in 100 ml .
How many ml contains 1 g magnesium sulphate?
Number of ml containing $1 \mathrm{~g}=\frac{100 \mathrm{ml} \times 1 \mathrm{~g}}{50 \mathrm{~g}}=2 \mathrm{ml}$
Another way of thinking about this is: 50 g in $100 \mathrm{ml}=5 \mathrm{~g}$ in $10 \mathrm{ml}=1 \mathrm{~g}$ in 2 ml

Example 2

Thiopentone 2.5% infusion is prescribed. What volume is required to administer a dose of 100 mg ? $2.5 \%=2.5 \mathrm{~g}$ in 100 ml
100 mg is contained in $\frac{100 \mathrm{mg} \times 100 \mathrm{ml}}{2500 \mathrm{mg}}=4 \mathrm{ml}$
Another way of thinking about this is:
Thiopentone $2.5 \%=2.5 \mathrm{~g}$ in $100 \mathrm{ml}=2500 \mathrm{mg}$ in $100 \mathrm{ml}=25 \mathrm{mg}$ in $1 \mathrm{ml}=100 \mathrm{mg}$ in 4 ml
See also pages 14 and 15 for examples of this type of calculation.
\square

Ratios

Strengths of some drugs such as adrenaline (epinephrine) are commonly expressed in ratios.

Strength as a ratio	$=$ Weight in volume	$=$ Weight per ml
$=1$ in $1,000,000$	$=1 \mathrm{~g}$ in $1,000,000 \mathrm{ml}$	$=1$ microgram in 1 ml
$=1$ in 100,000	$=1 \mathrm{~g}$ in $100,000 \mathrm{ml}$	$=10$ micrograms in 1 ml
$=1$ in 10,000	$=1 \mathrm{~g}$ in $10,000 \mathrm{ml}$	$=100$ micrograms in 1 ml
$=1$ in 1000	$=1 \mathrm{~g}$ in 1000 ml	$=1000$ micrograms in 1 ml
		$=1 \mathrm{mg}$ in 1 ml
$=1$ in 100	$=1 \mathrm{~g} \mathrm{in} 100 \mathrm{ml}$	$=10 \mathrm{mg}$ in 1 ml
		$=0.01 \mathrm{~g}$ in 1 ml
$=1$ in 10	$=1 \mathrm{~g}$ in 10 ml	$=100 \mathrm{mg}$ in 1 ml
		$=0.1 \mathrm{~g}$ in 1 ml

1 in 1000 solution of adrenaline contains 1 g in $1000 \mathrm{ml}=1000 \mathrm{mg}$ in $1000 \mathrm{ml}=1 \mathrm{mg}$ in 1 ml
1 in 10,000 solution of adrenaline contains 1 g in $10,000 \mathrm{ml}=1000 \mathrm{mg}$ in $10,000 \mathrm{ml}=1 \mathrm{mg}$ in 10 ml

Ratios

Example 1
Adrenaline (epinephrine) 1 in 1000 injection is available.
The prescribed dose is 1 ml .
How many mg in 1 ml ?
Use a two-step process:
The solution contains 1 g in 1000ml
Step 1: $\quad 1 \mathrm{~g}$ in $1000 \mathrm{ml}=\frac{1 \mathrm{~g}}{1000 \mathrm{ml}}$ in 1 ml
Step 2: \quad Convert this to mg by multiplying by 1000

$$
\frac{1 \mathrm{~g} \times 1000}{1000 \mathrm{ml}}=1 \mathrm{mg} \text { in } 1 \mathrm{ml}
$$

Another way of thinking about this is: 1 g in $1000 \mathrm{ml}=1000 \mathrm{mg}$ in $1000 \mathrm{ml}=1 \mathrm{mg}$ in 1 ml
\square
\square

