

Google Cardboard & Virtual Reality
EEC 687 | MOBILE COMPUTING

FINAL REPORT

DECEMBER 5TH, 2016

Jaimal Bhairavia | 2668554

Arpit Patel | 2657673

Supervisor | Dr. Chansu Yu

EEC 687 | FINAL REPORT | PAGE 1

1.0 Introduction

With the rise in the virtual reality paradigm, we were keen on exploring the possibilities

and gaining a firsthand experience of the same. The aim of this project was to fulfill the

above criteria and develop an application on a platform that supported Google

Cardboard and its Software Development kit. We were lucky as we got a chance to

explore the Unity software as we choose it to be the platform for development.

This report presents a detailed explanation of the process of developing the application

that we have named MazedOut, and the learnings of virtual reality, Unity software, and

the Google cardboard Software development kit. All the technical aspects of the project

are covered.

All the issues faced and their solutions are also discussed in the later section of this

report. It has been an indulging process and the world of virtual reality is very

interesting and vast and the possibilities are humungous!

2.0 Virtual Reality

In its mere form, virtual means something which you see but doesn’t exist in real.

Similarly, Virtual reality (VR) is a computer-generated environment that lets you

experience a different reality with different senses like vision, hear, touch and smell in

some cases. It includes simulating user’s physical presence in this virtual environment.

Instead of viewing a screen in front of them, users are immersed and can interact with

3D worlds. VR are displayed either on a computer monitor, a projector screen or in most

cases virtual reality headsets also known as head mounted devices [7]. Virtual reality

has a plethora of areas where it can be applied and used for advancing in them.

3.0 Google Cardboard

Google cardboard is a wearable device developed by google in 2014 which acts as a

gateway to experience virtual reality in a simple, fun and affordable way. It holds a

smartphone in on one side and has the viewing lens on the other as shown in figure 1.

The 3D VR application is then viewed through the cardboard to experience it in virtual

reality. Cardboard is intended towards encouraging interest, low cost and increase

development on the Virtual Reality ground. The cardboard also has a clicker button

which when pressed, the screen is tapped using the internal cushion connected to this

button. We are going to use google cardboard as our head mounted display for

MazedOut [6].

EEC 687 | FINAL REPORT | PAGE 2

Figure 1: Google cardboard

4.0 Unity and its attributes

Unity is a game engine developed by Unity technologies. It is a cross platform engine

which is used to develop games for consoles, PC, website and mobile devices. Unity is

an advanced software that figures out its settings and properties of the game in

accordance to the platform it is developed for. It also gives the freedom to test and build

the game for multiple platforms. Unity offers 2D & 3D support and hence is vastly used

nowadays. Moreover, the coding for unity components and functions are done in C#

which is an object-oriented programming language. All these attributes made us

shortlist our game development software to Unity as we could put our knowledge and

imagination into a virtual reality while learning and exploring it [1].

5.0 Software Development Kit

A software development kit (SDK) is typically a set of software development tools that

supports the creation of applications for a certain software framework, hardware

platform, computer system, video game console, operating system, or similar

development platform. Google provides distinct development kits for developing VR

application on different platforms: Android, iOS, Unity, Unreal.

5.1 Google Cardboard SDK

As discussed in section 3.0, cardboard is the easiest way to get started with

experiencing virtual reality on an android phone. Also, SDK for Unity is also

available with all documentation about the scripting. Scripting is a vital part of the

game development and will be discussed in the further sections. We’ll see a few

important components of the Google cardboard SDK [5] below

EEC 687 | FINAL REPORT | PAGE 3

5.1.1 SDK Components

5.1.1.1 GVR main

GVR Main is a pre-fabricated component of the SDK that replaces the

normal main camera in the unity project. This prefab contains a script

attached to it which controls the basic VR mode settings. Further, it has

a head object as a child. The head has main camera as a child object with

the stereo controller script attached to it. And the main camera has left

and right stereo eye camera. So GVR Main is the most important

component without which the game cannot function.

5.1.1.2 GVR Reticle

Google Virtual Reality Reticle is also a prefab that adds an interactive

gaze based reticle. It behaves like a small pointer in the local space that

casts itself exactly in the position of the user’s focal focus and grows

when it intersects with an object. GvrReticle is a class file which inherits

from MonoBehaviour class file. It also has some functions of its own that

can be utilized towards the development. From those function, we can

adjust the reticle growth speed, enable/disable gaze, setting up event

when user intersects an object with a ray projected form the camera. This

is an essential component as we will be using it immensely in our game

to carry out different actions.

Figure 2: Reticle on a cube

EEC 687 | FINAL REPORT | PAGE 4

6.0 MazedOut

We have named our application MazedOut. It is an VR game which revolves around the

concept of the player finding his or her way out of a maze while collecting as many coins as

possible which eventually would increase their score.

