
JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS Vol. 55, No. 3, May 2020, pp. 751–781
COPYRIGHT 2019, MICHAEL G. FOSTER SCHOOL OF BUSINESS, UNIVERSITY OF WASHINGTON, SEATTLE, WA 98195
doi:10.1017/S0022109019000097

Good Volatility, Bad Volatility, and the Cross
Section of Stock Returns

Tim Bollerslev , Sophia Zhengzi Li, and Bingzhi Zhao*

Abstract
Based on intraday data for a large cross section of individual stocks and newly developed
econometric procedures, we decompose the realized variation for each of the stocks into
separate so-called realized up and down semi-variance measures, or “good” and “bad”
volatilities, associated with positive and negative high-frequency price increments, respec-
tively. Sorting the individual stocks into portfolios based on their normalized good minus
bad volatilities results in economically large and highly statistically significant differences
in the subsequent portfolio returns. These differences remain significant after controlling
for other firm characteristics and explanatory variables previously associated with the cross
section of expected stock returns.

I. Introduction
Asset return volatility is naturally decomposed into “good” and “bad” volatil-

ity associated with positive and negative price increments, respectively. Based on
high-frequency intraday data for almost 20,000 individual stocks spanning more
than 20 years, along with new econometric procedures, we show that stocks with
relatively high good-to-bad realized weekly volatilities earn substantially lower
returns in the subsequent week than stocks with low good-to-bad volatility ratios.
Our results remain robust to the inclusion of a variety of controls and systematic
risk factors previously associated with the cross-sectional variation in expected

*Bollerslev, boller@duke.edu, Department of Economics Duke University, the National Bureau
of Economic Research (NBER) and Center for Research in Econometric Analysis of Time Series
(CREATES); Li (corresponding author), zhengzi.li@business.rutgers.edu, Department of Finance and
Economics Rutgers University; Zhao, bingzhizhao@gmail.com, Numeric Investors LLC. We thank
an anonymous referee and Hendrik Bessembinder (the editor) for their very helpful comments, which
greatly improved the paper. We also thank Peter Christoffersen, Alex Hsu, Anh Le, Jia Li, Andrew
Patton, Riccardo Sabbatucci, Ravi Sastry, Gill Segal, and George Tauchen, along with seminar partici-
pants in the Duke financial econometrics lunch group, the Society for Financial Econometrics (SoFiE)
summer school at Harvard, the 2017 Midwest Finance Association Annual Meeting, the 2017 Finan-
cial Intermediation Research Society Conference, the 2017 European Finance Association Confer-
ence, the 2017 Northern Finance Association Conference, and the 2018 Finance Down Under Confer-
ence for their many helpful comments and suggestions. The views expressed herein are solely those
of the authors and do not necessarily represent those of Numeric Investors LLC nor Man Group PLC.

751

https://doi.org/10.1017/S0022109019000097
D

ow
nloaded from

 https://w
w

w
.cam

bridge.org/core . D
uke U

niversity Libraries , on 29 O
ct 2021 at 16:16:50 , subject to the Cam

bridge Core term
s of use, available at https://w

w
w

.cam
bridge.org/core/term

s .

https://orcid.org/0000-0003-2743-3087
mailto:boller@duke.edu
mailto:zhengzi.li@business.rutgers.edu
mailto:bingzhizhao@gmail.com
https://doi.org/10.1017/S0022109019000097
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


752 Journal of Financial and Quantitative Analysis

stock returns, and cannot be accounted for by other high-frequency-based real-
ized variation measures recently analyzed in the literature.

The relation between equity return and volatility has been extensively studied
in the literature. Even though a number of studies have argued that variance risk is
priced at the individual firm level (Adrian and Rosenberg (2008), Da and Schaum-
burg (2011), and Bansal, Kiku, Shaliastovich, and Yaron (2014)), with changes in
variances commanding a negative risk premium, these cross-sectional relation-
ships are generally not very strong. The strong negative relation between idiosyn-
cratic volatility and future stock returns first documented by Ang, Hodrick, Xing,
and Zhang (2006b) has also subsequently been called into question by several
more recent studies (for a recent discussion of the idiosyncratic volatility puzzle
and the many related empirical studies, see, e.g., Stambaugh, Yu, and Yuan (2015),
Hou and Loh (2016)). Meanwhile, another strand of the literature has argued that
the notion of a traditional linear return-volatility tradeoff relationship is too sim-
plistic, and that more accurate cross-sectional return predictions may be obtained
by separately considering the pricing of “upside” and “downside” volatilities (see,
e.g., Ang, Chen, and Xing (2006a), Farago and Tédongap (2018)), or higher order
conditional moments (see, e.g., Harvey and Siddique (2000), Dittmar (2002), and
Conrad, Dittmar, and Ghysels (2013)).

Set against this background, we rely on recent advances in financial econo-
metrics coupled with newly available high-frequency intraday data for accurately
measuring “good” and “bad” volatility in a large cross section of individual stocks.
In parallel to the standard realized variance measure defined by the summation of
high-frequency intraday squared returns (see, e.g., Andersen, Bollerslev, Diebold,
and Labys (2001)), the pertinent up and down realized semi-variance measures
of Barndorff-Nielsen, Kinnebrock, and Shephard (2010) are simply defined by
the summation of the squared positive and negative intraday price increments,
respectively. Rather than separately considering the two semi-variance measures,
we focus on their relative difference as a succinct scale-invariant measure for each
of the individual stock’s good versus bad volatility. We show that this simple sum-
mary measure strongly predicts the cross-sectional variation in the future returns.

In particular, on sorting the individual stocks into portfolios based on their
weekly relative good minus bad volatility measures, we document a value-
weighted weekly return differential between the stocks in the lowest quintile and
the stocks in the highest quintile of 29.35 basis points (bps), or approximately 15%
per year. The corresponding robust t-statistic of 5.83 also far exceeds the more
stringent hurdle rates for judging statistical significance recently advocated by
Harvey, Liu, and Zhu (2016). These highly statistically significant spreads remain
intact in equal-weighted portfolios, double portfolio sorts controlling for other
higher order realized variation measures, as well as in firm-level Fama–MacBeth
(1973) type cross-sectional predictability regressions that simultaneously control
for other higher order realized variations measures and a long list of other firm
characteristics previously associated with the cross section of expected stock re-
turns (e.g. firm size, book-to-market ratio, momentum, short-term reversal, and
idiosyncratic volatility).

Our results are closely related to the recent work of Amaya, Christoffersen,
Jacobs, and Vasquez (ACJV) (2016), and their finding of significant spreads in
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the weekly returns on portfolios comprised of stocks sorted according to a high-
frequency-based realized skewness measure. However, while we confirm the key
finding of ACJV that the realized skewness significantly negatively predicts the
cross-sectional variation in weekly returns, this effect is completely reversed after
controlling for the relative good minus bad volatility, with the realized skewness
significantly positively predicting the future weekly returns. In contrast, the as-
sociation between the relative good minus bad volatility remains highly statisti-
cally significant after controlling for the realized skewness with a value-weighted
weekly quintile spread of 36.45 bps, which is even higher than the spread for the
single-sorted quintile portfolios.

The difference between the realized up and down semi-variance measures
formally either converges (for increasingly finer sampled intraday returns) to
the variation due to positive minus negative price discontinuities, or the signed
squared price jumps. Intuitively, since the variation associated with continuous
variation, or Brownian price increments, is symmetric and (in the limit) there-
fore the same for the up and down semi-variance measures, their difference only
formally manifests variation stemming from jumps. Meanwhile, instead of this
“raw” jump measure, we rely on the relative signed jump (RSJ) variation, defined
as the difference between the up and down semi-variance measures divided by
the total return variation. The high-frequency-based realized skewness measure
of ACJV similarly converges to a scaled version of the price jumps raised to the
third power.1 However, RSJ provides a much easier to estimate and interpret sum-
mary measure, directly motivated by the idea that stocks with different levels of
good versus bad volatility, as manifest in the form of price jumps, might be priced
differently in the cross section.

To better understand the determinants of the RSJ effect, we relate the perfor-
mance of RSJ-sorted portfolios to other firm characteristics, including firm size,
volatility and illiquidity. Larger firms, in particular, tend to have better information
disclosure, while firms with more stable prices tend to have less asymmetric in-
formation. Consistent with investor overreaction, we document that both of these
sets of firms are indeed associated with weaker RSJ performance. We also find
that the RSJ effect is stronger among more illiquid stocks, consistent with the
idea that higher transaction costs limit the forces of arbitrage (see, e.g., Shleifer
and Vishny (1997)). Taken together this therefore suggests that the predictability
associated with RSJ may be driven by investor overreaction and limits to arbi-
trage. Further along these lines, our decomposition of the profitability of a simple
RSJ-based strategy following the approach of Lo and MacKinlay (1990) suggests
that most of the profits arise from autocovariances in the returns and the stock’s
own RSJ, as opposed to covariation with other stocks’ RSJ. This is consistent with
an overreaction-based explanation.

A number of studies have previously suggested that jumps may be priced dif-
ferently from continuous price moves, both at the aggregate market level (see, e.g.,
Eraker, Johannes, and Polson (2003), Bollerslev and Todorov (2011b)), and in the
cross section (see, e.g., Yan (2011), Cremers, Halling, and Weinbaum (2015)).

1As discussed in Feunou, Jahan-Parvar, and Tedongap (2016), the signed jump variation may al-
ternatively be interpreted as a high-frequency measure of skewness.
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In contrast to these studies, which rely on additional information from options
prices to identify jumps, our empirical investigations rely exclusively on actual
high-frequency prices for each of the individual stocks. The study by Jiang and
Yao (2013) also utilizes actual high-frequency data together with a specific test
for jumps to show that firms with more jumps have higher returns in the cross
section. However, they do not differentiate between positive and negative jumps,
or good and bad volatility.2

Our cross-sectional pricing results are also related to Breckenfelder and
Tédongap (2012) and the time-series regression results reported therein, in which
the good minus bad realized semi-variance measure for the aggregate market
portfolio negatively predicts future market returns. The equilibrium asset pricing
model in Breckenfelder and Tédongap (2012), based on a representative investor
with recursive utility and generalized disappointment aversion, also provides a
possible explanation for this differential pricing of good versus bad volatility at
the aggregate market level. The closely related model developed in Farago and
Tédongap (2018) similarly implies the existence of a systematic risk factor ex-
plicitly related to downside aggregate market volatility. By contrast, our return
predictability results rely on the firm specific good minus bad volatility measures,
or the relative signed jump variation for the individual stocks.

The paper is also related to the recent work of Feunou, Jahan-Parvar,
and Tedongap (2013), Feunou and Okou (2019), Feunou, Lopez Aliouchkin,
Tedongap, and Xu (2017), and Feunou, Jahan-Parvar, and Okou (2018) on down-
side volatility. The last two studies, in particular, rely on similar ideas and tech-
niques to those used here for decomposing both the actual realized volatility and
the options implied volatility, and in turn the volatility risk premium defined as the
difference between the expected future volatility and the options implied volatil-
ity, into up and downside components. From existing empirical results (see, e.g.,
Bollerslev, Tauchen, and Zhou (2009), Dreschler and Yaron (2011)), it appears
that most of the return predictability associated with the variance risk premium
is attributable to the downside portion of the premium, again underscoring the
differential pricing of good versus bad volatility.