Calculating oral doses in tablets

Principles

1. Check the strength of (amount of drug in) each tablet or capsule.
2. Make sure you are clear about the dose units used, most commonly prescribed are milligrams or micrograms.
3. Check the dose on the prescription and that it is expressed in the same units as on the medicine label.
4. If the prescription and the medicines label use different units of strength, refer to the conversion table and calculation examples on page 4 and 5.
5. Once you are sure that the units are the same, divide the required dose by the strength of the tablet or capsule.
6. The answer is the number of tablets/capsules needed for each dose.

$$
\text { Number of tablets }=\frac{\text { Dose }}{\text { Strength of tablet }}
$$

Extra safety tip

If your first calculation gives a dose of more than two tablets, double-check the calculation and confirm that the dose doesn't exceed the manufacturer's recommended maximum. If it does, or if you are still unsure that the dose is correct, check with the prescriber or pharmacist.

Calculating oral doses in tablets

Example 1
Amoxicillin 500mg three times a day p.o. is prescribed.
Amoxicillin capsules 250 mg are available.
The number of capsules needed for each dose $=\frac{500 \mathrm{mg}}{250 \mathrm{mg}}=2$ capsules

Example 2

Levomepromazine 6.25 mg three times a day p.o. is prescribed.
Levomepromazine tablets 25 mg are available.
The number of tablets needed for each dose $=\frac{6.25 \mathrm{mg}}{25 \mathrm{mg}}=0.25$ or $1 / 4$ of a tablet
Another way of looking at this is:
Half a tablet $=\frac{25 \mathrm{mg}}{2}=12.5 \mathrm{mg}$
Quarter of a tablet $=\frac{25 \mathrm{mg}}{4}=6.25 \mathrm{mg}$
\square

Calculating oral doses for children and neonates

Principles

1. Always use the smallest oral syringe that will hold the volume you need to measure.
2. If the dose prescribed means that less than a whole tablet or capsule is required, check with the pharmacy that it is appropriate to break a tablet or split a capsule before doing so.
3. If it is essential, dissolve or disperse the powder/crushed tablet in an accurately measured amount of water (e.g. 5 ml). Stir and draw up the required volume immediately.

Volume required $=\frac{\text { Dose in } \mathrm{mg} \times \text { Volume of solution }}{\text { Amount of drug }(\mathrm{mg}) \text { in tablet }}$
4. If the result cannot be accurately measured, e.g. 0.33 ml , it is generally acceptable to round the dose up or down. However, the actual dose given must be within 10% of the calculated dose. If this cannot be achieved, discuss with the prescriber and pharmacist.

Calculating oral doses for children and neonates

Example 1

2 mg amlodipine p.o. is prescribed. 5 mg amlodipine tablets are available.
Crush one tablet and mix the powder thoroughly in 5 ml of water.
The dose required is: $\frac{2 \mathrm{mg} \times 5 \mathrm{ml}}{5 \mathrm{mg}}=2 \mathrm{ml}$
Another way of thinking about this is: 5 mg in $5 \mathrm{ml}=1 \mathrm{mg}$ in $1 \mathrm{ml}=2 \mathrm{mg}$ in 2 ml

Example 2

14 mg ranitidine p.o. is prescribed.
15 mg per ml ranitidine oral suspension is available.
The dose required is: $\frac{14 \mathrm{mg} \times 1}{15 \mathrm{mg}}=0.933 \mathrm{ml}$
0.933 ml cannot be accurately measured but 0.9 ml or 1 ml could be.

1 ml is the easiest to measure, which equates to 15 mg ranitidine.
To work out the \% increase: $\frac{15 \mathrm{mg} \times 100}{14 \mathrm{mg}}=107 \%$
A 7% increase is less than 10% above the prescribed dose of 14 mg so is acceptable.
$15 \mathrm{mg}(1 \mathrm{ml})$ can be accurately measured and should be given.