6.1 Gameplay

The game starts with the display of a window which has a start button. The player

needs to select this button and click on it which changes the scene and the game

starts. Further, the player navigates through the maze. Since an auto walk feature is

implemented in the game, the player would walk automatically and in case he or

she needs to stop, all that needs to be done is to look at the ground. The maze has a

total of 40 coins’ places randomly. The players must collect as many coins as possible

before they exit the maze. To collect the coin, they need to locate it and click on

them twice, as soon as it seen irrespective of the distance and once more when the

player is in close proximity of the coin. The feature on clicking twice is done on

purpose to give the player the feel of virtual reality of the coins. Each coin is worth

10 points. Hence the final score is calculated according the number of coins

collected. After the player finds the exit gate and walks through it, the game ends

and the final score is displayed with two other options on the Scoreboard. Restart

and exit are the options. Restart button would lead to restarting the game all over

again from the same start point in the maze. Exit button would simply exit the

application.

6.2 Features

The main features of MazedOut are as follows:

 Gameplay Instructions on the main menu

 Auto Walk of the player

 Stopping by looking at the ground

 Coins change color to green on first click

 Coins collected and score updated on second click

 3 scenes interfaced to create main menu and scoreboard

 Final score displayed on the scoreboard

 Game restarts when restart option selected

6.3 Development Phases

This section covers an overview of MazedOut during its development phases. We

have bifurcated them into 4 major phases. They are briefly discussed below

6.3.1 Initial Phase

The initial phase of the game included delving into the basic concepts of

unity and the reticle functions of the Google cardboard SDK. The cardboard

SDK needs to be imported in the unity project to use the prefabs that belong

EEC 687 | FINAL REPORT | PAGE 5

to it. As discussed above, GVR Reticle is one of them. We tried to create a

project with a set of cubes that changed color while a pointer click was

detected on them. The click event and actions taken on them were

configured. The project and the game window for this project are as follows:

Figure 3.a: Project window

Figure 3.b: Game window

6.3.2 First Maze

This version of the application was created to see how a maze can be created

in unity. We followed the following steps:

 A plane is created and its size is transformed to a scale of 2 to make our

workspace large enough to comprise the maze.

 An image of a maze template is downloaded from the internet and

imported in unity and superimposed on the plane. Figure 3.a shows the

plane after the superimposing.

EEC 687 | FINAL REPORT | PAGE 6

Figure 4.a: Plane in the project window

 We start creating walls by inserting cubes in different size and

orientation. The walls in the image below are cubes stretched out in

terms of axes and a grass material is applied on them. All these walls can

have the same property and hence one wall is created and the others are

duplicated and arranged. We have a maze as shown in the fig. below.

Figure 4.b: First maze – Project Window

EEC 687 | FINAL REPORT | PAGE 7

Figure 4.c: First maze – Game window

6.3.3 Expanded Maze & Canvas

The previous phase had a maze which was small and couldn’t accommodate

the requirements of our game. This lead to expanding the maze in terms of

scale. Also, the maze was changed aesthetically. The following image

showcases the expanded maze.

Figure 5: Expanded maze

EEC 687 | FINAL REPORT | PAGE 8

Another development under this phase was implementing the canvas and its

attributes. We studied the properties of the canvas and designed one to be

used as a scoreboard for our game. Buttons, Text, and images were added to

the canvas to create the scoreboard.

Figure 6: Scoreboard Canvas

6.3.4 Final Maze with coins

The final version of the game saw the modification of the expanded maze

with the addition of coins and the display of number of coins in the game. A

total of 40 coins were added. The coins’ count is updated whenever a coin is

picked up. An image of the maze with the coins is shown below. The yellow

objects represent the coins:

Figure 7: Maze with coins

EEC 687 | FINAL REPORT | PAGE 9

 Also, the scoreboard canvas was aesthetically modified in terms of fonts and

colors of the buttons. An image is shown to show that.

 Figure 8: Modified Scoreboard

7.0 Scripts and Scripting in Unity

Scripting is the most integral part of the Unity. Developers can create any and every

kind of function through scripts. Every function, irrespective of it being predefined or

developer defined, is always created in terms of scripts coded in C#. There is one main

script which controls overall behavior of the game. When we create a new script, two

libraries: UnityEngine and System.Collections and two functions: Start() and Update,

are automatically implemented. The libraries include some essential predefined

functions. Start function returns nothing, but is used for initializing variables and

GameObjects which will be used later in the script. Update function works in a different

way, it is called on every frame [2]. Explaining this, in unity, the frame per second (FPS)

is 60 by default. This means that the motion in the application is calculated per the

frame rate. Hence, any object that needs to considered for further actions, they can be

addressed in the update function. In MazedOut, we have used this functionality to move

gameplayer in direction of his focal direction. Update function is called 80 times per

second because the FPS is 80.