The rest of the paper is organized as follows: Section II formally defines the
semi-variances and other realized measures that underlie our empirical findings.
Section III discusses the high-frequency data used in the construction of the real-
ized measures, together with the additional control variables that we also rely on.
Section IV summarizes the key distributional features of the high-frequency real-
ized measures, including the relative signed jump variation in particular. Section V
presents our main empirical findings related to the cross-sectional variation in re-
turns and firm level good minus bad volatility based on simple single-sorted port-
folios, single-sorted portfolios with controls, double-sorted portfolios, including
RSJ and firm characteristic sorted portfolios, as well as firm level cross-sectional
regressions. Section VI provides further evidence on the RSJ-based portfolio per-
formance and where the returns come from. Section VII concludes. More specific
details about the data and the variable construction, along with more in depth

2In a different vein, Bollerslev, Li, and Todorov (2016) have recently documented that stocks that
jump more tightly together with the market tend to have higher returns on average.
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econometric discussions of some of the empirical findings, are deferred to the
Appendix. Additional empirical results and robustness checks are provided in the
Supplementary Material.

II. Realized Variation Measures: Theory
The theoretical framework formally justifying the realized variation mea-

sures, and the up and down realized semi-variance measures in particular that un-
derly our empirical investigations, are based on the notion of fill-in asymptotics,
or increasingly finer sampled returns over fixed time-intervals. This section pro-
vides a brief summary of the relevant ideas and the actual estimators that we rely
on.

To set out the notation, let pT denote the natural logarithmic price of an
arbitrary asset on day T . The price is assumed to follow the generic jump diffusion
process,

(1) pT =

∫ T

0
µτdτ +

∫ T

0
στdWτ + JT ,

where µ and σ denote the drift and diffusive volatility processes, respectively, W
is a standard Brownian motion, and J is a pure jump process, and the unit time-
interval corresponds to a trading day. We will assume that high-frequency intraday
prices pt , pt+1/n , . . . , pt+1 are observed at n+1 equally spaced times over the trad-
ing day [t , t+1]. We will denote the natural logarithmic discrete-time return over
the i th time-interval on day t+1 by rt+i/n= pt+i/n− pt+(i−1)/n .

The daily realized variance (RV) is then simply defined by the summation of
these within-day high-frequency squared returns,

(2) RVt =

n∑
i=1

r 2
t−1+i/n.

By well-known arguments (see, e.g., Andersen et al. (2001), Andersen, Bollerslev,
Diebold, and Labys (2003)), the realized variance converges (for n→∞) to the
quadratic variation comprised of the separate components due to “continuous”
and “jump” price increments,

(3) RVt →

∫ t

t−1
σ 2

s ds+
∑

t−1≤τ≤t

J 2
τ
,

thus affording increasingly more accurate ex post measures of the true latent total
daily price variation for ever finer sampled intraday returns.3

The realized variance measure in equation (2) does not differentiate between
“good” and “bad” volatility. Instead, the so-called realized up and down semi-
variance measures, originally proposed by Barndorff-Nielsen et al. (2010), de-
compose the total realized variation into separate components associated with the

3In practice, data limitations and market microstructure complications invariably put an upper limit
on the value of n. As subsequently discussed, following common practice in the realized volatility
literature, we rely on a 5-minute sampling scheme, or 1/n=78.
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positive and negative high-frequency returns,

(4) RV+t =

n∑
i=1

r 2
t−1+i/n1{rt−1+i/n>0}, RV−t =

n∑
i=1

r 2
t−1+i/n1{rt−1+i/n<0}.

The positive and negative realized semi-variance measures obviously add up to
the total daily realized variation, RVt=RV+t +RV−t . Moreover, it is possible to
show that

RV+t →
1
2

∫ t

t−1
σ 2

s ds+
∑

t−1≤τ≤t

J 2
τ
1(Jτ>0),

RV−t →
1
2

∫ t

t−1
σ 2

s ds+
∑

t−1≤τ≤t

J 2
τ
1(Jτ<0),

such that the separately defined positive and negative semi-variance measures con-
verge to one-half of the integrated variance plus the sum of squared positive and
negative jumps, respectively.

These limiting results imply that the difference between the semi-variances
removes the variation due to the continuous component and thus only reflects the
variation stemming from jumps. We will refer to this good minus bad realized
volatility measure as the signed jump (SJ) variation,

(5) SJt = RV+t −RV−t →

∑
t−1≤τ≤t

J 2
τ
1(Jτ>0)− J 2

τ
1(Jτ<0).

The level of the volatility differs substantially across different stocks. As such, the
signed jump variation for a particular stock may appear relatively high/low in a
cross-sectional sense because the overall level of the volatility for that particular
stock is relatively high/low. To help circumvent this, we normalize the signed
jump variation by the total realized variation, defining the relative signed jump
variation,

(6) RSJt =
SJt

RVt
.

This normalization naturally removes the overall volatility level from the SJ mea-
sure, rendering RSJ a scale-invariant measure of the signed jump variation re-
stricted to lie between −1 and 1.

In addition to these realized variation measures based on the separately de-
fined up and down intraday return variation, we also calculate the daily realized
skewness (RSK),

(7) RSKt =

√
n

n∑
i=1

r 3
t−1+i/n

RV3/2
t

,

and realized kurtosis (RKT),

(8) RKTt =

n
n∑

i=1

r 4
t−1+i/n

RV2
t

,
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measures analyzed by ACJV. In parallel to the RSJ measure defined above, the
limiting values (for n→∞) of the RSK and RKT measures similarly manifest
functions of the variation attributable to jumps. In contrast to RSJ, however, which
has a clear interpretation as a measure of the relative signed jump variation, RSK
and RKT converge to scaled versions of the intraday jumps raised to the third and
fourth power, respectively, and are not directly interpretable as standard measures
of skewness and kurtosis.4 Furthermore, compared to the realized variation mea-
sures, the use of higher order (greater than 2) return moments in the calculation
of the realized skewness and kurtosis measures render them more susceptible to
“large” influential observations, or outliers, and thus generally more difficult to
precisely estimate.

Our main cross-sectional asset pricing analyses are conducted at the weekly
frequency. This directly mirrors ACJV. We construct the relevant weekly real-
ized variation measures by summing the corresponding daily realized variation
measures over the week. Specifically, if day τ is a Tuesday, we compute the (an-
nualized) weekly realized volatility as,5

(9) RVOLWEEK
τ

=

(
252

5

4∑
i=0

RVτ−i

)1/2

,

while for the RSJt , RSKt or RKTt measures, their weekly equivalents are defined
as,

(10) RMWEEK
τ

=
1
5

(
4∑

i=0

RMτ−i

)
,

where RMt refers to the relevant daily measure. For notational convenience, we
will drop the explicit Week superscript and the time τ subscript in the sequel and
simply refer to each of the weekly measures by their respective abbreviations.

We turn next to a discussion of the data that we use in actually implementing
these measures, as well as the additional control variables that we also rely on in
our portfolio sorts and cross-sectional pricing regressions.

III. Data
Our empirical investigation relies on high-frequency intraday data obtained

from the Trade and Quote (TAQ) database. The TAQ database contains consoli-
dated intraday transactions data for all securities listed on the New York Stock
Exchange (NYSE), the American Stock Exchange (AMEX), NASDAQ and
SmallCap issues, as well as stocks traded on Arca (formerly Pacific Stock Ex-
change) and other regional exchanges. This resulted in a total of 19,896 unique
securities over the Jan. 4, 1993 to Dec. 31, 2013 sample period when matched ac-
cording to the Center for Research in Securities Prices (CRSP) unique PERMNO
numbers. Following the extant literature, we use all common stocks listed on the

4Whereas the population mean of RV is invariant to the sampling frequency of the returns under-
lying the estimation, the population means of RSK and RKT depend directly on the frequency of the
data used in their estimation. The Supplementary Material also provides direct evidence that the RSJ
estimates are more robust across sampling frequencies than the estimates for RSK.

5We also report the results for other definitions of a week in the Supplementary Material.
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NYSE, NASDAQ, and AMEX exchanges, with share codes 10 or 11 and prices
between $5 and $1,000. We rely on the consolidated trade files provided by TAQ
to extract second-by-second prices, but only keep the observations for Monday
to Friday from 9:30AM to 4:00PM. All-in-all, this leaves us with 1,085 calendar
weeks, or around 20 million stock-week observations. Further details concerning
the high-frequency data and our cleaning procedures are provided in the Appendix
Section A.1.

We also rely on the CRSP database for extracting daily and monthly re-
turns, number of shares outstanding, and daily and monthly trading volumes for
each of the individual stocks. To help avoid survivorship bias, we further adjust
the individual stock returns for delisting, using the delisting return provided by
CRSP as the return after the last trading day. We also use the stock distribu-
tion information from CRSP for calculating the overnight returns.6 We rely on
Kenneth R. French’s Web site (https://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data library.html) for obtaining daily and monthly returns on the
Fama–French–Carhart 4-factor (FFC4) portfolios.

Lastly, we employ a number of additional explanatory variables and firm
characteristics previously associated with the cross-sectional variation in returns.
These include: the CAPM beta (BETA), size (ME) and book-to-market ratio
(BM) (Fama and French (1993)), medium-term price momentum (MOM) (Je-
gadeesh and Titman (1993)), weekly reversal (REV) (Lehmann (1990), Jegadeesh
(1990)), idiosyncratic volatility (IVOL) (Ang et al. (2006b)), coskewness (CSK)
(Harvey and Siddique (2000), Ang et al. (2006a)), cokurtosis (CKT) (Ang et al.
(2006a)), the maximum (MAX) and minimum (MIN) daily return (Bali, Cakici,
and Whitelaw (2011)), and illiquidity (ILLIQ) (Amihud (2002)). The data for
most of these variables are obtained from the CRSP and Compustat databases.
Our construction of each of these variables follow standard procedures, as further
detailed in the Appendix Section A.2.

IV. Realized Variation Measures: Empirical Distributions
Our calculation of the realized volatility measures are based on high-

frequency transactions prices. We resort to a “coarse” 5-minute sampling scheme,
resulting in 390 (78×5) return observations for the calculation of each of the
individual firms’ weekly realized measures. Our choice of a 5-minute sampling
scheme aims to balance the bias induced by market microstructure effects when
sampling “too finely,” and the theoretical continuous-time arguments underlying
the consistency of the realized volatility measures that formally hinge on increas-
ingly finer sample intraday returns. This particular choice also mirrors common
practice in the literature (see, e.g., the survey in Hansen and Lunde (2006)).7

6The high frequency TAQ database only contains the raw prices without consideration of the price
differences before and after any distributions.