Calculating IV drug doses

Principles

1. For drugs already in solution, check the amount of drug in each ml and the total amount of drug in the container.
2. Make sure you are clear about the dose units used. Most commonly prescribed are milligrams (mg) or micrograms.
3. Beware of drugs such as insulin and heparin, for which doses are prescribed in international units (which is sometimes, but should never be, abbreviated to i.u. which can be misread as 10).
4. Check the dose on the prescription and that it is expressed in the same units as on the medicine label.
5. If the prescription and the medicines label use different units of strength, refer to the conversion table and calculation examples on pages 4 and 5 .
6. Once you are sure that the units are the same, divide the required dose by the amount of the drug in the ampoule and multiply by the volume of solution in the vial or ampoule.
7. The answer is the volume needed for each dose.

$$
\text { Volume required }=\frac{\text { Dose } \times \text { Volume of solution in ampoule }}{\text { Amount of drug in ampoule }}
$$

Calculating IV drug doses

Example 1

Digoxin 125 microgram in 100 ml sodium chloride 0.9% is prescribed over 1 hour. 500 microgram digoxin in 2 ml ampoules are available.

The volume to be added to 100 ml sodium chloride 0.9% is:

$$
\frac{125 \text { micrograms } \times 2 \mathrm{ml}}{500 \text { micrograms }}=0.5 \mathrm{ml}
$$

Example 2

300 mg aminophylline injection is prescribed. 250 mg in 10 ml ampoules are available.
The volume of injection required is:

$$
\frac{300 \mathrm{mg} \times 10 \mathrm{ml}}{250 \mathrm{mg}}=12 \mathrm{ml}
$$

\square

Calculating drip rates for gravity flow infusions

Principles

1. Without a flow control device such as a pump, infusion rates depend entirely on gravity. Rate of flow is measured by counting drops per minute.
2. Administration sets deliver controlled amounts of fluid at a predetermined fixed rate, measured in drops per minute.
3. It is also important to check the number of drops per ml delivered by the administration set (which is printed on the outer packaging). This may vary between sets, between manufacturers and between different infusion fluids or drug solutions.
4. A (drug) solution administration set will usually deliver 20 drops per ml of clear infusion fluid such as 0.9% sodium chloride injection.
5. A blood administration set will deliver 15 drops per ml of blood.
6. A burette administration set will usually deliver 60 drops per ml of infusion fluid or drug solution.
7. Number of drops per minute $=\frac{\text { Volume in } \mathrm{ml} \times \text { Number of drops per } \mathrm{ml}}{\text { Intended duration of infusion (in minutes) }}$

Calculating drip rates for gravity flow infusions

Example 1

1000 ml sodium chloride 0.9% infusion over 8 hours using a solution set is prescribed. $8 \mathrm{hr}=8 \times 60 \mathrm{~min}$. The drip rate needs to be set at:

$$
\frac{1000 \mathrm{ml} \times 20 \text { drops per } \mathrm{ml}}{8 \times 60 \mathrm{~min}}=\frac{20000 \text { drops }}{480 \mathrm{~min}}=42 \text { drops per minute }
$$

Example 2

1 unit of blood over 4 hours using a blood set is prescribed. (1 unit of blood $=350 \mathrm{ml}$.) $4 \mathrm{hr}=4 \times 60 \mathrm{~min}$. The drip rate per minute should be set at:

$$
\frac{350 \mathrm{ml} \times 15 \text { drops per } \mathrm{ml}}{4 \times 60 \mathrm{~min}}=\frac{5250 \text { drops }}{240 \mathrm{~min}}=22 \text { drops per minute }
$$

Example 3

100 ml glucose 5% infusion over 6 hours using a burette set is prescribed. $6 \mathrm{hr}=6 \times 60 \mathrm{~min}$. The rate per minute should be set at:

$$
\frac{100 \mathrm{ml} \times 60 \text { drops per } \mathrm{ml}}{6 \times 60 \mathrm{~min}}=\frac{6000 \text { drops }}{360 \mathrm{~min}}=17 \text { drops per minute }
$$

\square
\square

Calculating infusion rates for infusion devices

Principles

1. Also see the principles on page 18.
2. All infusions require rate control. This can be achieved using a roller clamp (gravity flow), an infusion pump, a syringe driver, a syringe pump or a disposable device.
3. When using any sort of rate control device, check at least the following parameters at regular intervals in accordance with local policy:

- Volume given
- Volume remaining
- Administration rate
- Condition of the patient including the administration site

4. Before and after transfer of care between units or teams, make sure you repeat the above checks.
5. You should always check the manufacturer's instructions or refer to local policy to ensure you use the correct administration set for the device and that the device is programmed correctly.
6. An administration device should only be used by practitioners who have been trained and are competent in the use of the particular device.