EEC 687 | FINAL REPORT | PAGE 10

7.1 Scripts implemented in MazedOut

MazedOut has three scripts. One for starting the game second to manage everything

related to the score, main menu, and the scoreboard. The last one is used to display

the scoreboard and options of restart and exit (Figure 8)

7.1.1 First Script: Instruction for playing the game and button to start the game

Start.cs script: It has only one function which will be called when the user

clicks on the start button.

using UnityEngine;

using System.Collections;

public class Start : MonoBehaviour {

 public void startgame () {

 SceneManager.LoadScene("Final Maze");

 }

}

7.1.2 Second script: We have added two more libraries named UnityEngine.UI

for displaying text, buttons, canvas and etc, UnityEngine.SceneManagement

for loading different scenes and storing information when user move from

one level to another level.

o Variables used:

Walking: To control the moving of the player

Coincollected: Counting coins

Totalscore: Tracking overall score of the project

Coin: To display the number of coins collected amidst the game.

control.cs script:

using UnityEngine;

using System.Collections;

using UnityEngine.UI;

using UnityEngine.SceneManagement;

public class Control : MonoBehaviour{

private bool walking = false; //For tracking motion of First Player

private Vector3 spawnPoint; //Starting point initialization

int coincollected; //For counting coins collected

int totalscore; //For counting overall score

public Text coins;

void Start () // Used it for initialization of variables

{

 totalscore = 0;

EEC 687 | FINAL REPORT | PAGE 11

 spawnPoint = transform.position;

 coincollected = 0;

 PlayerPrefs.SetInt ("Final Score", FSO);

}

void Update () // Update is called once per frame

 {

 if (walking)

 {

 transform.position = transform.position +

Camera.main.transform.forward * .5f * Time.deltaTime;
 }

 if (transform.position.y < -10f) //for checking angle
 {
 transform.position = spawnPoint;
 }

Ray ray = Camera.main.ViewportPointToRay (new Vector3 (.5f, .5f, 0));
RaycastHit hit;

 if (Physics.Raycast (ray, out hit))
 {
 if (hit.collider.name.Contains ("Plane"))
 {
 walking = false;
 }
 else
 {
 walking = true;
 }
 }

Ray ray1;
 if (Input.GetMouseButtonDown(0)) //For checking clicked object and

increasing count if it is coin

{

ray1 = Camera.main.ScreenPointToRay (Input.mousePosition);

if(Physics.Raycast(ray1, out hit))
 {
 if (hit.collider.tag == "coin")

 { Destroy(hit.collider.gameObject);
 updatecoin ();

EEC 687 | FINAL REPORT | PAGE 12

 updatescore ();
 }
 }
 }

 if (hit.collider.name.Contains("exitwall"))

{
 SceneManager.LoadScene("Scoreboardscene");

}

}

public void updatecoin () //For counting collected coins
{

 coincollected = coincollected + 1;
}
public void updatescore () //For counting overall score
{

 coins.text = "Coins : "+coincollected.ToString();

 totalscore = coincollected * 10;

 PlayerPrefs.SetInt ("Final Score", totalscore);

}

}

o Feature Implemented in above script

Tags and coin collection (Click event from the player):

When we have input from the user in the form of the pressing the screen

via the button in the google cardboard, it can be utilized to trigger an

event of any type. In our game, we are using it for two different purposes

i.e. collecting coins and choosing the option from the menu. In the

former, we are continuously monitoring a click on the coin. The question

that arises here is how do we know that the object on which the user

clicks is a coin. Tags come into picture at this point. Unity allows us to

assign user defined tags to all its objects. Tag is then used as a reference

point in the code which is written to carry out an action on the objects

with that tag. So basically, tags are reference names created for the object

so they can be accessed and worked upon in the code [3].

The coin placed in the route of the maze are collectable. Whenever the

user clicks on them to collect them, the function shown below is

executed. The raycaster function written in the control script is always

EEC 687 | FINAL REPORT | PAGE 13

written under the parent function i.e. the update function. As we know

the update function is called on every frame and there are 60-80 frames

in a second depending on the specifications, Sensing the button click on

an instance of time is possible with the

(Input.GetMouseButtonDown(0)) which is a predefined function in

unity. This will measure the ray and its hit point in the scene in the that

frame. This position is then related to the location with the help of the

physics raycaster. If The (Physics.Raycast(ray1, out hit) returs a true

value, hit.collider.tag == “coin” is the condition which is tested next. If

this condition is satisfied, the next statement in the code destroys the

object which makes the object disappear in our terms. This is possible

with a predefined unity function Destroy(hit.collider.gameObject). Also,

two other functions, updatecoin() and updatescore() are called.

Showing Scoreboard and exit game

The last if statement in the update function checks for the player to exit

the maze via a gate which has an invisible wall which is named “exitwall”.