7This same choice was also adapted by ACJV in their construction of the high-frequency realized
skewness and kurtosis measures, RSK and RKT. As discussed further in the Supplementary Material,
we also experimented with the use of alternative subsampling estimators, high-frequency returns based
on mid-quotes, and a sample of more liquid NYSE listed stocks only. Our empirical findings remain
robust across all of these alternative estimators and a more restricted sample.
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Figure 1 displays the kernel density estimates for the unconditional distribu-
tions of the resulting realized measures across all firms and weeks in the sample.
Graph A, in particular, depicts the distribution of the new RSJ measure. The dis-
tribution is approximately symmetric around 0 with support almost exclusively
between −0.5 and 0.5. This finding of approximately the same up and down
semi-variance measures, or as implied by equation (5) close to identical posi-
tive and negative jump variation at the individual firm level, is in line with the
previous evidence for the aggregate market portfolio and the close to symmetric
high-frequency-based positive and negative jump tail distributions documented
in Bollerslev and Todorov (2011a). Meanwhile, the unconditional distribution in
Graph A still implies substantial variation in the RSJ measures across firms and
time. From the summary statistics reported in Panel A of Table 1, the time-series
mean of the cross-sectional standard deviations of RSJ equals 0.16. It follows
readily from the definition in equation (6) that for a firm-week with RSJ 1 stan-
dard deviation above 0, the up semi-variance is approximately 38% larger than the
down semi-variance, while for a firm-week with RSJ equal to 0.5, the up semi-
variance is approximately 3 times as large as the down semi-variance.8 As we

FIGURE 1
Unconditional Distributions

Graphs A–D of Figure 1 show the kernel density estimates of the unconditional distributions of the relative signed jump
variation (RSJ), realized volatility (RVOL), realized skewness (RSK), and realized kurtosis (RKT) measures, respectively,
averaged across all firms and weeks in the sample.
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8Formally, for a firm-week RSJ 1 standard deviation away from 0,
∑4

i=0({RV+t−i −RV−t−i }/{RV+t−i +

RV−t−i })/5=0.16. Thus, assuming that the ratios RV+t−i/RV−t−i stay approximately constant within a
week, this expression implies that RV+t is 38% higher than RV−t .
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TABLE 1
Descriptive Statistics

Table 1 reports the descriptive statistics for all main variables. The sample consists of all the NYSE, AMEX, and NAS-
DAQ listed common stocks with share codes 10 or 11 and prices between $5 and $1,000 over the 1993–2013 sample
period. RSJ, RVOL, RSK, and RKT denote the relative signed jump variation, realized volatility, realized skewness, and
realized kurtosis, respectively. BETA denotes the standard CAPM beta. ME denotes the natural logarithm of the market
capitalization of the firms. BM denotes the ratio of the book value of common equity to the market value of equity. MOM is
the compound gross return from day t −252 through day t −21. REV is the lagged 1-week return. IVOL is a measure of
idiosyncratic volatility. CSK and CKT are measures of coskewness and cokurtosis, respectively. MAX and MIN represent
the maximum and minimum daily raw returns over the previous week. ILLIQ refers to the natural logarithm of the average
daily ratio of the absolute stock return to the dollar trading volume over the previous week. Panel A reports the time-series
average of the cross-sectional mean and standard deviation of each variable. Panel B reports the time-series average of
the cross-sectional correlations of these variables. * and ** indicate significance at the 5% and 1% levels, respectively.

RSJ RVOL RSK RKT BETA ME BM MOM REV IVOL CSK CKT MAX MIN ILLIQ

Panel A. Cross-Sectional Summary Statistics

Mean 0.01 0.61 0.04 7.75 1.11 6.99 0.55 0.26 0.01 0.02 −0.04 1.33 0.03 −0.03 −7.30
Std. 0.16 0.41 0.77 3.96 0.54 1.58 0.63 0.65 0.07 0.01 0.29 0.80 0.04 0.04 4.08

Panel B. Cross-Sectional Correlations

RSJ 1.00 −0.02** 0.93** 0.03** −0.03** 0.00 0.01** −0.01** 0.37** −0.04** 0.00 0.01 0.24** 0.32** 0.00
RVOL 1.00 −0.02** 0.25** 0.15** −0.60** 0.00 0.05** 0.04** 0.66** 0.00 −0.17** 0.33** −0.24** 0.29**
RSK 1.00 0.04** −0.02** 0.00 0.01** −0.01** 0.27** −0.03** 0.00 0.01* 0.19** 0.25** 0.00
RKT 1.00 −0.14** −0.29** 0.04** 0.01** 0.00 0.11** −0.01 −0.08** 0.00 0.04** 0.16**
BETA 1.00 0.27** −0.15** 0.05** −0.01* 0.30** 0.03** 0.21** 0.17** −0.23** 0.04**
ME 1.00 −0.17** 0.02** 0.01* −0.47** 0.01 0.22** −0.15** 0.07** −0.46**
BM 1.00 0.01 0.01** −0.10** −0.01 0.00 −0.02** 0.05** 0.05**
MOM 1.00 0.01* 0.11** −0.02** −0.01 0.04** −0.05** 0.00
REV 1.00 0.03** 0.00 −0.02** 0.59** 0.51** 0.00
IVOL 1.00 −0.01 −0.31** 0.49** −0.47** 0.17**
CSK 1.00 0.00 0.01* 0.02** 0.00
CKT 1.00 −0.07** 0.06** −0.06**
MAX 1.00 0.05** 0.08**
MIN 1.00 −0.08**
ILLIQ 1.00

subsequently document, this nontrivial variation in the RSJ measures across firms
and time is associated with strong cross-sectional return predictability.

Mirroring the prior empirical evidence in ACJV, Graphs B–D in Figure 1
show the same across firm and time unconditional distributions for the RVOL,
RSK, and RKT realized measures. In parallel to the distribution of RSJ in
Graph A, the distribution of RSK in Graph C is approximately symmetric. In
comparison with RSJ, however, the distribution of RSK is substantially more
heavy-tailed and peaked around 0.9 The unconditional distributions of the realized
volatility and kurtosis in Graphs B and D, respectively, are both heavily skewed
to the right.

To help illuminate the temporal variation in each of the realized measures
implicit in these unconditional distributions, Figure 2 plots the 10-week moving
averages of the 10th, 50th, and 90th percentile for the RSJ, RVOL, RSK, and
RKT measures. The plot in Graph A reveals a remarkably stable dispersion in
the distributions of the RSJ measures over time. The percentiles for RSK shown
in Graph C also appear quite steady through time, albeit not as stable as those
for RSJ. By contrast, the percentiles of the realized volatilities RVOL shown in
Graph B are clearly time-varying, with marked peaks around the time of the burst
of the dot-com bubble and the financial crisis of 2007–2008. Consistent with the
recent findings in Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2016) and the
existence of a common factor structure in idiosyncratic, or firm-specific, volatil-
ities, there is also a distinct commonality in the temporal variation in the RVOL

9The unconditional kurtosis of the RSK distribution equals 11.46, compared to 5.65 for RSJ.
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FIGURE 2
Percentiles

Graphs A–D of Figure 2 display the 10-week moving average time-series percentiles of the relative signed jump variation
(RSJ), realized volatility (RVOL), realized skewness (RSK), and realized kurtosis (RKT) measures, respectively, averaged
across all firms in the sample.
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percentiles. The apparent increase in the cross-sectional dispersion in the RKT
measures observed in the final Graph D is in line with the evidence reported in
ACJV.

Panel A in Table 1 provides the time-series averages of cross-sectional means
and standard deviations for each of the 4 realized measures, as well as the other
control variables that we also rely on in our analysis. Panel B of that same ta-
ble reports the corresponding weekly cross-sectional correlations. RSJ and RSK
are the two most highly correlated variables, with a highly significant correla-
tion coefficient of 0.93. The new RSJ measure also correlates significantly with
REV, MAX, and MIN, with correlation coefficients of 0.37, 0.24, and 0.32, re-
spectively. The corresponding correlations for RSK are slightly lower, at 0.27,
0.19, and 0.25, respectively.10 This high pairwise correlation and similar correla-
tions with the other control variables are not necessarily surprising, as RSJ and
RSK both reflect notions of asymmetry in the intraday return distributions. At the
same time, however, our empirical results discussed below suggest that the return

10The time-series plots of the 4 realized measures sorted by REV (Figure A.1), RSJ (Figure A.2)
and RSK (Figure A.3) given in the Supplementary Material further illustrate the cross-sectional de-
pendencies inherent in these correlations.
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predictability afforded by RSJ is both stronger and more robust than the return
predictability of RSK.

To further clarify the relation between the realized measures and the different
control variables, we also employ a series of simple portfolio sorts. At the end of
each Tuesday, we sort the stocks by their past weekly realized variation measures
and form 5 equal-weighted portfolios. We then calculate the time-series averages
of the various firm characteristics for the stocks within each of these quintile port-
folios. The results based on these RSJ, RVOL, RSK, and RKT sorts are reported
in Panels A–D of Table 2, respectively. Consistent with the correlations discussed
above, the portfolio sorts reveal that high RSJ firms tend to be firms with high
RSK, REV, MAX, and low MIN.11 Further, while firms with high RVOL and high
RKT tend to be small and less liquid firms, there is no obvious relation between

TABLE 2
Portfolio Characteristics Sorted by Realized Measures

Table 2 reports time-series averages of equal-weighted characteristics of stocks sorted by the 4 realized measures.
The sample consists of all the NYSE, AMEX, and NASDAQ listed common stocks with share codes 10 or 11 and prices
between $5 and $1,000 over the 1993–2013 sample period. RSJ, RVOL, RSK, and RKT denote the relative signed jump
variation, realized volatility, realized skewness, and realized kurtosis, respectively. BETA denotes the standard CAPM
beta. ME denotes the logarithm of the market capitalization of the firms. BM denotes the ratio of the book value of
common equity to the market value of equity. MOM is the compound gross return from day t −252 through day t −21.
REV is the lagged 1-week return. IVOL is a measure of idiosyncratic volatility. CSK and CKT are measures of coskewness
and cokurtosis, respectively. MAX and MIN represent the maximum and minimum daily raw returns over the previous
week. ILLIQ refers to the natural logarithm of the average daily ratio of the absolute stock return to the dollar trading
volume over the previous week. Panel A displays the results sorted by RSJ, Panel B by RVOL, Panel C by RSK, and
Panel D by RKT.

Quintile RSJ RVOL RSK RKT BETA ME BM MOM REV IVOL CSK CKT MAX MIN ILLIQ

Panel A. Sorted by RSJ

1 (Low) −0.200 0.654 −0.888 8.990 1.094 6.757 0.553 0.270 −0.036 0.023 −0.038 1.292 0.019 −0.041 −7.024
2 −0.061 0.599 −0.247 6.886 1.158 7.115 0.536 0.256 −0.011 0.021 −0.036 1.350 0.030 −0.033 −7.447
3 0.007 0.588 0.026 6.676 1.150 7.174 0.542 0.250 0.007 0.021 −0.035 1.361 0.035 −0.028 −7.502
4 0.077 0.582 0.307 6.981 1.131 7.141 0.546 0.253 0.025 0.021 −0.036 1.353 0.039 −0.023 −7.475
5 (High) 0.227 0.620 0.985 9.207 1.037 6.759 0.574 0.250 0.046 0.021 −0.038 1.296 0.047 −0.009 −7.024

Panel B. Sorted by RVOL

1 (Low) 0.014 0.231 0.050 6.695 0.807 8.469 0.550 0.171 0.004 0.011 −0.037 1.457 0.018 −0.014 −8.860
2 0.013 0.351 0.046 7.052 1.013 7.710 0.558 0.190 0.004 0.015 −0.034 1.451 0.025 −0.020 −8.027
3 0.010 0.503 0.040 7.518 1.197 6.975 0.544 0.270 0.005 0.019 −0.036 1.375 0.032 −0.026 −7.347
4 0.009 0.721 0.034 8.039 1.321 6.295 0.529 0.331 0.007 0.025 −0.035 1.277 0.041 −0.032 −6.603
5 (High) 0.004 1.236 0.012 9.444 1.230 5.495 0.571 0.314 0.011 0.036 −0.040 1.093 0.056 −0.040 −5.642

Panel C. Sorted by RSK

1 (Low) −0.189 0.665 −0.942 9.600 1.083 6.710 0.552 0.274 −0.026 0.023 −0.038 1.291 0.023 −0.038 −6.989
2 −0.059 0.593 −0.255 6.516 1.155 7.137 0.538 0.256 −0.008 0.021 −0.036 1.351 0.031 −0.032 −7.454
3 0.007 0.578 0.026 6.160 1.152 7.225 0.545 0.245 0.007 0.021 −0.035 1.361 0.034 −0.028 −7.559
4 0.075 0.576 0.313 6.607 1.136 7.166 0.544 0.253 0.021 0.021 −0.036 1.351 0.038 −0.024 −7.482
5 (High) 0.215 0.631 1.041 9.859 1.044 6.708 0.573 0.250 0.037 0.021 −0.038 1.299 0.044 −0.012 −6.990

Panel D. Sorted by RKT

1 (Low) 0.005 0.493 0.015 4.371 1.177 7.869 0.533 0.211 0.005 0.018 −0.031 1.428 0.031 −0.026 −8.306
2 0.007 0.570 0.021 5.587 1.164 7.237 0.534 0.257 0.006 0.020 −0.036 1.370 0.034 −0.028 −7.616
3 0.008 0.609 0.027 6.760 1.136 6.902 0.541 0.268 0.007 0.022 −0.038 1.324 0.036 −0.028 −7.235
4 0.011 0.641 0.039 8.439 1.097 6.645 0.555 0.274 0.007 0.023 −0.039 1.286 0.036 −0.028 −6.873
5 (High) 0.019 0.728 0.081 13.590 0.994 6.291 0.589 0.267 0.006 0.023 −0.039 1.244 0.034 −0.024 −6.448

11The Supplementary Material provides additional cross-sectional regression-based evidence for a
negative relationship between RSJ and firm leverage and credit ratings. None of these relations, are
very strong, however.
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RSK and firm size and illiquidity. Instead, in parallel to the results for the RSJ
sorts, firms with high RSK tend to have higher REV and MAX returns and lower
MIN returns.