See also the advice on page 3 about double-checking calculations.

Calculating infusion rates for infusion devices

The rate may be prescribed in terms of:
Volume: For example ml per hour or ml per min. OR:
Amount of drug: For example mg per min or international units per hour.
Volume in ml per hour: $\frac{\text { Total volume of infusion }(\mathrm{ml})}{\text { Duration of infusion (hour) }}=\mathrm{ml}$ per hour
Amount of drug in mg per hour: $\frac{\text { Total dose in } \mathrm{mg}}{\text { Duration of infusion (hour) }}=\mathrm{mg}$ per hour

Example 1

To calculate the amount of infusion to be given in ml per hour.
500 ml sodium chloride 0.9% is prescribed to be given over 4 hours using a volumetric pump.
The rate of infusion should be set at:

$$
\frac{500 \mathrm{ml}}{4 \text { hour }}=125 \mathrm{ml} \text { per hour }
$$

\square
\square

Calculating infusion rates for infusion devices

Example 2

Diamorphine 30 mg in $60 \mathrm{ml} 0.9 \%$ sodium chloride over 24 hours using a syringe pump is prescribed.
To be given at 1.25 mg per hour. How many ml per hour should be given?
The number of mls containing $1 \mathrm{mg}=\frac{\text { Volume of infusion }(\mathrm{ml})}{\text { Amount of drug }(\mathrm{mg})}=\frac{60 \mathrm{ml}}{30 \mathrm{mg}}=2 \mathrm{ml}$
The number of mls containing $1.25 \mathrm{mg}=2(\mathrm{ml}) \times 1.25(\mathrm{mg})=2.5 \mathrm{ml}$
Therefore, 2.5 ml per hour will deliver 1.25 mg per hour.
Example 3
A similar method can also be used to calculate the rate of an insulin infusion.
Insulin 50 international units in $50 \mathrm{ml} 0.9 \%$ sodium chloride is prescribed for administration from a syringe pump, starting at 4 international units per hour.

The rate should be set at:
$\frac{\text { Volume infusion } \times \text { Dose of drug per hour }}{\text { Amount of drug }}=\frac{50 \mathrm{ml} \times 4 \text { international units per hour }}{50 \text { international units }}=4 \mathrm{ml}$ per hour
Another way of thinking about this is:
50 international units in $50 \mathrm{ml}=1$ international unit in $1 \mathrm{ml}=4$ international units in 4 ml

Calculating rates for syringe drivers

Principles

1. A syringe driver pushes the plunger of a syringe forward at an accurately controlled rate.

- For most syringe pumps the rate is set according to the volume of solution injected per hour, i.e. in ml per hour
- For some syringe drivers the rate is set according to the distance travelled by the plunger in mm per hour or mm per 24 hour

2. If the rate is to be set in mm, the volume to be adminstered by a syringe driver depends on the diameter of the syringe barrel as well as on the rate setting. Different makes of syringe may have different barrel sizes. It is essential that the brand of syringe to be used is specified and the stroke length is measured.
3. Serious errors have occurred when settings in mm per hour and ml per hour have been confused.

