

$3 \longdiv { 3 }$
队 $\leftrightarrows$

## A Section of the Beam



Here is that short element of the beam
shown with the portion of the load that is
acting on it.
Does this figure appear to satisfy static equilibrium?

Hide Text
$\mathrm{M}(\mathrm{x})$

| In order to keep the short length of |
| :--- |
| beam in equilibrium，we must include the |
| internal forces acting on the cut of the |
| beam． |
| For beam bending we will ignore the |
| axial force acting on this cut，and focus on |
| the internal shear and moment． |

## Something on sign convention for internal moments and shears！



Beams II -- Deflections: 3


9 Wh Hide Text 오 므
WW WWW


Beams II -- Deflections: 4


Beams II -- Deflections: 5


$$
-\frac{\mathrm{dV}}{\mathrm{dx}}=\mathrm{w}(\mathrm{x})
$$

17 W. Wide Text くいWO $\downarrow$



Beams II -- Deflections: 6

$$
\begin{aligned}
& \begin{array}{l}
\text { Finally, we take the limit of the } \\
\text { expression as } \mathrm{dx} \text { goes to zero. }
\end{array} \quad-\frac{\mathrm{dV}}{\mathrm{dx}}=w(\mathrm{x})
\end{aligned}
$$

W1 WW Hide Text
$\leadsto \longmapsto$

$$
-\frac{d V}{d x}=w(x)
$$

23
Hide Text
도 도
$\square$
And we are left with a
relationship between shear force and change in moment

$$
-\frac{d V}{d x}=w(x)
$$

22ऑ~ Hide Text
노 므



27【, $\quad$ Hide Text
队 $\leftrightarrows$


Beams II－－Deflections： 8
We can combine these two equations to arrive at the coveted load－displacemen

$$
\frac{\mathrm{d}^{2}}{\mathrm{dx}}\left[\mathrm{EI} \vartheta^{\prime \prime}(\mathrm{x})\right]=-\mathrm{w}(\mathrm{x}) \quad \begin{aligned}
& \text { We can combine thes } \\
& \text { to arrive at the coveted } \\
& \text { relationship for beams. }
\end{aligned}
$$

29 Hide Text
모 머

31

今
${ }^{2} 0$ ，${ }_{\text {Hide }}$ Text
$\begin{aligned} \frac{\mathrm{d}^{2} \mathrm{M}}{\mathrm{dx}} & =-\mathrm{w}(\mathrm{x}) \\ \frac{\mathrm{d}^{2}}{\mathrm{dx}}{ }^{2}\left[\mathrm{EI} v^{\prime \prime}(\mathrm{x})\right] & =-\mathrm{w}(\mathrm{x})\end{aligned}$

We can further simplify the load－displacement
relationship if we know that E and I are constant along the length of the beam．

いだっ $\downarrow$

## The Whole Story

| E I $\eta^{\prime \prime \prime}(\mathrm{x})$ | $=-\mathrm{w}(\mathrm{x})$ |  | Distributed Load |
| ---: | :--- | ---: | :--- |
| E I $\imath^{\prime \prime \prime}(\mathrm{x})$ | $=\mathrm{V}(\mathrm{x})$ |  | Shear |
| E I $\eta^{\prime \prime}(\mathrm{x})$ | $=\mathrm{M}(\mathrm{x})$ |  | Moment |
| $\eta^{\prime}(\mathrm{x})$ | $=$ |  | Slope |
| $u(\mathrm{x})$ | $=$ |  | Deflection |

The governing equation for beam deflections，shown at the top，is a fourth order differential equation．The four integrations needed to calculate the deflections of the beam are shown below the governing equation．Note the result of each integration is related to a particular property of the beam＇s internal loading or shape．Refer back to this figure if you are unsure at what step the beam equation must satisfy a certain boundary condition．
W2

## Determining Displaced Shapes： 1

## 1．Determine $\mathrm{M}(\mathrm{x})$

$$
\frac{\mathrm{d}^{2} \mathrm{M}}{\mathrm{dx}^{2}}=-\mathrm{w}(\mathrm{x})
$$

2．Integrate twice to determine $v(\mathrm{x})$ （Two constants of integration／boundary conditions）

There are two ways we can use the previously derived relationships to calculate a beams displaced shape from its loading．The first method is outlined here．
The procedure begins by determining the function which defines moment in the beam as a function of position， $\mathrm{M}(\mathrm{x})$ ．To do this，use your favorite（or the easiest） method to calculate the moment diagram for the beam．Note that（1）this method is only appropriate for statically determinate beams，and（2）if you have point loads on the beam，the function $\mathrm{M}(\mathrm{x})$ will have kinks．

Once you establish $M(x)$ ，integrate the function twice．Don＇t forget the integration constants that come with each indefinite integration！
Finally apply the two displacement boundary conditions for the beam．For
$\qquad$
$3 3 \longdiv { \text { Hide Text } }$ $\square$

## Determining Displaced Shapes： 2

1．Integrate four times

$$
\text { E I } v^{\prime \prime \prime \prime}(\mathrm{x})=-\mathrm{w}(\mathrm{x})
$$

（Four constants of integration／boundary conditions）
$\angle=2$ conditions $\times 2$ ends

The second method for determining beam deflections involves integrating the＂beam equation＂four times．The four integrations will result in four unknown integration constants．To solve for the constants，apply the four boundary conditions for the beam．

The four integration constants come from the fact that every beam The four integration constants come from the fact that e
has two ends，and each end has two boundary conditions．

34 Ma

I
Hide Text ＋ ऑऑ\％


35 Hide Text『ऑऑ．ゝ

## Boundary Conditions



At a fixed support we know that the deflection of the beam is zero and the slope of the beam is zero．


36 Hide Text いOW


## Boundary Conditions

moment in the beam is
zero, and the shear in the

$y=0$
$\mathrm{EI} \imath^{\prime \prime}=\mathrm{M}=0$


38" ${ }^{\text {Hide Text }}$
beam is zero.


40٪ Hide Text
보 도

Beams II -- Deflections: 11