We turn next to a discussion of how similarly constructed portfolio sorts
manifest in future return differentials.

V. Good Minus Bad Variation and Future Stock Returns
We begin our empirical investigations related to return predictability by doc-

umenting highly statistically significant negative spreads in the returns on quintile
portfolios comprised of stocks sorted according to their individual relative signed
jump variation measure RSJ, and their realized skewness measure RSK. We then
show that the spreads based on RSJ remain highly significant in double portfolio
sorts designed to control for other higher order realized variation measures and
control variables. In contrast, the double portfolio sorts based on RSK control
for RSJ results in the completely opposite cross-sectional relation, with high/low
RSK firms associated with higher/lower future returns. We further corroborate
these findings in firm level cross-sectional return predictability regressions that
simultaneously control for multiple higher order realized measures and other firm
characteristics.

A. Single-Sorted Portfolios
At the end of each Tuesday, we sort the stocks into quintile portfolios based

on their realized variation measures. We then compute value- and equal-weighted
returns over the subsequent week for each of these different quintile portfolios. We
also report the results for a self-financing long–short portfolio that buys stocks in
the top quintile and sells stocks in the bottom quintile.

Panel A of Table 3 displays the weekly portfolio returns (in basis points) from
sorting on RSJ. The column labeled “Return” for the value-weighted portfolios re-
veals a clear negative relation between the relative signed jump variation and the
average future realized returns. The average weekly return decreases monotoni-
cally from 32.75 bps for quintile 1 (Low) to 3.40 for quintile 5 (High), yielding
a High–Low spread of −29.35 bps, with a robust t-statistic of −5.83. The equal-
weighted portfolio returns show the same decreasing pattern between RSJ and the
returns over the subsequent week, with a High–Low spread of −38.54 bps per
week.

To investigate whether these return differences result from exposure to sys-
tematic risks, we rely on the popular Fama–French–Carhart 4-factor model (Fama
and French (1993), Carhart (1997)). In particular, we regress the excess returns
for each of the quintile portfolios and the High–Low spread against the 4 factors
for calculating the FFC4 alphas, defined as the regression intercepts. The column
in Table 3 labeled “FFC4” shows a similarly strong negative relation between
RSJ and the abnormal future returns measured in terms of these FFC4 alphas.
The FFC4 alpha of the self-financing value-weighted RSJ strategy, in particular,
equals −28.80 bps per week and remains highly significant with a t-statistic of
−5.77, while for the equal-weighted portfolios the risk-adjusted FFC4 alpha for
the High–Low spread equals −37.89 bps, with a t-statistics of −9.95.
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TABLE 3
Predictive Single-Sorted Portfolios

Table 3 reports the average returns for the predictive single-sorted portfolios. The sample consists of all the NYSE, AMEX,
and NASDAQ listed common stocks with share codes 10 or 11 and prices between $5 and $1,000 over the 1993–2013
sample period. At the end of each week, stocks are sorted into quintiles according to realized measures computed from
previous week high-frequency returns. Each portfolio is held for 1 week. The column labeled ‘‘Return’’ reports the average
1-week ahead excess returns of each portfolio. The column labeled ‘‘FFC4’’ reports the corresponding Fama–French–
Carhart 4-factor alpha for each portfolio. The row labeled ‘‘High–Low’’ reports the difference in returns between portfolio
5 and portfolio 1, with Newey and West (1987) robust t -statistics in parentheses. RSJ, RVOL, RSK, and RKT denote the
relative signed jump variation, realized volatility, realized skewness, and realized kurtosis, respectively. In each panel,
the first 2 columns report the value-weighted sorting results and the last 2 columns report the equal-weighted sorting
results. Panel A displays the results sorted by RSJ, Panel B by RVOL, Panel C by RSK, and Panel D by RKT.

Weighted

Value Equal Value Equal

Quintile Return FFC4 Return FFC4 Return FFC4 Return FFC4

Panel A. Sorted by RSJ Panel B. Sorted by RVOL

1 (Low) 32.75 16.56 54.72 35.36 15.99 2.07 19.60 4.79
2 23.74 7.72 37.63 18.32 17.14 −0.77 24.34 5.39
3 13.76 −1.80 29.20 10.00 16.19 −3.42 26.59 6.20
4 7.74 −7.67 20.93 1.93 19.36 −0.63 33.06 12.04
5 (High) 3.40 −12.24 16.18 −2.53 33.18 12.03 55.04 34.65

High–Low −29.35 −28.80 −38.54 −37.89 17.19 9.96 35.45 29.86
(−5.83) (−5.77) (−9.66) (−9.95) (1.29) (1.18) (3.57) (5.46)

Panel C. Sorted by RSK Panel D. Sorted by RKT

1 (Low) 25.80 8.92 50.03 30.79 15.41 0.55 26.96 8.94
2 23.81 8.10 37.41 18.31 19.10 2.57 31.60 12.04
3 14.58 −0.57 28.36 9.08 18.18 1.20 33.23 13.00
4 9.53 −6.14 23.92 4.86 18.40 1.81 32.56 13.01
5 (High) 7.66 −8.19 18.94 0.05 14.53 −2.22 34.28 16.07

High–Low −18.14 −17.11 −31.09 −30.75 −0.88 −2.77 7.32 7.13
(−4.35) (−4.11) (−9.79) (−10.08) (−0.24) (−0.85) (2.29) (2.60)

The results for the RVOL, RSK and RKT single-sorted portfolios reported
in Panels B–D in Table 3 confirm the findings in ACJV related to the predictabil-
ity of these same realized measures. Panel C in particular, shows that there is
a strong negative relation between the realized skewness and next week’s stock
returns. A strategy that buys stocks in the lowest realized skewness quintile and
sell stocks in the highest realized skewness quintile generates an average abnor-
mal return of −17.11 bps per week, with a robust t-statistics of −4.11 for the
value-weighted portfolios, and −30.75 bps with a t-statistics of −10.08 for the
equal-weighted portfolios.12 On the other hand, the t-statistics associated with
the High–Low spreads based on RVOL and RSK in Panels B and D, respec-
tively, are much smaller and statistically insignificant for the value-weighted port-
folios. Thus, consistent with the vast existing empirical literature and the lack

12The stronger RSJ and RSK effects observed for equal-weighted portfolios naturally raise the
question of whether the two measures pick up a different feature for less-liquid small-cap stocks
compared to more-liquid large-cap stocks. Still, recall that our current sample already is restricted to
stocks listed on the NYSE, AMEX, and NASDAQ exchanges, with share codes 10 or 11 and prices
between $5 and $1,000. Nonetheless, in an effort to help further alleviate this concern, we repeated
the single-sorting analyses using only the sample of the Standard & Poor’s (S&P) 500 stocks. RSJ
and RSK remain strong predictors for next-week returns within this more limited sample of stocks.
In particular, when sorting by RSJ, the FFC4-adjusted High–Low spread equals −26.23 bps, with a
t-statistic of −5.22, for the value-weighted portfolios, and −19.16 bps, with a t-statistic of −4.77, for
the equal-weighted portfolios. We thank the referee for highlighting this issue.
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of a simple risk-return tradeoff relationship, there is at best scant evidence for the
realized volatility and kurtosis measures being able to predict the future returns.

To help more clearly illuminate how the long–short portfolios based on
the different realized variation measures perform over time, Graphs A and B in
Figure 3 depict the cumulative profits for the resulting value-weighted and equal-
weighted strategies based on an initial investment of W0=$1. Specifically, let Wτ

denote the cumulative profit at the end of week τ . The cumulative profits depicted
in the figure are then calculated as

Wτ = Wτ−1× (1+ rLONG,τ − rSHORT,τ + r f ,τ ),

where rLONG,τ and rSHORT,τ denote the weekly returns on the long-leg and the short-
leg of the portfolio, respectively, and r f ,τ denotes the weekly risk-free rate.

As Figure 3 shows, the RSJ-based strategy outperforms the RSK strategy
by quite a wide margin.13 Moreover, even though the value-weighted RSK-based
strategy does result in statistically significant excess return when evaluated over
the full sample, most of the superior performance occurs right around the collapse
of the dot-com bubble, with almost “flat” returns post 2001. By contrast, the RSJ-
based long–short strategy delivers superior returns throughout the sample, both
for the value-weighted and equal-weighted portfolios. As a benchmark, the figure
also reports the cumulative profits based on REV. The REV-based strategies obvi-
ously result in the largest overall cumulative profits.14 Meanwhile, the correlation

FIGURE 3
Cumulative Portfolio Gains

Graph A of Figure 3 shows the cumulative gains for a value-weighted long–short portfolio based on the relative signed
jump variation (RSJ), realized skewness (RSK), and lagged 1-week return (REV). Graph B shows the cumulative gains
for an equal-weighted long–short portfolio. All of the portfolios are rebalanced and accumulated on a weekly basis, as
described in the main text.
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13The (unreported) cumulative profits based on RKT and RVOL are both close to 0.
14Following the approach of Tulchinsky (2015), we also calculated the portfolio turnovers for the

RSJ-, RSK-, and REV-based strategies to be 63.22%, 64.12%, and 71.76%, respectively. Thus, the
turnover is approximately the same for RSJ and RSK, and slightly higher for REV. Correspondingly,
explicitly accounting for transaction costs, using the effective spread as a proxy (see, e.g., Hasbrouck
(2009)), results in the highest net returns for the RSJ-based long–short strategy.
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between the RSJ asymmetry measure and the REV return measure is only 0.37,
and as such the two strategies effectively profits from different effects. Section B
further delineates these separate effects.