- Prepare prescribed infusion
- Prime the extension set with fluid
- If using a syringe driver, measure the stroke length (the distance the plunger has to travel) in mm.
See diagram for example

Diagram adapted from Sarpal. 2003. ${ }^{2}$
\square

Calculating rates for syringe drivers

Principles continued

4. Check carefully the units of time in which the syringe driver operates: Is the rate set in mm per hour or mm per day (24 hours)?

mm per hour	mm per 24 hours
Rate $=\frac{\text { Stroke length }(\mathrm{mm})}{\text { Infusion period (hours) }}$	Rate $=\frac{\text { Stroke length }(\mathrm{mm})}{\text { Infusion period (days) }}$

Example 1

Diamorphine 20 mg over 12 hours is prescribed. The stroke length is measured as 48 mm .
The rate setting needed on a mm per hour syringe driver is: $48 \mathrm{~mm}=4 \mathrm{~mm}$ per hour

$$
1 \overline{2 \text { hours }}
$$

Example 2

Diamorphine 20mg over 1 day (24 hours) is prescribed. The stroke length is measured as 48 mm .
The rate setting needed on a mm per 24 hour driver is: $48 \mathrm{~mm}=\frac{48 \mathrm{~mm}}{1 \text { day }}$ per 24 hour
\square

Calculating IV drug doses for children and neonates

Principles

1. Remember that many injections are made for adults. For children's doses, you may need as little as one tenth $(1 / 10)$ or even one hundredth $(1 / 100)$ of the contents of one ampoule or vial.
2. When calculating infusions, consider the child's total daily fluid allowance. More concentrated individual infusions may be required. Discuss with the pharmacist or prescriber.
3. Ensure the prescribed infusion fluid/diluent is appropriate for the child e.g. the sodium content of an infusion contributes to the child's total daily sodium requirement.
4. For many injections presented as powders for reconstitution, the powder adds to the volume of the final solution after the diluent has been added. This 'displacement value' must be taken into account when the dose needed is less than the full contents of the vial or ampoule.

The displacement value can be found on the package insert. It may vary with brands, so it is crucial to check the package insert for the product you are actually using.
5. For the above reasons, the calculations involved in preparing and administering infusions for children are often particularly complex. It is most important that these calculations are independently checked (see page 3).
6. See also the principles outlined on pages 14 and 18.
\square
\square

Calculating IV drug doses for children and neonates

Example 1
A brand of amoxicillin 250 mg vials has a displacement value of 0.2 ml per vial.
This means that for this brand, 250 mg of the powder occupies a volume of 0.2 ml .
Therefore, if you add 5 ml to the vial, the resulting solution contains 250 mg amoxicillin in 5.2 ml . To make a solution containing 250 mg in 5.0 ml , you must add 4.8 ml of WFI.

Example 2

How many mmols of Na would a child receive from an infusion of sodium chloride 0.9% given at a rate of 1 ml per hour over 24 hours?
0.9% sodium chloride contains 150 mmol Na per litre $(1000 \mathrm{ml})=\frac{150 \mathrm{mmol}}{1000 \mathrm{ml}}$ per ml
Number of mmol per 24 hours $=\frac{150 \mathrm{mmol}}{1000 \mathrm{ml}} \times 24$ hour $=3.6 \mathrm{mmol} \mathrm{Na}$ in 24 hours
This is normally acceptable for a 6-year-old child, but may not be for a neonate.

Calculating IV drug doses for children and neonates

Example 3

0.5 microgram per kg per minute midazolam is prescribed for a 1 kg baby, to run at 0.1 ml per hour.

The prescription asked for 7.5 mg midazolam in 25 ml glucose 5%. Ampoules of midazolam 5 mg in 5 ml are available.

To prepare the syringe as prescribed:
The volume needed for a dose of $7.5 \mathrm{mg}=\frac{\text { Dose } \times \text { Volume in ampoule }}{\text { Amount of drug in ampoule }}=\frac{7.5 \mathrm{mg} \times 5 \mathrm{ml}}{5 \mathrm{mg}}=7.5 \mathrm{ml}$
To make up 7.5 mg to 25 ml in a syringe:
Draw up 7.5 ml midazolam injection into a 10 ml syringe and transfer to a 25 ml syringe.
The volume of glucose required $=25 \mathrm{ml}-7.5 \mathrm{ml}=17.5 \mathrm{ml}$
Add 17.5 ml glucose 5% injection to the 25 ml syringe to make a total volume of 25 ml .
The syringe now contains 25 ml of solution containing 7.5 mg midazolam.
\square

Further reading

Gatford JD. \& Phillips N. Nursing Calculations. (7th Edition) Churchill Livingstone, London, 2006.
Lapham R. \& Agar H. Drug Calculations for Nurses: A Step-by-step Approach (2nd Edition) Hodder Arnold, London, 2003.
Rees J, Smith I. \& Smith B. Introduction to Pharmaceutical Calculations. Pharmaceutical Press, London, 2005.