If this condition becomes true, the player is transferred to another scene

which has the scoreboard.

Updating the coin collected and the score

Going ahead in the execution, the updatecoin() function will simply

increment the count of the coin with 1 and store this value to the original

object which stores the coin collected. (here: coincollected). This object

is linked with the score text in the canvas. Another function is update

score function where overall score of game will be counted. A global

variable is also set where the final score is stored, and we have explicitly

used PlayerPrefs for passing the final score information form one scene

to another.

7.1.3 Third script

Scoreboard.cs: Displaying a score and showing option for continuation of

game.

using UnityEngine;
using System.Collections;
using UnityEngine.UI;
using UnityEngine.SceneManagement;

public class Scoreboard : MonoBehaviour {
 public Text totalscore;
 public Button restart_btn;

EEC 687 | FINAL REPORT | PAGE 14

 public Button exit_btn;
 void Start () //For getting score from previous level

 {
 totalscore.text = PlayerPrefs.GetInt ("Final Score").ToString();
 }
 public void restart () //For restarting game

 {
 SceneManager.LoadScene("Final Maze");
 }
 public void quit () //To exit game

 {
 Application.Quit ();
 }
}

In this script, we have used same libraries with UI objects such as Texts and

Buttons. Two main function are restart for restarting the game and quit for

exiting the game. Figure 8 represents the canvas where these functions are

used.

7.2 Linking the objects in the script with the objects in unity

This is a mandatory step in making the actual script work. After a script is ready to

be used with the project, it needs to be added to the project. After adding it, all the

objects in the project which would have a function attached to them must be linked

with the script so that unity knows what objects are referred to in the script. An

example to explain this procedure is shown in figure 7. The fields on the right are

the ones in the scripts. They represent functions, texts, and buttons. The Final score

is the text in the canvas scoreboard. Hence, it will be linked to the text from that

canvas. This is shown with arrows. Similarly, all the functions are assigned specific

objects that are required. In case this is not done before running the project, the

project wouldn’t work in the manner desired. Specifically, expected functions on an

event would not occur.

EEC 687 | FINAL REPORT | PAGE 15

8.0 Issues encountered during development and their solutions

As every project development procedure encounters a fair share of problems to achieve

the desired, similarly we came across a few problems that are talked about below. The

solutions to the problem are also discussed.

 Reticle function, we couldn’t make it work correctly until we created an event

system and then a gaze input module to detect the collision and take an action if

any event occurred.

 Stopping when looking at the ground. It seemed easy in the beginning but the script

had to be adjusted per the coordinates of the ground.

 Another problem that persisted the longest was exporting the application onto the

device. Since it was a technical issue, we tried a list of different things. We tried

using different devices with the same OS version. But that dint work. So, we tried a

device with a higher android OS version (5.0). For some reason, the performance of

the app was not as desired on this version. Finally, we could export it in a device

working on marshmallow (Android 6.0). We tried playing the game on 2 different

devices with the 6.0 OS and it worked completely fine.

 Making the game object opaque. This was an issue which had to be fixed for the

maze to look like a real structure. It was solved by changing the properties of the

camera. The clipping space for near and far objects were adjusted to 0.01 and 1000

respectively. This changes solved our problem successfully.

 Ending the game. We tried different ways to detect the instant when the player exits

the maze. The solution was easy but overlooked. We created a wall and disabled the

mesh render which made the wall invisible. The box collider was monitored for an

event and if it occurred, we knew the game ended. The display was changed to the

scene with the scoreboard.

 The canvas brought in a list of problems with it. Making the main menu and the

scoreboard canvas appear before and after the game was a task. Even though we

could capture an event, the display dint switch to the canvas. We created two

different scenes. One for the start and one for the end of the game. And we changed

the scenes via the scripts to achieve our desired functionality.

 The value of the score was being fetched and stored correctly to be displayed in the

final scoreboard. We used PlayerPrefs to store and recall the value.

9.0 References

1. https://en.wikipedia.org/wiki/Unity_(game_engine)

2. https://docs.unity3d.com/Manual/ScriptingSection.html

3. https://docs.unity3d.com/Manual/Tags.html

4. https://docs.unity3d.com/Manual/UnityManual.html

5. https://developers.google.com/vr/unity/

6. https://vr.google.com/cardboard/

7. https://en.wikipedia.org/wiki/Virtual_reality

https://en.wikipedia.org/wiki/Unity_(game_engine)
https://docs.unity3d.com/Manual/ScriptingSection.html
https://docs.unity3d.com/Manual/Tags.html
https://docs.unity3d.com/Manual/UnityManual.html
https://developers.google.com/vr/unity/
https://vr.google.com/cardboard/
https://en.wikipedia.org/wiki/Virtual_reality