B. Single-Sorted Portfolios with Controls
The sample correlations and the portfolio sorts reported in Tables 1 and 2,

respectively, revealed a strong contemporaneous relation between the two RSJ
and RSK realized measures, and somewhat weaker, albeit statistically significant,
correlation with the weekly return reversal REV. To help clarify the unique in-
formational content in each of the realized measures, we further sort the stocks
by the residuals obtained from controlling for the past week returns. Specifically,
at the end of each Tuesday, we run a cross-sectional regression of RSJ against
REV, or RSK against REV, and sort the stocks based on the resulting regressions
residuals.15

The results in Panel A of Table 4 shows that these RSJ residual-based sorts
still negatively predict future returns. The weekly FFC4 alpha of the High–Low
spreads equals −17.67 bps, with a t-statistic of −4.00, for the value-weighted
portfolios, and −15.27 bps, with a t-statistic of −5.35, for the equal-weighted
portfolios. These FFC4 alphas are smaller than those produced by the simple
RSJ sorts in Panel A, indicating that part of the predictability of RSJ is indeed
attributable to the short-term reversal effect. Nonetheless, the results remain eco-
nomically and statistically significant, implying a substantial amount of additional
information in the new RSJ measure beyond that of the weekly return reversal
REV.

Panel B of Table 4 repeats this same analysis in which we sort the stocks
into quintile portfolios according to the residuals from the weekly cross-sectional
regressions of RSK on REV. Although the RSK sorts that control for REV still
result in a weekly abnormal return spread of −10.45 bps, with a t-statistic of
−4.42, for the equal-weighted portfolios, the spread for the value-weighted port-
folios is reduced to only −4.96 bps, with an insignificant t-statistic of −1.27.16

Taken together, the results in Panels A and B clearly suggest that RSJ contains
more independent information beyond REV compared to RSK.

This same residual-based sorting approach also allows us to assess the in-
herent predictability of the RSJ and RSK measures against each other, by sorting
firms into portfolios based on the residuals from the weekly cross-sectional re-
gressions of RSJ against RSK, or RSK against RSJ. The portfolio returns and
FFC4 alphas obtained from sorting based on these RSJ residuals, orthogonal to
RSK, are reported in Panel C of Table 4. The value- and equal-weighted port-
folios both result in highly significant abnormal return spreads. The High–Low
FFC4 alpha for the value-weighted portfolios, in particular, equals −36.11 bps
with a t-statistic of −7.11. This reveals an even stronger degree of predictability

15This approach is useful in delineating the unique predictability in RSJ and RSK over and above
that of REV, as the regression residuals are orthogonal to the regressor by construction.

16These results for the residual-based sorts are also in line with ACJV, who report much weaker
t-statistics for the High–Low spread for the value-weighted RSK-sorted portfolios at different REV
levels.
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TABLE 4
Predictive Single-Sorted Portfolios with Controls

Table 4 reports the average returns for predictive single-sorted portfolios with controls. The sample consists of all the
NYSE, AMEX, and NASDAQ listed common stocks with share codes 10 or 11 and prices between $5 and $1,000 over the
1993–2013 sample period. At the end of each week, stocks are sorted into quintiles according to realized measures with
controls computed from previous week high-frequency returns. Each portfolio is held for 1 week. The column labeled
‘‘Return’’ reports the average 1-week ahead excess returns of each portfolio. The column labeled ‘‘FFC4’’ reports the
corresponding Fama–French–Carhart 4-factor alpha for each portfolio. The row labeled ‘‘High–Low’’ reports the difference
in returns between portfolio 5 and portfolio 1, with Newey–West (1987) robust t -statistics in parentheses. RSJ, RSK, and
REV denote the relative signed jump variation, realized skewness, and lagged 1-week return, respectively. In each panel,
the first 2 columns report the value-weighted sorting results and the last 2 columns report the equal-weighted sorting
results. Panel A displays the results sorted by RSJ residual controlling for REV, Panel B by RSK residual controlling for
REV, Panel C by RSJ residual controlling for RSK, and Panel D by RSK residual controlling for RSJ.

Weighted

Value Equal Value Equal

Quintile Return FFC4 Return FFC4 Return FFC4 Return FFC4

Panel A. Sorted by RSJ Residual Panel B. Sorted by RSK Residual
Controlling for REV Controlling for REV

1 (Low) 25.43 8.85 38.53 19.44 20.13 3.12 36.26 17.20
2 21.09 5.35 33.89 14.58 20.82 5.13 32.51 13.30
3 15.30 0.21 29.44 10.08 15.19 0.13 28.69 9.46
4 12.63 −2.87 26.55 7.27 13.51 −1.96 28.24 8.84
5 (High) 6.63 −8.82 22.96 4.16 13.92 −1.84 25.68 6.74

High–Low −18.80 −17.67 −15.57 −15.27 −6.20 −4.96 −10.58 −10.45
(−4.24) (−4.00) (−5.33) (−5.35) (−1.60) (−1.27) (−4.39) (−4.42)

Panel C. Sorted by RSJ Residual Panel D. Sorted by RSK Residual
Controlling for RSK Controlling for RSJ

1 (Low) 36.28 20.42 50.90 31.23 0.74 −14.89 21.49 2.86
2 20.08 4.23 37.46 18.25 10.55 −4.89 24.32 5.30
3 17.26 1.10 29.92 10.77 16.91 0.77 30.00 10.75
4 9.64 −5.80 22.89 4.01 21.59 5.74 37.95 18.79
5 (High) −0.17 −15.70 17.49 −1.17 33.88 18.32 44.91 25.39

High–Low −36.45 −36.11 −33.41 −32.40 33.14 33.22 23.42 22.53
(−7.04) (−7.11) (−8.42) (−8.50) (6.61) (6.71) (7.05) (7.04)

of the RSJ residual-based sorts, compared to the standard single sorts based on
RSJ reported in Panel A of Table 3.

In sharp contrast, the sorts based on the RSK residuals orthogonal to RSJ
fail to reproduce the same negative return predictability as the simple RSK sorts
in Panel C of Table 3. Instead, the two FFC4 columns in Panel D show that the
RSK residuals purged from the influence of RSJ strongly positively predict the
cross-sectional variation in the future returns. The magnitudes of these return dif-
ferences are not only highly statistically significant, but also economically large.
For example, the weekly FFC4 alpha for the High–Low residual sorted value-
weighted portfolios equals 33.22 bps, with a t-statistic of 6.71. These results can-
not simply be ascribed to measurement errors in RSK, which would only diminish
the negative relation between RSK and the future returns, but not change the sign.
Instead, the results suggest that RSJ and RSK share a common component that
accounts for their high contemporaneous correlation and the strong negative re-
turn predictability observed in the conventional single sorts reported in Table 3.
However, once the influence of this common component, which manifests most
strongly in the RSJ measure, is controlled for, the effect of the realized skewness is
completely reversed. Appendix Section A.3 provides a more formal econometric
rational for how this change of sign may arise in the data.
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C. Double-Sorted Portfolios
The results from the standard single portfolio sorts and the single sorts with

controls reported in Tables 3 and 4, respectively, reveal a strong negative relation
between the relative signed jump variation and the future returns. This cannot be
accounted for by the previously documented weekly reversal effect, nor the real-
ized skewness effect. By contrast, the negative predictability of the realized skew-
ness is considerably diminished after controlling for the weekly return reversals,
and completely reversed after controlling for the relative signed jump variation.
Another popular approach to control for the effect of other variables associated
with the cross-sectional variation in returns is to rely on double portfolio sorts.
Table 5 reports the results from a series of such sequential sorts in which we al-
ternate between the ordering of the RSJ and RSK based sorts.17

Panel A of Table 5, in particular, shows the results obtained by sorting on RSJ
after first sorting on RSK. At the end of each Tuesday, we first sort all of the stocks
into quintile portfolios based on their individual RSK measures. Within each of
these characteristic portfolios, we then sort the stocks into quintiles based on their
RSJ measure for that same week, and compute the returns over the subsequent
week for the resulting 25 (5×5) portfolios. The row labeled “High–Low” reports
the average return spread between these High and Low quintile portfolios within
each RSK quintile, while the row labeled “FFC4” reports the return spreads ad-
justed by the 4 Fama–French–Carhart risk factors. To focus more directly on the
effect of RSJ, we also compute the returns averaged across RSK quintiles as a way
to produce quintile portfolios with large variations in RSJ, but small variations in
RSK. These returns are reported in the last column labeled “Average.”

The resulting FFC4 alpha for the difference in the value-weighted returns on
the fifth and first RSJ quintile portfolios obtained by first sorting on RSK equals
−21.39. This economically large spread also has a highly significant t-statistic
of −5.16, again underscoring that RSK cannot explain the predictability of RSJ.
Interestingly, looking at the RSJ effect within each of the RSK quintiles, shows
that RSJ negatively predicts the future returns within 4 of the 5 quintiles. The
equal-weighted double sorts exhibit even more significant patterns, both within
and across RSK quintiles.

Panel B of Table 5 shows the results from similarly constructed sequential
double sorts based on RSK, in which we first sort on RSJ. The FFC4 alpha for
the value-weighted portfolios given in the bottom right entry equals 11.73, with a
t-statistic of 3.45, thus suggesting that RSK positively predicts future returns af-
ter controlling for RSJ. This positive predictability of RSK contradicts the strong
negative predictability of RSK previously documented in ACJV and the single
sorts in Panel C of Table 3. However, the results are consistent with the resid-
ual sorts reported in Panel D of Table 4 that control for the influence of RSJ.18

Interestingly, this positive predictability of RSK after first sorting on RSJ holds

17The Supplementary Material reports the results from additional double sorts based on these same
two realized measures that first sort on other explanatory variables.

18This again is also consistent with the idea that RSJ provides a more accurate proxy for some
underlying latent factor that drives the returns, as discussed more formally in Appendix Section A.3.
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TABLE 5
Predictive Double-Sorted Portfolios

Table 5 reports the average 1-week ahead returns sorted by the realized signed jump variation RSJ controlling for the
realized skewness RSK, and vice versa. The sample consists of all the NYSE, AMEX, and NASDAQ listed common stocks
with share codes 10 or 11 and prices between $5 and $1,000 over the 1993–2013 sample period. In Panel A, for each
week, all stocks in the sample are first sorted into 5 quintiles on the basis of RSJ. Within each quintile, the stocks are
then sorted into 5 quintiles according to RSK. For each 5×5 grouping, we form a value-weighted portfolio (left panel)
and an equal-weighted portfolio (right panel). These 5 RSJ portfolios are then averaged across the 5 RSK portfolios to
produce RSJ portfolios with large cross-portfolio variation in their RSJ but little variation in RSK. In Panel B, we reverse
the order to first sort on RSK and then on RSJ. RSJ and RSK denote the relative signed jump and realized skewness.
In Panel A/B, the first 5 rows in both value-weighted and equal-weighted sorting results report time-series averages of
weekly excess returns for the RSJ/RSK quintile portfolios. The row labeled ‘‘High–Low’’ reports the difference in the returns
between portfolio 5 and portfolio 1. The row labeled ‘‘FFC4’’ reports the average Fama–French–Carhart 4-factor alphas.
The corresponding Newey–West (1987) robust t -statistics are reported in parentheses.