Pickstone M. A Pocketbook for Safer IV Therapy (Drugs, Giving Sets \& Infusion Pumps), Scitech Educational Ltd, 1999.
British National Formulary, No 67 BMJ Group and RPS Publishing, March 2014
British National Formulary for Children, Paediatric Formulary Committee, July 2014

Online resources

The IV Guide. www.injguide.nhs.uk Full access by subscription. (Accessed June 2014)
Test and Calc. www.testandcalc.com (Accessed June 2014)
BNF and BNFC www.bnf.org (Accessed June 2014)
NHS Education South Central (NESC) www.learning.nesc.nhs.uk Compatibility of Injectable Medicines. Site registration required (Accessed June 2014)
\square

This calculation guide was written by:

Gillian Cavell

Consultant Pharmacist - Medication Safety King's College Hospital NHS Foundation Trust

Jane Nicholls
Joint Acting Director of Clinical Pharmacy
E \& SE England Specialist Pharmacy Services
Ben Rehman
Director of London Medicines Information
E \& SE England Specialist Pharmacy Services
Lisa Dougherty
Nurse Consultant - IV Therapy
Royal Marsden NHS Foundation Trust

Neelam Sarpal
Formerly Teaching Sister
Royal Marsden NHS Foundation Trust
Stephen Tomlin
Consultant Pharmacist - Children's Services
Evelina Children's Hospital
Tim Root
Specialist Pharmacist - Clinical Governance and
Technical Services E \& SE England Specialist
Pharmacy Services

This work was aided by an educational grant from Baxter Healthcare Ltd.

References:

1. Multi-professional safer practice standards for: prescribing, preparing and administering injectable medicines in clinical areas. Patient Safety Alert 20 : Promoting Safer Use of Injectable Medicines, The National Patient Safety Agency, 28 March 2007.
2. Sarpal N. Drug administration: delivery (infusion devices). In Dougherty L \& Lister S (Eds). The Royal Marsden Hospital Manual of Clinical Nursing Procedures (7th Edition) Wiley Blackwell, 2008, chapter 13, page 302.

If you would like to know more about how Baxter can help you, contact:
pharmacy_services@baxter.com

Adverse events should be reported. Reporting forms and information can be found at www.mhra.gov.uk/yellowcard
Any adverse events relating to Baxter products can also be reported direct to Baxter Pharmacovigilance on +44 (0)1635 206360, or by email to vigilanceuk@baxter.com
Any drug product quality complaints (including suspected defective medicines) relating to Baxter products can be reported directly to the Baxter Country Quality Assurance Team on 01604 704603, or by e-mail to shs_qad_uk@baxter.com. Alternatively please report directly to your Baxter Representative, who will take the details and forward to the Baxter Country Quality Assurance Team.
Any suspected defective medicines, should be reported to the MHRA. Reporting forms and information can be found at: www.mhra.gov.uk/safetyinformation/reportingsafetyproblems/index.htm

Baxter Healthcare Ltd

Pharmacy Services, Wallingford Road, Compton, Newbury, Berkshire RG20 7QW Telephone: 01635206060
Fax: 08708507075
email: pharmacy_services@baxter.com www.baxterhealthcare.co.uk

Surecall - Baxter Medical Information

Clinical and technical information at the speed you need - supporting the optimum use of Baxter products for patients
Telephone: 01635206345
Fax: 01635206071
email: surecall@baxter.com