(Low) (High)
1 2 3 4 5 Average

Panel A. Sorted by RSJ Controlling for RSK

Value-Weighted
1 (Low) 43.26 42.65 31.94 22.53 12.27 30.53
2 31.71 24.93 12.49 16.50 16.22 20.37
3 33.14 22.66 15.39 6.74 6.10 16.81
4 26.02 18.48 10.13 8.40 −1.38 12.33
5 (High) 15.65 13.52 4.47 0.74 6.37 8.15

High–Low −27.60 −29.13 −27.47 −21.79 −5.90 −22.38
(−4.16) (−4.06) (−4.19) (−3.20) (−0.92) (−5.43)

FFC4 −26.01 −30.33 −25.90 −20.22 −4.48 −21.39
(−3.75) (−4.26) (−3.92) (−2.95) (−0.70) (−5.16)

Equal-Weighted
1 (Low) 64.95 54.17 42.42 39.72 27.46 45.74
2 57.93 44.39 32.62 30.75 25.65 38.27
3 53.13 33.66 26.91 22.26 20.41 31.27
4 47.53 36.18 24.71 17.96 16.00 28.47
5 (High) 32.65 21.96 16.29 15.87 15.54 20.46

High–Low −32.30 −32.20 −26.13 −23.86 −11.92 −25.28
(−7.31) (−6.16) (−5.09) (−4.81) (−2.74) (−7.40)

FFC4 −32.24 −31.55 −24.52 −22.83 −9.97 −24.22
(−3.75) (−6.16) (−4.84) (−4.73) (−2.50) (−7.38)

Panel B. Sorted by RSK Controlling for RSJ

Value-Weighted
1 (Low) 33.93 16.22 14.62 2.57 −1.98 13.07
2 29.21 22.05 9.38 11.54 3.09 15.05
3 32.56 16.51 13.80 4.55 5.44 14.57
4 31.32 26.80 16.73 15.94 13.72 20.90
5 (High) 42.76 32.31 21.77 11.80 15.92 24.91

High–Low 8.83 16.09 7.15 9.24 17.91 11.84
(1.27) (2.70) (1.19) (1.55) (3.26) (3.50)

FFC4 9.99 16.88 7.61 7.09 17.09 11.73
(1.49) (2.83) (1.25) (1.18) (3.03) (3.45)

Equal-Weighted
1 (Low) 59.66 34.07 25.17 18.22 13.27 30.08
2 54.97 36.93 28.08 22.12 18.21 32.06
3 51.64 36.87 29.07 19.95 20.36 31.58
4 53.86 38.85 29.47 25.26 21.40 33.77
5 (High) 58.36 42.53 39.75 27.04 18.07 37.15

High–Low −1.30 8.46 14.58 8.82 4.80 7.07
(−0.29) (2.03) (3.71) (2.33) (1.24) (2.93)

FFC4 −2.89 7.29 13.73 7.66 5.58 6.27
(−0.68) (1.76) (3.55) (2.02) (1.42) (2.63)

true across all quintiles. The equal-weighted double sorts show the same positive
return predictability patterns associated with RSK after first sorting on RSJ.

In sum, the negative relation between the future returns and the relative
signed jump variation measure remains intact after controlling for the influence
of the realized skewness. On the other hand, the tendency for high/low realized
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skewness to be associated with low/high future returns completely disappears, and
even reverses, after controlling for the relative signed jump variation.

D. Firm-Level Cross-Sectional Regressions
The portfolio sorts discussed above ignore potentially important firm-level

information by aggregating the stocks into quintile portfolios. Also, even though
the single-sorted portfolios with controls and the double-sorted portfolios both
allow for the possibility that more then one explanatory variable might be linked
to the cross-sectional variation in the returns, they only control for 1 variable at a
time. In an effort to further corroborate and expand on these results, this section
reports the results from a series of standard Fama–MacBeth (1973) cross-sectional
type regressions that simultaneously control for multiple explanatory variables.

Specifically, for each of the weeks in the sample, we run the following cross-
sectional regressions,

ri ,t+1 = γ0,t +

K∑
j=1

γ j ,t Z j ,i ,t + εi ,t+1, i = 1,2, . . . , N ,

where ri ,t+1 denotes the return for stock i over week t+1 (Tuesday-close to
Tuesday-close), and the K stock-specific control variables Z j ,i ,t are all measured
at the end of week t . Having estimated the slope coefficients γ j ,t for each of the
weeks in the sample, we compute the time-series averages of the γ̂ j ,t estimates to
assess whether the different controls are able to predict the future returns. Table 6
reports the resulting γ̄ j averages and corresponding t-statistics for a number of
different specifications.

Panel A of Table 6, in particular, focuses on simple regressions, in which we
regress the returns against a single explanatory variable at a time. Consistent with
the results for the single-sorted portfolios, RSJ and RSK both negatively predict
the subsequent weekly returns, with highly statistically significant t-statistics of
−8.20 and −7.97, respectively. In addition, REV stands out as the only other ex-
planatory variable with a clearly significant t-statistic. The estimated slope coef-
ficients for the other explanatory variables generally also have the “correct” sign,
but with the exception of MAX, none of the other variables are significant at the
5% level.

Turning to Panel B of Table 6, and the multiple regressions that simultane-
ously control for more than 1 variable at a time, the relative signed jump variation
RSJ is always highly significant. Putting the estimates into perspective, the av-
erage cross-sectional standard deviation of RSJ equals 0.16. Hence, the average
slope of −159.73 in Regression XIV that includes all of the variables implies
that a 2-standard-deviation decrease in RSJ predicts a rise of approximately 26%
in the annual returns (2×159.73×0.16/10,000×52=26%). Thus, not only is
the predictability afforded by RSJ highly statistically significant, it is also highly
significant economically.

The realized kurtosis RKT also negatively predicts the future returns across
all of the different specifications. However, the level of significance is much lower
than for RSJ. By contrast, the realized skewness, consistent with the prior em-
pirical evidence in ACJV, negatively predicts the future returns in the simple
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TABLE 6
Fama–MacBeth Cross-Sectional Regressions

Table 6 reports the estimated regression coefficients and robust t -statistics (in parentheses) from Fama–MacBeth cross-
sectional regressions for weekly stock returns. The sample consists of all the NYSE, AMEX, and NASDAQ listed common
stocks with share codes 10 or 11 and prices between $5 and $1,000 over the 1993–2013 sample period. RSJ, RVOL,
RSK, and RKT denote the relative signed jump variation, realized volatility, realized skewness, and realized kurtosis, re-
spectively. BETA denotes the standard CAPM beta. ME denotes the natural logarithm of the market capitalization of the
firms. BM denotes the ratio of the book value of common equity to the market value of equity. MOM is the compound
gross return from day t −252 through day t −21. REV is the lagged 1-week return. IVOL is a measure of idiosyncratic
volatility. CSK and CKT are measures of coskewness and cokurtosis, respectively. MAX and MIN represent the maximum
and minimum daily raw returns over the previous week. ILLIQ refers to the natural logarithm of the average daily ratio of
the absolute stock return to the dollar trading volume over the previous week. Panel A reports the results of simple regres-
sions with a single explanatory variable. Panel B reports the results of multiple regressions with more than 1 explanatory
variable.

Panel A. Simple Regressions

RSJ RVOL RSK RKT BETA ME BM MOM REV IVOL CSK CKT MAX MIN ILLIQ

−111.76 6.01 −21.47 −0.31 2.73 −2.49 4.28 0.00 −0.02 −58.97 2.09 1.48 −0.02 −0.02 0.37
(−8.20) (0.44) (−7.97) (−0.70) (0.32) (−1.44) (0.85) (1.31) (−5.87) (−0.25) (0.34) (0.51) (−2.78) (−1.64) (0.87)

Panel B. Multiple Regressions

Regression RSJ RVOL RSK RKT BETA ME BM MOM REV IVOL CSK CKT MAX MIN ILLIQ

I −74.29 −0.24 −4.28 −0.39 0.00 −0.03 −198.27 −4.43 1.92 0.02 0.03 −0.77
(−9.17) (−0.04) (−3.35) (−0.14) (2.14) (−7.20) (−1.50) (−1.03) (0.89) (3.32) (5.64) (−2.74)

II 1.78 −1.06 −4.23 −0.34 0.00 −0.03 −211.07 −4.65 2.02 0.02 0.04 −0.85
(0.26) (−0.16) (−3.44) (−0.12) (2.16) (−9.07) (−1.71) (−1.09) (0.94) (3.69) (6.05) (−2.97)

III −12.60 0.08 −4.37 −0.40 0.00 −0.03 −190.68 −4.51 1.84 0.02 0.03 −0.79
(−7.33) (0.01) (−3.41) (−0.15) (2.15) (−8.14) (−1.44) (−1.05) (0.85) (3.54) (5.82) (−2.80)

IV −0.78 0.30 −4.55 −0.83 0.00 −0.03 −188.95 −4.35 1.90 0.02 0.03 −0.81
(−2.37) (0.04) (−3.50) (−0.30) (2.21) (−9.12) (−1.43) (−1.01) (0.88) (3.83) (5.91) (−2.87)

V −248.78 1.16 34.62 −0.49
(−8.57) (0.08) (6.31) (−1.02)

VI −255.02 −12.96 35.20 −1.07 −2.34 −3.46 0.38 0.00
(−10.50) (−1.58) (7.42) (−2.92) (−0.34) (−2.75) (0.14) (1.68)

VII −184.93 −11.54 25.57 −1.08 −1.00 −3.44 0.32 0.00 −0.01
(−8.34) (−1.44) (5.65) (−2.98) (−0.15) (−2.76) (0.12) (1.68) (−4.41)

VIII −254.27 −6.84 35.02 −0.98 −1.62 −3.93 −0.56 0.00 −308.17
(−10.49) (−0.90) (7.37) (−2.67) (−0.24) (−3.12) (−0.21) (1.87) (−2.87)

IX −248.79 −13.03 34.22 −1.04 −2.37 −3.46 0.52 0.00 0.37
(−10.34) (−1.61) (7.25) (−2.86) (−0.35) (−2.75) (0.19) (1.74) (0.10)

X −249.16 −12.57 34.25 −1.10 −2.97 −3.63 0.39 0.00 1.83
(−10.38) (−1.52) (7.27) (−3.00) (−0.45) (−2.87) (0.14) (1.77) (1.12)

XI −235.83 −7.16 32.29 −0.91 −1.49 −3.19 0.23 0.00 −0.01
(−9.86) (−0.86) (6.79) (−2.48) (−0.22) (−2.56) (0.08) (1.75) (−3.42)

XII −255.32 −11.84 35.16 −1.01 −2.86 −3.29 0.46 0.00 0.00
(−11.12) (−1.46) (7.68) (−2.75) (−0.43) (−2.61) (0.17) (1.72) (0.55)

XIII −247.02 −12.75 34.02 −1.05 −2.37 −4.30 0.47 0.00 −0.84
(−10.19) (−1.56) (7.17) (−2.87) (−0.35) (−3.41) (0.17) (1.67) (−2.92)

XIV −159.73 −1.32 21.46 −0.84 −1.36 −4.31 −0.21 0.00 −0.02 −203.76 −4.31 2.20 0.02 0.03 −0.80
(−7.50) (−0.18) (4.83) (−2.31) (−0.21) (−3.48) (−0.08) (2.22) (−6.62) (−1.66) (−1.02) (1.03) (3.25) (5.62) (−2.92)

regression in Panel A of Table 6 and Regression III in Panel B, and positively
predicts the future returns in all of the regressions that include RSJ as a control.
This, of course, mirrors the findings based on the double sorts discussed in Sec-
tion V.C, and further highlights the fragility of RSK as a predictor.

VI. Dissecting RSJ-Based Portfolio Strategies
The results in the previous section naturally raise the questions of where

the superior performance of the RSJ-based portfolio strategies are coming from,
and whether the resulting “paper portfolio” profits are somehow linked to the
informational environment and costs of trading. This section provides some partial
answers to these questions.
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A. RSJ Profitability and Other Control Variables
We begin by examining how the performance of the RSJ-sorted portfolios

vary across firm size, volatility, illiquidity and return reversal. The first 3 vari-
ables, in particular, are often used to assess how anomalies are affected by the in-
formational environment and trading costs more generally. The mechanics behind
these additional double sorts, reported in Table 7, closely mirrors those discussed
in Section V.C. The only difference is that to more explicitly highlight the impact
of a given control variable, we report the differences in the value-weighted return
spreads between the High- and Low-level of the specific control variable, rather
than the averages across these levels.

Panel A of Table 7 shows that the RSJ strategy tends to be more profitable
for smaller stocks. For the value-weighted portfolios, the weekly 4-factor alpha of
the RSJ strategies equals −59.16 bps for small firms compared to −26.67 bps for
large firms, with t-statistics of −10.35 and −5.03, respectively. Also, the differ-
ence in the alphas between small and large firms equals 32.49 bps per week, with a
highly statistically significant t-statistic of 4.76. These results are consistent with
the idea that large firms tend to have better information environments and more
sophisticated traders, resulting in less overreaction to extreme price movements,
and thus weaker RSJ effects.

TABLE 7
RSJ Portfolios Sorted on Control Variables

Table 7 reports the performance of portfolios sorted by RSJ and control variables. The sample consists of all the NYSE,
AMEX, and NASDAQ listed common stocks with share codes 10 or 11 and prices between $5 and $1,000 over the 1993–
2013 sample period. In each panel, for each week, all stocks in the sample are first sorted into 5 quintiles on the basis
of 1 control variable. Within each quintile, the stocks are then sorted into 5 quintiles according to their RSJ. For each
5×5 grouping, we form an value-weighted portfolio. Then we consider the performance of the 25 portfolios from the
intersection of the double sorts. RSJ and RVOL denote the relative signed jump and realized volatility. ME denotes the
natural logarithm of the market capitalization of the firms. ILLIQ refers to the natural logarithm of the average daily ratio
of the absolute stock return to the dollar trading volume over the previous week. REV denotes the lagged 1-week return.
In each panel, the 5 rows/columns labeled as 1–5 represent 5 levels of RSJ/the control variable. The row/column labeled
‘‘High–Low’’ reports the difference in value-weighted returns between Portfolio 5 and Portfolio 1 constructed according to
RSJ/the control variable. The row labeled ‘‘FFC4’’ reports the Fama–French–Carhart 4-factor alphas. The corresponding
Newey–West (1987) robust t -statistics are reported in parentheses.

Value-Weighted

(Low) (High) (Low) (High)
1 2 3 4 5 High–Low 1 2 3 4 5 High–Low

Panel A. ME Panel B. RVOL

1 (Low) 87.76 49.93 37.02 33.91 29.52 −58.24 30.01 29.13 36.67 43.08 75.91 45.89
2 77.56 41.65 26.52 25.40 21.38 −56.18 20.74 25.44 22.97 25.20 45.04 24.30
3 52.43 30.19 21.03 21.38 16.17 −36.27 13.84 16.21 14.68 27.89 37.20 23.36
4 37.24 23.70 15.20 15.38 7.06 −30.17 8.61 11.54 7.22 4.54 14.69 6.07
5 (High) 28.34 15.43 13.21 12.92 2.13 −26.21 3.86 3.13 4.32 −2.50 5.62 1.76

High–Low −59.42 −34.49 −23.80 −20.99 −27.39 32.03 −26.15 −26.00 −32.35 −45.58 −70.29 −44.13
(−10.19) (−6.69) (−4.87) (−4.07) (−5.22) (4.64) (−3.98) (−3.98) (−5.07) (−6.73) (−4.06)

FFC4 −59.16 −33.47 −22.96 −20.63 −26.67 32.49 −26.07 −26.21 −31.59 −46.10 −70.16 −44.09
(−10.35) (−6.68) (−4.75) (−3.94) (−5.03) (4.76) (−6.05) (−3.91) (−3.84) (−5.16) (−6.62) (−4.09)

Panel C. ILLIQ Panel D. REV

1 (Low) 30.55 39.45 35.83 37.65 67.30 36.75 52.82 30.38 23.30 11.84 6.68 −46.14
2 24.67 26.78 23.37 28.13 41.79 17.12 49.06 27.89 19.45 7.57 −3.98 −53.04
3 14.20 20.49 19.52 24.04 27.62 13.42 40.02 26.30 14.18 2.01 −1.08 −41.11
4 8.06 15.25 18.54 16.16 17.81 9.75 39.99 24.39 17.69 6.58 −11.64 −51.63
5 (High) 2.66 10.45 14.21 14.40 4.99 2.32 28.14 17.24 13.04 2.81 −12.81 −40.95

High–Low −27.89 −29.00 −21.61 −23.25 −62.31 −34.42 −24.68 −13.14 −10.26 −9.03 −19.49 5.19
(−4.82) (−5.48) (−3.97) (−4.58) (−9.83) (−4.65) (−2.98) (−2.05) (−1.73) (−1.50) (−2.65) (0.48)

FFC4 −27.61 −28.09 −21.47 −22.26 −61.62 −34.02 −22.88 −12.41 −10.52 −6.99 −18.95 3.93
(−4.76) (−5.20) (−3.96) (−4.44) (−10.03) (−4.64) (−2.72) (−1.93) (−1.76) (−1.20) (−2.63) (0.37)
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Panel B of Table 7 examines RSJ portfolios for different volatility levels.
For the value-weighted portfolios, the 4-factor alpha for the RSJ strategy equals
−26.07 bps per week for the least volatile quantile, compared to −70.16 bps for
the most volatile quantile. Also, the difference in the 4-factor alphas between the
two groups is −44.09 bps per week, with a t-statistic of −4.09. Assuming that
firms with more volatile stock prices exhibit greater informational asymmetries,
arbitrage risks may thus help explain the more pronounced RSJ effects for more
volatile firms.

Panel C of Table 7 relies on the Amihud illiquidity measure to assess the
effect of trading costs. The results indicate a stronger RSJ effect for stocks that
are more costly to trade. For the bottom quintile of stocks with the lowest illiquid-
ity measure, the 4-factor alpha of the RSJ strategy equals −27.61 bps per week,
with a t-statistic of −4.76, whereas for the top quintile of stocks with the highest
illiquidity measure, the 4-factor alpha is −61.62 bps, with a t-statistic of −10.03.
Moreover, the difference in the 4-factor alphas equals −34.02 bps per week, with
a t-statistic of−4.64. Since illiquid stocks are more costly and risky to trade, these
results indirectly support the notion that limits to arbitrage prevent traders from
betting against perceived mispricing (see, e.g., Shleifer and Vishny (1997)), and
why the RSJ effect is the strongest for the most difficult to trade stocks.

Panel D of Table 7 further examines the interaction between the RSJ and
reversal strategies. The weekly 4-factor alpha of the RSJ strategies equals−22.88
bps for the firms with the lowest lagged 1-week returns, compared to −18.95 for
the firms with highest lagged 1-week returns, with t-statistics of−2.72 and−2.63,
respectively. The difference in the alphas between low and high REV firms equals
3.93 bps per week, with an insignificant t-statistic of 0.37. The smaller FFC4
alphas for the RSJ strategies across REV quantiles indicate once again that part
of the predictability of RSJ is attributable to the short-term reversal effect.

B. Autocovariances and RSJ Profits
To help further understand where the profits obtained by buying low-RSJ

stocks and selling high-RSJ stocks come from, we follow Lo and MacKinlay
(1990) and decompose the cross-sectional predictability from an RSJ-based strat-
egy into 3 sources: autocorrelations in the returns, lead-lag relations among the
different stocks, and cross-sectional dispersion in the unconditional mean returns.

Specifically, consider the zero-cost portfolio with weights determined by the
relative magnitude of the individual stocks’ RSJ,

wi ,t =
1
ct

(RSJi ,t −RSJm,t ),(11)

where ct= (
∑N

i=1 |RSJi ,t−RSJm,t |)/2 denotes a scaling factor, and RSJm,t=∑N
i=1 RSJi ,t/N equals the average RSJ for week t . The scaling factor ct ensures

that the strategy is always $1 long and $1 short so that the magnitude of the prof-
its are easily interpretable (see, e.g., the discussions in Lehmann (1990), Nagel
(2012)). Let πt+1 denote the week t+1 profit on the portfolio,

(12) πt+1 =

N∑
i=1

wi ,tri ,t+1 =
1
ct

N∑
i=1

(RSJi ,t −RSJm,t )ri ,t+1.
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Then, following Lo and MacKinlay (1990), the expected profit is naturally de-
composed into 3 separate terms,

E(πt+1) =
N − 1

N 2
tr(0)−

1
N 2
[1′01− tr(0)] + σ 2

µRSJ ,µR
,(13)

where 0=cov(N/ct×RSJt , Rt+1) for RSJt≡ (RSJ1,t ,RSJ2,t , . . . ,RSJN ,t )′, Rt+1≡

(r1,t+1,r2,t+1, . . . ,rN ,t+1)′ denotes the covariance between the scaled RSJ in week t
and the return in week t+1, while σ 2

µRSJ ,µR
denotes the cross-sectional covariance

between the unconditionally expected RSJ and the future returns. The first term
in equation (13), (N−1)tr(0)/N 2, represents the average autocovariance of the
individual stocks. It would be positive/negative if low RSJ stocks became future
losers/winners. The second term, −[1′01− tr(0)]/N 2, gives the average cross-
serial covariance. It would be positive/negative if firms with high RSJ predict
low/high future returns of other firms. Lastly, the third cross-sectional covariance
term, σ 2

µRSJ ,µR
, would be positive/negative if firms with high unconditional RSJ

also have high/low unconditional returns.
Table 8 reports the unconditional sample values for the 3 separate terms

based on the stocks with complete return and RSJ histories, along with the cor-
responding robust standard errors. Panel A gives the results for the raw returns,
while Panel B gives the results for the FFC4-adjusted returns. The findings are
generally consistent with an overreaction-based explanation. The total profit based
on the raw returns equals −23.56 bps per week, with a t-statistic of −7.87, while
the FFC4-adjusted returns produce a profit of −25.55 bps, with a t-statistic of
−10.55. Most of this profitability is attributable to the autocovariance compo-
nent, which generates a weekly profit of −30.02 bps, with a t-statistic of −4.07,
for the raw returns, and a FFC4 alpha of −28.24, with a t-statistic of −10.68. By
comparison, the cross-serial component equals just 5.87 bps, with a t-statistic of
1.00, for the raw returns, and 2.24 bps for the FFC4 alpha, with a t-statistic of
1.98. The unconditional covariance components are nearly 0. In other words, the
profitability arises from variation in the stock’s own RSJ, not other stocks’ RSJ,
suggestive of an overreaction to large and sudden price moves.

TABLE 8
High–Low Portfolio Profit Decomposition

Table 8 reports the Lo–MacKinlay (1990) decomposition of the High–Low portfolio profit based on RSJ, for the 856 stocks
that have complete return histories over the 1993–2013 sample period. The column labeled ‘‘Auto’’ gives the profit at-
tributable to the autocovariance component; ‘‘Cross’’ is the profit attributable to the cross-serial covariance component;
‘‘Mean’’ is the component attributable to the cross-sectional covariance between the unconditional expected RSJ and
the overall returns; and ‘‘Total’’ refers to the total profit. Panel A reports the component profits based on raw returns. Panel
B reports the component profits based on Fama–French–Carhart 4-factor adjusted residual returns. Newey–West (1987)
robust t -statistics are reported in parentheses.

Panel A. Raw Return Panel B. FFC4

Auto Cross Mean Total Auto Cross Mean Total

−30.02 5.87 0.59 −23.56 −28.24 2.24 0.45 −25.55
(−4.07) (1.00) (−7.87) (−10.68) (1.98) (−10.55)
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C. RSJ and News Announcements
Do the “jumps” captured by RSJ, and the corresponding trading profits doc-

umented above, correspond to readily identifiable corporate events and/or firm-
specific news? In an effort to ascertain whether they do, we follow the literature
on post-earnings-announcement drifts (e.g., Bernard and Thomas (1989)), and
plot the typical evolution of the RSJ measure around earnings announcements.
Specifically, for each week in the sample, we compute the average and cumula-
tive RSJ in the [−12,12] week window surrounding the announcement week con-
ditional on positive and negative earnings surprises, respectively. The resulting
averages depicted in Figure 4 reveal a clear positive “jump” in the RSJ measure 1
week prior to the announcement for positive earnings surprises, along with a neg-
ative “jump” in RSJ during the actual announcement week for negative surprises.
Moreover, consistent with the extant literature and the well established pre- and
post-announcement drifts (see, e.g., Fig. 1 of Bernard and Thomas (1989)), there
are also clear pre- and post-announcement trends evident in the cumulative RSJ
measures.

FIGURE 4
RSJ Around Earnings Announcement

Graph A of Figure 4 shows the average weekly relative signed jump variation RSJ in a [−12,12]week window surrounding
positive and negative earnings surprise, respectively. Graph B shows the cumulative RSJ.
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Meanwhile, it is important to recognize that the differences in returns associ-
ated with RSJ is not merely restricted to the time around earnings announcements.
Indeed, many other, both public macroeconomic and firm specific news announce-
ments, similarly manifest in the form of firm specific jumps and in turn large (in
an absolute sense) RSJs (see, e.g., Lee (2012) and the discussion therein). Related
to this, Savor and Wilson (2014) have also recently argued that cross-sectional
return patterns are different on news announcement days.

VII. Conclusion
We document that firms with relatively high/low “good” minus “bad” volatil-

ities, constructed from the summation of high-frequency intraday positive and
negative squared returns, respectively, are associated with low/high future re-
turns. Sorting stocks into portfolios based on their individual relative signed jump
variation results in an economically large value-weighted weekly return spread
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between the stocks in the lowest and highest quintile portfolios of 29.35 bps, or
approximately 15% per year. The corresponding t-statistic of 5.83 also far ex-
ceeds the hurdle rate for judging the cross-sectional return predictability recently
advocated by Harvey et al. (2016). Adjusting the returns for the influence of the
Fama–French–Carhart systematic risk factors hardly changes the magnitude of
this return spread, nor its statistical significance. The return spreads also remain
highly statistically significant and economically large in equal-weighted portfo-
lios, double-sorted portfolios, and Fama–MacBeth type regressions that control
for other firm characteristics and explanatory variables previously associated with
the cross-sectional variation in expected stock returns. By contrast, the negative
predictability of the realized skewness measure recently documented by ACJV, is
completely reversed after controlling for the relative “good” minus “bad” realized
volatility.

Our empirical findings raise the question of why the firm specific relative
signed variation so strongly predicts the future returns. Following the arguments
of Breckenfelder and Tédongap (2012) and Farago and Tédongap (2018), it is
possible that investors with disappointment aversion rationally price downside
volatility more dearly than upside volatility. This in turn results in a priced sys-
tematic downside volatility factor. Empirically, however, it remains to be seen
whether the strong predictability afforded by the individual firms’ high-frequency-
based realized volatility measures can be accounted for by a common systematic
priced risk factor. Also, the return predictability, albeit highly statistically signifi-
cant at the weekly level, is relatively short-lived, dissipating over longer monthly
horizons, casting some doubt on a purely risk-based explanation. Instead, the dif-
ferential pricing of the firm specific “good” versus “bad” volatilities might reflect
behavioral biases, stemming from overreaction to large sudden price declines,
or negative “jumps.” Further along these lines, we find that the predictability of
RSJ is stronger among small firms, firms with more volatile stock prices and more
illiquid firms. This is consistent with investor overreaction to extreme price move-
ments and limits to arbitrage. We leave it for future research to more clearly de-
lineate the roles played by these competing explanations.

Appendix. Data Cleaning, Explanatory Variables and RSK
Sign Change

In this Appendix, we provide the high-frequency data cleaning rules, definitions of
additional explanatory variables used in the article, and explanation of the sign change of
RSK after controlling for RSJ.

1. High-Frequency Data Cleaning
We begin by removing entries that satisfy at least one of the following criteria: A

time stamp outside the exchange open window between 9:30AM and 4:00PM; a price less
than or equal to 0; a trade size less than or equal to 0; corrected trades, that is, trades with
Correction Indicator, CORR, other than 0, 1, or 2; and an abnormal sale condition, that is,
trades for which the Sale Condition, COND, has a letter code other than @, *, E, F, @E,
@F, *E, or *F. We then assign a single value to each variable for each second within the
9:30AM–4:00PM time interval. If one or multiple transactions have occurred in that second,
we calculate the sum of volumes, the sum of trades, and the volume-weighted average price
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within that second. If no transaction has occurred in that second, we enter 0 for volume and
trades. For the volume-weighted average price, we use the entry from the nearest previous
second. Motivated by our analysis of the trading volume distribution across different ex-
changes over time, we purposely incorporate information from all exchanges covered by
the TAQ database.

2. Additional Explanatory Variables
Our empirical investigations rely on the following explanatory variables and firm

characteristics.

• Size (ME): Following Fama and French (1993), a firm’s size is measured by its
market value of equity, that is, the product of the closing price and the number of
shares outstanding (in millions of dollars). Market equity is updated daily and is
used to explain returns over the subsequent week. Following common practice, we
also transform the size variable by its natural logarithm to reduce skewness.

• Book-to-market ratio (BM): Following Fama and French (1993), the book-to-
market ratio in June of year t is computed as the ratio of the book value of com-
mon equity in fiscal year t−1 to the market value of equity (size) in December of
year t−1. Book common equity is defined as the book value of stockholders’ eq-
uity, plus balance sheet deferred taxes and investment tax credit (if available), minus
book value of preferred stock for fiscal year t−1.

• Momentum (MOM): Following Jegadeesh and Titman (1993), the momentum vari-
able at the end of day t is defined as the compound gross return from day t−252
through day t−21, skipping the short-term reversal month.

• Reversal (REV): Following Jegadeesh (1990), Lehmann (1990) and ACJV (2016),
the short-term reversal variable is defined as the weekly return over the previous
week from Tuesday to Monday.

• Idiosyncratic volatility (IVOL): Following Ang et al. (2006b), a firm’s idiosyncratic
volatility at the end of day t is computed as the standard deviation of the residuals
from the regression based on the daily returns between day t−20 and day t :

ri ,d − r f ,d = αi +βi (r0,d − r f ,d)+ γi SMBd +φi HMLd + εi ,d ,(A-1)

where ri ,d and r0,d are the daily returns of stock i and the market portfolio on day d ,
respectively, and SMBd and HMLd denote the daily Fama and French (1993) size
and book-to-market factors.

• Coskewness (CSK): Following Harvey and Siddique (2000) and Ang et al. (2006a),
the coskewness of stock i at the end of day t is estimated using daily returns between
day t−20 and day t as

ĈSKi ,t =

1
N

∑
d

(ri ,d − r̄i )(r0,d − r̄0)2

√
1
N

∑
d

(ri ,d − r̄i )2

(
1
N

∑
d

(r0,d − r̄0)2

) ,(A-2)

where N denotes the number of trading days, ri ,d and r0,d are the daily returns of
stock i and the market portfolio on day d , respectively, and r̄i and r̄0 denote the
corresponding average daily returns.
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• Cokurtosis (CKT): Following Ang et al. (2006a), the cokurtosis of stock i at the end
of day t is estimated using the daily returns between day t−20 and day t as

ĈKTi ,t =

1
N

∑
d

(ri ,d − r̄i )(r0,d − r̄0)3

√
1
N

∑
d

(ri ,d − r̄i )2

(
1
N

∑
d

(r0,d − r̄0)2

)3/2 ,(A-3)

where variables are the same as for CSK.

• Maximum daily return (MAX): Following Bali et al. (2011) and ACJV (2016), the
MAX variable is defined as the largest total daily raw return observed over the
previous week.

• Minimum daily return (MIN): Following Bali et al. (2011) and ACJV (2016), the
MIN variable is defined as the smallest total daily raw return observed over the
previous week.

• Illiquidity (ILLIQ): Following Amihud (2002), the illiquidity for stock i at the end
of day t is measured as the average daily ratio of the absolute stock return to the
dollar trading volume from day t−4 through day t :

ILLIQi ,t =
1
N

∑
d

(
|ri ,d |

volumei ,d × pricei ,d

)
,(A-4)

where volumei ,d is the daily trading volume, pricei ,d is the daily price, and other
variables are as previously defined. We further transform the illiquidity measure by
its natural logarithm to reduce skewness.

3. Change of Sign of RSK
To understand how the predictability of RSK changes sign (from significantly nega-

tive to significantly positive) after controlling for RSJ, consider the following data gener-
ating process (for simplicity and without loss of generality we assume the mean return to
be 0),

rt+1 = a At + et+1,(A-5)

RSJt = bAt + u t ,(A-6)

RSKt = cAt + vt ,(A-7)

where rt+1 denotes the return for week t+1, and At denotes a latent common factor with
zero mean and unit variance. Further assume that a<0 (since the latent variable A nega-
tively predicts future returns), and b>0 and c>0 (since RSJ and RSK both provide “noisy”
proxies for the latent predictor variable). Now consider the joint regression,

rt+1 = γ1RSJt + γ2RSKt + εt+1.(A-8)

The ordinary least squares (OLS) estimates of (γ1,γ2)′ may be succinctly expressed as,(
γ̂1

γ̂2

)
=

(
σ 2

RSJ ρσRSJσRSK

ρσRSJσRSK σ 2
RSK

)−1

×

(
Cov(RSJt ,rt+1)
Cov(RSKt ,rt+1)

)
(A-9)

=
ab

σ 2
RSJσ

2
RSK(1− ρ2)

σRSK

(
σRSK−

c
b
ρσRSJ

)
σRSJ

( c
b
σRSJ− ρσRSK

) ,
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where all of the right-hand-side variables refer to the corresponding sample analogues.
Thus, the γ̂2 estimate will be positive if ρ and σRSK are sufficiently large. To put it differently,
let R2

RSJ=b2/σ 2
RSJ and R2

RSK=c2/σ 2
RSK denote the R2s from the respective univariate (latent)

regressions of RSJ and RSK on A. The γ̂2 estimate will be positive when R2
RSK/R2

RSJ<ρ
2,

or whenever RSJ provides a sufficiently more accurate proxy (as measured by the R2) for
the latent predictor variable than RSK.

Translating this to the actual data, equations (A-6) and (A-7) readily imply that,

RSKt =
c
b

RSJt +wt .(A-10)

Correspondingly, regressing the weekly RSK on RSJ results in an estimate of ĉ/b=
4.19. Moreover, σRSK− (c/b)ρσRSJ=0.77−4.19×0.93×0.16=0.15>0 and (c/b)σRSJ−

ρσRSK=4.19×0.16−0.93×0.77=−0.05<0, which by the above reasoning implies that
γ̂1<0 and γ̂2>0, consistent with the observed change of sign for RSK from negative to
positive between the simple and multiple return regressions.

Supplementary Material
Supplementary Material for this article is available at https://doi.org/10.1017/

S0022109019000097.
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